Metric measure spaces with Riemannian Ricci curvature bounded from below Lecture IV

> Giuseppe Savaré http://www.imati.cnr.it/~savare

Dipartimento di Matematica, Università di Pavia

Analysis and Geometry on Singular Spaces, Pisa, June 9-13, 2014

1 Dirichlet forms, Γ-calculus, Markov semigroups

2 Intrinsic distance

3 Dirichlet form and Cheeger energy

4 Bakry-Émery and Wasserstein contraction

The abtract framework for Γ -calculus

- \blacktriangleright A (Polish) topological space $({\pmb X}, \tau)$
- \blacktriangleright A probability Borel measure ${\mathfrak m}$ with full support
- ▶ a strongly local Dirichlet form \mathcal{E} in $L^2(\mathbf{X}, \mathbf{m})$, i.e. a closed, symmetric, nonnegative bilinear form on $D(\mathcal{E}) \subset L^2(\mathbf{X}, \mathbf{m})$ satisfying

$$\mathcal{E}(f_+, f_+) \le \mathcal{E}(f, f), \quad \mathcal{E}(f, h) = 0 \quad \text{if } f, h \in D(\mathcal{E}), \ fh = 0.$$

(P_t)_{t≥0} is the positivity and mass preserving Markov semigroup in L²(X, m) (in fact in any L^p(X, m)) generated by *E* −L: D(L) ⊂ L²(X, m) is the selfadjoint accretive operator

$$-\int \mathbf{L} u \, \varphi \, \mathrm{d} \mathbf{m} = \mathcal{E}(u, \varphi), \quad -\int \mathbf{L} u \, u \, \mathrm{d} \mathbf{m} = \mathcal{E}(u, u) \ge 0.$$

Bakry-Émery condition $BE(K, \infty)$ in energy-measure spaces

$\mathsf{BE}(K,\infty)$: Weak form

for every $f \in L^2(\boldsymbol{X}, \boldsymbol{\mathfrak{m}}), \ h \in L^{\infty}(\boldsymbol{X}, \boldsymbol{\mathfrak{m}}), \ h \geq 0, \ t > 0$, the quantity

$$A_s[f,h] := \frac{1}{2} \int \left| \mathsf{P}_s f \right|^2 \mathsf{P}_{t-s} h \, \mathrm{d}\mathfrak{m}$$

satisfies

$$\frac{\mathrm{d}^2}{\mathrm{d}s^2}A_s[f,h] + 2K\frac{\mathrm{d}}{\mathrm{d}s}A_s[f,h] \ge 0 \quad \text{in } \mathscr{D}'(0,t)$$

Energy density: if $\mathsf{BE}(K,\infty)$ holds there exists a bilinear map $\Gamma: D(\mathcal{E}) \to L^1(\mathbf{X}, \mathfrak{m})$ ($\Gamma(f)$ plays the role of $|\mathrm{D}f|_w^2$) such that

$$\begin{split} &-\frac{1}{2}\mathcal{E}(f^2,h)+\mathcal{E}(f,fh)=\int \Gamma(f)\,h\,\mathrm{d}\mathfrak{m} \qquad \text{for every } f,h\in D(\mathcal{E})\cap L^\infty\\ &\mathcal{E}(f,h)=\int \Gamma(f,h)\,\mathrm{d}\mathfrak{m}. \end{split}$$

Pointwise gradient commutation estimate: for every $f \in D(\mathcal{E})$

$$\Gamma(\mathsf{P}_t f) \leq \mathrm{e}^{-2Kt} \mathsf{P}_t(\Gamma(f))$$

Strong form: Γ_2 tensor $\Gamma_2(f) = \frac{1}{2} \mathbf{L} \Gamma(f) - \Gamma(f, \mathbf{L}f) \ge K \Gamma(f)$ can be recovered in a measure-theoretic sense, useful for further applications.

$BE \Rightarrow RCD: program.$

- 2. By identifying \mathcal{E} with $Ch_{d_{\mathcal{E}}}$ we prove that the Markov semigroup P_t as the L^2 -gradient flow of the Dirichlet form \mathcal{E} coincides with the Wasserstein gradient flow of the Entropy.
- 3. Prove the Wasserstein contraction property in order to extend P_t to a semigroup S_t defined on probability measures.
- 4. Prove that S_t is a metric K-flow of the Entropy.

Intrinsic distance

"1-Lipschitz" functions induced by $\Gamma:$

$$\mathbb{L} := \left\{ \psi \in D(\mathcal{E}) : \Gamma(\psi) \le 1 \text{ m-a.e.} \right\}$$

Assumption I Every function in \mathbb{L} admits a continuous representative.

Biroli-Mosco distance [Feffereman-Sanchez Calle, Nagel-Stein-Wanger, Sturm]

$$\mathsf{d}_{\mathcal{E}}(x,y) := \sup_{\psi \in \mathbb{L}} |\psi(x) - \psi(y)|$$

- ▶ $d_{\mathcal{E}}$ is always τ -lower semicontinuous
- ▶ d_{ε} is a distance (possibly assuming $+\infty$) whenever \mathbb{L} separates the points of X.

Assumption II $(X, d_{\mathcal{E}})$ is a complete and separable metric space.

Completeness is not an issue, since one can always take the abstract completion of X. The crucial point here is **separability**. By replacing τ with the topology induced by $d_{\mathcal{E}}$, one can always assume that the topologies coincide. **m**-measurable sets are not affected.

"Singular" examples: extended distances and strict inequality

X = unit square of \mathbb{R}^2 , \mathfrak{m} the Lebesgue measure

$$\mathcal{E}(f) = \int (\partial_x f)^2 \, \mathrm{d}x \mathrm{d}y \, , \quad D(\mathcal{E}) = \left\{ f \in L^2, \ \partial_x f \in L^2 \right\}$$
$$\mathsf{d}_{\mathcal{E}}((x_1, y_1), (x_2, y_2))^2 = \begin{cases} |x_1 - x_2|^2 & \text{if } y_1 = y_2, \\ +\infty & \text{otherwise.} \end{cases}$$

[Sturm] For every $\varepsilon > 0$ there exists a function $g: X \to [1/2, 1)$ such that $\mathscr{L}^2[g > 1/2] < \varepsilon$ such that

$$\mathcal{E}(f) := \int \mathsf{g} |\mathrm{D}f|^2 \,\mathrm{d}x$$

produces $d_{\mathcal{E}}(x, y) = |x - y|$ as for $g \equiv 1$, so that

$$\mathsf{Ch}(f) = \frac{1}{2} \int |\mathrm{D}f|^2 \,\mathrm{d}x > \frac{1}{2} \mathcal{E}(f).$$

The identity $Ch = \frac{1}{2}\mathcal{E}$ holds if g is a continuous function.

General properties

- ► [Sturm, Stollmann] $(\mathbf{X}, \mathsf{d}_{\mathcal{E}})$ is always a length space (i.e. $\mathsf{d}_{\mathcal{E}}(x_0, x_1)$ is the infimum of the length of the curves connecting x_0 to x_1).
- \mathbb{L} is a convex subset of $D(\mathcal{E})$ which is closed in $L^2(\mathbf{X}, \mathfrak{m})$.
- ▶ Every function in \mathbb{L} is 1-lipschitz w.r.t. $\mathsf{d}_{\mathcal{E}}$
- ▶ Every bounded 1-Lipschitz function w.r.t. $d_{\mathcal{E}}$ belongs to \mathbb{L} .

Proof

General properties of local Dirichlet form:

$$\Gamma(f \lor g) = \begin{cases} \Gamma(f) & \text{where } f \ge g, \\ \Gamma(g) & \text{where } f \le g, \end{cases} \quad \Gamma(f \lor M) = \begin{cases} \Gamma(f) & \text{where } f < M, \\ 0 & \text{where } f \ge M, \end{cases}$$
$$\Gamma(\phi(f)) = (\phi'(f))^2 \Gamma(f) & \text{if } \phi \in \operatorname{Lip}(\mathbb{R}). \end{cases}$$

There exists a countable set $(\psi_n)_n \subset \mathbb{L}$ such that

$$\mathsf{d}_{\mathcal{E}}(x,y) := \sup_{n} |\psi_n(x) - \psi_n(y)| = \lim_{n \to \infty} \sup_{1 \le m \le n} |\psi_m(x) - \psi_m(y)|$$

For every fixed $y \in \mathbf{X}$

$$x \mapsto \mathsf{d}_{n,k}(x) = \left(\sup_{1 \le m \le n} |\psi_m(x) - \psi_m(y)|\right) \land k \text{ belongs to } \mathbb{L}$$

so that $x \mapsto \mathsf{d}_k(x, \bar{x}) = \mathsf{d}_{\mathcal{E}}(x, \bar{x}) \land k = \lim_{n \to \infty} \mathsf{d}_{n,k}(x)$ belongs to \mathbb{L} . If now f is 1-Lipschitz and bounded (without restriction $0 \le f \le k$, i.e. $f(x) - f(y) \le \mathsf{d}_k(x, y)$) we have $f \in \mathbb{L}$ since for a **countable dense** $(y_n)_n$

$$f(x) = \inf_{y} (f(y) + \mathsf{d}_{k}(x, y)) = \inf_{n} f(y_{n}) + \mathsf{d}_{k}(x, y_{n})$$
$$= \lim_{n \to \infty} \left(\inf_{1 \le j \le n} f(y_{j}) + \mathsf{d}_{k}(x, y_{j}) \right)$$

Comparison with the Cheeger energy

Let Ch be the Cheeger energy induced by $\mathsf{d}_{\mathcal{E}}$ with minimal weak upper gradient $|\mathrm{D}\cdot|_w.$ Then

 $D(\mathsf{Ch}) \subset D(\mathcal{E}), \quad \mathsf{Ch}(f) \geq \frac{1}{2}\mathcal{E}(f, f)$ and for every $f \in D(\mathcal{E})$ $|\mathrm{D}f|_w^2 \geq \Gamma(f) \quad \mathfrak{m}\text{-a.e.}$

The Hopf-Lax semigroup

Assume that \boldsymbol{X} is compact. Let $\phi \in \operatorname{Lip}(\boldsymbol{X})$ and

$$\mathsf{Q}_t\phi(x) := \min_y \frac{1}{2t}\mathsf{d}^2(x,y) + \phi(y).$$

Let

$$Y_t(x) := \underset{y}{\operatorname{argmin}} \frac{1}{2t} d^2(x, y) + \phi(y), \quad D_t^+(x) := \underset{y \in Y_t(x)}{\max} d(x, y)$$

The map $t \mapsto \mathsf{Q}_t \phi$ is **Lipschitz** from $[0, \infty)$ to $C(\mathbf{X})$ and $\mathsf{Q}_t \phi$ is **Lipschitz** for every $t \ge 0$.

$$|\mathrm{D}\phi|(x) \le \frac{D_t^+(x)}{t}$$

For every $x \in \mathbf{X}$

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{Q}_t\phi + \frac{1}{2}\left(\frac{D_t^+(x)}{t}\right)^2 = 0 \qquad \qquad \frac{\mathrm{d}}{\mathrm{d}t}\mathbf{Q}_t\phi + \frac{1}{2}|\mathbf{D}\mathbf{Q}_t\phi|^2 \le 0 \qquad (\mathrm{HJ})$$

for every t > 0 with at most countably many exceptions. If (\mathbf{X}, \mathbf{d}) is a geodesic space, then equality holds in (HJ) for every t > 0 with at most countably many exceptions.

Proof (compact case)

By definition of Cheeger energy, it is not restrictive to assume f
Lipschitz and prove that

$$|\mathbf{D}f|^2 \ge \Gamma(f)$$
 m-a.e.

- ▶ By truncation, we can also assume $0 \le f \le 1$ and $\mathsf{d}_{\varepsilon} \le 1$.
- ▶ Proof for $Q_t f$, via approximated Hopf lax formula

$$\mathsf{Q}_t f(x) = \inf_y \frac{1}{2t} \mathsf{d}_{\mathcal{E}}^2(x, y) + f(y) = \lim_{n \to \infty} f_t^n(x),$$

$$f_t^n(x) := \inf_{1 \le j \le n} \frac{1}{2t} \mathsf{d}_{\mathcal{E}}^2(x, y_j) + f(y_j);$$

 $y_t^n(x) :=$ any point where the inf is attained.

- $\blacktriangleright \ \Gamma \bigl(f^n_t)(x) \leq A^n_t(x) := \tfrac{1}{t^2} \mathsf{d}^2_{\mathcal{E}}(x,y^n_t(x))$
- $b \quad 0 \leq \mathsf{Q}_t f(x) \leq f_t^n(x) \leq 1 + \frac{1}{2t}, \\ f_t^n(x) = \frac{1}{2t} \mathsf{d}_{\mathcal{E}}^2(x, y_t^n(x)) + f(y_t^n(x)) \downarrow \mathsf{Q}_t f(x)$
- $\Gamma(\mathsf{Q}_t f) \le A_t(x) := \limsup_{n \to \infty} A_t^n(x) \le (D_t^+(x)/t)^2 \le 2\operatorname{Lip}(f).$
- $\quad \flat \ \partial_t \mathsf{Q}_t f(x) + \frac{1}{2} A_t(x) \le 0, \quad |\mathrm{D}f|^2(x) \ge \limsup_{t \downarrow 0} \int_0^1 A_{tr}(x) \, \mathrm{d}r.$

The reverse inequality: upper semicontinuous envelope of the slope

Let $f \in \mathbb{L}, \zeta : \mathbf{X} \to \mathbb{R}$ upper semicontinuous.

if $\Gamma(f) \leq \zeta$ then $|\mathbf{D}f| \leq \zeta$.

Since \boldsymbol{X} is a length space, $|\mathrm{D}f|^* \leq \zeta$.

Proof: fix $x_0 \in \mathbf{X}$, $\varepsilon > 0$, $Z_{\varepsilon} = \sup_{B_{\varepsilon}(x_0)} \zeta$ and consider the Lipschitz function

$$\psi(x) = \left[|f(x) - f(x_0)| \lor Z_{\varepsilon} \mathsf{d}(x, x_0) \right] \land \varepsilon Z_{\varepsilon}.$$

 $\Gamma(\psi) \leq Z_{\varepsilon}$ so that ψ is Z_{ε} -Lipschitz.

 $\psi(x) \leq Z_{\varepsilon} \mathsf{d}(x, x_0)$ and

$$|\mathrm{D}f|(x_0) \leq \limsup_{x \to x_0} \frac{|f(x) - f(x_0)|}{\mathsf{d}_{\mathcal{E}}(x, x_0)} \leq \limsup_{x \to x_0} \frac{\psi(x)}{\mathsf{d}_{\mathcal{E}}(x, x_0)} \leq Z_{\varepsilon}.$$

We conclude by letting $\varepsilon \downarrow 0$, using the u.s.c. of ζ .

Upper regular Dirichlet forms

 \mathcal{E} is upper-regular if for every f in a dense subset of $D(\mathcal{E})$ there exists sequences $f_n \in D(\mathcal{E})$ and ζ_n u.s.c. and bounded such that

$$\Gamma(f_n) \le \zeta_n, \quad f_n \xrightarrow{L^2} f, \quad \liminf_{n \to \infty} \int \zeta_n \, \mathrm{d}\mathbf{m} \le \mathcal{E}(f)$$

If \mathcal{E} is upper regular then

$$\mathsf{Ch}(f) = \frac{1}{2} \mathcal{E}(f,f), \quad D(\mathcal{E}) = D(\mathsf{Ch}), \quad |\mathrm{D}f|_w^2 = \Gamma(f).$$

Bakry-Emery yields upper regularity

If $BE(K, \infty)$ holds then \mathcal{E} is upper regular and $Ch = \frac{1}{2}\mathcal{E}$. Moreover

 $|\mathrm{D}\mathsf{P}_t f|^2 \le \mathrm{e}^{-2Kt} \mathsf{P}_t (|\mathrm{D}f|_w^2)$ for every Lipschitz function f.

Proof.

 $L^{\infty} \rightsquigarrow$ Lip regularization: if $\zeta \in L^{\infty}(\boldsymbol{X}, \boldsymbol{\mathfrak{m}})$ then

 $C(t)\Gamma(\mathsf{P}_t\zeta) \leq \|\zeta\|_{L^{\infty}}, \quad \mathsf{P}_t(\zeta) \in \mathcal{C}_b(\boldsymbol{X}).$

Take now $f \in \mathbb{L}$ and $\zeta = \Gamma(f)$.

$$\Gamma(\mathsf{P}_t f) \leq e^{-2Kt} \mathsf{P}_t \zeta, \quad \mathsf{P}_t \to f, \quad \int \mathsf{P}_t \zeta \to \int \Gamma(f) \, \mathrm{d}\mathfrak{m}$$

as $t \downarrow 0$.

Bakry-Émery yields Wasserstein contraction

Define a semigroup S_t on (absolutely continuous w.r.t. $\mathfrak{m})$ probability meaures by the formula

$$\mathsf{S}_t(f\mathfrak{m}) := (\mathsf{P}_t f)\mathfrak{m}$$
 for every $f \in L^1_+(X,\mathfrak{m})$.

Contraction and fundamental solutions

If $\mathsf{BE}(K,\infty)$ holds then

$$W_2(\mathsf{S}_t\mu,\mathsf{S}_t\nu) \le \mathrm{e}^{-Kt}W_2(\mu,\nu)$$

 S_t can be extended to $\mathscr{P}_2(\mathbf{X})$ by density. Precise representative: for every bounded or nonnegative Borel function

$$\mathsf{P}_t f(x) = \int f \,\mathrm{d}(\mathsf{S}_t \delta_x)$$

Proof [Kuwada]

 $(K=0,\,\boldsymbol{X}\text{-}\mathrm{compact})$

- Contraction in W_1 just by duality with Lipschitz function.
- ▶ Extension of S_t to arbitrary probability measure since W_1 provides a distance for the weak convergence in $\mathscr{P}(\mathbf{X})$.
- ▶ Kantorovich duality and Hopf-Lax

$$\mathsf{P}_t\mathsf{Q}_1f(x)-\mathsf{P}_tf(y)\leq \frac{1}{2}\mathsf{d}_{\mathcal{E}}^2(x,y).$$

Commutation inequality between P and Q [Ledoux]

$$\mathsf{P}_t\mathsf{Q}_1f \leq \mathsf{Q}_1\mathsf{P}_tf$$

