Metric measure spaces with
Riemannian Ricci curvature
bounded from below
Lecture IV

Giuseppe Savaré
http://www.imati.cnr.it/~savare

Dipartimento di Matematica, Universita di Pavia

Analysis and Geometry on Singular Spaces, Pisa, June 9-13, 201} %@

1



.
Outline

Dirichlet forms, I'-calculus, Markov semigroups

Intrinsic distance

Dirichlet form and Cheeger energy

Bakry-Emery and Wasserstein contraction



Dirichlet forms, I'-calculus, Markov semigroups

The abtract framework for I'-calculus

v

A (Polish) topological space (X, 1)
A probability Borel measure m with full support

v

» a strongly local Dirichlet form & in L?*(X,m), i.e. a closed,
symmetric, nonnegative bilinear form on D(€) C L*(X, m) satisfying

Ef+ f+) <& 1), &(f,h) =0 if f,h € D(E), fh=0.

v

(P¢)t>0 is the positivity and mass preserving Markov
semigroup in L?(X,m) (in fact in any LP(X,m)) generated by &

v

—L: D(L) C L3(X,m) is the selfadjoint accretive operator

—/Lunpdsz(u,cp), —/Luudmzﬁ(u,u) > 0.




Dirichlet forms, I'-calculus, Markov semigroups

Bakry-Emery condition BE(K, c0) in energy-measure spaces
BE(K, 00): Weak form
for every f € L*(X,m), h € L°(X,m), h >0, t > 0, the quantity

As[fa h] = %/’Psf‘QPr—qhdm

satisfies
d? d

qJ.24tsl)s sl Z i 7' ’
AL+ 2K AJf R 20 i 2'(0,0)

Energy density: if BE(K, c0) holds there exists a bilinear map
I':D(&) — LY(X,m) ( T(f) plays the role of |Df|2) such that

—%8(]‘2,}1)4—8(]", h) :/F(f)hdm for every f,h € D(€) N L™

(. = [ T(r ) dm.
Pointwise gradient commutation estimate: for every f € D(&)
T(P.f) <e M'P(T(f))

Strong form: I'y tensor I'y(f) = LLI(f) — I'(f,Lf) > KT'(f) can be

recovered in a measure-theoretic sense, useful for further applications.
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Dirichlet forms, I'-calculus, Markov semigroups

BE = RCD: program.

1. Starting from the Dirichlet form & study the property of the induced
Biroli-Mosco distance de¢ and the corresponding Cheeger energy Chg,

2. By identifying € with Chy, we prove that the Markov semigroup P; as
the L?-gradient flow of the Dirichlet form & coincides with the
Wasserstein gradient flow of the Entropy.

3. Prove the Wasserstein contraction property in order to extend P, to a
semigroup S; defined on probability measures.

4. Prove that S; is a metric K-flow of the Entropy.



Intrinsic distance

Intrinsic distance
“1-Lipschitz” functions induced by I':

L= {w eD(E):T(W) <1 m—a.e.}

Assumption I Every function in L admits a continuous representative. J

Biroli-Mosco distance [Feffereman-Sanchez Calle, Nagel-Stein-Wanger,
Sturm)]

de(z,y) = sup [¢(z) — Y (y)|

PEL

» dg is always 7-lower semicontinuous

> d¢ is a distance (possibly assuming +o00) whenever L separates the
points of X.

Assumption II (X,d¢) is a complete and separable metric space. J

Completeness is not an issue, since one can always take the abstract
completion of X. The crucial point here is separability.
By replacing 7 with the topology induced by de, one can always assume

that the topologies coincide. m-measurable sets are not affected.
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Intrinsic distance

“Singular” examples: extended distances and strict inequality

X = unit square of R?, m the Lebesgue measure

&)= [@u0)dady| D)= {rer? a.fer?}

lz1 —xa|® if y1 =y,
400 otherwise.

de ((z1,91), (22, 92))° = {

[Sturm] For every e > 0 there exists a function g : X — [1/2,1) such that
Z?[g > 1/2] < € such that

e(f) = [ gDyl da
produces de(x,y) = |z — y| as for g = 1, so that
1 ) 1

Ch(f) = §/|Df| dw > Z&(f).

The identity Ch = %8 holds if g is a continuous function.



Intrinsic distance

General properties

v

[Sturm, Stollmann] (X ,d¢) is always a length space (i.e. d¢(zo,z1) is
the infimum of the length of the curves connecting o to x1).

» L is a convex subset of D(€) which is closed in L*(X,m).
» Every function in L is 1—lipschitz w.r.t. de

» Every bounded 1-Lipschitz function w.r.t. de¢ belongs to L.



Proof

General properties of local Dirichlet form:

I(f) where f > g,
I(g) where f < g,

L(6(f) = (@' (N))'T(f) it ¢ € Lip(R).
There exists a countable set (¢), C L such that

I'(f) where f < M,

L(fv ) = {0 where f > M,

T(ng)—{

de (2, y) := sup [Yn(z) — Yn(y)| = lim sup |¢hm(z) — Ym(y)]
n n—=o0 1<m<n
For every fixed y € X

21 (@) = (50D [Yn(@) —m(y)]) Ak elongs to L

1<m<n

so that x — di(x,Z) = de (2, %) A k = limp— o0 dn k() belongs to L.
If now f is 1-Lipschitz and bounded (without restriction 0 < f < k, i.e.
f(x) — f(y) < dg(z,y)) we have f € L since for a countable dense (yn)n

f(z) = ir;f(f(y) +di(z,y)) = inf f(yn) + di(2, yn)

:nlln;o(lgiginf(yj)+dk(m’yj))
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Dirichlet form and Cheeger energy

Comparison with the Cheeger energy

Let Ch be the Cheeger energy induced by de with minimal weak upper
gradient |D - |,. Then

D(Ch) € D(€), Ch(f) = 5&(/,f)

[N

and for every f € D(E)

IDf|% > T(f) wm-ae.
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Dirichlet form and Cheeger energy

The Hopf-Lax semigroup
Assume that X is compact. Let ¢ € Lip(X) and

Qu() = min 2. d(z,9) + 0(0)
y 2t

Let

Yi(2) i= argmin ~d*(z,5) + 6(y), D{ (2):= max d(z,)
Yy 2t yeYi(x)

The map ¢ — Q:¢ is Lipschitz from [0, 00) to C(X) and Q:¢ is Lipschitz
for every ¢ > 0.

D+
Dol(x) < 2o
For every x € X
d 1 /D (z)\2 d 1 2
T+ (FE) =0 ZQue+5DQ’ <0 (HI)

for every t > 0 with at most countably many exceptions.

If (X, d) is a geodesic space, then equality holds in (HJ) for every ¢t > 0

with at most countably many exceptions. =
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Dirichlet form and Cheeger energy

Proof (compact case)

» By definition of Cheeger energy, it is not restrictive to assume f
Lipschitz and prove that

D> >T(f) m-ae.

» By truncation, we can also assume 0 < f <1 and de¢ < 1.

» Proof for Q. f, via approximated Hopf lax formula

Quf(x) = inf 5.2 (e,) + f(y) = lim f7(2),

fi'(z) == inf d (%, 95) + f(y5);

1<j<n 2t
yi(z) = any point where the inf is attained.
> T(ff)(2) < Af(2) = pdE(z,y7 (z))
> 0<Quf(2) < fi'(x ) <1+ 4,
fll(z) = 53d2 (2, 97 (2)) + f(yi' (2)) L Qe f(2)
> D(Quf) < Aule) = limsup, o, A7 (2) < (D{ (2)/1)* < 2Lip().
> 0 Quf(x) + %At(ﬂi) <0, |Df|2(m) > limSUth fol Agr(z) dr.
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Dirichlet form and Cheeger energy

The reverse inequality: upper semicontinuous envelope of the
slope

Let f € L, ¢ : X — R upper semicontinuous.
ifI'(f) < ¢ then |Df| <.

Since X is a length space, [Df|* < (.

Proof: fix xo € X, e >0, Z. = SUPB_ (o) ¢ and consider the Lipschitz
function

Y(x) = [|f(35) — f(zo)| V ng(x,xo)] NeZe.
T'(¢) < Z. so that v is Z.-Lipschitz.
Y(z) < Z.d(x,x0) and
: If(x) = f(=o)| _ .. ¥(z)
Do) SR =g ) = P Gy = 7

We conclude by letting € | 0, using the u.s.c. of (.
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Upper regular Dirichlet forms

¢ is upper-regular if for every f in a dense subset of D(&) there exists
sequences f, € D(&) and {, u.s.c. and bounded such that

T(fa) S Cur  fn 25 1, lgln;ggf/cn dm < £()

If € is upper regular then

Ch(f) = J&(f. /), D(E)=D(Ch), [DfE=T(/).
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Dirichlet form and Cheeger energy

Bakry-Emery yields upper regularity

If BE(K, 00) holds then & is upper regular and Ch = %8. Moreover |

|DPtf|2 < efZKtPt(|Df|i,) for every Lipschitz function f.

Proof.
L*° ~ Lip regularization: if ¢ € L°°(X,m) then

COT(P:C) < [ICllzee,  Pu(C) € Co(X).
Take now f € L and ¢ = T'(f).

D(P.f) < e *X'PiC, Py — f, /Ptg“%/l“(f)dm

ast ] 0.

1K



Bakry—]i‘,rnery and Wasserstein contraction

Bakry-Emery yields Wasserstein contraction

Define a semigroup S: on (absolutely continuous w.r.t. m) probability
meaures by the formula

Si(fm) == (P.f)m for every f € L} (X, m).

Contraction and fundamental solutions
If BE(K, 00) holds then

Wa(Sep, Sev) < e ' Wa(u,v)

St can be extended to P2 (X) by density.
Precise representative: for every bounded or nonnegative Borel function

mﬂm:/}a&%>

20



Bakry—]i‘,rnery and Wasserstein contraction

Proof [Kuwada]

(K =0, X-compact)

» Contraction in W3 just by duality with Lipschitz function.

» Extension of S; to arbitrary probability measure since W1 provides a
distance for the weak convergence in Z(X).

» Kantorovich duality and Hopf-Lax

PiQuf(x) ~ Pef(y) < 5 (2,9).

Commutation inequality between P and Q [Ledoux]

P:Qif < QiPef
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