K. Zemas: Geometric rigidity estimates for isometric and conformal maps from $\mathbb{S}^{n1}$ to $\mathbb{R}^n$ (Ph.D. Thesis) 2020 S. Luckhaus, K. Zemas: Rigidity estimates for isometric and conformal maps from $\mathbb{S}^{n-1}$ to $\mathbb{R}^n$ Inventiones mathematicae Vol. 230, N. Issue 1, p. 375-461, 2022 J. Hirsch, K. Zemas: A note on a rigidity estimate for degree $\pm 1$ conformal maps on $\mathbb{S}^2$ Bulletin of the London Mathematical Society Vol. 54, Issue 1, p. 256-263, 2022 M. Friedrich, L. Kreutz, K. Zemas: From atomistic systems to linearized continuum models for elastic materials with voids Nonlinearity Vol. 36, N. 1, p. 50, 2022 A. Guerra, X. Lamy, K. Zemas: Optimal Quantitative Stability of the Möbius group of the sphere in all dimensions (Submitted Paper) 2023 A. Tribuzio, K. Zemas: Energy barriers for boundary nucleation in a two-well model without gauge invariances (Preprint) 2024 M. Friedrich, L. Kreutz, K. Zemas: Derivation of effective theories for thin 3D nonlinearly elastic rods with voids Math. Models Methods Appl. Sci. (M3AS) Vol. 34, N. 04, p. 723-777, 2024 A. Guerra, X. Lamy, K. Zemas: Sharp quantitative stability of the Möbius group among sphere-valued maps in arbitrary dimension Trans. Amer. Math. Soc. (Accepted Paper) p. 23 pages, 2024 M. Friedrich, L. Kreutz, K. Zemas: Geometric rigidity in variable domains and derivation of linearized models for elastic materials with free surfaces Ann. Inst. H. Poincaré Anal. Non Linéaire (C) (Accepted Paper) p. 51, 2024 L. Scardia, K. Zemas, C. I. Zeppieri: Homogenisation of nonlinear Dirichlet problems in randomly perforated domains under minimal assumptions on the size of perforations Probab. Theory Relat. Fields (Accepted Paper) 2024