Preprint
Inserted: 27 dec 2024
Last Updated: 27 dec 2024
Year: 2024
Abstract:
In this paper we prove the existence of an optimal domain $\Omega_{opt}$ for the shape optimization problem $$\max\Big\{\lambdaq(\Omega)\ :\ \Omega\subset D,\ \lambdap(\Omega)=1\Big\},$$ where $q<p$ and $D$ is a prescribed bounded subset of ${\bf R}^d$. Here $\lambda_p(\Omega)$ (respectively $\lambda_q(\Omega)$) is the first eigenvalue of the $p$-Laplacian $-\Delta_p$ (respectively $-\Delta_q$) with Dirichlet boundary condition on $\partial\Omega$. This is related to the existence of optimal sets that minimize the generalized Cheeger ratio $$\F{p,q}(\Omega)=\frac{\lambdap{1p}(\Omega)}{\lambdaq{1q}(\Omega)}.$$
Keywords: p-Laplacian, shape optimization, Cheeger constant, principal eigenvalue
Download: