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Abstract. We introduce and discuss discrete two-dimensional models for XY spin sys-
tems and screw dislocations in crystals. We prove that, as the lattice spacing ε tends
to zero, the relevant energies in these models behave like a free energy in the complex
Ginzburg-Landau theory of superconductivity, justifying in a rigorous mathematical
language the analogies between screw dislocations in crystals and vortices in supercon-
ductors. To this purpose, we introduce a notion of asymptotic variational equivalence
between families of functionals in the framework of Γ-convergence. We then prove that,
in several scaling regimes, the complex Ginzburg-Landau, the XY spin system and the
screw dislocation energy functionals are variationally equivalent. Exploiting such an
equivalence between dislocations and vortices, we can show new results concerning the
asymptotic behavior of screw dislocations in the | log ε|2 energetic regime.
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1. Introduction

Since the pioneering papers of Berezinskii [6], Kosterlitz [25] and Kosterlitz and Thouless [26],
there has been a great effort in studying physical systems exploiting BKT-phase transitions; i.e.,
phase transitions mediated by the formation of topological singularities of the order parameter.
This type of phase transitions characterizes several physical phenomena such as superfluidity,
superconductivity and plasticity (see [24], [27], [28], [29], [34]), while vortices in superconductiv-
ity and XY spin systems, as well as screw dislocations in crystals, provide three paradigmatic
examples of singularities.

The phenomenological analogies shown by these apparently far physical systems have been
pointed out many times in the physical community. In the language of statistical mechanics it has
also been rigorously proven that these systems belong to the same universality class all of them
sharing a BKT-type phase transition. Roughly speaking it is known that above some temperature
threshold, these systems undergo a phase transition to a disordered state in which the topological
singularities are unbound. Under that threshold the correlation length exponentially decays and
the singularities bind together and interact through complex and mostly unknown phenomena
involving many interacting scales. Such a complex behavior is the main reason why a detailed
analysis of the ground states of these systems turns out to be a non trivial task. Moreover,
the above description explains, to some extent, why a qualitative approach to the study of the
thermodynamic limit of these systems, such as the celebrated Ginzburg-Landau theory, has been
so successfully exploited.

In this paper we are concerned with the problem of describing some relevant properties of
the ground states of these systems in the thermodynamic limit. We aim to provide a unifying
mathematical point of view, based on a variational equivalence argument, to study the asymptotic
behavior of the ground states of different models that share the same geometrical and topological
qualitative features. More specifically our purpose is two-fold. On one hand, we want to reinterpret
several known results about the asymptotic behavior of the ground states of such models, proving
that the corresponding free energies are indeed equivalent from a variational point of view. On the
other hand, taking advantage of this equivalence, we want to exploit some of the results currently
proved only through a phenomenological Ginzburg-Landau analysis, to obtain new results in
different contexts.

As in [26], among the physical systems exploiting topological type phase transitions we focus
on two-dimensional systems and we choose two paradigmatic examples: screw dislocations (SD)
and XY spin systems. We will introduce two basic discrete models, both constructed on εZ2 ∩Ω,
where Ω ⊂ R2 is a bounded open set. Their order parameters are a unit vectorial spin field for
the XY model: i ∈ εZ2 ∩ Ω 7→ v(i) ∈ R2 such that |v(i)| = 1, and a scalar displacement field for
the SD model: i ∈ εZ2 ∩ Ω 7→ u(i) ∈ R. For a given configuration of spins or displacements, the
energies of these systems are given by

XYε(v) :=
1
2

∑
i,j∈εZ2∩Ω: |i−j|=ε

|v(i)− v(j)|2

and
SDε(u) :=

1
2

∑
i,j∈εZ2∩Ω: |i−j|=ε

dist2(u(i)− u(j),Z).

With the energies written in this form, the coarse-graining analysis now amounts to study the limit,
as ε → 0, of (some scaled version of) XYε and SDε. To this purpose, in the physical literature,
it is customary to perform a so-called Ginzburg-Landau (GL) analysis (see [24] and [34] for an
introduction to the subject and some applications). The main ansatz of this approach (based on
heuristic scaling and symmetry type arguments) is to assume that some of the interesting features
of the thermodynamic limit of the original functionals can be obtained by studying the limit, as
ε → 0, of a family of so-called complex Ginzburg-Landau energies. These energies have as order
parameter a vectorial field x ∈ Ω 7→ w(x) ∈ R2 and are defined as

(1.1) GLε(w) :=
∫

Ω

1
2
|∇w|2 +

1
ε2

(1− |w|2)2.
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This kind of functionals has been originally introduced as a phenomenological phase-field type
free-energy of a superconductor, near the superconducting transition, in absence of an external
magnetic field. Here the order parameter w describes how deep the system is into the supercon-
ducting phase and the scale ε is proportional to the coherence length of the superconductor.

The Ginzburg-Landau functionals have deserved a great attention by the physical community.
The first rigorous mathematical approach to the limit as ε → 0 of the solutions to the Euler-
Lagrange equation of (1.1) has been made by Bethuel, Brezis and Hélein in [7]. Since their paper
a great effort has been done to study the asymptotic behaviour of minimizers of the Ginzburg-
Landau energy both from the PDEs and the Calculus of Variations points of view. In particular
in dimension two Jerrard and Soner in [22] (see also Alberti, Baldo and Orlandi [1] for the gener-
alization to any dimension) have proved a Γ-convergence result for GLε(w)

| log ε| . In their analysis the
relevant tool to track energy concentration is the asymptotic behavior of the Jacobians J(wε) of
sequences (wε) equi-bounded in energy. In particular they prove that, up to subsequences, J(wε)
converges to a finite sum of Dirac deltas whose support represents the vortex-like singularities of
the limit field and that the Γ-limit is proportional to the number of such singularities.

Only recently a similar analysis in the context of spin systems and dislocations has attracted
much attention in the mathematical community and it has been carried on both in a continuous
framework (see [13], [14], [19], [20]) and in a discrete setting (see [2], [3], [4], [30]). As a further
remark we underline that the asymptotic analysis of spin systems and discrete dislocations energy
functionals is itself part of a wider interest in the discrete-to-continuum limits for more general
models (see for example [8], [9] and [11] (Chapter 11) for a review on this subject).

In [3] and in [30] a Γ-convergence result for XY -spin systems and for the SD model is given
in the | log ε| scaling regime. Here the Γ-convergence analysis is performed with respect to the
convergence of the Jacobians of a suitable affine interpolation of the spin variable v for the XY
model, and with respect to the convergence of a suitable discrete notion of the curl of the strain
field u for the SD model. Roughly speaking, gathering together the main results of these two
papers, the following relations hold:

Γ- lim
ε→0

GLε(w)
| log ε|

= Γ- lim
ε→0

XYε(v)
| log ε|

= Γ- lim
ε→0

4π2SDε(u)
| log ε|

.

Motivated by this chain of equalities, we were led to ask whether one could provide, in the frame-
work of Γ-convergence, a unifying mathematical point of view to rigorously relate the asymptotic
behavior of these models. Our purpose is to prove that the asymptotic equivalence of these models,
in terms of Γ-convergence, can be push forward to any | log ε|h scaling regime with h ≥ 1. More
precisely, we show that

(1.2) Γ- lim
ε→0

GLε(w)
| log ε|h

= Γ- lim
ε→0

XYε(v)
| log ε|h

= Γ- lim
ε→0

4π2SDε(u)
| log ε|h

.

In this way we rigorously obtain the equivalence of some mean field models for vortices, spin
systems and dislocations, according with experimental evidence (see [31] for a recent overview
of the analogies between the mean fields in these models). In particular, we obtain a rigorous
justification to the GL analysis of the thermodynamic limits of the XY and SD models in the
| log ε|h energetic regimes.

To prove (1.2), we look for a relation between the order parameters of the different models, at
proper mesoscopic scales, which allow us to compare the three families of energy functionals in
the | log ε|h scaling regime for every h ≥ 1. This has led us to introduce a notion of variational
equivalence between families of functionals (see Definition 4.1). To explain the meaning of such a
notion, let us suppose that we are given two families of energies (Fε) and (Gε) depending on a small
parameter ε standing for an interaction scale. Then we say that (Fε) and (Gε) are variationally
equivalent if there holds that Gε � Fε and Fε � Gε. By Gε � Fε we mean that, for any given
family of order parameters (pε) such that Fε(pε) ≤ C, there exists another scale δε and a family of
order parameters qε such that qε is closer and closer to pε and Gδε(qε) ≤ Fε(pε) +O(1). Roughly
speaking, we are saying that the two variational models whose energies are given by Fε and Gε
describe the same phenomena if looked at proper interaction scales and by suitably choosing the
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Figure 1. A screw dislocation “corresponds” to a vortex of spins.

order parameters on these scales. The main feature of this notion, is that variational equivalent
families of functionals share the same Γ-limit and share the so called equi-coercivity property (see
Theorems 4.2 and 4.4).

We remark that our notion departs from the concept of asymptotically equivalent functionals
(at a certain order) introduced by Braides and Truskinovsky in [12]. Roughly speaking, according
to their definition, given α ≥ 0 the functionals Fε and Gε are said to be equivalent at order α if
Fε
εα and Gε

εα have the same Γ-limit. In particular our definition turns out to agree with the latter
at order zero provided (Fε) and (Gε) are equi-coercive. On the other hand, to simplify matter,
the purpose of the authors in [12] is to introduce a formalism to build up variational models that
share the same Γ-limit up to a certain given scaling order, and then to study the properties that
such a convergence enjoys with respect to a given family of parameters specific of the considered
theory. Our aim is instead to deduce Γ-convergence and compactness results for the family Gε
from the same results for the equivalent family Fε.

In Theorem 5.1 we prove the equivalence between the families of functionals ( GLε
| log ε|h ), ( XYε

| log ε|h )

and ( 4π2SDε
| log ε|h ) (see also Theorem 6.4 for h = 2). The way our variational equivalence is proved

provides an interesting identification between the order parameters and the corresponding singu-
larities of the different models. For instance, the identification underlying the equivalence between
GLε
| log ε|h and XYε

| log ε|h relies on suitable interpolation procedures which allow us to pass from the
discrete order parameter of the XY model to the continuous one of the GL model. Analogously
the displacement field in the SD model is identified with the phase function of the XY order
parameter (see also Remark 2.2). These identifications of the order parameters clearly induce an
identification of the corresponding singularities (see picture 1). In the proof of Theorem 5.1, we
have to make sure that the identification of the order parameters in the different models produces
small perturbations in the corresponding free energy densities. This is easily checked far from
the singularities, while to control the error near the singularities we need to introduce suitable
reparametrizations δε of the correlation length, i.e., we have to look at the models at suitable
meso-scales δε. Finally, during these identifications, we have also to control the distance, mea-
sured in a suitable topology, of the corresponding singularities. This analysis involves notions of
geometric measure theory, and the arguments used in the proofs are close to those used to prove
density of polyhedral boundaries in the space of integer currents in [17] and also exploited in [1].

Taking advantage of this equivalence principle, we are able to export many of the known results
in the theory of GL vortices to the framework of SD models. Indeed the Γ-convergence results in
[23] in the | log ε|2 energetic regime, together with (1.2) for h = 2, leads to new asymptotic results
in the context of dislocations and spin systems when the number of defects grows logarithmically
as ε goes to zero (see Theorem 6.5).

The | log ε|2 energetic regime has been already considered in the vectorial context of homog-
enizing edge dislocations in [19], within a core radius approach, under the assumption that the
dislocations have a minimal distance of the order of a suitable meso-scale. The Γ-convergence
analysis done in [19] provides a macroscopic model for plasticity, in agreement with the phe-
nomenological strain gradient theory for plasticity introduced in [18]. Moreover, the limit energy
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is compatible with the experimental evidence of the concentration of dislocations on lines, usu-
ally referred to as dislocation walls (we refer to [15] for a variational model describing dislocation
patterns in crystals). In view of (1.2), we extend the Γ-convergence analysis done in [19] to our
completely discrete setting, without any kinematic assumption on the mutual distance of the screw
dislocations. In this way, we derive a strain gradient model for plasticity in the scalar setting of
anti-planar elasticity, starting from a completely discrete and basic model of screw dislocations.

Finally, let us mention that, as a byproduct of our equivalence result (1.2), taking into account
the Γ-convergence result proved in [30], we obtain (see Remark 5.4) a new proof of compactness
and Γ-convergence for two-dimensional GL functionals, independent of the proof given in [22] and
in [32].

Our method can be clearly exploited in many interesting directions: first, one can investigate
the equivalence of lower order terms for the models we have discussed so far, comparing the so
called renormalized energy for vortices and dislocations within a Γ-convergence analysis, in the
spirit of the theory of development by Γ-convergence introduced by Braides and Truvskinovsky in
[12]. Moreover, one can consider the case of edge dislocations, or, more in general, the case of three
dimensional models. Indeed, the results of this paper provide a first step in the effort of making a
link between material dependent models for dislocations and phenomenological Ginzburg-Landau
approaches. We believe that our arguments could give efficient hints to build up material depen-
dent Ginzburg-Landau energies, taking into account kinematic constraints and elasticity constants
specific of the crystal. Moreover, exploiting our variational equivalence arguments in the three
dimensional problem (e.g., in a cubic crystal) would bring new light on interesting mathematical
questions regarding compactness properties and asymptotic behaviour of generalized Ginzburg-
Landau functionals, the target space being a three-dimensional torus, and the singularities being
rectifiable currents with multiplicity in the group Z3 (see Section 7).

The paper is organized as follows. In Section 2 we introduce the discrete models for spin
systems and screw dislocations, while in Section 3 we introduce the corresponding topological
singularities. In Section 4 we describe our variational argument, that will be used in Section 5
to prove the variational equivalence between GLε, XYε and SDε models. Such an equivalence
will be specialized in Section 6 in order to present new results in the asymptotic analysis of screw
dislocations. In Section 7, we will comment the results achieved in this paper suggesting further
extensions, concerning, for instance, the core radius approach to the singularities. Finally we will
propose, in the case of three dimensional elasticity, a material dependent Ginzburg-Landau type
model for dislocations in a cubic lattice.

2. Overview of the models

In this Section we briefly describe the models of Ginzburg-Landau vortices, of XY -spin systems
and of screw dislocations. We will provide a detailed description of the latter in order to define
the physical quantities involved in the model and needed to correctly describe the new results in
the framework of screw dislocations contained in Section 6.

For the time being Ω ⊂ R2 is a bounded open set with Lipschitz boundary, representing the
domain of definition of the relevant fields in these models. For the sake of simplicity, we will also
assume that Ω is star-shaped with respect to the origin. We stress that with some minor technical
effort in our proofs, such assumption can be removed.

2.1. Ginzburg Landau functionals. Let us introduce the family of the so-called complex
Ginzburg-Landau functionals GLε : W 1,2(Ω; R2)→ [0,+∞), defined as

(2.1) GLε(w) :=
(∫

Ω

1
2
|∇w|2 +

1
ε2
W (w)

)
,

where W (x) := (1 − |x|)2. Here w represents the order parameter of the model, describing how
deep the material is in the superconductive phase, ε is a length-scale parameter, usually referred
to as the coherence length while GLε is the corresponding free energy of the system.

Remark 2.1. We make this explicit choice for W = (1 − |x|)2 because it simplifies some com-
putation. The following standard hypotheses would suffice to perform our analysis: W ∈ C(R2)
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such that W (x) ≥ 0, W−1{0} = S1 and

lim inf
|x|→1

W (x)
(1− |x|)2

> 0, lim inf
|x|→∞

W (x)
|x|2

> 0.

2.2. The discrete lattice. Here we introduce the discrete objects and notations we will use in
the sequel.

For every positive ε > 0, we set Ω0
ε := εZ2 ∩ Ω, representing the reference lattice. We will

denote by Ω1
ε := {(i, j) ∈ Ω0

ε × Ω0
ε : |i− j| = ε, i ≤ j} the class of nearest neighbors in Ω0

ε (where
i ≤ j means that il ≤ jl for l ∈ {1, 2}). The class of cells contained in Ω is labelled by the set
Ω2
ε := {i ∈ Ω0

ε : i+ [0, ε]2 ⊂ Ω}. Finally, we set

Ωε :=

 ⋃
i∈Ω2

ε

i+ [0, ε]2

 .

In the following, we will extend the use of these notations to any given open subset A of R2.

2.3. XY spin systems. Here we recall the model of XY spin system following the approach in
[3] (see also [34] for a general introduction to the model). First we introduce the class of admissible
fields,

(2.2) AXYε := {v : Ω0
ε → S1},

where S1 denotes the set of unit vectors in R2. The family of functionals XYε : AXYε → R are
defined by

(2.3) XYε(v) :=
1
2

∑
(i,j)∈Ω1

ε

|v(i)− v(j)|2.

We refer the interested reader to [3] for the derivation of these energies by proper scaling of the
XY energies written in the usual form

−
∑

(i,j)∈Ω1
ε

ε2〈v(i), v(j)〉,

where 〈a, b〉 denotes the scalar product between the vectors a and b.

2.4. Screw dislocations. Here we introduce a basic discrete model for screw dislocations, in-
spired by the approach introduced in [5] and revisited in [30]. The displacement, in this discrete
anti-planar setting, is a function u : Ω0

ε → R. We denote the class of all admissible displacements
by

(2.4) ASDε := {u : Ω0
ε → R}.

We focus here on linearized elasticity, and we consider the model case of nearest neighbors in-
teractions, so that the discrete elastic energy corresponding to any displacement u, in absence of
dislocations, is given by (we fix the shear modulus µ = 1

2 )

(2.5) Eelε (u) :=
1
2

∑
(i,j)∈Ω1

ε

|u(i)− u(j)|2.

It is convenient to introduce also the notion of discrete gradient du, defined on the nearest neigh-
bors (namely, the bonds of the lattice), by dui,j = u(j)− u(i), for every (i, j) ∈ Ω1

ε. With respect
to the discrete gradient du, the energy (2.5) reads like

(2.6) Eelε (u) :=
1
2

∑
(i,j)∈Ω1

ε

|dui,j |2.

To introduce the dislocations in this framework, we adopt the point of view of the additive
decomposition of the gradient of the displacement in an elastic part, the strain, and a plastic
part, following the formalism of the discrete pre-existing strains as in [5] and [30]. More precisely,
a pre-existing strain is a function βp representing the plastic part of the strain defined on pairs
of nearest neighbors and valued in Z|b|. Here b represents the so called Burgers vector which is
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characteristic of the crystal. In principle |b| should be of order ε, but up to a further re-scaling in
the energy functionals, we can fix from now on |b| = 1.

Here the idea is that the plastic strain βp does not store elastic energy and hence it has to be
subtracted to the gradient of the displacement in order to obtain the so called elastic strain. In
view of this additive decomposition ∇u = βp+βe, we have that the elastic strain βe is not curl-free
(in a suitable discrete sense). In Section 3 we will introduce the quantity µ := curl βe = −curl βp,
that measures the degree of incompatibility of the elastic strain βe from being a discrete gradient,
and represents the discrete screw dislocations in the crystal lattice.

Summarizing, the elastic energy corresponding to the decomposition ∇u = βp + βe is given by

Eelε (u) :=
1
2

∑
(i,j)∈Ω1

ε

|βei,j |2 =
1
2

∑
(i,j)∈Ω1

ε

|dui,j − βpi,j |
2,

and whenever the dislocation density curl βe = −curl βp is non zero, then the corresponding
elastic energy is also non zero.

Given a displacement u, we can minimize the corresponding elastic energy with respect to
the plastic strain. Since by our kinematic assumption the plastic strain takes values in Z, it is
clear that the optimal βpu is obtained projecting du on Z. More precisely, let P : R → Z be the
projection operator defined by

(2.7) P (t) = argmin{|t− s|, s ∈ Z},
with the convention that, if the argmin is not unique, then we choose that with minimal modulus.
Then we have βpu = Pdu, in the sense that, for all (i, j) ∈ Ω1

ε, (βpu)i,j = P (dui,j). In this way, we
obtain the elastic energy functionals SDε : ASDε → R defined by

(2.8) SDε(u) :=
1
2

∑
(i,j)∈Ω1

ε

|(βeu)i,j |2 =
1
2

∑
(i,j)∈Ω1

ε

dist2
(
u(i)− u(j),Z

)
.

We notice that, defining ũ := εu as the physical displacement, we have

ε2SDε(u) =
1
2

∑
(i,j)∈Ω1

ε

dist2
(
ũ(i)− ũ(j), εZ

)
,

where the r.h.s. now reads as a term penalizing a misfit slip in the crystal, according with Pierls-
Nabarro theories.

Indeed, another way of understanding (2.8) is the following. In our anti-planar setting, the
crystal can displace only in the vertical direction, and each vertical line of atoms has to displace
rigidly. The discrete gradient dũ measures the difference of the displacement of two near lines
of atoms. If dũ is of order ε, the periodic structure of the crystal is unperturbed, and therefore
the corresponding stored energy has to vanish. In other words, the nearest neighbors interactions
have to be labeled in the deformed configuration, and not in the reference one. The rigorous way
of formalizing this idea is given exactly by the projection procedure introduced by the operator P
in (2.8).

Remark 2.2. Here we describe the heuristic argument to identify the XY and SD models just
introduced. The correspondence between the displacement functions uε ∈ ASDε and the XY
fields vε ∈ AXYε is given by identifying uε with the phase function of vε. More precisely, given a
displacement uε ∈ ASDε, the corresponding field v(uε) for the XY model is given by

(2.9) v(uε)(l) := e2πiuε(l) for every l ∈ Ω0
ε.

Viceversa, given vε ∈ AXYε, the corresponding displacement is u(vε) := 1
2π θvε , where θvε ∈ [0, 2π)

is defined by the identity vε = eiθvε . Note that the (arbitrary) choice of a precise representative
of the phase θvε of vε does not affect the elastic energy corresponding to u(vε). Indeed, we have

2π dist(uε(i)− uε(j),Z) = dS1(v(uε)(i)− v(uε)(j)),

where dS1 denotes the geodesic distance on S1.
Finally, we notice that by Taylor expansion we have 2π(uε(i) − uε(j)) ≈ v(uε)(i) − v(uε)(j),

whenever uε(i) − uε(j) is small. Therefore, we expect the identification between the fields to
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produces small perturbations in the corresponding energy densities (up to a pre-factor 4π2) far
from the singularities, and this will be formalized in the sequel.

3. The topological singularities and energy functionals

As discovered by Jerrard in [21] (see also [22]), the Jacobian of the order parameter is the
relevant geometric object carrying energetic informations for the Ginzburg-Landau functionals. In
the same spirit, in this paper we introduce suitable discrete notions for the topological singularities
of the models we have introduced, and we consider them as the meaningful variables of the
corresponding discrete energy functionals.

For the SD model, the topological singularity is given by the discrete dislocation, defined
through a discrete version of the curl of the elastic strain, while for XY spin systems, the natural
notion of topological singularity is that of discrete vortex, that we will introduce in the sequel.

We will follow the formalism introduced in [5] (see also [30]) representing the singularities by a
discrete function α whose values on the cells of the lattice represent the topological degree of the
singularity. Moreover, we will identify this function α with a measure concentrated on the center
of the cells of the lattice.

As we will see in the sequel, we can always pass from a discrete representation of the singularities
to a continuous one (and viceversa) by mean of interpolations procedures (and projection on finite
elements space respectively). This will also be consistent with the topology we are going to use
to perform the Γ-convergence analysis: the distance, measured in such a topology, between the
continuous representation of the singularities and its discrete counterpart will turn out to be
vanishing for sequences of order parameters with bounded energy (see Proposition 5.2).

3.1. The Jacobian. Given w ∈ H1(Ω; R2), the Jacobian of w is the L1 function defined by

Jw := det∇v.

Let us denote by C0,1
c (Ω) the space of Lipschitz continuous functions on Ω with compact support,

and by X its dual. The dual norm of X will be denoted by ‖ · ‖.
For every w ∈ H1(Ω; R2), we can consider Jw as an element of X by setting

< Jw,ϕ >:=
∫

Ω

Jw ϕdx for every ϕ ∈ C0,1
c (Ω).

Note that Jw can be written (in the sense of distributions) in a divergence form as

(3.1) Jw = div (w1(w2)x2 ,−w1(w2)x1),

or equivalently, in the form Jw = curl (w1∇w2). By a density argument, we deduce that for every
ϕ ∈ C0,1

c (Ω),

(3.2) < Jw,ϕ >= −
∫

R2
w1(w2)x2ϕx1 − w1(w2)x1ϕx2 dx.

Note that the right hand side of (3.2) is well defined also when

w ∈W 1,1(Ω; R2) ∩ L∞(Ω; R2),

and for such a function, we will take (3.2) as the definition of Jw as an element of X.
Finally, for later use we notice that for every v := (v1, v2), w := (w1, w2) belonging to H1(Ω; R2)

(or, as well, to W 1,1(Ω; R2) ∩ L∞(Ω; R2)), we have

(3.3) Jv − Jw =
1
2
(
J(v1 − w1, v2 + w2)− J(v2 − w2, v1 + w1)

)
.

By (3.2) and (3.3) we immediately deduce the following lemma.

Lemma 3.1. Let vn and wn be two sequences in H1(Ω; R2) such that

‖vn − wn‖2(‖∇vn‖2 + ‖∇wn‖2)→ 0.

Then ‖Jvn − Jwn‖ → 0 in X.



COMPLEX GINZBURG LANDAU ENERGIES, XY SPIN SYSTEMS AND SCREW DISLOCATIONS 9

3.2. Discrete dislocations. Following the formalism introduced in [5] (see also [30]), given a
function ξ : Ω1

ε → R (playing the role of a pre-existing strain), we introduce its discrete curl
dξ : Ω2

ε → R, defined for every i ∈ Ω2
ε by

(3.4) dξ(i) := ξi,i+(0,ε) + ξi+(0,ε),i+(ε,ε) − ξi+(ε,0),i+(ε,ε) − ξi,i+(ε,0).

Given an admissible displacement u : Ω0
ε → R, we recall that we can decompose du in its

elastic and plastic part (that is optimal in energy), by setting βpu = Pdu, βeu = du− βpu, where P
is defined in (2.7).

We are now in a position to introduce the discrete dislocation function αu : Ω2
ε → {−1, 0, 1},

defined by

αu(i) := dβeu(i) for every i ∈ Ω2
ε.

It will be convenient also to represent αu as a sum of Dirac masses with weights in {−1, 0, 1} and
supported on the centers of the squares where α 6= 0, setting

(3.5) µu :=
∑
i∈Ω2

ε

αu(i)δi+ 1
2 (ε,ε).

Remark 3.2. Notice that, in view of the very definition of P , we have that βeu ∈ (−1/2, 1/2],
therefore by definition (3.4) the discrete dislocation αu takes values in {−1, 0, 1}. We deduce
that, in our model, only singular dislocations can be present in a cell.

3.3. Discrete vortices. Given an admissible field v ∈ AXYε, the associated discrete vorticity
γv : Ω2

ε → Z is defined by

(3.6) γv := α 1
2π θ(v)

,

where θ(v) ∈ [0, 2π) is the phase of v defined by the relation v = eiθ(v). Moreover, we introduce
the measure µv defined by

(3.7) µv :=
∑
i∈Ω2

ε

γv(i)δi+ 1
2 (ε,ε).

Notice that, as for the screw dislocations, in a cell we can have only singular vortices.

Remark 3.3. Given v ∈ AXYε, we can introduce a function ṽ : Ωε → R2 that coincides with v
on Ω0

ε ∩ Ωε and such that Jṽ = πµv. Indeed, consider the function θ̃(v) defined on each segment
[i, j] with (i, j) ∈ Ω1

ε by

θ̃(v)(i+ s(j − i)) = θ(v)(i) + 2πs (βeu(v))i,j for every s ∈ [0, 1],

where u(v) := 1
2π θ(v). Now, extend θ̃(v) in each cell i + [0, ε]2 (with i ∈ Ω2

ε), making it zero-
homogeneous with respect to the center of the cell. Finally, on each cell we set ṽ := eiθ̃(v).

A straightforward computation leads to the equality Jṽ = πµv. This argument shows that the
vorticity function αv represents a discrete version of the Jacobian, and seems a very natural object
in this context.

Finally, for latter use, we notice that it can be easily proved (for instance by the identity
Jṽ = curl (ṽ1∇ṽ2)) that for each ε-square Qi with i ∈ Ω2

ε we have

(3.8) µv(Qi) =
1
π

∫
∂Qi

ṽ1
∂

∂s
ṽ2 ds.

Remark 3.4. We notice here that a very easy estimate leads to the following bound for the total
variation of the topological singularities

|Jwε|(Ω) ≤ C GLε(wε), |µvε |(Ω) ≤ C XYε(vε), |µuε |(Ω) ≤ C SDε(uε).
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3.4. The energy functionals. In this paragraph we will formally introduce the (rescaled) energy
functionals corresponding to the XY spin system, the screw dislocations and the Ginzburg-Landau
models written in terms of the corresponding singularities.

In order to rewrite the energy functionals in these new variables, we minimize the free energies
among all field quantities compatible with the prescribed singularity. For instance, in the SD
model, we will fix µ := curl βe, and minimize the elastic energy among all u compatible with µ,
i.e., with µu = µ. The corresponding energy functional can be thought of as the energy stored in
the crystal, for a certain given dislocation density.

We will consider the energetic regimes of order | log ε|h, where h is any fixed positive real
number. Following the convention according to which the infimum of the empty set is +∞, we
define the Ginzburg-Landau energy functional GLε : X → [0,+∞], where X = (C0,1

c (Ω))∗, as

(3.9) GLε(µ) :=
1

| log ε|h
inf
{
GLε(w), w ∈ H1(Ω; R2) :

J(w)
π| log ε|h−1

= µ

}
.

Let us pass to the energy functionals corresponding to XY spin systems. Using the notations
introduced in the Section 3, the energy functionals XYε : X → [0,+∞] are defined by

(3.10) XYε(µ) :=
1

| log ε|h
inf
{
XYε(v), v ∈ AXYε :

µv
| log ε|h−1

= µ

}
.

Finally the energy functionals corresponding to the screw dislocations model SDε : X →
[0,+∞] are defined by

(3.11) SDε(µ) :=
4π2

| log ε|h
inf
{
SDε(u), u ∈ ASDε :

µu
| log ε|h−1

= µ

}
,

where the prefactor 4π2 is just a normalization factor which guarantees that the family (SDε)
asymptotically behaves as XYε and GLε.

4. The variational equivalence argument

In this section we will introduce a notion of equivalence between families of functionals defined
on a metric space (X, d), depending on a small parameter ε. Such a notion turns out to be efficient
to compare different variational models which share the same asymptotic behavior as ε goes to
zero.

4.1. The notion of variational equivalence. Let (Fε) and (Gε) be two families of functionals
from X to R ∪ {∞} depending on the parameter ε ∈ R+ ∪ {0}.

Definition 4.1. We set (Gε) � (Fε) if there exists a continuous increasing function ε 7→ δε, with
δ0 = 0, such that the following holds.

For every εn → 0, and (pn) ⊂ X such that Fεn(pn) ≤ C, there exists a family (qn) ⊂ X such
that

i) lim supn(Gδεn (qn)− Fεn(pn)) ≤ 0;
ii) Either (pn) and (qn) are unbounded or d(pn, qn)→ 0 as n→ +∞.

We set (Fε) ' (Gε), and we say that (Fε) and (Gε) are variationally equivalent (for ε → 0) if
(Fε) � (Gε) and (Gε) � (Fε).

Note that the relation � just introduced is transitive, i.e., if F 1
ε � F 2

ε and F 2
ε � F 3

ε then
F 1
ε � F 3

ε . Moreover the relation ' is an equivalence relation between families of functionals
{(Fε), Fε : X → R}, i.e., the following properties hold

Reflexivity: (Fε) ' (Fε);

Symmetry: (Fε) ' (Gε) implies (Gε) ' (Fε);

Transitivity: (Fε) ' (Gε) and (Gε) ' (Hε) imply (Gε) ' (Hε).
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4.2. Some consequences of the variational equivalence. Let us consider now a first impor-
tant relation between the notion of variational equivalence and that of Γ-convergence (for the
definition and the main properties of Γ-convergence we refer the reader to [10] and [16]). To this
purpose we recall the following definition of equi-coercivity: a family of functionals (Fε) is said to
be equi-coercive if, given εn → 0 and (pn) such that Fεn(pn) < C, then (pn) is relatively compact
in X.

Theorem 4.2. Let (Fε) be a family of equi-coercive functionals Γ-converging to some functional
H in X. Then (Fε) is variationally equivalent to the constant sequence Hε ≡ H.

Proof. We begin proving Fε � H by a contradiction argument. Assume by contradiction that the
relation Fε � H does not hold; then there exist sequences εn → 0, (pn) ⊂ X with H(pn) ≤ C,
and r > 0 such that

(4.1) inf
x∈Br(pn)

Fεn(x) ≥ H(pn) + r.

On the other hand, by the equi-coercivity of Fε we easily deduce the coercivity of H, so that we
can assume without loss of generality that pn converges to some p ∈ X. By the Γ-limsup inequality
there exists a sequence (zn) ⊂ X such that

(4.2) zn → p, Fεn(zn)→ H(p) ≤ lim inf H(pn).

Equation (4.1) together with (4.2) provides a contradiction.
Let us pass to the proof of the opposite inequality H � Fε. Assume by contradiction that there

exist sequences εn → 0, (pn) ⊂ X with Fεn(pn) ≤ C and r > 0 such that

(4.3) inf
x∈Br(pn)

H(x) ≥ Fεn(pn) + r.

By the equi-coercivity property of Fε we may assume that pn → p in X, and by the Γ-liminf
inequality we have that, for n big enough

inf
x∈Br(pn)

H(x) ≤ H(p) ≤ lim inf Fεn(pn),

which, together with (4.3) provides a contradiction. �

Remark 4.3. Note that in Theorem 4.2 the equicoercivity assumption plays a fundamental role.
Indeed consider the space l2 of sequences {ai} with

∑
i a

2
i finite, and consider the functionals

Fε : R→ R defined by
Fε({ai}) :=

∑
i 6=[1/ε]

a2
i ,

where [1/ε] denotes the integer part of 1/ε. Clearly Fε Γ-converge to the functional H({ai}) :=
‖{ai}‖22, but Fε is not variationally equivalent to H.

The next theorem, together with Theorem 4.2, clarifies the relation between the notion of
Γ-convergence and the notion of variational equivalence.

Theorem 4.4. Let (Fε) and (Gε) be variationally equivalent. Then the following properties hold.
1) Fε are equi-coercive if and only if Gε are equi-coercive;
2) Fε Γ-converge to some functional H in X if and only if Gε Γ-converge to H.

Proof. To prove property 1) assume for instance that Gε are equi-coercive and let us prove that
so are also Fε. To this aim let ε 7→ δε be the map given in the definition of Fε � Gε. Let
εn → 0 and (pn) ⊂ X be such that Fεn(pn) ≤ C. By Definition 4.1 there exists a sequence
(qn) ⊂ X such that lim supnGδεn (qn) ≤ C. By the equi-coercivity property of Gε we deduce that
(up to a subsequence) qn → x for some x ∈ X. By property ii) of Definition 4.1 we deduce that
d(pn, qn)→ 0 and therefore that pn → x.

Let us pass to property 2). Assume for instance that Fε Γ-converge to H and let us prove that
also Gε Γ-converge to H.
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Let now ε → δε be the map given in the definition of Gε � Fε, let εn → 0 and let ρn be such
that εn = δρn . In order to prove the Γ-limsup inequality let p ∈ X, and let (pn) be a recovery
sequence for Fρn ; i.e., pn → p and Fρn(pn) → F (p). Consider the sequences (qn) ⊂ X given by
Definition 4.1. By property ii) of Definition 4.1 we have that qn → p, and by property i) we have
that

lim supGεn(qn) ≤ lim
n
Fρn(pn) = H(p).

In order to prove the Γ-liminf inequality, let now ε → δε be the map given in the definition of
Fε � Gε and let pn → p. By Definition 4.1 there exists a sequence qn → p such that

H(p) ≤ lim inf
n

Fδεn (qn) ≤ lim inf
n

Gεn(pn),

that proves the Γ-liminf inequality. �

Remark 4.5. Note that if Fε and Gε are variationally equivalent, by Theorem 4.4 we deduce
that they share the same Γ-limits even when they are not equi-coercive.

We also notice that in the class of equi-coercive functionals admitting a Γ-limit, our definition
of equivalence coincides with that given (at order zero) in [12].

Remark 4.6. Even if Definition 4.1 is given in a metric context, it can be generalized to vecto-
rial topological spaces. We chose the metric framework because it is usually general enough for
practical applications, the metric d being either the metric inducing the weak topology of a ball
in a Banach space, or (in view of a compact embedding) the distance induced by the norm of a
Banach space.

4.3. A first example of equivalent families. For all positive s > 0 consider the Ginzburg-
Landau functionals GLsε : W 1,2(Ω; R2)→ [0,+∞), defined as

(4.4) GLsε(w) :=
1
2

∫
R2
|∇w|2 +

s

ε2
W (w).

Note that for s = 1 the functionals GLsε coincides with the functional GLε defined in (2.1).
Consider also the functional GLsε : X → [0,+∞] defined as in (3.9) with GLε replaced by GLsε.

Proposition 4.7. For every 0 < s1 < s2, the families of functionals GLs1ε and GLs2ε are varia-
tionally equivalent, according to Definition 4.1

Proof. Let s1 < s2. Since GLs1ε ≤ GL
s2
ε , we immediately deduce GLs1ε � GL

s2
ε . In order to prove

the opposite relation, consider the following change of variables

ε 7→δε := ε

(
s2

s1

) 1
2

.

Following Definition 4.1, let εn → 0 as n → +∞ and let (pn) ⊂ X be such that GLs1εn(pn) ≤ C.
Moreover, set

tn := | log δεn |
h−1

| log εn|h−1 , qn :=
pn
tn
.

By the fact that tn → 1 as n → +∞ it immediately follows that either pn and qn are both
unbounded or d(pn, qn)→ 0.

Let (wn) ⊂ H1(R2; R2) be such that
1

| log εn|h−1
Jwn = pn,

1
| log εn|hGL

s1
εn(wn)− GLs1εn(pn)→ 0 as n→ +∞.

Then, since by construction 1
| log δεn |h−1 Jwn = qn, we have

lim sup
n

(GLs2δεn (qn)− GLs1εn(pn)) ≤ lim sup
n

(
1

| log δεn |h
GLs2δεn

(wn)− 1
| log εn|h

GLs1εn(wn)
)

= lim sup
n

( 1

| log
(
εn

s2
s1

) 1
2 |h
− 1
| log εn|h

)(1
2

∫
R2
|∇wn|2 +

s1

ε2
n

W (wn)
)

= 0.

�
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In the following we will need a slight variant of Proposition 4.7, where the pre-factor s in front
of the potential term W is a suitable function of ε.

Proposition 4.8. Let ε 7→ sε be an increasing functions from R+ to R+ such that | log sε|
| log ε| → 0

as ε→ 0. Then the functionals GLε are variationally equivalent to GLsεε , according to Definition
4.1.

Proof. The proof follows the lines of the proof of Proposition 4.7, setting now δε := ε√
sε

. �

5. Variational equivalence between GLε, XYε and SDε
In this Section we prove the main result of the paper: the energies corresponding to XY spin

systems, to screw dislocations and to the Ginzburg-Landau model are variationally equivalent in
the sense of Definition 4.1. We prove this result for any scaling of the energies of order | log ε|h
with h ≥ 1, the most relevant cases being h = 1 and h = 2.

In order to define all the energy functionals in the same space, we consider the Banach space
(X, ‖ · ‖) defined as the dual of Lipschitz functions with compact support in Ω, endowed with the
dual norm. This space is the natural space for the topological singularities, that are the relevant
quantities in all the investigated models. The functionals GLε, XYε and SDε from X to [0,+∞]
are defined rigorously in (3.9), (3.10) and (3.11) respectively.

Theorem 5.1. The functionals XYε, SDε and GLε are variationally equivalent according to
Definition 4.1.

We will prove in three steps that XYε � GLε � SDε � XYε. This relations imply the
equivalence of all the functionals by the transitivity property of the order relation F � G. Before
the proof of Theorem 5.1 we state and prove a proposition that will be used to identify the discrete
description of the singularities (i.e., the discrete measures µu and µv defined in (3.5) and (3.7),
respectively) with the diffuse Jacobians of some suitable interpolation of the corresponding fields.
To this purpose, for every positive ε > 0, consider the triangulation Tε := {T±(i), i ∈ εZ2} whose
triangles are of the type

T−(i) := {(x1, x2) : i1 ≤ x1 ≤ i1 + ε, i2 ≤ x2 ≤ i2 + x1};

T+(i) := (i1, i1 + ε)× (i2, i2 + ε) \ T−ε (i).(5.1)

To any vε in AXYε, we can associate the continuous field w(vε) in H1(Ωε; R2) given by the piece-
wise linear interpolation of vε on the triangles of Tε contained in Ωε. Note that the Jacobian of
w(vε) is piecewise constant and that it can be extended by zero to a L1 function in Ω. Therefore
J(w(vε)) can be seen as an element of X.

Since we will need to localize the energy functionals to subsets of Ω, we introduce the following
notation. Given A ⊂ Ω, we will denote by GLε(·, A) the restriction of the GLε energy density to
A, and we denote by XYε(·, A) and SDε(·, A) the restriction of the corresponding energy densities
to the nearest neighbors contained in A. Finally, for every given positive δ we set

(5.2) Iδ(Ω) := {x ∈ Ω : min
y∈∂Ω

min
i∈{1,2}

|xi − yi| > δ}.

Proposition 5.2. Let vε ∈ AXYε be a sequence with XYε(vε) ≤ C| log ε|h. Then ‖Jw(vε)
π −µvε‖ →

0 as ε→ 0.

Proof. Let δε :=
(
ε| log ε|h+1

)
, denote by δ̃ε the projection of δε on εZ, and set

Rh
δ̃ε

:= {(x, y) ∈ R2 : y ∈ δ̃εZ},

Rv
δ̃ε

:= {(x, y) ∈ R2 : x ∈ δ̃εZ},

Rδ̃ε := (Rh
δ̃ε
∪Rv

δ̃ε
) ∩ Iδ̃ε(Ω).
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If we denote by R1
δ̃ε

(s) the class of nearest neighbors in Rδ̃ε + (s, s), by the Mean Value Theorem

it is easy to prove that there exists sδ̃ε ∈ ε{0, 1, . . . ,
δ̃ε
ε } such that

(5.3) XYε(vε) ≥
∑

s∈ε{0,1,..., δ̃εε }

∑
l,k∈R1

δ̃ε
(s)

1
2
|vε(l)− vε(k)|2 ≥ δ̃ε

ε

∑
l,k∈R1

δ̃ε
(sδ̃ε )

1
2
|vε(l)− vε(k)|2.

By (5.3) we deduce that

max
l,k∈R1

δ̃ε
(sδ̃ε )
|vε(l)− vε(k)| → 0 as ε→ 0.

Let us denote by Qi
δ̃ε

the cubes contained in Iδ̃ε(Ω) + (sδ̃ε , sδ̃ε) of the type

Qi
δ̃ε

:= δ̃ε(i+ [0, 1]2) + (sδ̃ε , sδ̃ε), i ∈ Z2,

and by Aδ̃ε their union.
Let ϕ ∈ C0,1

c (Ω) with norm less then one, and denote by ϕ̃ the locally constant function that
on each δ̃ε-square Qi

δ̃ε
coincides with ϕ on the center of Qi

δ̃ε
. Then we have

(5.4) | < Jw(vε)
π

− µvε , ϕ > | ≤

(∫
Ωε\Aδ̃ε

|Jw(vε)|dx+ |µvε |(Ωε \Aδ̃ε)

)
max

Ωε\Aδ̃ε
|ϕ|

+
∑

Qi
δ̃ε
⊆Aδ̃ε

(∫
Qi
δ̃ε

|J(w(vε))|dx+ |µvε |(Qiδ̃ε)

)
|ϕ− ϕ̃|+

∑
Qi
δ̃ε
⊆Aδ̃ε

(∫
Qi
δ̃ε

Jw(vε)
π

dx− µvε(Qiδ̃ε)

)
ϕ̃.

The first two addends of the right hand side of (5.4) are vanishing (uniformly with respect to ϕ
belonging to C0,1

c (Ω) and with norm less then one), since maxΩε\Aδ̃ε
|ϕ| and |ϕ− ϕ̃| are bounded

by Cδ̃ε, and (see Remark 3.4)∫
Ωε

|Jw(vε)|dx+ |µvε |(Ωε) ≤ C| log ε|h.

Therefore it remains to prove that also the third addend in (5.4) is vanishing, uniformly with
respect to ϕ. To this purpose, let ṽε be defined as in Remark 3.3 on the boundaries of all Qi

δ̃ε
.

Since J(w(vε)) = curl (w(vε))1∇(w(vε))2 and Jṽε = curl (ṽε)1∇(ṽε)2 (see also of (3.8)), we have

(5.5)
∫
Qi
δ̃ε

Jw(vε)
π

dx− µvε(Qiδ̃ε) =
1
π

∫
∂Qi

δ̃ε

(w(vε))1
∂

∂s
(w(vε))2 − (ṽε)1

∂

∂s
(ṽε)2

=
1

2π

∫
∂Qi

δ̃ε

(
w(vε)− ṽε

)
1

∂

∂s

(
w(vε) + ṽε

)
2
−
(
w(vε)− ṽε

)
2

∂

∂s

(
w(vε) + ṽε

)
1
.

By (5.3) and (5.5) we conclude∑
Qi
δ̃ε

(∫
Qi
δ̃ε

Jw(vε)
π

dx− µvε(Qiδ̃ε)

)
ϕ̃ ≤ C

∑
Qi
δ̃ε

∫
∂Qi

δ̃ε

|w(vε)− ṽε||w(vε)′|

≤ C

∑
Qi
δ̃ε

∫
∂Qi

δ̃ε

|w(vε)− ṽε|2
∑
Qi
δ̃ε

∫
∂Qi

δ̃ε

|w(vε)′|2


1
2

≤ C
∑

l,k∈R1
δ̃ε

(sδ̃ε )

|vε(l)− vε(k)|2 ≤ C 1
| log ε|

→ 0,

where in the last but one inequality we have used that |w(vε)− ṽε| is controlled on the segment
[l, k] by |vε(l)− vε(k)|.
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Remark 5.3. Note that, given w(vε), we can always extend it to a function w̃(vε) defined in the
whole Ω such that

‖∇w̃(vε)‖L2(Ω;R2×2) ≤ C‖∇w(vε)‖L2(Ωε;R2×2).

As a consequence, if w(vε) is with finite energy as in Proposition 5.2, then it is easy to see that
‖Jw(vε) − Jw̃(vε)‖ → 0 as ε → 0. Therefore, the conclusion of Proposition 5.2 still holds with
Jw̃(vε) in place of Jw(vε).

We are now in a position to prove Theorem 5.1. By simplicity of notation in what follows we
will replace εn by ε.

5.1. Proof of XYε � GLε. In order to follow Definition 4.1 we have first to define the function
ε 7→ δε. A convenient choice for this purpose is to set δ̃ε :=

(
ε| log ε|h+1

)
, and δε := λεδ̃ε, where

a suitable factor λε → 1 will be chosen in the following. Let (µε) ⊂ X be a sequence such that
GLε(µε) ≤ C. By the very definition of GLε there exists (wε) ⊂ H1(Ω; R2) such that

1
| log ε|h−1

Jwε
π

= µε and
1

| log ε|h
GLε(wε)− GLε(µε)→ 0 as ε→ 0.

Let Iδ̃ε(Ω) be defined as in (5.2) (with δ replaced by δ̃ε), and consider the nets Rh
δ̃ε

, Rv
δ̃ε

and Rδ̃ε
defined by

Rh
δ̃ε

:= {(x, y) ∈ R2 : y ∈ δ̃εZ},

Rv
δ̃ε

:= {(x, y) ∈ R2 : x ∈ δ̃εZ},

Rδ̃ε := (Rh
δ̃ε
∪Rv

δ̃ε
) ∩ Iδ̃ε(Ω).

By the Mean Value Theorem, it is easy to prove that for every δ̃ε we can find sδ̃ε ∈ (0, δ̃ε)2 such
that

(5.6) δ̃ε

∫
Rδ̃ε+sδ̃ε

1
2
|w′ε|2 +

1
2ε2

W (wε) ≤
∫

Ω

1
2
|∇wε|2 +

1
ε2
W (wε),

where w′ε(x) denotes the tangential derivative of wε (Rδε + sδ̃ε) in x (that is well defined by
standard slicing arguments).

Claim: let L be a segment with length larger than ε and let ϕ ∈ H1(L; R2), then

(5.7)
∫
L

1
2
|ϕ′|2 +

1
2ε2

W (ϕ) ≥ Cmaxt∈L(|ϕ| − 1)2

ε
.

We now use the Claim, that we will prove later, in order to conclude the proof of XYε � GLε.
Set ṽε and v̂ε from Rδ̃ε to R2 as follows

ṽε(l) := wε(l + sδ̃ε), v̂ε(l) :=
ṽε(l)
|ṽε(l)|

for every l ∈ δ̃εZ2 ∩ Iδ̃ε(Ω).

Note that by the Claim (5.7) and by the choice of δ̃ε we immediately deduce that

|ṽε| − 1→ 0 uniformly as ε→ 0.

Here we use the assumption that Ω is star-shaped with respect to the origin. Let d be the distance
between 0 and ∂Ω. We set

(5.8) λε := d
d−2δ̃ε

,

so that Ω ⊆ λεI2δ̃ε(Ω) and Ω0
δε
⊆ λε

(
δ̃εZ2∩Iδ̃ε(Ω)

)
. We are in a position to introduce the function

(5.9) vε(l) := v̂ε(
l

λε
) for every l ∈ Ω0

δε .
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By Jensen inequality and in view of (5.6) we have

XYδε(vε) =
1
2

∑
(i,j)∈Ω1

δε

|vε(i)− vε(j)|2 = (1 + o(1))
∑

(i,j)∈(Iδ̃ε (Ω))1
δ̃ε

1
2
|ṽε(i)− ṽε(j)|2

= (1 + o(1))
∑

(i,j)∈(Iδ̃ε (Ω))1
δ̃ε

1
2
|wε(i+ sδ̃ε)− wε(j + sδ̃ε)|

2 ≤ δε(1 + o(1))
∫

(Rδε+sδε )

1
2
|w′ε|2

≤ (1 + o(1))
∫

Ω

1
2
|∇wε|2 +

1
ε2
W (wε) = (1 + o(1))GLε(wε),

where we recall that (Iδ̃ε(Ω))1
δ̃ε

denotes the pairs (i, j) ∈ δ̃εZ2 ∩ Iδ̃ε(Ω) with i < j and |i− j| = 1.
We are in a position to introduce the sequence of variables (ηε) ⊂ X for the XYδε functionals,

satisfying properties i) and ii) of Definition 4.1,

ηε :=
1

| log δε|h−1
µvε .

By (5.10), since | log ε|
| log δε| → 1, we deduce that property i) of Definition 4.1 is satisfied.

Now we will prove that ‖µε − tεηε‖ → 0 for some tε → 1, that will ensure property ii) of
Definition 4.1. To this purpose, set

tε := | log δε|h−1

| log ε|h−1 , so that µε − tεηε = 1
| log ε|h−1

(
Jwε
π
− µvε

)
.

In view of Proposition 5.2, to conclude it is enough to show that

(5.10) 1
| log ε|h−1 ‖Jwε − Jw(vε)‖ → 0 as ε→ 0.

Note that (see Remark 5.3), we can always extend w(vε) to Ω (and we will still denote this
extension by w(vε)) such that ‖∇w(vε)‖22 ≤ C| log ε|h. Therefore, by Lemma 3.1 and Remark 5.3
(since we also have ‖∇wε‖22 ≤ C| log ε|h), in order to prove (5.10) it is enough to check that

| log ε|h‖w(vε)− wε‖22 → 0 as ε→ 0.

Let I2δε(Ω) be defined as in (5.2) with δε replaced by 2δε (so that all the functions we have just
introduced are defined on I2δε(Ω)). Using that |Ω \ I2δε | ≤ Cδε and that the potential W in the
GLε functionals controls the L2 norm of wε, it is easy to prove that

| log ε|h‖w(vε)− wε‖2L2(Ω\I2δε (Ω);R2) → 0.

Therefore, we will estimate the L2 norm only on I2δε(Ω).
By triangular inequality we have∫

I2δε (Ω)

|w(vε)− wε|2 ≤ C
∫
I2δε (Ω)

|w(vε)− w(v̂ε)|2 + |w(v̂ε)− w(ṽε)|2(5.11)

+C
∫
I2δε (Ω)

|w(ṽε)− wε(x+ sδ̃ε)|
2 + |wε(x+ sδ̃ε)− wε|

2.

We can easily estimate the first and the last addend in the right-hand side of (5.11) as follows

(5.12)
∫
I2δε (Ω)

(
|w(vε)− w(v̂ε)|2 + |wε(x+ sδ̃ε)− wε|

2
)
dx ≤ Cδε2

∫
Ω

|∇wε|2 dx ≤ Cδε2| log ε|h.

Let us pass to the second addend. For any (i, j) ∈ (Iδ̃ε(Ω))1
δ̃ε

, set Li,j := sδ̃ε + [i, j]. Moreover
set mi,j := maxt∈Li,j

∣∣|wε(t)| − 1
∣∣. Then by (5.6) and by the Claim (5.7) we get
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(5.13)
∫
I2δε (Ω)

|w(v̂ε)− w(ṽε)|2 ≤ Cδ̃ε
2 ∑

(i,j)∈(Iδ̃ε (Ω))1
δ̃ε

m2
i,j

≤ Cδ̃ε
2
ε

∑
(i,j)∈(Iδ̃ε (Ω))1

δ̃ε

∫
Li,j

1
2
|w′ε|2 +

1
2ε2

W (wε) ≤ Cδ̃εε| log ε|h.

Let us pass to estimate the third addend in the right hand side of (5.11). Let i ∈ I2
δ̃ε

(Ω) :=

{i ∈ δ̃εZ2 : i+ [0, δ̃ε]2 ⊂ Iδ̃ε(Ω)} and let fi : (0, δ̃ε)2 → R2 be defined by

fi(x) := w(ṽε(x+ i))− wε(x+ sδ̃ε + i).

Therefore fi(0) = 0, and for every x = (x̄1, x̄2) ∈ (0, δ̃ε)2 we have

|fi(x)|2 ≤ Cδ̃ε

(∫ δ̃ε

0

| ∂
∂x1

fi(t, x̄2)|2 dt+
∫ δ̃ε

0

| ∂
∂x2

fi(0, t)|2 dt

)
.

Integrating with respect to x in (0, δ̃ε)2 we have

(5.14)
∫

(0,δ̃ε)2
|fi(x)|2 dx ≤ Cδ̃ε

(
δ̃ε

∫
(0,δ̃ε)2

|∇fi(x)|2 dx+ δ̃ε
2
∫ δ̃ε

0

| ∂
∂x2

fi(0, t)|2 dt

)
,

and hence

(5.15)
∫
I2δε (Ω)

|w(ṽε)− wε(·+ sδε)|2 dx ≤
∑

i∈I2
δ̃ε

(Ω)

∫
(0,δ̃ε)2

|fi(x)|2 dx

≤ δ̃ε
2
(
C

∫
Iδ̃ε (Ω)

|∇w(ṽε)|2 + |∇wε(·+ sδ̃ε)|
2 + δ̃ε

∫
Rδ̃ε

|w′(ṽε)|2 + |w′ε(·+ sδ̃ε)|
2
)
≤ δ̃ε

2
| log ε|h.

We conclude by proving the Claim (5.7). Let t ∈ L be such that

m := max
s∈L
||ϕ| − 1| = ||ϕ(t)| − 1|,

and let (a, b) ⊂ L be the maximal interval containing t such that ||ϕ(s)|− 1| ≥ m
2 for all s ∈ (a, b).

Then we have

(5.16)
∫
L

1
2
|ϕ′|2 +

1
2ε2

W (ϕ) ≥
∫
L

1
2ε2

W (ϕ) ≥ C |b− a|m
2

ε2
.

If |b− a| ≥ ε/2 we are done; otherwise either we have ||ϕ(a)| − 1| = m
2 or ||ϕ(b)| − 1| = m

2 . Then
it is very easy to see that

(5.17)
∫
L

1
2
|ϕ′|2 +

1
2ε2

W (ϕ) ≥
∫
L

1
2
|ϕ′|2 ≥ C m2

|b− a|
≥ Cm

2

ε
,

and this concludes the proof of the claim. �

5.2. Proof of SDε � XYε. As in the proof of XYε � GLε, we set δ̃ε := ε| log ε|h+1, δε = λεδ̃ε

with λε := d
d−2δ̃ε

, where d is the distance between 0 and ∂Ω. Moreover, we denote by δ̂ε = ε[ δ̃εε ],
where [·] denotes the integer part.

Let(µε) ⊂ X be such that XYε(µε) ≤ C. By the very definition of XYε there exists (vε) ⊂
AXYε such that

1
| log ε|h−1

µvε = µε,
1

| log ε|h
XYε(vε)−XYε(µε)→ 0 as ε→ 0.
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Let Iδ̂ε(Ω) be defined as in (5.2) (with δ replaced by δ̂ε), and set

Rh
δ̂ε

:= {(εi, δ̂εj), i, j ∈ Z},(5.18)

Rv
δ̂ε

:= {(δ̂εi, εj), i, j ∈ Z},(5.19)

Rδ̂ε := (Rh
δ̂ε
∪Rv

δ̂ε
) ∩ Iδ̂ε(Ω).(5.20)

Therefore, there exists sδ̂ε ∈ ε{0, 1, . . . , δ̂εε } such that, denoting by R1
δ̂ε

(s) the class of nearest
neighbors (l, k) ∈ Rδ̂ε + (s, s), we have

(5.21) XYε(vε) ≥
∑

s∈ε{0,1,..., δ̂εε }

∑
(l,k)∈R1

δ̂ε
(s)

1
2
|vε(l)− vε(k)|2 ≥ δ̂ε

ε

∑
(l,k)∈R1

δ̂ε
(sδ̂ε )

1
2
|vε(l)− vε(k)|2.

Let θε(vε) be a determination of the phase of vε, defined by the identity vε(l) = eiθε(vε)(l) for every
l ∈ Ω0

ε. By (5.21), since XYε(vε) ≤ C| log ε|h, we immediately deduce that

sup{|vε(l)− vε(k)|, (l, k) ∈ R1
δ̂ε

(sδ̂ε)} → 0 as ε→ 0,

so that by Taylor expansion we have

2π dist
( 1

2π
θε(vε)(l)−

1
2π
θε(vε)(k) , Z

)
= θε(vε)(l)− θε(vε)(k) = (1 + o(1))|vε(l)− vε(k)|.

Let us set Aδ̃ε := I2δ̃ε(Ω)+(sδ̂ε , sδ̂ε), and let (Aδ̃ε)
1
δ̂ε

be the class of δ̂ε-nearest neighbors in Aδ̃ε .
By Jensen inequality, in view also of (5.21), we deduce

(5.22)
4π2

2

∑
(l,k)∈(Aδ̃ε )1

δ̂ε

dist2
( 1

2π
θε(vε)(l)−

1
2π
θε(vε)(k) , Z

)
≤

4π2

2
δ̂ε
ε

∑
(l,k)∈R1

δ̂ε
(sδ̂ε )

dist2
( 1

2π
θε(vε)(l)−

1
2π
θε(vε)(k) , Z

)
≤ (1 + o(1))XYε(vε).

Since δ̂ε
δε

Ω0
δε

+ (sδ̂ε , sδ̂ε) ⊆ (Aδ̃ε)
0
δ̂ε

, we are in a position to introduce the sequences

uε(l) :=
1

2π
θε(vε)

(
δ̂ε
δε
l + (sδ̂ε , sδ̂ε)

)
for all l ∈ Ω0

δε , ηε :=
1

| log δε|h−1
µuε ,

obtaining

SDδε(uε) ≤
1
2

∑
(l,k)∈(Aδ̃ε )1

δ̂ε

dist2
( 1

2π
θε(vε)(l)−

1
2π
θε(vε)(k) , Z

)
.

Therefore, by (5.22) we deduce that property i) of Definition 4.1 is satisfied. In order to
check that also property ii) of Definition 4.1 holds, it is enough to prove that ‖µε − tεηε‖ → 0
in X for some tε → 1. Arguing as in the proof of XYε � GLε it is enough to check that
| log ε|h ‖w(ei 2πuε)−w(vε)‖22 → 0; we skip the details, that can be easily checked by the reader. �

5.3. Proof of GLε � SDε. Since XYε ≤ 4π2SDε pointwise, we immediately deduce that XYε �
SDε. Therefore, the desired order relation is obtained by proving GLε � XYε.

We first observe that by Lemma 2 in [3], there exists a constant C > 0 such that, for every
v ∈ AXYε

C

ε2

∫
Ωε

W (w(v)) ≤ XYε(v).

Let λε ↗ 1 be such that λεΩ ⊂ Ωε (we recall that Ω is star-shaped), and such that λε ≥ 1− ε
c for

some constant c. Given a sequence tε ↘ 0 we have

(5.23) (1 + tε)XYε(v) ≥
∫
λεΩ

(1
2
|∇w(v)|2 +

Ctε
ε2

W (w(v))
)
dx,
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for every v ∈ AXYε. Let now µε be a sequence such that XYε(µε) ≤ C, and let vε be such that
1

| log ε|hXYε(vε)−XYε(µε)→ 0. Set then δε = ε,

wε(x) := w(vε(λεx)) for every x ∈ Ω, ηε =
1

| log ε|h−1

Jwε
π

.

Then by (5.23) we get

(5.24) XYε(vε) ≥
1

1 + tε
GLCtεε (wε).

From (5.24), we easily deduce that GLCtεε � XYε. Indeed, Property i) of Definition 4.1 is a
direct consequence of (5.24), while the proof of Property ii) follows as in the proof of XYε � GLε.
Finally, choosing tε → 0 such that sε := Ctε satisfies the assumptions of Proposition 4.8, we
conclude that GLε ' GLCtεε � XYε � SDε. �

Remark 5.4. In [22] it is proved that for h = 1 the functionals GLε in (3.9) are equi-coercive,
and Γ-converge to the functional π|µ|(Ω). In [30][Theorem 3.4]) the same Γ-convergence result is
proved for the functionals SDε defined in (3.11). In view of this result, of Theorem 5.1 and of
Theorem 4.4, we obtain a new proof for the compactness of the jacobians given in [22], and of the
corresponding Γ-convergence result of Ginzburg-Landau functionals in the logarithmic regime.

Remark 5.5. For latter use we observe that, if we restrict the Ginzburg-Landau functionals
GLε to the fields wε valued in B1, then the equivalence result stated in Theorem 5.1 still holds
true. Actually, given a sequence wε with finite energy we can always project it on B1, without
increasing its energy, and without changing the limiting behaviour of the corresponding topological
singularities.

This L∞-bound will simplify the proof of compactness properties of the quantity jε associated
with wε, we will deal with in the next Section.

6. New results for the asymptotic of SDε

As explained in the Introduction (see also Remark 5.4), the Γ-limit of the functionals SDε
is known only for h = 1. On the other hand, the analogous result for the Ginzburg-Landau
functionals GLε has been proved by Jerrard and Soner in [23] for all values of h (h = 1 and
h = 2 being the most relevant cases). In this section we use the variational equivalence argument
to deduce Γ-convergence results for the screw dislocation model in the | log ε|2 scaling regime.
We recall that this energy scaling has been already considered in the context of interacting edge
dislocations in [19], providing in the limit a macroscopic strain gradient model for plasticity. We
will extend this result to our discrete model of screw dislocations without imposing, as in [19],
that the minimal distance between the dislocations is of order ρ >> ε .

Before giving the rigorous results, let us explain by heuristic arguments why the | log ε|2 ener-
getic regime is somehow critical, and hence gives rise to an interesting macroscopic limit. Assume
that in the crystal there is a distribution µ of a certain number Nε of screw dislocations of unit
length. The self energy of the system is, in first approximation, proportional to Nε| log ε|. On the
other hand, each dislocation induces also a far field: the macroscopic strain field β has to satisfy
the kinematic constrain curl β = µ. The elastic energy depends quadratically on β, and then it is
proportional to N2

ε . We deduce that if Nε ≈ | log ε| then the self energy and the far field energy
corresponding to the macroscopic strain β (namely the interaction energy) are of the same order
| log ε|2. Therefore, in the limit as ε→ 0, the energy is given by the sum of these two contributions,
a self energy, one-homogeneous with respect to the dislocation density, and an interaction energy,
quadratic with respect to the macroscopic fields β’s satisfying the kinematic relation curl β = µ.
This kind of energy can be settled in the recent strain gradient theories for plasticity introduced
in [18].

We underline that, as it will be clear in our analysis (see Theorem 6.4) the same result holds
true for the XY spin system model.
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6.1. The Γ-convergence result for GLε in the | log ε|2 regime. Here we recall the Γ-convergence
result for the functionals GLε in the energetic regime GLε ≈ | log ε|2 corresponding to h = 2 given
by Jerrard and Soner in [23]. For the sake of simplicity we will specialize the results assuming
that the order parameters wε take values in B1 (see Remark 5.5).

Given w ∈ H1(Ω;B1), set

j(w) := w ×∇w =
(
w1(w2)x1 − w2(w1)x1 , w1(w2)x2 − w2(w1)x2

)
.

Note that by definition we have J(w) = 1
2curl j(w). Consider the functionals GLε : X ×

L2(Ω; R2)→ [0,+∞] defined as follows

(6.1) GLε(µ, j) := inf
{

1
| log ε|2

GLε(w), w ∈ H1(Ω;B1) :
j(w)
| log ε|

= j,
J(w)
π| log ε|

= µ

}
.

By [23, Theorem 1.1 and 1.2] we deduce the following Γ-convergence result

Theorem 6.1 (Jerrard and Soner, 2002). The functionals GLε : X×L2(Ω; R2)→ [0,+∞] defined
in (6.1) are equi-coercive: if (µε, jε) is a sequence with bounded energy then, up to subsequences,
µε → µ for some µ ∈ X and jε ⇀ j weakly in L2(Ω; R2), for some j ∈ L2(Ω; R2).

Moreover, GLε Γ-converge (with respect to the same topology) to the functional GL : X ×
L2(Ω; R2)→ [0,+∞], defined as

(6.2) GL(µ, j) := π|µ|(Ω) +
1
2

∫
Ω

|j|2,

if µ is a measure in H−1(Ω) and curl j = 2πµ, and infinity elsewhere.

From Theorem 6.1 we immediately deduce the following

Theorem 6.2. The functionals GLε : X → [0,+∞] defined in (3.9) with h = 2 are equi-coercive
and Γ-converge, as ε→ 0, to the functional GL : X → [0,+∞] defined by

GL(µ) := π|µ|(Ω) +
1
2

inf
{∫

Ω

|j|2 dx, j ∈ L2(Ω; R2) : curl j = 2πµ
}

if µ is a measure in H−1(Ω), and infinity elsewhere.

6.2. New results for homogenizing dislocations in the | log ε|2 regime. From the varia-
tional equivalence between GLε and SDε stated in Theorem 5.1 (see also Remark 5.5), we deduce
the equivalent result stated in Theorem 6.2 for the energy functionals corresponding to screw
dislocations.

For the reader convenience, we state the Γ-convergence result for the dislocation energy func-
tionals Fε defined in (6.3) according with (3.11) with h = 2, but without the pre-factor 4π2 that
has been useful to compare the SD model with XY and GL models, but which has not physical
meaning.

Theorem 6.3. The functionals Fε : X → [0,+∞], defined by

(6.3) Fε(µ) :=
1

| log ε|2
inf
{
SDε(u), u ∈ ASDε :

µu
| log ε|

= µ

}
,

are equi-coercive and Γ-converge as ε→ 0 to the functional F : X → [0,+∞] defined by

F(µ) :=
1

4π
|µ|(Ω) +

1
2

inf
{∫

Ω

|β|2, β ∈ L2(Ω; R2), curl β = µ
}
,

if µ is a measure in H−1(Ω), and infinity elsewhere.

Proof. The proof is a straightforward consequence of Theorem 5.1 and Theorem 6.2. �

In order to give the analogue of Theorem 6.1 for the XY and the screw dislocations model, let
us associate to any discrete strain βeu, with u ∈ ASDε, its corresponding piecewise constant strain
field β̂eu := P (∇w(u)) in Ωε (where P is defined component by component as in (2.7)), and extend
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it to zero in Ω \ Ωε. Moreover, given v ∈ AXYε, we set ĵv := 2πP (∇w( 1
2π θ(v))) in Ωε, so that

ĵv = 2πβ̂eθ(v), and extend it to zero in Ω \ Ωε.
We are in a position to introduce the functionals XYε : X × L2(Ω; R2)→ [0,+∞] defined as

(6.4) XYε(µ, j) := inf
v

{
1

| log ε|2
XYε(v), v ∈ AXYε(Ω) :

ĵv
| log ε|

= j,
µv
| log ε|

= µ

}
.

and the functionals SDε : X × L2(Ω; R2)→ [0,+∞] defined as

(6.5) SDε(µ, j) := inf
u

{
4π2

| log ε|2
SDε(u), u ∈ ASDε(Ω) :

2πβ̂eu
| log ε|

= j,
µu
| log ε|

= µ

}
.

The following Theorem establishes the variational equivalence for the functionals GLε, XYε and
SDε with respect to the strong topology in X and the weak topology in L2(Ω; R2)→ R.

Theorem 6.4. The functionals GLε, XYε and SDε are variationally equivalent.

Proof. The proof follows the lines of Theorem 5.1. One has only to check that for each change of
variables involved in the proof, the corresponding fields j(wε), ĵvε and 2πβ̂euε , rescaled by | log ε|
share the same weak limit in L2. Let us check it only for the order relation XYε � GLε, the other
order relations being analogous.

To this purpose, let (µε, jε) be such that GLε(µε, jε) ≤ C, and let wε be such that

J(wε)
π| log ε|

= µε,
j(wε)
| log ε|

= jε,
1

| log ε|2
GL(wε)−GLε(µε, jε)→ 0 as ε→ 0.

Let now δε and vε be as in the proof of the order relation XYε � GLε in Theorem 5.1 (with
h = 2), satisfying

XYδε(vε) ≤ GLε(wε) + o(1), ‖w(vε)− wε‖2 → 0,
1

| log δε|
µvε − µε → 0.

In order to conclude, it is left to prove that

(6.6)
1

| log ε|
(j(wε)− ĵvε) ⇀ 0 in L2(Ω; R2).

We first prove that

(6.7)
1

| log ε|
(j(wε)− j(w(vε)) ⇀ 0 in L2(Ω,R2).

Since we have
1

| log ε|
(j(wε)− j(w(vε))) = (wε − w(vε))×

∇wε
| log ε|

+
w(vε)
| log ε|

× ∇(wε − w(vε)),

by Holder inequality and by integration by parts it is easy to deduce (6.7).
Now, to obtain (6.6) it remains to check that 1

| log δε| (j(w(vε))− ĵvε) ⇀ 0 in L2(Ω; R2). To this
purpose, set ρε := δε| log δε|2, and let Ωδε,ρε be the union of δε-squares Qi in Ωδε such that the
oscillation of w(vε) on Qi is bounded by ρε. Since XYδε(vε) ≤ C| log δε|2, it easily follows that

|Ω \ Ωδε,ρε | ≤
C

| log δε|2
→ 0 as ε→ 0.

Therefore, since 1
| log δε|j(w(vε)) and 1

| log δε| ĵvε are bounded in L2(Ω; R2), we get

(6.8)
1

| log δε|

(
j(w(vε))− ĵvε

)(
1− χΩδε,ρε

)
⇀ 0 in L2(Ω; R2) as ε→ 0.

To conclude the proof of (6.6) it remains to show that

(6.9) lim
ε→0
‖j(w(vε)− ĵvε‖L∞(Ωδε,ρε ;R2) = 0.
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To this purpose, notice that, on each δε-square Qi ∈ Ωδε,ρε we have (for ε small enough) ĵvε =
∇w(θ(vε)). Therefore by Taylor expansion

|j(w(vε))− ĵvε | = |j(w(vε))−∇w(θ(vε))| ≤ C
ρ2
ε

δε
= Cδε| log δε|4 → 0

on Ωδε,ρε , that clearly implies (6.9), and this concludes the proof of (6.6).
Essentially, the same arguments can be used to prove all the order relations between the func-

tionals GLε, XYε and SDε, so that we prefer to skip the details. �

From Theorem 6.4 we immediately deduce the analogous Γ-convergence result for the screw
dislocation functionals. In particular, we obtain a new result in the context of homogenizing dislo-
cations, generalizing the results in [19] to the scalar case of discrete interacting screw dislocations.
For the reader convenience, we state the result introducing the dislocation energy functionals Gε,
defined in (6.10) according with (6.5) with h = 2, but without the pre-factor 2π2 in the strain,
and without the prefactor 4π2 .

Theorem 6.5. The functionals Gε : X × L2(Ω; R2)→ [0,+∞] defined by

(6.10) Gε(µ, β) := inf
u

{
1

| log ε|2
SDε(u), u ∈ ASDε(Ω) :

β̂eu
| log ε|

= β,
µu
| log ε|

= µ

}
,

are equi-coercive and Γ-converge, with respect to the strong convergence in X and the weak con-
vergence in L2(Ω; R2), to the functional G : X × L2(Ω; R2)→ [0,+∞] defined by

(6.11) G(µ) :=
1

4π
|µ|(Ω) +

1
2

∫
Ω

|β|2

if µ is a measure in H−1(Ω) and curl β = µ, and +∞ elsewhere.

The Γ-limit G in (6.11) represents the macroscopic energy corresponding to a density of disloca-
tions µ and a macroscopic strain β. The first term in G represent the self energy of the dislocation
density, it is 1-homogeneous, and therefore it is compatible with concentration of dislocations.
Notice that the compatibility condition µ = curl β agrees with concentration of the density of
dislocations, whenever µ ∈ H−1(Ω). This is the case of concentration on lines, according with
the well known configuration of wall dislocations. The second term is the elastic energy of the
macroscopic strain β, and represents an interaction energy of the dislocations. This kind of macro-
scopic energies, depending also on the derivatives of the strain β, are usually referred to as strain
gradient theories in plasticity and they have been introduced in [18]. The energy G derived by Γ-
convergence represents then a justification of such phenomenological theory, and provides explicit
self and the interaction energy densities.

7. Further extensions and conclusions

In this paper we have investigated the variational equivalence of some model characterized by
the presence of topological singularities. It is natural to ask if our method can be extended to
other contexts in the huge field of modelling singularities and in particular dislocations.

In this Section we propose some extension of our approach. We first consider the so called core
radius approach to dislocations in the two dimensional setting and then we investigate the case of
three dimensional dislocations.

7.1. The core radius approach. In order to deal with the singularity of the stress field around a
dislocation, a very fruitful approach consists in removing a region of size ε around each dislocation,
usually referred to as core region, obtaining in this way a L2 integrable field on the complementary
domain. This method has been exploited very recently in variational models for dislocations [14],
[30], [19]. Its feature is that the discreteness of the problem is carried by the length-scale ε,
representing the atomic distance, while the mathematical framework is continuous.

Within the core radius approach, many mathematical details have to be fixed in order to make
the Γ-convergence problem well posed and doable: for instance in [30] it has been introduced a
small penalization for the number of ε-disks removed by the domain; such a penalization plays
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the role of the potential term W in the Ginzburg-Landau energy, ensuring that the number of
dislocations is bounded by | log ε|, and in particular that the measure of the core region tends to
zero as ε→ 0.

This approach, as proposed by Bethuel, Brezis and Hélein, can be very fruitful also as a variant
of the Ginzburg-Landau approach to vortices. The variational equivalence argument introduced
in this paper seems to be a natural tool to compare the core radius approach to dislocations and
vortices with pure discrete approaches, that we believe to be equivalent.

Finally, we aim to comment that the core radius approach has been proposed in [7] in order
to compute the renormalized energy, i.e., the lower order term in the energy of minimizers of the
Ginzburg-Landau functionals in the logarithmic regime. This inspired the work in [14], where the
authors compute the Taylor expansion of the elastic energy of edge dislocations in a plane. The
first term in the Taylor expansion is the self energy, that for screw dislocations is given (up to a
pre-factor) by |µ|(Ω) (see Remark (5.4)). The lower order term, corresponding to the renormalized
energy, depends on the mutual distance of the dislocations, and models the Peach-Köhler attractive
and repulsive forces between dislocations. In our opinion it would be very interesting to investigate
the equivalence of this renormalized energy for vortices and dislocations within a Γ-convergence
analysis. In order to do that, it seems necessary to exploit the equivalence between vortices and
dislocations for the first order term in the Γ-limit expansion of the energy functionals. Indeed,
Definition 4.1 could be generalized to compare lower order terms in the energy, in the spirit of the
theory introduced by Braides and Truvskinovsky in [12]. The analysis required to compare the
renormalized energy for vortices and dislocations seems to be very challenging.

7.2. Three dimensional dislocations. Screw dislocations are essentially straight dislocations
lines with parallel Burgers vector. The general case accounts more complexity, dealing with general
closed loops of dislocations with given Burgers vectors.

Here we aim to introduce the elastic energy in this three dimensional setting, and the corre-
sponding Ginzburg-Landau energy functionals, formally obtained arguing in analogy with what we
have done in the anti-planar setting. We will not address the problem of proving rigorous equiv-
alence results between elastic energies and Ginzburg-Landau energies in this three dimensional
context.

We consider the basic case of a cubic lattice, whose elasticity tensor we denote by C ∈ R9×R9.
Let Ω ⊂ R3 be the reference configuration of the three dimensional crystal. The displacement
is now a vectorial function from Ω0

ε := Ω ∩ εZ3 to R3, and, following the approach in [5], the
dislocations are defined on the class of two-cells of the crystal. In this three dimensional case, we
have three kind of two-cells, corresponding to the three different slip planes of the cubic lattice. A
basic dislocation loop is identified with a pair, given by a two cell and a Burgers vector b, that in the
cubic case belongs to the canonical base of R3. We have then three kind of topological singularities,
corresponding to the three different slip planes, and each kind of singularity has a vector nature,
being associated to a Burgers vector in R3. It is then natural to set up a Ginzburg-Landau model
for dislocations considering the vector valued maps taking values near a three dimensional torus.

More precisely, consider the three dimensional torus T := R3/(εZ3), i.e., R3 where we identify
x and y if and only if x − y ∈ εZ3, and consider the fields w : Ω → T × [0,+∞). We denote by
u ∈ T the first three components of w, playing the role of angular components of a continuous field
in classical Ginzburg-Landau theories, and representing in our model the displacement function,
and we denote by ρ the fourth one, representing the radial component of w. Therefore, for every
w ∈ H1(Ω,T× [0,+∞)) we define the Ginzburg-Landau energy functionals by

(7.1) GLε(w) :=
∫

Ω

ρ2 < C∇u : ∇u > +|∇ρ|2 +
1
ε2

(1− ρ)2 dx.

In our opinion such functionals provide a good material dependent Ginzburg-Landau model for
dislocations, and this could be justified by showing that they are indeed equivalent to suitable
discrete elastic energy functionals, defined for instance according to the formalism introduced in
[5]. The rigorous formalization and proof of such a statement would require a specific analysis,
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that is not addressed in this paper. Clearly, more general crystal lattices could be considered
within this approach.

Exploiting this Ginzburg-Landau approach to dislocations provides a motivation to investigate
the asymptotic behaviour of these Ginzburg-Landau functionals as ε→ 0, generalizing in this way
the analysis done in [1],[7],[22], [23], [32], [33] to the case of vector valued fields whose singularities
belong to a given group, and whose energy is not isotropic, and not even coercive.
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[7] Bethuel F., Brezis H., Hélein F.: Ginzburg-Landau vortices. Progress in Nonlinear Differential Equations and

their Applications. vol. 13. Birkhäuser Boston, Boston, 1994.
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