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Curves, upper gradient and slopes in metric spaces

Absolutely continuous curves and upper gradients
(X, d) is a complete and separable metric space.

Absolutely continuous curves with finite p-energy ACp([a, b];X):
curves x : [a, b]→X such that

d(x(s), x(r)) ≤
∫ s

r

m(t) dt a ≤ r ≤ s ≤ b, for some m ∈ Lp(a, b), (?)

Lip([a, b];X) = AC∞([a, b];X).

Metric derivative:

|ẋ|(t) := lim
h→0

d(x(t+ h), x(t))

|h|

|ẋ| ∈ Lp(a, b) and provides the minimal function such that (?) holds.

Geodesics: x : [0, 1]→X with

d(x(s), x(t)) = |t− s|d(x(0), x(1)), |ẋ|(t) ≡ d(x(0), x(1)).

Integrals:∫
x

f :=

∫ b

a

f(x(t)) |ẋ|(t) dt,

∫
∂x

f = f(x(b))− f(x(a))
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Curves, upper gradient and slopes in metric spaces

Upper gradients

Let f : X → R and C be a collection of absolutely continuous curves
(invariant by restrictions).

A Borel function g : X → [0,+∞] is an upper gradient for f on C if

∣∣f(x(b))− f(x(a))
∣∣ ≤ ∫

x

g =

∫ b

a

g(x(t))|ẋ|(t) dt ∀ x ∈ C defined in [a, b]

Equivalently, whenever x ∈ C with g ◦ x ∈ L1(a, b)

f ◦ x ∈ AC([a, b]),
∣∣∣ d

dt
(f ◦ x)

∣∣∣ ≤ (g ◦ x) |ẋ| L 1-a.e.

When C contains all the absolutely continuous curves we just say that g is
an upper gradient.
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Curves, upper gradient and slopes in metric spaces

Gradient flows

Suppose that g is an upper gradient for f : X → (−∞,+∞] on C.

A curve x : [0,∞)→ D(f) in C is a metric gradient flow for f w.r.t. g
if g ◦ x ∈ L2(0,∞) and

− d

dt
f(x(t)) = g2(x(t)) = |ẋ|2(t) a.e. in (0,∞)

Equivalent dissipation inequality:

f(x(t)) +

∫ t

0

(1

2
|ẋ|2(r) +

1

2
g2(x(r))

)
dr ≤ f(x(0)) for every t > 0.

The definition is purely metric and we will apply it to various spaces, as
L2(X,m) or P2(X) endowed with the Wasserstein distance W2.

In the case f = ft(x) is time-dependent

ft(x(t)) +

∫ t

0

(1

2
|ẋ|2(r) +

1

2
g2t (x(r))

)
dr ≤ f0(x(0)) +

∫ t

0

∂rfr(x(r)) dr

for every t > 0.
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Curves, upper gradient and slopes in metric spaces

Slopes

If f : X → (−∞,+∞] and f(x) is finite

|D±f |(x) := lim sup
y→x

(
f(y)− f(x)

)
±

d(x, y)
, |Df |(x) := lim sup

y→x

∣∣f(y)− f(x)
∣∣

d(x, y)

|Df | = max
(
|D−f |, |D+f |

)
.

If f is Lipschitz, then |D±f | are upper gradients.

f is geodesically K-convex if every x0, x1 ∈ D(f) can be connected by a
geodesic x along which

f(x(t)) ≤ (1− t)f(x(0)) + tf(x(1))− K

2
t(1− t)d2(x(0), x(1))

If f is geodesically K-convex then |D−f | is an upper gradient.
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Cheeger energy, Sobolev spaces W1,2(X, d,m), nonlinear Laplacian and metric-heat flow.

Cheeger energy

Let m ∈P(X). If f ∈ Lipb(X) we consider the integral functional

f 7→ 1

2

∫
|Df |2 dm

Cheeger energy: L2-relaxation

Ch(f) := inf
{

lim inf
n→∞

1

2

∫
|Dfn|2 dm : fn ∈ Lipb(X), fn

L2

−→ f
}

Take an optimal sequence fn ∈ Lipb(X) with

fn
L2

−→ f,
1

2

∫
|Dfn|2 dm −→ Ch(f)

Integral representation by the minimal relaxed slope

I |Dfn|
L2

−→ |Df |w, Ch(f) =
1

2

∫
|Df |2w dm.

I If hn ∈ Lipb(X), hn
L2

−→ f and |Dhn|⇀ G in L2, then G ≥ |Df |w.

In particular |Df |w is unique.
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Cheeger energy, Sobolev spaces W1,2(X, d,m), nonlinear Laplacian and metric-heat flow.

Properties of the Cheeger energy and of the relaxed slope

Let f, g ∈ D(Ch).

I |Df |w = 0 m-a.e. on f−1(N) if L 1(N) = 0.

I Locality: |Df |w = |Dg|w m-a.e. on {f − g = c} for all constant c ∈ R.

I Chain rule: |Dφ(f)|w = |φ′(f)| |Df |w for any φ ∈ Lip(R).

I |D(αf + βg)|w ≤ α|Df |w + β|Dg|w whenever α, β ≥ 0.

I Leibnitz inequality: |D(fg)|w ≤ |f | |Dg|w + |g| |Df |w if f, g are
bounded.

I Ch is a convex, 2-homogeneous, l.s.c. functional.

Sobolev space W 1,2(X, d,m) : f ∈ L2(X,m) with Ch(f) <∞ and norm

‖f‖2W1,2 :=

∫ (
|f |2 + |Df |2w

)
dm.

!! Ch can be non-quadratic in general !!

Fisher information:

F(f) :=

∫
f>0

|Df |2w
f

dm = 4

∫
|D
√
f |2w dm = 8Ch(

√
f).
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Cheeger energy, Sobolev spaces W1,2(X, d,m), nonlinear Laplacian and metric-heat flow.

(Nonlinear) Laplacian
Given f ∈ D(Ch) consider the (possibly empty) set ∂Ch(f) ⊂ L2(X,m)
defined by

ξ ∈ L2(X,m) :

∫
ξ(g − f) dm ≤ Ch(g)− Ch(f) ∀ g ∈ D(Ch).

If ∂Ch(f) is non empty, it is closed and convex:
we denote by -∆f its element of minimal L2-norm.

I Rough integration by parts∣∣∣ ∫ f ∆g dm
∣∣∣ ≤ ∫ |Df |w |Dg|w dm

I Integral chain rule: φ ∈ Lip(R), φ′ ≥ 0

−
∫

∆f φ(f) dm =

∫
|Df |2φ′(f) dm

I Monotonicity, φ′ ≥ 0.

−
∫

(∆f −∆g)φ(f − g) dm ≥ 0

I ∆(λf) = λ∆(f), ∆(f + c) = ∆f .

11



Cheeger energy, Sobolev spaces W1,2(X, d,m), nonlinear Laplacian and metric-heat flow.

Nonlinear heat flow

Generation results for gradient flows of convex l.s.c. functionals in Hilbert
spaces [Brezis ’70]:

For every f ∈ L2(X,m) there exists a unique locally lipschitz curve
ft = Ptf with

d

dt+
ft = ∆ft for every t > 0.

I (Pt)t≥0 is a semigroup of contractions in every Lp(X,m):
‖Ptf − Ptg‖Lp ≤ ‖f − g‖Lp .

I Regularization effect: ‖∆ft‖L2 ≤ t−1‖f‖L2

I Pt is order preserving: f ≤ g ⇒ Ptf ≤ Ptg.

I Pt is mass preserving and Ptc ≡ c.
I Entropy dissipation:

d

dt

∫
ft log ft dm = −F(ft).
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Test plans, weak upper gradients

Test plans and weak upper gradients.
Test plan: a dynamic plan (i.e. a probability measure π ∈P(C([0, 1];X))
on the path space) such that

I π is concentrated on AC([0, 1];X)

I (et)]π ≤ Cm, i.e. π
[
x : x(t) ∈ B

]
≤ Cm(B).

Λ ⊂ AC([0, 1];X) is negligible if π(Λ) = 0 for every test plan π.

Weak upper gradient for f : X → R: a m-measurable function
G : X → [0,∞] satisfying∣∣∣ ∫

∂x

f
∣∣∣ ≤ ∫

x

G <∞ for a.e. x ∈ AC([0, 1];X).

I Weak upper gradient are invariant w.r.t. modification of G and f
in m-negligible sets.

I If f has a weak upper gradient, then f is Sobolev along a.e. curve,∣∣∣ d

dt
f ◦ x

∣∣∣ ≤ G ◦ x |ẋ| a.e. in (0, 1), for a.e. x ∈ AC([0, 1];X).

I If f ∈W 1,2(X, d,m) then |Df |w is a weak upper gradient for f .
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Test plans, weak upper gradients

Absolutely continuous curves of measures

Let µ ∈ AC2([0, 1]; P2(X)).

Representation theorem [Lisini]

There exists a dynamic plan π such that

I π respresents µt: µt = (et)]π for every t ∈ [0, 1], i.e.∫
ϕ(x(t)) dπ(x) =

∫
ϕ dµt

I π is concentrated on AC2([0, 1];X) and∫ (∫ 1

0

|ẋ|2 dt
)

dπ(x) =

∫ 1

0

|µ̇t|2 dt <∞

I

|µ̇t|2 =

∫
|ẋ|2(t) dπ(x) for a.e. t ∈ (0, 1).
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Test plans, weak upper gradients

Fisher information is an upper gradient of the Entropy

Suppose

µ ∈ AC2([0, 1]; P2(X)) with µt = %tm, ‖%t‖∞ ≤ C,

∫ 1

0

F(%t) dt <∞.

Entropy-Fisher dissipation formula:

The map

t 7→ Entm(µt) =

∫
%t log %t dm

is absolutely continuous and∣∣∣ d

dt
Entm(µt)

∣∣∣ ≤√F(%t)|µ̇t|

The Fisher information is a Wasserstein upper gradient for the Entropy
on the class of curves with uniformly bounded densities.

Wasserstein Gradient flow of the entropy:

Entm(µt) +
1

2

∫ t

0

(
|µ̇t|2 + F(%t)

)
dr ≤ Entm(µ0). (EDI)
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The Wasserstein gradient flow of the Entropy functional

The Heat flow concides with the Wasserstein gradient flow of
the entropy

Assume
µ0 = %0m ∈P2(X), with %0 ∈ L∞(X;m).

Theorem

Setting %t = Pt%0 and µt = %tm, we have

Entm(µt) +
1

2

∫ t

0

(
|µ̇t|2 + F(%t)

)
dr ≤ Entm(µ0). (EDI)

µt is a Wasserstein gradient flow of the Entropy.

µt is the unique solution of (EDI) in the class of absolutely continuous
curves with uniformly bounded densities.

[Jordan-Kinderleherer-Otto, Otto, AGS, Ambrosio-S.-Zambotti, Erbar, Villani,
Gigli, Gigli-Kuwada-Ohta, AGS]
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The Wasserstein gradient flow of the Entropy functional

Proof

Euristics in Rn.

Basic tools:

I Dual Kantorovich characterization of the Wasserstein distance

I Precise pointwise solution of the Hamilton-Jacobi equation given by
the Hopf-Lax formula

I Kuwada Lemma:

|µ̇t|2 ≤ F(%t).

Applications to the structure of Sobolev space W 1,2(X, d,m)
[Cheeger, Shanmugalingam, Koskela-MacManus]
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The Wasserstein gradient flow of the Entropy functional

Euristics

In Rn: µt = %tL
n

∂tµt = ∆µt = div
(
µt∇ log %t

)
The measures µt are evolving transported by the vector field
vt := −∇ log %t.

Lisini’s representation: π is concentrated on characteristic curves
solving

ẋ(t) = −∇ log %t(x(t)) = −∇%t
%t

(x(t))

thus

− d

dt
log(%t(x(t))+

(
∂t log %t

)
(x(t)) = ∇ log %t(x(t))·ẋ(t) =

1

2

|∇%t(x(t))|2

%t(x(t))
+

1

2
|ẋ|2(t)

Integrating w.r.t. π

−∂t
∫

log(%t(x(t)) dπ +

∫
%−1
t ∂t%t(x(t)) dπ = −∂t

∫
%t log %t dm +

∫
∆%t dm

= − d

dt
Entm(µt) =

∫ (1

2

|∇%t(x(t))|2

%t(x(t)
+

1

2
|ẋ(t)|2

)
dπ =

1

2
F(µt) +

1

2
|µ̇t|2
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The Wasserstein gradient flow of the Entropy functional

Dual Kantorovich characterizations of the Wasserstein distance

W1(µ0, µ1) = min
{∫

d(x0, x1) dµ : µ coupling for µ0, µ1

}
Dual characterization:

W1(µ0, µ1) = sup
{∫

φdµ1 −
∫
φ dµ0 : φ(x1)− φ0(x0) ≤ d(x0, x1)

}

W 2
2 (µ0, µ1) = min

{∫
d2(x0, x1) dµ : µ coupling for µ0, µ1

}
Dual characterization

1

2
W 2

2 (µ0, µ1) = sup
{∫

Q1φ dµ1 −
∫
φ dµ0 : φ ∈ Lipb(X)

}
where

Qtφ(x) := inf
y

1

2t
d2(x, y) + φ(y).
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The Wasserstein gradient flow of the Entropy functional

The Hopf-Lax semigroup

Assume that X is compact. Let φ ∈ Lip(X) and

Qtφ(x) := inf
y

1

2t
d2(x, y) + φ(y).

Then the map t 7→ Qtφ is Lipschitz from [0,∞) to C(X),
Qtφ is Lipschitz for every t ≥ 0
for every x ∈X

d

dt
Qtφ+

1

2
|DQtφ|2 ≤ 0 (HJ)

for every t > 0 with at most countably many exceptions.
If moreover (X, d) is a geodesic space, then equality holds in (HJ) for every
t > 0 with at most countably many exceptions.
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