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1. Introduction

In the last years models involving bulk and interfacial energies have been used to describe

phenomena in fracture mechanics, phase transitions, image segmentation and static theory

of liquid crystals (see [8], [11], [12], [17], [24], [26], [33], [34]). The problem consists in

�nding minima of an energy functional of this kind

(1.1) F(w) :=

∫
Ω

f(x, w,∇w) dx +

∫
Jw

ϕ(x, w+, w−, νw) dHN−1,

where Ω is an open set of RN , HN−1 denotes the Hausdor� measure of dimension (N−1),

w belongs to the space of special functions of bounded variation denoted by SBV(Ω, Rm),

Jw denotes the set of approximate jump points of w, and the distributional derivative Dw

is represented by Dw = ∇wLN + (w+ − w−) ⊗ νwHN−1bJw, with νw being the normal

to Jw and w+ and w− the so called upper and lower approximate limit of w at the point

x ∈ Ω.

The existence of minima can be proved by using the direct methods in the calculus of

variations. Under appropriate boundedness constraints, Ambrosio in [3] (see also [6])

proved a compactness theorem in SBV, which combined with lower semicontinuity results

guarantees the existence of minima. In [4] the author studied the lower semicontinuity

of the functional (1.1) when the function f is convex and satis�es p-growth condition,

while the function ϕ ful�lls suitable conditions, and in [5] he extended this result under

quasiconvexity assumption on the function f (see also [20]). Earlier works (see [18] and

[2]) have addressed other lower semicontinuity results under di�erent assumptions on the

bulk and on the surface energy.

In this paper we present a lower semicontinuity result for free discontinuity energies with

a quasiconvex volume term having variable exponent growth and a quite general surface

term.
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During the last decade, function spaces with variable exponent have attracted a lot of

interest. In fact, apart from interesting theoretical considerations, this framework occurs

in various variational problems from mathematical physics, in particular in electrorheo-

logical �uids (see [28] [29], [30]) and in the theory of homogenization (see [35]). More

recently, Chen, Levine, and Rao in [9] proposed a variable exponent formulation for the

problem of image restoration (see also [19]).

A survey of the history of Lebesgue and Sobolev variable exponent spaces with a com-

prehensive bibliography is provided in [14] and [31].

In this paper we consider a free discontinuity energy of the type

(1.2) F (u) =

∫
Ω

f(x, w,∇w)dx +

∫
Ω∩Jw

γ(|w+ − w−|)k(x, νw) dHN−1,

where Ω is a bounded open set of RN , f : Ω × Rm × RNm → R, γ : [0, +∞) → [0, +∞)

and k : Ω × RN → [0, +∞). We prove a lower semicontinuity result for the functional

above with respect to the L1-convergence under variable exponent growth assumption on

f . In order to prove this l.s.c result it will be su�cient to concentrate on the bulk energy

term since the l.s.c. of the surface term is essentially addressed in [2] (see Theorem 3.3).

Thus the main result will be the following theorem.

Theorem 1.1. Let Ω ⊂ RN be an open set and let p : Ω → [1, +∞) be a measurable

bounded function such that 1 < p− ≤ p(x) ≤ p+ < +∞ in Ω; moreover p is (locally)

log-Hölder continuous (see de�nition in Sect. 2.4 below).

Let f : Ω× Rm × RNm → [0, +∞) be a Carathéodory function such that

(1.3) −c + |z|p(x) ≤ f(x, u, z) ≤ a(x) + Ψ(|u|)(1 + |z|p(x)) ∀(x, u, z) ∈ Ω× Rm × RNm

for some c > 0, a ∈ L1(Ω), and some continuous function Ψ : [0,∞) → [0,∞). Let us

assume that for every (x, u) ∈ Ω× Rm the function z 7→ f(x, u, z) is quasiconvex. Then

lim inf
n→∞

∫
Ω

f(x, wn,∇wn) dx ≥
∫
Ω

f(x, w,∇w) dx

for every sequence {wn} ⊂ SBV(Ω, Rm) converging in L1(Ω, Rm) to a function w ∈
SBV(Ω, Rm) and satisfying supn∈NHN−1(Jwn) < +∞.

This result extends a well known l.s.c. theorem due to Ambrosio (see [5] or Theorem

5.29 in [7]) in this new framework of special function of bounded variation with variable

exponent.

Let us also observe that in the Sobolev setting with variable exponent, the problem was

considered in [23].

The main ingredients in order to prove the result are essentially the following: blow up

argument and Lipschitz truncation Lemma.

The blow up argument is useful in order to treat �rstly the case where w is a linear function

and the measure of the jump set of wn goes to zero. In this case the idea is to replace

wn by equi-Lipschitz functions wn,j which agree with wn on large sets. In the Sobolev

setting this Lipschitz truncation Lemma is proved in [22] and [1], and then generalized
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by Ambrosio in [5] to the SBV context. More recently, Diening, Malek and Steinhauer in

[15] extended the Lipschitz truncation method to Sobolev functions of variable exponent.

Following the ideas of [15], and using the maximal function of the total variation of wn

as in [5], we are able to construct a suitable sequence wn,j of Lipschitz functions whose

gradient, where wn di�ers from wn,j, in the Lp(·)-norm can be so small as needed, and not

only bounded as in [1] and in [5] (see subsection 2.4 for the de�nition of the Lebesgue

space Lp(·)(Ω)). It is worth pointing out that this fact also leads to a simpli�cation of the

proof of Theorem 1 in [5], when p(x) is constant.

2. Preliminaries

Throughout the paper N, m > 1 are �xed integers. Moreover, Ω will be an open subset

of RN . The letter c will denote a strictly positive constant, whose value may change from

line to line.

By Br(x) we denote the open ball in RN with radius r and centered at x, and, more

brie�y, by B1 the open unit ball centered at 0.

Let LN denote the Lebesgue measure on RN andHN−1 the Hausdor� measure of dimension

(N − 1) on RN .

2.1. BV functions. If u ∈ L1
loc(Ω; Rm) and x ∈ Ω, the approximate limit of u at x is

de�ned as the unique value ũ(x) ∈ Rm such that

lim
ρ→0+

1

ρN

∫
Bρ(x)

|u(y)− ũ(x)| dx = 0 .

The set of points in Ω where the approximate limit is not de�ned is called the approximate

singular set of u and denoted by Su, while Ω\Su consists of approximate continuity points.

It simply follows by de�nitions that any Lebesgue point x ∈ Ω of u is an approximate

continuity point and ũ(x) = u(x). Moreover it can be proved that Su is a LN -negligible

Borel set and ũ : Ω \ Su → Rm is a Borel function, coinciding LN -a.e. in Ω \ Su with u.

Let u ∈ L1
loc(Ω; Rm) and x ∈ Ω. We say that x is an approximate jump point of u if there

exist a, b ∈ Rm and ν ∈ SN−1, such that a 6= b and

lim
ρ→0+

−
∫

B+
ρ (x,ν)

|u(y)− a| dy = 0 and lim
ρ→0+

−
∫

B−
ρ (x,ν)

|u(y)− b| dy = 0

where B±
ρ (x, ν) := {y ∈ Bρ(x) : 〈y − x, ν〉 ≷ 0}. The triplet (a, b, ν) is uniquely

determined by the previous formulas, up to a permutation of a, b and a change of sign of

ν, and it is denoted by (u+(x), u−(x), νu(x)). The Borel functions u+ and u− are called

the upper and lower approximate limit of u at the point x ∈ Ω. The set of approximate

jump points of u is denoted by Ju. The set Ju is a Borel subset of Su.

We recall that the space BV(Ω; Rm) of functions of bounded variation is de�ned as the

set of all u ∈ L1(Ω; Rm) whose distributional gradient Du is a bounded Radon measure
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on Ω with values in the space MIm×N of m × N matrices. If u ∈ BV(Ω; Rm) then

HN−1(Su \ Ju) = 0.

We recall the usual decomposition

Du = ∇uLN + Dsu,

where ∇u is the Radon-Nikodým derivative of Du with respect to the Lebesgue measure

and Dsu is the singular part of Du with respect to LN . We also split Dsu into two parts:

the Cantor part Dcu and the jump part Dju = (u+ − u−)⊗ νuHN−1bJu.

If u ∈ BV(Ω, Rm), then ∇u(x) is the approximate di�erential of u for almost every x ∈ Ω,

i.e.

(2.1) lim
ρ→0+

−
∫

Bρ(x)

|u(y)− u(x)−∇u(x)(y − x)|
|y − x|

dy = 0

for a.e. x ∈ Ω. An important consequence of (2.1) is the fact that ∇u(x) = 0 for almost

every x in the set {y ∈ Ω : u(x) = 0}. In particular we have

(2.2) u, v ∈ BV(Ω) =⇒ ∇u(x) = ∇v(x) for a.e. x ∈ Ω s.t. u(x) = v(x).

We recall that the space SBV(Ω; Rm) of special functions of bounded variation is de�ned

as the set of all u ∈ BV(Ω; Rm) such that the Cantor part of derivative Dcu is 0.

Let p > 1. The space SBVp(Ω; Rm) is de�ned as the set of functions u ∈ SBV(Ω; Rm)

with ∇u ∈ Lp(Ω; RNm) and HN−1(Su) < ∞.

For a general survey on the spaces of BV, SBV and SBVp functions we refer for instance

to [7].

2.2. Quasiconvex functions. Let f : RNm → R be a continuous function. We say that

f is quasiconvex if∫
B1

f(z +∇ϕ(x)) dx ≥ f(z) ∀z ∈ RNm,∀ϕ ∈ C1
0(B1, Rm).

This property, introduced by Morrey (see [25]), is necessary for the sequential lower semi-

continuity of the functional

F (u) =

∫
B1

f(∇w) dx

with respect to the weak∗ topology of W 1,∞(B1). We have the following result (see

Theorem II.1 in [1]).

Theorem 2.1. Let f(x, u, z) : B1 × Rm × RNm → [0, +∞) be a Carathéodory function,

quasiconvex in z for any x ∈ B1 and any u ∈ Rm, such that

sup
{
f(x, u, z) : x ∈ B1, u ∈ Rm, z ∈ RNm, |u|+ |z| ≤ λ

}
< +∞

for any λ > 0. Then,

lim inf
n→+∞

∫
B1

f(x, wn,∇wn) dx ≥
∫
B1

f(x, w,∇w) dx
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for any bounded sequence {wn} ⊂ W 1,∞(B1, Rm) uniformly converging in B1 to w ∈
W 1,∞(B1, Rm).

2.3. Lusin approximation in BV. For every positive, �nite Radon measure µ in RN

we introduce the maximal function

M(µ)(x) := sup
ρ>0

µ(Bρ(x))

ωNρN
, x ∈ RN .

Using the Besicovitch covering theorem (see e.g. [32]), it can be proved the existence of

a constant ξ depending on N such that

(2.3) LN
({

x ∈ RN : M(µ)(x) > λ
})
≤ ξ

λ
µ(RN).

Now we show that a BV-function can be replaced by a Lipschitz function which agrees

with it on larger and larger sets whose union is LN -almost all the domain. Our result

slightly improves Theorem 5.34 in [7].

Theorem 2.2. For every u ∈ BV(RN , Rm) and ϑ, λ > 0 there exists a Lipschitz function

v : RN → Rm such that ‖v‖∞ ≤ ϑ, ‖∇v‖∞ ≤ cλ and up to a null set

(2.4) {v 6= u} ⊆ {M(|u|) > ϑ} ∪ {M(|Du|) > λ} .

Moreover if Ω ⊂ RN is a bounded open set with the property that there exists a constant

A ≥ 1 such that for all x ∈ Ω

(2.5) LN(B2dist(x,Ωc)(x)) ≤ ALN(B2dist(x,Ωc)(x) ∩ Ωc),

and if u has compact support in Ω then v ∈ W 1,∞(RN , Rm), v = 0 in RN \ Ω, ‖v‖∞ ≤ ϑ,

‖∇v‖∞ ≤ cλ and up to a null set

(2.6) {v 6= u} ⊆ Ω ∩ ({M(|u|) > ϑ} ∪ {M(|Du|) > λ}) .

Proof. Firstly, we note that it is su�cient to prove the theorem for a scalar valued BV-

function. In fact, since for every u = (u1, . . . , um) ∈ BV(Ω, Rm) and for every ball Bρ(x)

max
1≤α≤m

|Duα|(Bρ(x)) ≤ |Du|(Bρ(x))

we obtain that

max
1≤α≤m

M(|Duα|)(x) ≤ M(|Du|)(x)

and hence, for each α,

{M(|Duα|) > λ} ⊆ {M(|Du|) > λ} .

Analogously, we have

{M(|uα|) > ϑ} ⊆ {M(|u|) > ϑ} .

By Lemma 3.81 and Remark 3.82 in [7], u has an approximate limit ũ at every point x

such that M(|Du|)(x) < ∞ and for every ρ > 0

(2.7)
1

ωNρN

∫
Bρ(x)

|u(y)− ũ(x)|
|y − x|

dy ≤
1∫

0

|Du|(Btρ(x))

ωN(tρ)N
dt ≤ M(|Du|)(x) .



6 englishV. DE CICCO(∗), C. LEONE(∗∗), AND A. VERDE(∗∗)

This inequality shows that for any λ ≥ 0 the restriction of ũ to {M(|Du|) ≤ λ} is a

Lipschitz function. In fact, if x, x′ ∈ {M(|Du|) ≤ λ} and ρ = |x − x′|, setting γ :=

LN(Bρ(x) ∩Bρ(x
′))/ρN (independent of ρ, x, x′), we get

|ũ(x)− ũ(x′)| =
1

γρN

∫
Bρ(x)∩Bρ(x′)

|ũ(x)− ũ(x′)| dy

≤ 1

γρN

∫
Bρ(x)∩Bρ(x′)

[|u(y)− ũ(x)|+ |u(y)− ũ(x′)|] dy(2.8)

≤ ρωN

γ
[M(|Du|)(x) + M(|Du|)(x′)] ≤ 2λωN

γ
|x− x′|.

Moreover the restriction of ũ to {M(|u|) ≤ ϑ}∩{M(|Du|) ≤ λ} is bounded by ϑ. In fact,

for every x0 ∈ {M(|u|) ≤ ϑ} ∩ {M(|Du|) ≤ λ} we have

|ũ(x0)| ≤ −
∫

Bρ(x0)

|ũ(x0)− u(x)| dx +−
∫

Bρ(x0)

|u(x)| dx ≤ −
∫

Bρ(x0)

|ũ(x0)− u(x)| dx + M(|u|)(x0) .

As ρ → 0, since x0 ∈ RN \ Su we have

|ũ(x0)| ≤ M(|u|)(x0) ≤ ϑ .

Letting Mϑ,λ := {M(|u|) ≤ ϑ} ∩ {M(|Du|) ≤ λ} and letting v be any extension of ũ∣∣
Mϑ,λ

to RN which is bounded (with the same bound ϑ) and it is Lipschitz continuous (with the

same Lipschitz constant cλ) (see e.g. [16]), the conclusion of the �rst part of the theorem

follows since, up to an LN -null set, the following inclusions hold

{v 6= u} = {v 6= ũ} ⊆ RN \Mϑ,λ = {M(|u|) > ϑ} ∪ {M(|Du|) > λ} .

For the second part of the theorem we have to proceed more carefully in order to obtain

that the Lipschitz truncations vanish on the boundary.

Let x ∈ Mϑ,λ ∩Ω and set r := 2 dist(x, Ωc). Then by assumption (2.5) and since u is zero

on Ωc we have

−
∫

Br(x)

|u(y)− (u)Br(x)| dy ≥ 1

LN(Br(x))

∫
Br(x)∩Ωc

|u(y)− (u)Br(x)| dy

=
LN(Br(x) ∩ Ωc)

LN(Br(x))
|(u)Br(x)|(2.9)

≥ 1

A
|(u)Br(x)|.

Let us now recall a variant of the Poincaré inequality (see Remark 3.50 in [7]):

−
∫

Br(x)

|u(y)− (u)Br(x)| dy ≤ c r
|Du|(Br(x))

LN(Br(x))
,
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which, together with (2.9), gives, for x ∈ Mϑ,λ ∩ Ω

|(u)Br(x)| ≤ c A r
|Du|(Br(x))

LN(Br(x))
≤ c A r M(|Du|)(x) ≤ c A rλ.

Consequently, using also (2.7), we obtain

(2.10) |ũ(x)| ≤ rM(|Du|)(x) + |(u)Br(x)| ≤ c A rλ.

It follows from (2.10) that for all x ∈ Mϑ,λ ∩ Ω and all x′ ∈ Ωc we have

(2.11) |ũ(x)− ũ(x′)| = |ũ(x)| ≤ c A dist(x, Ωc)λ ≤ c Aλ|x− x′|,

since ũ is zero on Ωc. Then (2.8) and (2.11) imply that

|ũ(x)− ũ(x′)| ≤ c Aλ|x− x′| ∀x, x′ ∈ Mϑ,λ ∪ Ωc.

Hence ũ is Lipschitz continuous on Hϑ,λ := Mϑ,λ∪Ωc with Lipschitz constant bounded by

cλ. We also have that ũ is bounded by ϑ on Hϑ,λ. Therefore extending ũ∣∣
Hϑ,λ

to RN with

the same bound ϑ and with the same Lipschitz constant cλ we proved also the second

part of the theorem.

Remark 2.3. If Ω ⊂ RN is an open bounded set with Lipschitz boundary, then Ω satis�es

assumption (2.5).

2.4. The Lebesgue space with variable exponent. Let Ω ⊆ RN be an open set and

let p : Ω → [1, +∞) be a measurable bounded function, called a variable exponent on Ω.

We assume that there exist two numbers p+, p− such that 1 < p− ≤ p(x) ≤ p+ < +∞ for

every x ∈ Ω.

We de�ne the variable exponent Lebesgue space Lp(·)(Ω; Rm) (which we will denote by

Lp(·)(Ω) if m = 1) as the set of all measurable functions f : Ω → Rm for which the modular

ρLp(·),Ω(f) =

∫
Ω

|f(x)|p(x) dx

is �nite. We de�ne the Luxemburg norm on this space by

‖f‖Lp(·),Ω = inf
{
λ > 0 : ρLp(·),Ω(f/λ) ≤ 1

}
for every f ∈ Lp(·)(Ω; Rm). If there is no misunderstanding we will write ρLp(·)(·) and

‖ · ‖Lp(·) for the modular and the norm. We remark that the set Lp(·)(Ω; Rm) with this

norm is a Banach space. Let us now consider some simple relationships between norm

and modular. First of all, it is very easy to check that:

(2.12) ρLp(·)(f) ≤ 1 if and only if ‖f‖Lp(·) ≤ 1.

This property can be generalized as follows.
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Lemma 2.4. Let f ∈ Lp(·)(Ω; Rm), then

(2.13) if ‖f‖Lp(·) ≤ C, then

∫
Ω

|f(x)|p(x) dx ≤ Cbq,
where

(2.14) q̂ =

{
p− if

∫
Ω
|f(x)|p(x) dx ≤ 1,

p+ otherwise.

Moreover

(2.15) if

∫
Ω

|f(x)|p(x) dx ≤ C, then ‖f‖Lp(·) ≤

{
C

1
p+ if C ≤ 1,

C otherwise.

Proof. Let us observe that

‖f‖Lp(·) = inf

{
λ > 0 :

∫
Ω

|f(x)|p(x)

λp(x)
dx ≤ 1

}

= min

inf

{
0 < λ < 1 :

∫
Ω

|f(x)|p(x)

λp(x)
dx ≤ 1

}
; inf

{
λ ≥ 1 :

∫
Ω

|f(x)|p(x)

λp(x)
dx ≤ 1

} .

Moreover, if 0 < λ < 1 is involved in the �rst in�mum, then λ ≥
(∫

Ω
|f(x)|p(x) dx

) 1
p− ,

while for the second one we have λ ≥
(∫

Ω
|f(x)|p(x) dx

) 1
p+ . Then

‖f‖Lp(·) ≥ min


( ∫

Ω

|f(x)|p(x) dx

) 1
p−

;

( ∫
Ω

|f(x)|p(x) dx

) 1
p+

 ,

which gives

(2.16) ‖f‖Lp(·) ≥

∫
Ω

|f(x)|p(x) dx

 1bq
,

with

q̂ =

p− if

( ∫
Ω
|f(x)|p(x) dx

) 1
p−

≤
( ∫

Ω
|f(x)|p(x) dx

) 1
p+

,

p+ otherwise .

It is easy to check that this coincides with the number q̂ de�ned in (2.14).

By (2.16) we have (2.13), while for (2.15), let us note that in the �rst case, i.e.∫
Ω
|f(x)|p(x) dx ≤ C ≤ 1, since 1

C
1

p+
≤ 1

C
1

p(x)
, we have

∫
Ω

∣∣∣∣f(x)

C
1

p+

∣∣∣∣p(x)

dx ≤
∫
Ω

∣∣∣∣ f(x)

C
1

p(x)

∣∣∣∣p(x)

dx =
1

C

∫
Ω

|f(x)|p(x) dx ≤ 1 .
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Therefore, we obtain ‖f‖Lp(·) ≤ C
1

p+ . In the second case, i.e.
∫

Ω
|f(x)|p(x) dx ≤ C and

C > 1, since
(

1
C

)p(x) ≤ 1
C
, we have∫

Ω

∣∣∣∣f(x)

C

∣∣∣∣p(x)

dx ≤ 1

C

∫
Ω

|f(x)|p(x) dx ≤ 1 .

Therefore, we obtain ‖f‖Lp(·) ≤ C.

We say that a variable exponent p : Ω → [1, +∞) is (locally) log-Hölder continuous if

there exists a constant c > 0 such that

|p(x)− p(y)| ≤ c

log( 1
|x−y|)

for every x, y ∈ Ω with |x− y| < 1/2.

We say that p is globally log-Hölder continuous if it is log-Hölder continuous and there

exist constants c > 0 and p∞ ∈ [1, +∞) such that for all points x ∈ Ω we have

|p(x)− p∞| ≤
c

log(e + |x|)
.

The following fact is proven in [13] and [10].

Proposition 2.5. Let p : RN → [1, +∞) be a variable exponent with 1 < p− ≤ p(x) ≤
p+ < +∞, for every x ∈ RN , which is globally log-Hölder continuous. Then the Hardy-

Littlewood maximal operator M is bounded from Lp(·)(RN) to Lp(·)(RN).

For other weaker results about the boundedness of the Hardy-Littlewood operator see

[13], [21], [27].

The following fact (see Corollary 4.3 in [15]) will be used in Theorem 4.1 to apply the

Lipschitz truncation Theorem 3.1 below.

Proposition 2.6. Let Ω ⊂ RN be a bounded open set with Lipschitz boundary and let

p : Ω → [1, +∞) be log-Hölder continuous with 1 < p− ≤ p(x) ≤ p+ < +∞ for every

x ∈ Ω. Then there exists an extension p̃ : RN → [1, +∞) with 1 < p̃− ≤ p̃(x) ≤ p̃+ < +∞
for x ∈ RN , such that the Hardy-Littlewood maximal operator M is bounded from Lp̃(·)(RN)

to Lp̃(·)(RN).

3. Lusin approximation in SBV with variable exponent

The space SBVp(·)(Ω; Rm) is de�ned as the set of functions u ∈ SBV(Ω; Rm) with ∇u ∈
Lp(·)(Ω; MIm×N) and HN−1(Su) < ∞.

Theorem 3.1. Let Ω ⊂ RN be an open bounded set which satis�es assumption (2.5), and

let p : RN → [1, +∞), with 1 < p− ≤ p(x) ≤ p+ < +∞ for every x ∈ RN , be such that

the Hardy-Littlewood maximal operator is bounded from Lp(·)(RN) to Lp(·)(RN).
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Let vn ∈ SBVp(·)(RN , Rm) be a sequence of functions with compact support in Ω such that

vn tends to 0 in L1(Ω, Rm), as n →∞. Moreover we assume that

sup
n
‖vn‖∞ < +∞ ;(3.1)

sup
n

∫
Ω

|∇vn|p(x) dx < +∞ ;(3.2)

γn := ‖vn‖Lp(·),Ω → 0 (n →∞) .(3.3)

Let ϑn > 0 be such that

ϑn → 0 and
γn

ϑn

→ 0 (n →∞) .

Then there exist sequences µj, λn,j > 1 such that for every n, j ∈ N

(3.4) µj ≤ λn,j ≤ µj+1,

and a sequence vn,j ∈ W 1,∞(RN , Rm), vn,j = 0 on RN \ Ω, such that for every n, j ∈ N

‖vn,j‖∞ ≤ ϑn ;(3.5)

‖∇vn,j‖∞ ≤ Cλn,j .(3.6)

Moreover, up to a null set,

(3.7)
{
vn,j 6= vn

}
⊆ Ω ∩ ({M(|vn|) > ϑn} ∪ {M(|Dvn|) > 3Kλn,j}) .

For every j ∈ N and for n →∞

(3.8) ∇vn,j ⇀ 0 weakly∗ in L∞(Ω, RNm).

Finally, there exists a sequence εj > 0 with εj → 0 such that for every n, j ∈ N

‖∇vn,jχ{M(|vn|)>ϑn}∪{M(|∇vn|)>2Kλn,j}‖Lp(·),Ω ≤(3.9)

C‖λn,jχ{M(|vn|)>ϑn}∪{M(|∇vn|)>2Kλn,j}‖Lp(·),Ω ≤ C
γn

ϑn

µj+1 + εj.

Proof. The proof follows the lines of the proof of Theorem 4.4 in [15]. Even if only few

changes are signi�cant we will write it for the sake of completeness.

By (3.3), (3.2), and by (2.15) of Lemma 2.4, we have that

sup
n
‖vn‖Lp(·),RN + sup

n
‖∇vn‖Lp(·),RN < +∞,

which thanks to the boundedness of the Hardy-Littlewood maximal operator, implies

(3.10) ‖M(|vn|)‖Lp(·),RN + ‖M(|∇vn|)‖Lp(·),RN ≤ K,

for every n ∈ N. So, by (2.12) we get∫
RN

|M(|vn|)/K|p(x) dx +

∫
RN

|M(|∇vn|)/K|p(x) dx ≤ 1,

for every n ∈ N.
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Next, we note that for a function g ∈ Lp(x)(RN) with ‖g‖Lp(·),RN ≤ 1 we have

1 ≥
∫

RN

|g(x)|p(x) dx =

∫
RN

∞∫
0

p(x)tp(x)−1χ{|g|>t} dt dx

≥
∫

RN

∑
m∈Z

2m+1∫
2m

p(x)tp(x)−1χ{|g|>t} dt dx

≥
∫

RN

∑
m∈Z

(2m)p(x)χ{|g|>2m+1} dx(3.11)

≥
∫

RN

∑
m∈N

(2m)p(x)χ{|g|>2m+1} dx

≥
∑
j∈N

2j+1−1∑
k=2j

∫
RN

(2k)p(x)χ{|g|>2k+1} dx.

The choice g = χΩM(|∇vn|)/K yields∑
j∈N

2j+1−1∑
k=2j

∫
Ω

(2k)p(x)χ{|M(|∇vn|)/K|>2k+1} dx ≤ 1,

and thus, for all j, n ∈ N,
2j+1−1∑
k=2j

∫
Ω

(2k)p(x)χ{|M(|∇vn|)/K|>2k+1} dx ≤ 1.

Since the sum contains 2j addenda, there is at least one index kn,j such that

(3.12)

∫
Ω

(2kn,j)p(x)χ{|M(|∇vn|)/K|>2·2kn,j } dx ≤ 2−j.

Letting εj := 2−j/p+
, by (2.15) of Lemma 2.4, it follows from (3.12) that

(3.13) ‖2kn,jχ{|M(|∇vn|)/K|>2·2kn,j }‖Lp(·),Ω ≤ εj.

Now we de�ne λn,j := 2kn,j and µj := 22j
, then

(3.14) µj = 22j ≤ λn,j ≤ 22j+1

= µj+1,

and we conclude from (3.13) that

(3.15) ‖λn,jχ{M(|∇vn|)>2Kλn,j}‖Lp(·),Ω ≤ εj.

Next we observe that

‖λn,jχ{M(|vn|)>ϑn}∪{M(|∇vn|)>2Kλn,j}‖Lp(·),Ω

≤ λn,j

ϑn

‖ϑnχ{M(|vn|)>ϑn}‖Lp(·),Ω + ‖λn,jχ{M(|∇vn|)>2Kλn,j}‖Lp(·),Ω
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≤ λn,j

ϑn

‖M(|vn|)‖Lp(·),RN + εj(3.16)

≤ c
λn,j

ϑn

‖vn‖Lp(·),Ω + εj = c
γn

ϑn

λn,j + εj

≤ c
γn

ϑn

µj+1 + εj.

Now we apply Theorem 2.2 (with ϑn and 3Kλn,j) and we �nd, for each n, j ∈ N, a
sequence vn,j ∈ W 1,∞(RN , Rm), vn,j = 0 in RN \ Ω, such that

(3.17) ‖vn,j‖∞ ≤ ϑn, ‖∇vn,j‖∞ ≤ 3cKλn,j := Cλn,j,

and, up to a null set,

(3.18)
{
vn,j 6= vn

}
⊆ Ω ∩ ({M(|vn|) > ϑn} ∪ {M(|Dvn|) > 3Kλn,j})

holds. Finally (3.8) follows by (3.17) and (3.14), while, using (3.16) and (3.17) we obtain

(3.9).

4. Lower semicontinuity results

In this section we establish the main result of the paper, i.e. a lower semicontinuity

theorem for integral functionals de�ned in SBV(Ω, Rm), under a variable growth condition.

More precisely, we consider energy functionals containing a volume term of quasiconvex

type and a surface term, whose integrands admit a growth assumption with variable

exponent and we prove their lower semicontinuity separately. The �rst result (Theorem

1.1 above) extends the Ambrosio lower semicontinuity theorem (see Theorem 1 in [5]

or Theorem 5.29 in [7]) to the SBV framework with variable exponent. The second

one (Theorem 4.3 below) is a result obtained in [2] for surface energies with integrands

depending in a discontinuous way on the spatial variable.

As in [5], in order to obtain Theorem 1.1 we �rst prove the result in the particular case

when Ω is the unit ball B1, the limit function u is linear, HN−1(Jun) is in�nitesimal and

the integrand functions vary.

Theorem 4.1. Let pn : B1 → (1, +∞) be a sequence of log-Hölder continuous functions

such that there exists a constant c1 > 0 (independent of n) such that

|pn(x)− pn(y)| ≤ c1

log( 1
|x−y|)

for every x, y ∈ B1 with |x − y| < 1/2. Moreover we assume that 1 < p− ≤ pn(y) ≤
p+ < +∞ for every y ∈ B1 and that there exists a function p : B1 → (1, +∞) such that

limn→∞ pn(y) = p(y) uniformly in B1.

Let gn : B1 × Rm × RNm → [0, +∞) a sequence of Carathéodory functions such that

(4.1)

−c2 + c3|z|pn(y) ≤ gn(y, u, z) ≤ an(y) + Ψn(|u|)(1 + |z|pn(y)) ∀(y, u, z) ∈ B1 ×Rm ×RNm,
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for some positive constants c2, c3, some continuous functions Ψn : [0, +∞) → [0, +∞),

with the sequence {Ψn} convergent in L∞
loc([0, +∞)), and an ∈ L1(B1), with the sequence

{an} convergent in L1(B1). Let us assume that there exists a LN -null set E ⊂ B1 and

a Carathéodory function g : B1 × RNm → [0, +∞), quasiconvex (in the second variable),

satisfying the condition

−c2 + c3|z|p(y) ≤ g(y, z) ≤ c4(1 + |z|p(y)) ∀(y, z) ∈ B1 × RNm,

for c4 > 0, such that limn→∞ gn(y, u, z) = g(y, z) locally uniformly in Rm+Nm for every

y ∈ B1 \ E. Then

(4.2) lim inf
n→∞

∫
B1

gn(y, wn,∇wn) dy ≥
∫
B1

g(y,∇w) dy

for every sequence {wn} ⊂ SBV(B1, Rm) converging in L1(B1, Rm) to a linear function w

and satisfying HN−1(Jwn) → 0, as n →∞.

Proof. First observe that the function p shares with pn the same regularity.

Let L = ∇w. Possibly replacing wn by wn − w and gn(y, u, z) by gn(y, u, z + L) we can

assume that w = 0, that is wn converges to 0 in L1. Without no loss of generality we can

suppose that the liminf in (4.2) is a �nite limit, so that, by (4.1), we easily get that

(4.3) lim sup
n→∞

∫
B1

|∇wn|pn(y) dy < ∞.

This implies, among other things, that the sequence {|∇wn|} is bounded in Lp−(B1, RNm).

Recalling that p− is greater than 1, the proof of STEP 2 in Proposition 5.37 of [7] can

be carried out exactly in the same way. Hence we can assume the additional information

that ‖wn‖∞ ≤ 3. Moreover, by the uniform convergence of pn to p, we can consider a

number 0 < η < η0 and an index nη ∈ N, such that, for every y ∈ B1 and for every

n ≥ nη, p(y)− η ≤ pn(y), with η0 such that p� := p− − η0 is still strictly greater than 1.

Thus, for such η, de�ning p̄(y) := p(y)− η, we derive from (4.3) the following estimate

(4.4) lim sup
n→∞

∫
B1

|∇wn|p̄(y) dy < ∞.

Letting ρ ∈ (0, 1), the Theorem will be proved if we show that

(4.5) lim inf
n→∞

∫
Bρ

gn(y, wn,∇wn) dy ≥
∫
Bρ

g(y, 0) dy,

eventually letting ρ tend to 1. Moreover, possibly multiplying wn by a cut o� function

ζ ∈ C∞(RN), with compact support in B1 and identically equal to 1 in Bρ, we can

assume, without loss of generality, that wn ∈ SBVp(x)(RN , Rm) have compact support in

B1. Notice that, by the L∞ bound on wn, the sequence {∇(wnζ)} still satis�es (4.4).

Since p̄ satis�es all the hypotheses of Proposition 2.6 we can extend it to all RN (without
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renaming it) and apply Theorem 3.1 to wn, obtaining a sequence wn,j ∈ W 1,∞(RN , Rm),

wn,j = 0 in RN \B1, such that (3.5), (3.6), (3.7), (3.8) hold, and

‖∇wn,jχ{M(|wn|)>ϑn}∪{M(|∇wn|)>2Kλn,j}‖Lp̄(·),B1
≤(4.6)

C‖λn,jχ{M(|wn|)>ϑn}∪{M(|∇wn|)>2Kλn,j}‖Lp̄(·),B1
≤ C

γn

ϑn

µj+1 + εj,

with µj, λn,j > 1 such that µj ≤ λn,j ≤ µj+1. We have∫
Bρ

gn(y, wn,∇wn) dy ≥
∫

Bρ∩{wn=wn,j}

gn(y, wn,j,∇wn,j) dy

=

∫
Bρ\E

[gn(y, wn,j,∇wn,j)− g(y,∇wn,j)] dy +

∫
Bρ

g(y,∇wn,j) dy(4.7)

−
∫

Bρ∩{wn 6=wn,j}

gn(y, wn,j,∇wn,j) dy,

obtaining, when n tends to ∞,

lim inf
n→∞

∫
Bρ

gn(y, wn,∇wn) dy ≥ lim inf
n→∞

∫
Bρ

g(y,∇wn,j) dy

− lim sup
n→∞

∫
Bρ∩{wn 6=wn,j}

gn(y, wn,j,∇wn,j) dy ≥
∫
Bρ

g(y, 0) dy(4.8)

− lim sup
n→∞

∫
Bρ∩{wn 6=wn,j}

[an(y) + Ψn(|wn,j|)(1 + |λn,j|pn(y))] dy,

where we used the Lebesgue dominated convergence theorem, Theorem 2.1, and (4.1).

Let us now focus our attention on the last term in (4.8). First we note that, since the

sequence {wn,j} is bounded by a constant independent by n, j, the sequence {Ψn(|wn,j|)}
is bounded by a constant c4 independent by n, j. So, thanks to (3.7), we have∫

Bρ∩{wn 6=wn,j}

[an(y) + Ψn(|wn,j|)(1 + |λn,j|pn(y))] dy

≤
∫

B1∩({M(|wn|)>ϑn}∪{M(|∇wn|)>2Kλn,j})

[an(y) + c4(1 + |λn,j|pn(y))] dy(4.9)

+

∫
B1∩{M(|Dswn|)>Kλn,j}

[an(y) + c4(1 + |λn,j|pn(y))] dy ≤ ω(n) + In,j
1 + In,j

2 + In,j
3 ,

where ω(n) is in�nitesimal and

In,j
1 =

∫
B1∩({M(|wn|)>ϑn}∪{M(|∇wn|)>2Kλn,j})

ā(y) dy +

∫
B1∩{M(|Djwn|)>Kλn,j}

ā(y) dy,
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with ā the L1-limit of an plus a constant,

In,j
2 =

∫
B1∩({M(|wn|)>ϑn}∪{M(|∇wn|)>2Kλn,j})

c|λn,j|pn(y) dy,

and

In,j
3 =

∫
B1∩{M(|Dswn|)>Kλn,j}

c|λn,j|pn(y) dy.

Concerning In,j
3 we derive from (2.3) that

(4.10) In,j
3 ≤ c

ξ

Kλn,j

λp+

n,j|Dswn|(RN) ≤ c ξ µp+−1
j+1 HN−1(Jwn),

so that

(4.11) lim
n→∞

In,j
3 = 0.

Let us consider now In,j
2 ; we have

In,j
2 ≤ |λn,j|‖pn−p‖∞+η

∫
B1

c|λn,j|p̄(y)χ{M(|wn|)>ϑn}∪{M(|∇wn|)>2Kλn,j} dy,

which together with Lemma 2.4 (with q̂ = q̂n,j ∈ {p+, p�}) and (4.6) gives

In,j
2 ≤ c|µj+1|‖pn−p‖∞+η

[
C

γn

ϑn

µj+1 + εj

]bqn,j

,

and

(4.12) lim sup
j→∞

lim
η→0

lim sup
n→∞

In,j
2 = 0.

Finally, let us consider In,j
1 . We already estimated the Lebesgue measure of {M(|Dswn|) >

Kλn,j} in (4.10) obtaining that it goes to zero as n tends to in�nity. On the other hand,

by Chebyshev inequality

LN(B1 ∩ {M(|∇wn|) > 2Kλn,j}) ≤
c

λp−

n,j

∫
B1∩{M(|∇wn|)>2Kλn,j}

Mp−(|∇wn|) dy

≤ c

µp−

j

∫
B1

Mp−(|∇wn|) dy ≤ c

µp−

j

.

Similarly, using also Lemma 2.4 and the boundedness of the maximal function between

Lp̄(·)(RN) and Lp̄(·)(RN) we have

LN(B1 ∩ {M(|wn|) > ϑn}) ≤
∫

RN

(
M(|wn|)

ϑn

)p̄(y)

dy

≤
∥∥∥∥M(|wn|)

ϑn

∥∥∥∥bqn

Lp̄(·),RN

≤ c

(
‖wn‖p̄(·)

ϑn

)bqn

= c

(
γn

ϑn

)bqn

,
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with q̂n ∈ {p+, p�}. Thus we can infer that

(4.13) lim
j→∞

lim sup
n→∞

In,j
1 = 0.

Finally, combining (4.11), (4.12), and (4.13) we obtain (4.5) and this concludes the proof

of the theorem.

Now a blow up argument, in conjunction with covering theorems and with the approximate

di�erentiability of BV functions, allows us to reduce the general problem to the special

case of Theorem 4.1.

Proof of Theorem 1.1. The proof is very similar to that of Theorem 5.29 in [7] (see also

Theorem 4.3 in [5]). We will consider only the key points of the proof referring for the

details to [7] or [5].

The aim is to show that the Radon measure µ, that is the weak∗ limit of (a subsequence

of) f(x, wn,∇wn)LN , will be greater than f(x, w,∇w)LN . This is obtained proving that

lim sup
ρ→0

µ(Bρ(x0))

LN(Bρ(x0))
≥ f(x0, w(x0),∇w(x0)),

for a.e. x0 ∈ Ω. Choosing suitable points x0, Theorem 4.1 is applied to the sequences

gi(y, u, z) := f(x0 + ρiy, w(x0) + ρiu, z), ui(y) := [wni(x0 + ρiy)−w(x0)]/ρi, where ρi → 0

as i → ∞ and ui → ∇w(x0) y in L1(B1, Rm), while HN−1(Jui) → 0. On the other hand

the functions gi satisfy all the conditions of Theorem 4.1, besides the fact that

(4.14)

∫
B1

gi(y, ui,∇ui) dy ≤ µ(Bρi
(x0))

ρN
i

+ ρi.

Thus

lim inf
i→∞

∫
B1

gi(y, ui,∇ui) dy ≥
∫
B1

f(x0, w(x0),∇w(x0)) dy = LN(B1)f(x0, w(x0),∇w(x0)),

and this inequality, in conjunction with (4.14) gives the desired result.

Remark 4.2. The continuous function Ψ : [0,∞) → [0,∞) in the growth hypothesis (1.3)

of Theorem 1.1 can be replaced by an increasing function Ψ : [0,∞) → [0,∞). In this case

(4.1) can be written for a constant sequence of increasing functions Ψn = Ψ : [0,∞) →
[0,∞) and the proofs of both theorems do not require any remarkable change.

Finally, in the next theorem we deal with the surface energy.

Theorem 4.3. Let p : Ω → [1, +∞) be a log-Hölder continuous function, such that

1 < p− ≤ p(x) ≤ p+ < +∞ for every x ∈ Ω.

Let k : Ω× RN → [0, +∞) be a locally bounded Borel function satisfying

k(·, ξ) is C1-quasi lower semicontinuous for every ξ ∈ RN ;(4.15)

k(x, ·) is convex and positively 1-homogeneous in RN for every x ∈ Ω ;(4.16)

k(x, ξ) = k(x,−ξ) for every (x, ξ) ∈ Ω× RN ;(4.17)
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k(x, ξ) > 0 for every (x, ξ) ∈ (Ω \N0)× (RN \ {0}), where HN−1(N0) = 0.(4.18)

Let γ : [0, +∞) → [0, +∞) be a locally bounded, lower semicontinuous, increasing and

subadditive function such that γ(0) = 0. Then, for every (wn) ⊂ SBV(Ω, Rm) and w ∈
SBV(Ω, Rm) such that wn(x) → w(x) for almost every x ∈ Ω and

sup
n∈IN

[
‖wn‖∞ + ‖∇wn‖Lp(·) +HN−1(Jwn)

]
< +∞ ,

we have

(4.19)∫
Ω∩Jw

γ(|w+ − w−|)k(x, νw) dHN−1 ≤ lim inf
n→+∞

∫
Ω∩Jwn

γ(|(wn)+ − (wn)−|)k(x, νwn) dHN−1 .

Proof. It is su�cient to observe that the equiboundedness (with respect to n) of {∇wn}
in Lp(·) implies the same boundedness also in Lp− . Then we can apply Theorem 3.3 in [2]

with p = p− > 1.
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