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Introduction

A large variety of physical and mechanical models with variational structure contain small pa-
rameters of either constitutive or geometrical nature. The well-known examples include theories
for elastic thin bodies (films, rods), descriptions of fine scale mixtures in composites, lattice
systems with characteristic atomic scales and, in general, a range of physical models with a
microstructure or exhibiting some kind of microscopic phenomenon (e.g. phase transitions, in-
ternal boundary layers, etc). In this setting, procedures based on the idea of I'-convergence
130}, B2, 15] are widely used to derive limiting macro theories which do not contain the original

small parameters.

The general question we want to investigate concerns the asymptotic behavior of a family of

minimum problems of the form
me = min{F;(u) : u € X}, (0.1)

where X is a suitable functional space and F. are given microscopic energies depending on a
small, positive parameter . Then, the behavior of the minimum problems (Il) at small &
can be approximated by computing the I'-limit of the family (F.). Under some coerciveness
requirements on the family (F.), I-convergence implies the convergence of minimum problems.
In particular, if (F.) I'-converges to F' ©) as & — 0, then the approximation of m. is given by
m(©® = min F( meaning that

me =m® +0(1), ase — 0,

moreover, converging minimizing (sub)sequences of (F.) converge to minimizers of F(©). This
property implies that sometimes the study of complex minimum problem involving a small
parameter £ can be approximated by a minimum problem in which the dependence on this
parameter has been averaged out.

If the description given by F©) is too coarse, additional information can be obtained by
iteration of the I-limit procedure; i.e., if some positive function A(V(g) (A (g) — 0, as & — 0)
exists such that

F.—m©® p
(1. e "0~ 1
Fe D) F,
then, appealing again to the fundamental property of I'-convergence we deduce that
0
mV) = min FO < — L’W) — m® .= min FO,
A (g)

5



6 INTRODUCTION

and then the more accurate development
me = m® + AW (£)m® + oAV ().

Notice that moreover converging minimizing (sub)sequences of (F;) converge to minimizers both
of F( and F(V),

This process of development by I'-convergence [9)] is formally resumed in the equality
FL FO L O @D 1 o(0\(e)

(this is just a formal equality since the domains of the functionals may be different). Clearly,
this procedure can be iterated obtaining other scales A2 (g), A®)(¢),... and consequently more
terms in the development.

In a general framework one does not encounter problems containing a single parameter but
rather energies depending on different, mutually interacting, small parameters of various nature.
In this case, the separate description of the effects due to the single parameters is not sufficient
to determine the actual asymptotic behavior of the system and a more accurate description is
necessary. Objective of this thesis is the asymptotic analysis via I'-convergence of multiple scale
variational problems deriving from the combined effect of different parameters. We focus, in
particular, on two multi-scale models.

The first model, analyzed in a joint work with A. Braides [23], is a prototype for (one-
dimensional) phase transformations in a heterogeneous medium with periodic structure. In this
case, the small parameters occurring in the problem are the characteristic length of the phase
transitions and the period of the medium under examination.

This model is presented in Chapter [

The second model, introduced in a joint work with N. Ansini and J.-F. Babadjian 6], is of
completely different nature and is related to the asymptotic study of the debonding of thin films
(see [I2]), hence its setting is that of nonlinear elasticity and dimension reduction. Since we
interpret the debonding as the limit effect of the weak interaction of two thin films connected
through a periodically distributed contact zone (mimicking a mismatch in the microscopical
lattice structure of the two films) the parameters involved in the problem are three: the thickness
of the films, the period of distribution of the contact zones and the size of a contact zone.

This model is discussed in Chapter &1

We now give an overview of the content of each chapter.

In Chapter [[l we study the relative impact of fine heterogeneities (fine microstructures) and
small gradient perturbations by means of a development by I'-convergence for a family of energies
related to phase transitions phenomena.

It is worth pointing out that since in the applications one is interested in theories operative
at small but finite €, a development by I'-convergence can be viewed as the simplest way to bring
a small scale back into the problem. Then, the asymptotic analysis performed in [23] is also
intended as an attempt at addressing the more general question of a construction of a mesoscopic
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theory starting by a microscopic one [2I]. With in mind the idea of a careful description of the
different scalings involved in the I'-development, we decide to focus on a very special model.

The prototype we are interested in is a one-dimensional variant of the Modica-Mortola (or
van der Waals-Cahn-Hillard) model. The energies we analyze are as follows: let k be a real
number such that 0 < k& < 1; for all €, > 0 consider the functional F:((SO) : L2(0,1) — (0, +00]
defined by

4]

400 otherwise,

[ G+ 0?) o twe w2, 0:2)

where W* : R x R — [0, +00) is 1-periodic in the first variable and on the periodicity cell is

Wi(s—k) if ye (0,2
Wk(y,s) — . (1 2)

W(s+k) if ye(3,1)
with W the double-well potential given by

W () = min{(t — 1)2, (t + 1)%}.

Then we may interpret this situation as modelling the presence of spatial heterogeneities at a
scale 0, which locally determine the zero set of the potential W*. Moreover, a simple dimensional
analysis shows that the pre-factor ¢ multiplying the gradient term, introduces ¢ as a length
scale to the problem. Finally the (fixed) parameter k, which will play an essential role in the
creation of the scales occurring in the development, simply gives the width of the translation of
the potential W* with respect to W, on each period.

A similar, though in some aspects more complex, model was recently proposed in [33] by Dirr,
Lucia and Novaga. They consider a perturbation of the Modica-Mortola energy by a rapidly

oscillating field with zero average. More precisely they consider the functionals

W(u) 9 1 x
/Q< - + €|Vl +§g<g>u> dz,
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where g is a 1-periodic function and W a general double-well potential. Then when v > 0 both
the amplitude and the frequency of g become large (for € small) and the infimum of the energy
can even tend to —oo as € — (. Hence, to fit in the framework of I'-convergence, the introduction
of an additive renormalization is needed. So if on one hand in our model we do not encounter
the difficulty arising from this renormalization (and in particular from the related fact that the
functionals have non constant global minimizers whose energy is not uniformly bounded from
below), on the other hand, our particular choice permits to detail an asymptotic expansion that
is not pursued in [33].

Coming back to our model, a first observation is that for k = 0, W* = W and ((I2) reduces

to
1
Fu(u) = /0 (W () + 2(u)?) da,

for which a I'-development (with respect to the weak L2—convergence) is given by [40), 4T]
1
F.(u) = / W**(u) dz + eCw#S(u) + o(e),
0

where W** is the convex envelope of W, S(u) denotes the set of discontinuity points of u and
Cw = 2f_11 VW (s)ds, with the constraint u € BV ((0,1); {£1}) as understood for the second
energy.

As the above I'-development is stable by adding a volume constraint, we may prescribe the

“volume” of the phases and address, for instance, the minimum problem

min {Fe(u) : /Oludm - o} . (0.3)

Then, since the minimizers of F()(u) = Cy#£S(u) are only the two functions £sign(z — 1), we

deduce the convergence of a minimizing sequence (v,) for ([(I3]) to one of these functions. In this

case, the Modica-Mortola Theorem also improves the convergence to strong L>-convergence.

1 v
/_\ SCW
Ve
-1
e

FIGURE 1. A minimizer v, and the energy contribution of a transition.

As the development of minimum values is concerned, we also get
me =eCw +o0(e), as € —0.

Moreover, in this case it is possible to compute that the next meaningful scaling is € e~1/%¢ and

thus we may further write

me :ECW—FEe_l/QaéW+0(€6_1/26), as ¢ — 0.



INTRODUCTION 9

However, the minimizers being essentially uniquely characterized by the analysis at order ¢, this

last information only provides a better approximation of the minimum values m..

If £ > 0, we are dealing with a multi-scale energy whose asymptotic behavior depends on the
mutual vanishing rate of € and §.

As a particular case of a multidimensional model introduced in [35] by Francfort and Miiller,
we may deduce that if we let § = d(¢) be such that § — 0 as ¢ — 0 and

£ := lim @ ,
e—0 ¢
then the family of functionals FO = lcgtz)) defined by ([IZ), T-converges with respect to the

weak L2-convergence to the homogeneous functional defined on L?(0,1) by

FrOy / WE(u (0.4)

The “effective potential” Wzk depends on ¢ in the following way:
(1) if £ = 400, then

1 1
Wk (s) :inf{/ Wk(z,v)dz : v e L*0,1), / vdxzs};
0 0

this case corresponds to € < d; i.e., to the case in which the scale of oscillation ¢ is much larger
than the scale of the transition layer €. The result is that we have a separation of scales effect,

and the presence of the singular perturbation does not affect the homogenization process.
(2) If £ € (0,400), then
1 n
Wh(s) = inIf;]inf {][ (Wk(z,v) + €2( V) dx : v e WH(0,n), ][ vdr = 5};
ne 0 0

this case corresponds to € ~ d; i.e., when € and § are comparable. Now the two effects cannot
be separated and the presence of the singular perturbation contributes to the definition of Wf .

(3) If £ =0, then
k -k
Wo'(s) = (W7)™(s)
where .
~ [ W) (05)
0
this case corresponds to € > J; i.e., is the case in which the scale of the oscillations is smaller
than the scale of the transition layer. We again find a separation of scales phenomenon: the
total effect is that the singular perturbation forces the homogenized energy to be (the convex
envelope of) the average of the microscopic energy over the period.

Since we are interested in describing how the two different parameters € and § interact in the
creation of the various scales of the I'-development, we focus only on the two regimes § > ¢ and
0 < g, the regime § ~ € being, somehow, less interesting than the extreme ones.

d > e: oscillations on a larger scale than the transition layer.
A direct computation gives that for £ = +oo the effective potential is degenerate; i.e., min Wk =
0 = WX (s) for every s such that |s| < 1. As a consequence, every function v € L?(0, 1) satisfying
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lu| <1 a.e., is a minimum point for the “zero order” I'-limit Ffo(o). Hence, if for any fixed € > 0,

(0)

Ve minimizes Ff © (notice that the existence of a minimizer for ng over L2(0,1) can be proved

via standard lower semicontinuity and compactness results) then the fact that every limit point

)

v of (v:) minimizes Ffo(o actually gives little information about v. Then, we turn to the scaled

energies
k0

£

N ((;,) (g) (0.6)
Now the problem arises of finding the “optimal scaling”; i.e., the )\((;,) (€) such that the I'-limit
of (L6l gives the largest amount of information. Once Ay (e) is determined, the I'-limit of
the scaled family of functionals (LG will be the “first-order term” of the development by I'-
convergence.

At this point some scale analysis must be performed to understand what the relevant scaling
A&) (¢) is. To this end, we focus on a period of oscillation: to fix the ideas, say the interval
(0,9). Then, when we come to minimize ng(o), on one hand the term f06 W’%%,u) dz favors
those configurations which take values “close” to the (varying) zero set of W*; i.e. close to (at
least) two different constant values: one chosen in {1+k, —1+k} when z € (O, %), and the other
chosen in {1 — k,—1 — k} when z € (%,5). In other words, the potential term in the energy
favors a phenomenon of phase separation. On the other hand, the gradient term &2 foé(u/ )2 dx
penalizes spatial inhomogeneities thus inducing a phase-transition phenomenon as well. When
¢ is small the first term prevails, and the minimum of f(f (Wk (%, u) +&2(u’ )2) dz is attained at
a function which takes “mainly” values close to the set {1 + k,—1 + k} in (O, g) and close to
{1—k,—1—k}in ( g, 5), but which also makes a transition on a “thin” layer around g. Then,
the Modica-Mortola scaling argument applies showing that a transition between two different
zeroes chosen as above, actually occurs in a layer of thickness of order ¢ (recall that § > ¢) and
gives an energy contribution of order € too. Clearly, the previous heuristics can be repeated on

€
each d-interval thus yielding a total energy contribution of order 5 Hence, we claim that

M) ==, (0.7)
)
—
1+k |
9
0 x

FIGURE 2. Periodic phase transitions.
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The important point to note here is that, as the qualitative analysis above shows the presence
of periodic phase transitions (see Figure ) with a consequent distribution of the energy of a
minimizing sequence on its whole domain, we expect that now the first order I'-limit is again
a“bulk energy”. This represent a first difference with the Modica-Mortola model in which the
energy of an optimal transition concentrates on a “small” layer thus yielding a first order energy
of “surface” type.

We also remark that we may have (four) different types of transitions characterized by differ-
ent energy contributions depending on the value of the parameter k. Specifically, if these energy
contributions are as in the picture below, we have that the constant Cé“ is greater than both of
C{“, C’é“ for every k € (0,1); i.e., the transition between the two extreme zeroes 1 +k and —1 — k
is always energetically unfavorable. While Cf < C'§ S k< %, or in other words, the transition
from 14k to 1 — k (or equivalently from —1 + k to —1 — k) is more convenient than the one
from —1+ k to 1 — k if and only if k£ < %

1+ k]

1—-k]

x
—1+k/
-1
—1—k/
Then, claim ([I7) is made rigorous by the following I'-convergence result:
1
FRO) L pe() () = / OF (u) da (0.8)
0

with respect to the weak L2-convergence, with ¥* as in the following picture.

k 1
20% vhk> s
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Loosely speaking, this picture shows that for k < % we can approximate the constant states 1
and —1 by oscillating with “convenient” transitions around 1 and —1, respectively. Then, we
approximate any state |u| < 1 by mixing, in the right proportion, oscillations as above. While,
for k > % minimal transitions only permit to approximate the zero state so that to obtain a non
zero state we are obliged to mix convenient transitions with “expensive” ones.

In the spirit of studying the asymptotic behavior of the family of functionals (ng(o)), the
previous I'-convergence result suggests that the characterization of the limit points of sequences
of minimizers, as well as the development for the minimum values, can be improved for k < %
In fact, for k < %, FrO) = 207 so that we are again in the condition that the (first order)
I'-limit only provides the information that the weak limit of sequences of minimizers can be any
function v € L?(0,1) such that |v| < 1 a.e.

We consider the scaled functionals

and we observe that ng © _ 5 2C¥F is infinitesimal on a sequence whose qualitative behavior is

as in the following picture.

Since moreover the optimal transitions actually reaches the zeroes of the potential W¥ only at
infinity, thus introducing on each period an exponentially small error, the total energy contri-

bution of a minimizing sequence, in terms of Fek © _ $2 C’{“ , turns out to be of order

4 g _3
e+ —e 2.
0

The natural assumption e 3 > § (notice that the converse inequality would be quite restrictive

for the possible choices of §) leads to
M) =e,

which is the scale of the transitions between the “oscillating states” around 1 and —1.
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In terms of I'-convergence we have

(C5 = OD#(S(w) — CF  if we BV((0,1); {£1})

Fek@) L, pr@ (u) =
400 otherwise.

(0.9)

The combined computations of ([(I4]), (.¥)) and ([(3) are formally summarized by the following

development
1 £ 3 €
FFO(y) = / WE (u) dz + 520{“ +e((C5 — OP)#S(u) — CF) + 0(56—%)
0

Referring to the case k > %, even if the first order I'-limit has the unique minimizer v = 0, the
non strict convexity of the function ¢* allows to determine a nontrivial I'-development in this
case too by adding an integral constraint to the problem, which in turn allow to add an affine

perturbation to the energies without changing their minimizer. More precisely, we consider
1 1
FFO () = FFO (4) — / r* (u) da for u such that / udr =d e (0,1) (0.10)
0 0
where the affine perturbation 7* is chosen as in the picture below.

¢k_rk

k
¥ bYels

20%

The scale analysis for this case is quite complex and in particular highlights the presence of a
new scale in the development which takes into account the interaction between microscopic and
macroscopic phase transitions.

We establish the following I'-development for ({LI0)

3

1
O () = [ do - r¥d) = S(CF = 8+ (4(Ch - Oy - 1K) +ofe e ).
0

0 < e: oscillations on a finer scale than the transition layer

) k(0)

For k£ < % a direct computation shows that the zero order I'-limit Fok ©) is such that min Fy© =

K2 = F)
the scaling )\((]1)(6), and to study the asymptotic behavior of the family of scaled functionals

k(0
: BRECY
0 (€)

© (u) for every u € L?(0,1), |u| < 1 a.e. Thus, we are now interested in determining
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We prove that, upon choosing ¢ sufficiently small, the presence of small scale heterogeneities

does not essentially affect the I'-convergence process at first order too.

Even if £ (v) — k* = 0 for v = %1 (as it immediately follows by the definition of W), a
simple scale analysis show that in this case is more energetically convenient to oscillate “around

+1” than to be identically £1 and the cost of these oscillations is of order

52 st
—2+€—4+...

3

Then, as the presence of the singular perturbation in the gradient introduces ¢ as the length for

the layer of a transition between the two “oscillating phases” +1, we deduce that the contribution

)

of minimizing sequence in terms of the energy ng © _ 2 is of order

52 &

€+€—2+€—4+....

3/2

We only focus on the case § < ¢°/ which yields

M (e) =¢,

since we expect to obtain trivial I-limits for other choices of the scaling )\(()1).

We notice that also the asymptotic analysis for the “critical case” § ~ &3/2 (or more in
general, § ~ @t/ 2n) yields a I-limit of Modica-Mortola type. Nonetheless it seems that in
this case the two phenomena of oscillations and phase transition may interact in a non trivial
way thus introducing some additional difficulties to the problem.

3/2

Under the assumption § < £°/% we prove that

J LN

£

Cor 2 #(S(w)) if we BV((0,1);{£1})

400 otherwise

1
with 77" as in [@3) and Chpr_,, = 2/ \/Wk(s) — k2 ds.
-1

Ik(u):
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Since as for the Modica-Mortola functionals, the equi-coercivity at scale € improves to strong-
L? equi-coercivity, then we may (a posteriori) compute also the zero order I'-limit with respect

to the strong L?-convergence, obtaining
1
F’g(o)(u) :/ Wk(u) dx.
0

Thus, for 6 < ¢, k < % we find that a I'-development with respect to the strong L?-convergence
is given by
E(O) (N _ ek ﬁ
MO () = /0 W () d -+ Copn_,#(S() +0(5).
The above development shows that in this case we may (morally) first perform the homoge-
nization procedure for fixed €, by letting § — 0 and then apply the Modica-Mortola Theorem

to .
/ (W (u) — k2 + 2(u)?) da.
0

Finally, we prove that in this case the scale analysis performed for k < % applies unchanged

for k > % thus yielding to analogous results.

We now turn to describe the content of Chapter

In this chapter we perform an asymptotic analysis of an n-dimensional model whose physical
motivation relies on the study of the debonding of thin films. Thus, the setting of the problem is
that of dimension reduction. In this case the (first) small parameter entering in the definition of
the investigated family of (integral) functionals is related to some small dimension of the domain
of integration, and some energy defined on a lover dimensional set is expected to arise in the
I'-limit.

Before discussing our model, we briefly illustrate some aspects of the passage to the limit for
bilayer thin films focusing on the case in which the possibility of a debonding at the interface
is allowed. The starting point is a simplified version of Bhattacharya, Fonseca and Francfort
model [I2] for a bilayer thin film with homogeneous layers having the same elastic properties.

Consider a bilayer thin film consisting of two regions Qf = w x (0,0) and Q5 = w x (—4,0)

for some given w C R?71.

Qf == wx(0,6)

0 ’ )
=5 \ /
w 5 i=wx (=6,0)

The total energy of the film under a deformation wu : Q; Uy C R" — R™ is given by

Es(u) = /S]+UQ W(Du) dx + 57/ U(ut —u”)drg, (0.11)
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where W : R™ — R is the elastic energy density of the film, 70U : R™ — R is the interfacial
energy which penalizes the jump of the deformation across the interface between Qj{ and €25, 7y
is a real number and z, = (z1,...,%,—1) is the in-plane variable.

As one is interested in the behavior of a very thin film, in order to understand in what sense

a [-limit of Eys can be defined, we identify Fj5 with a functional Fjs defined on a fixed domain
(and scaled by the thickness of the domain)

1

—Dnv) dr + 61 / V(v —v7)dr,,

Fs(v) = /Q +UQ_W<Dav :

where D, = (D1,...,Dy—1), QT =Q x(0,1), Q= = w x (—1,0) and v is obtained from u by the

scaling v(xq, Tn) = u(xq, 02p).

We give a brief heuristic description of the Bhattacharya Fonseca and Francfort result spe-
cialized to the the above setting while we refer the reader to [12] for the general case.

If v < 1 (which includes the case 7 = 0 when the interfacial energy is independent of the
thickness) the interfacial energy is “very strong” and goes to infinity unless the limit deformation
is continuous across the interface. Further, under polynomial coercivity conditions on W, the
bulk energy goes to infinity unless the limit deformation satisfies Dv, = 0, as it is the common
feature of dimension-reduction problems. Under some mild assumption on W, Bhattacharya,
Fonseca and Francfort prove that

Fy -2 / Q1 W (Dqav) dzg

where W (F) := inf{W(F|z) : z € R™}, Q,,_1W is the (n — 1)-quasiconvexification of W; i.e.,
the bilayer thin film actually asymptotically behaves as a unique thin film of thickness 20 (see
Le Dret Raoult [39]).

If v > 1 the interfacial energy is weak and the limit energy can be finite even if the limit
deformation is not continuous across the interface. However, is still true that D,v = 0 for finite
limit energy, thus meaningful limit deformations are

v (2g) T >0

v(x) =

v (zq) @ <O0.
For v > 1
F6 L’ / anlw(Daer)dxa +/ anlw(Davi) dwa,

the limit energy is not sensitive to the presence of the interfacial energy and we obtain a limit
model for two decoupled films.

Finally, the critical case v = 1 contains both bulk and interfacial energy terms, hence

Fys L>/Qn1W(Dav+)dxa+/ Qn1W(Dav)dma—l—/\lf(er—v)daca.

In 6] we propose a model in which the debonding can be interpreted as the limit effect of the
weak interaction of two thin films through a discontinuos contact zone (the holes of an ideal
sieve) and we recover the phenomenological interfacial energy term by Bhattacharya Fonseca
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and Francfort only by a I'-limit procedure. Specifically, we consider a nonlinear elastic n-
dimensional bilayer thin film of thickness 2§ with layers connected through (n — 1)-dimensional
balls B~ 1(z%) centered in x5 := ig, i € Z" ! and with radius » > 0. Thus, the investigated

elastic body occupies the reference configuration parametrized as
Qgr =Qf UQ5 U (we, x {0})

where we 1= U;ezn1 B (af) Nw.

B~ (xf) x {0}

(w\ we,r) x {0}

4

¢, consist only of a bulk

The (scaled) elastic energy associated to the material modelled by €2

term which in unscaled variables is given by

E W (Du) dzx. (0.12)
0 Jog,
The I'-convergence approach has been used successfully in recent years to rigorously obtain limit
models for various dimensional reductional problems (see for example [13], 19}, 20, B9, 47]). In
this setting, we study the multi-scale asymptotic behavior of ((II2) as €, § and r tend to zero,
under the assumption that 6 = d(¢), r = r(g,0) and with W : R"™*" — [0, 400), Borel function
satisfying a growth condition of order p, with 1 <p <n — 1.

As it is a common feature of problems related to the asymptotic behavior of perforated
domains [42), 43|, 45], the critical case p = n — 1 requires a further investigation and it cannot
be easily derived from p < n — 1 by slight changes. Unfortunately, three dimensional linearized
elasticity falls into this framework.

1

e,

Since the sieve (w \ we,) x {0} is not a part of the domain 2., for any fixed ¢,4,r > 0
we have no information on the admissible deformation across part of the mid-section w x {0}.
This possible lack of regularity might produce, in the limit, the above mentioned debonding and
correspondingly an interfacial energy depending on the jump of the limit deformation. Moreover,
we expect that this interfacial energy will depend on the scaling of the radius of the connecting

zones with respect to the period of their distribution and the thickness of the thin film.

The cases 6 = 1 and § = € have been studied by Ansini [5] who proved that, to recover a
non trivial limit model; i.e., to obtain a limit model remembering the presence of the sieve, the
meaningful radius (or critical size) of the contact zones must be of order (=1/("=P) and gn/(n=p)
respectively. In fact a different choice should lead in the limit to two decoupled problems (if
r tends to zero faster than the critical size) or to the same result that is obtained without the
presence of connecting zones in the mid-section (if r tends to zero more slowly than the critical

size).
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The proofs of the I'-convergence results in [5] (see Theorems 3.2 and 8.2 therein) are based
on a technical lemma ([5], Lemma 3.4) that allows to modify a sequence of deformations u.
with equi-bounded energy, on a suitable n-dimensional spherical annuli surrounding the balls
Bffl(xf ) without essentially changing their energies, and to study the behavior of the energies
along the new modified sequence. Both in the case § = 1 and § = ¢ the ['-limits consist of
three terms. The first two terms represent the contribution of the new sequence far from the
balls Bf‘l(azf ); more precisely, they are the I'-limits of two problems defined separately on the
upper and lower part (with respect to the “sieve plane”) of the considered domain. The third
term describes the contribution near the balls B"~!(x¢) through a nonlinear capacitary-type
formula that is the same for both § = 1 and 6 = . The equality of the two formulas is due to
the fact that the radii of the annuli suitably chosen to separate the two contributions are less
than ce, with ¢ an arbitrary small positive constant. In fact as a consequence, all constructions
can be performed in the interior of the domain, and the same procedure yielding the nonlinear
capacitary-type formula, applies for § = 1 and for § = € as well. The cases € ~ ) and € < § can
be treated in the same way.

This approach follows the method introduced by Ansini-Braides in [7), 8] where the asymptotic
behavior of periodically perforated nonlinear domains has been studied; in particular, Lemma

3.4 in [5] is a suitable variant, for the sieve problem, of Lemma 3.1 in [7].

We focus our attention on the case § = d(¢) < €. As in [5], we expect the existence of a
meaningful radius r = r(e,0) < € for which the limit model is nontrivial but now we expect
also to find different limit regimes depending on the mutual vanishing rate of r and §. Moreover
Lemma 3.4 in [5] cannot be directly applied to our setting since the spherical annuli surrounding
15

the connecting zones B? ! (x5

7) as above, are well contained in a strip of thickness ce but not in

Qg’r (since 0 < €). However, we are able to modify Lemma 3.4 in [5] by considering, instead of
spherical annuli, suitable cylindrical annuli of thickness of order ¢ (see Lemma and Lemma
E3). As a consequence, also in this case the asymptotic analysis of [I1Z)) as €, § and r tend
to zero can be carried on studying separately the energy contributions far from and close to
B1(x%). We get three terms in the limit; the first two terms still describe the contribution far

from the connecting zones; i.e., they are the I'-limits of the two dimensional-reduction problems
defined by

1 1
- W(Du) dx , - W(Du) dx;

while the third term, arising in the limit from the energy contribution close to the connecting
zones, represents the asymptotic memory of the sieve: it is the above mentioned interfacial
energy.

The main results of [6] are stated in Theorem B3 and Theorem In Theorem B3 we prove
a I'-convergence result for the sequence of functionals ({ITZ) while in Theorem we give an

explicit characterization of the interfacial energy term occurring in the I'-limit. More precisely,
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for every sequence (g;) converging to zero, we set d; := d(g;), rj := r(gj,0;), Q; = Qgﬁ.ﬁ. and
1 , )
5 W(Du)dx if v e WHP(Q;;R™)
o
Fiwy=9q

+00 otherwise .

Up to subsequence we can define

R P T p —1
0= jggloo(s_j and g(F) := jEIJPooTj QW (r; F).
where Q, W is the n-quasiconvezification of W.

If ¢ € (0,400] and

n—1—p
0 < R(z) = hm jni_l < +OO,
J—+oo &

then (F;) I'-converges to

FO (ut,u™) = / Qn W (Dyu™) dz,, —|—/ Qn AW (Dou™ ) dzg + R / go(g) (ut —u7) dzg
on WHP(w;R™) x WhP(w;R™) with respect to the convergence introduced in Definition Bl
Chapter B, where W (F) := inf{W (F|z) : z € R™}, Q,_1W is the (n — 1)-quasiconvexification
of W and o) : R™ — [0, +00) is a locally Lipschitz continuous function for any ¢ € [0, 4+oc].
Similarly, if ¢ = 0 and

ne
PP

0< RO := lim —
j—+oe 0 €

< +o0,
then we still have I'-convergence, as above, to
FO (uhu") = / Qn W (Dyu™) dz,, —i—/ Qn W (Dou™)dxo + RO / go(o) (ut —u7) dzg

on WIP(w;R™) x WIP(w;R™).

For any ¢ € [0, +00], ©® is described by the following nonlinear capacitary-type formulas:
(1) if £ = 400, then

! ( )(Z) inf { / (Qn—l g(DozC+) Qn—l g(DaC_)> d.%'a : Ci S I/‘/l})f( RN—l; m)”
Rn—1 R
CJ’_ ¢ in B?il(o)a Dagi € LP(Rn—l;RmX(n—l))’

(¢t =2),¢ € L”*(R"_l;Rm)},

where again, g(F) := inf{g(F|z) : 2 € R™} and Q,,_17 is the (n — 1)-quasiconvexification of g,
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(2) if £ =0, then

pO(z) = inf{ / g(D¢) dx : ¢ € WiP(R™\ C100; R™), D¢ € LP(R™\ Cy o0; R™™),
R"\C1,00

¢ —z € LP(0,+00; LP" (R"1; R™)) and ¢ € LP(—o0,0; LP" (R”l;Rm))} ,

(3) if £ € (0, +00), then

p(z) = inf { / 9(DaCltDn) da : ¢ € WP (R™™! x (=1,1)) \ C1 00, R™),
R2=1x(—1,1)
D¢ e LP(R™! x (—=1,1);R™), ¢ —z€ LP((0,1); L7 (R" 1, R™))
¢ € LP((—1,0); LF (R"I;Rm))} ,

where C] o = {(24,0) € R™ : 1 < |z}

We remark that if ¢ € (0, +00] the only meaningful scaling for r; is that of order Egn_l)/ (n=1-p );

i.e., for both R® =0 and R = 400 we loose the asymptotic memory of the sieve. In fact, if

) = 400, limit deformations

R® = 0, we obtain two decoupled problems in the limit, while if R(
(ut,u™) with finite energy are continuous across the mid-section (™ = u~ on w). Similarly, for
¢ = 0. Hence, the role played by the size of the connecting zones r; in our model is somehow
similar to that played by + in Bhattacharya Fonseca and Francfort model.

We moreover point out that whatever the value of £ is, the interfacial energy density ¢(®
corresponds to a “cohesive” interface where the surface energy increases continuously from zero

with the jump in the deformation across the interface.

We now come to a heuristic description of each regime.

(1) The case £ = +oo corresponds to §; < r; < ¢;, thus we expect r; to depend only on
€j. In this case we have a separation of scales effect. We first consider r; and ¢; as ‘fixed’” and
let 4; tend to zero as if we were dealing with two pure dimension-reduction problems stated
separately on the upper and lower part (with respect to the sieve plane) of ;. Then this first
limit procedure yields two functionals being both a copy of the functional in [39)]. Since the
two corresponding limit deformations u™ and u~ must match inside each connecting zone, the
above two terms are not completely decoupled. We are then in a situation quite similar to that
of [T, 8], except that here both periodically “perforated” (n — 1)-dimensional bodies are linked
to each other through the “perforations”; i.e., through the holes of the sieve and not through
the sieve itself. Thus it is coherent to find a critical size of order e™~1/("=1-P) Moreover this
strong separation between the phenomena of dimension reduction and “perforation” leads to
anisotropy as it can be seen, for instance, also by an inspection of the proof of Lemma 62 which
shows that the extra interfacial energy term appears thanks to suitable dilatations having a
different scaling in the in-plane and transverse variables. Finally we note that the formula for
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©(®) is given in terms of a “Le Dret-Raoult type” functional involving the limit of the right

capacitary scaling (that is, involving the function g).

(2) The case £ = 0 corresponds to r; < §; < €;. In this case we expect that the critical size
rj depends on both ¢; and ¢;. Indeed, as already pointed out, r; is of order 5;/(n7p)e§n71)/(n7p).
Note that for J; = €; we recover e/ ("=P) that is the critical size obtained in [5]; moreover ¢(©)
turns out to coincide with the function ¢ in [5] (see Remark [[3]). Contrary to the previous case,
now the isotropy is preserved; in fact here the dimensional reduction and “perforation” processes
are not completely decoupled: the reduction parameter §; is forced between both parameters r;
and €;. This can be seen also by noticing that now the scaling leading to the interfacial energy is
the same in every direction (see for instance the proof of the I'-limsup inequality). Moreover now
in @ the reduction procedure is not explicit but only witnessed by the boundary conditions

expressed only on the lateral part of the boundary of the considered domain.

(3) The case £ € (0,400) corresponds to 7; ~ §; < €;. In this case the separation of scales
effect does not take place and the two previous scalings turn out to be equivalent (R(O) =/ R(OO)).
Moreover we find that the interfacial energy is continuous with respect to £ in the extreme
regimes; i.e., ROp®(2) — R()p(>)(2) as £ — +oo and RO (2) — ROpO)(2) as ¢ — 0.
Finally, as in the previous case, the lateral boundary conditions are the only mean describing

the dimensional reduction phenomenon in the procedure leading to ¢().

In a large part of the technical constructions performed in [6] (see, e.g., Lemma E2) and in
general in the asymptotic study of variational problems, the possibility of reducing to sequences
with some equi-integrability property is very useful.

In the framework of the asymptotic analysis of variational problems defined on Sobolev spaces,
Fonseca, Miiller and Pedregal’s equi-integrability Lemma [34] (see also earlier work by Acerbi
and Fusco [2] and by Kristensen [37]) allows to substitute a sequence (w;) with (Dw;) bounded
in LP by a sequence (z;) with (]Dz;|P) equi-integrable, such that the two sequences are equal
except on a set of vanishing measure. In this way the asymptotic behavior of integral energies of
p-growth involving Dw; can be computed using Dz; and thus avoiding to consider concentration
effects. This method is very helpful for example in the computation of lower bounds for I'-limits
(see, e.g., [15]).

In the dimension-reduction setting, we encounter sequences of functions (ws) defined on
cylindrical sets with some “thin dimension” §; e.g., in the physical three-dimensional case either
thin films defined on some set of the type w x (0,0) (see, e.g., [39, 20]), or thin wires defined
on dw X (0,1) (see, e.g., [1}, B8]), where w is some two-dimensional bounded open set. In order
to carry on some asymptotic analysis such functions are rescaled to a d-independent reference
configuration 2 so that a new sequence (ug) is constructed, satisfying a “degenerate” bound of
the form

1
/ﬂ<|Dau(5|p n 5—p|Dﬁué|p)dx <0< 400 (0.13)

whenever the sequence of the gradients (Dwy;) satisfied a corresponding LP bound on the unscaled
domain. Here, D, represents the gradient with respect to the unscaled coordinates (denoted by
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xo) and Dg represents the gradient with respect to the “thin” coordinate directions (denoted
by z3). In the case described above of thin films xg = x3; for thin wires, zg = (x1, x2).

A theorem by Bocea and Fonseca [14] states that an analog of Fonseca, Miiller and Pedre-
gal’s result still holds in this framework, and an “equivalent sequence” (vs) can be constructed
such that the sequence (|Dqvs|P + 5| Dgvs|P) is equi-integrable on €. In their result they deal
specifically with the case of thin films; i.e., when the space of the x5 is one-dimensional in the
notation above.

An alternative proof of this result and the generalization to any co-dimension (thus covering
in particular the physical case of thin wires) is the subject of a joint work with A. Braides [22]
and can be found in the Appendix.
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CHAPTER 1

A model for the interaction between microstructure and surface

energy

1. Motivation and setting of the problem

In modelling a large variety of physical phenomena we often have to deal with families of vari-
ational problems involving small parameters. The notion of I'-convergence [30} 32, [15] is very
well suited to such a variational setting and, starting by those microscopic models, is widely used
to derive limiting “macro” theories not depending on any small parameter. This notion can be,
loosely speaking, understood as the convergence of minimum problems. More precisely, if € > 0
and (F.) is a given family of microscopic energies, under some equi-coerciviness requirements

on (Fy), from
-2 pO
we deduce that
(i) me :=min F, — m© := min F©) as ¢ — 0.
Not only:

(ii) if for any fixed € > 0, v. minimizes F; i.e., F.(v:) = m. then, up to an extraction,
v: — v as e — 0 and FO(v) = my.

The (ii) property can be sketched as
{limits of minimizers} C argmin(F©), (1.1)

where argmin(F©) := {u: FO(u) = m©} and the inclusion may well be proper, as it can be
seen by very simple and natural examples. Hence, in general the description given by F(©) can
be too coarse and the (zero order) I'-limit may fail to completely characterize the asymptotic
behavior of the family (F.). Then, the idea is that the computation of the I'-limit F' ©) is only
the first step in the description of the asymptotic behavior of (F.), as it can be necessary to
refine the above limit procedure to select those minimizers of F(*) which are actually limits of
sequences (ve).

The most intuitive refinement procedure of the standard I'-convergence is the iteration of the
successive I-limits [9]. Indeed, once the next meaningful scale A (g) (AW (g) > 0, AD(e) — 0
as € — 0) is conjectured, we may look at the I'-limit of the scaled family of energies

F.(u) —m©
M)

23
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and, if it exists, we denote it with £(1). Notice that the domain of F() is by definition a subset

of the set of minimum points of F(©):i.e.
dom(FM) C argmin(F©).

If FO is not trivial, then the iterated application of (i) leads to a better development of the
minimum values
me =m@ £ XV (e)m® + oAV (e)), ase —0

with m®) := min F(),

It is also clear that the minimizers for Fg(1

)

are exactly those for Fy; then in view of (ii) we
deduce that v not only minimizes F(©) but also F(!). Loosely speaking, we have

{limits of minimizers} C argmin(F®") C argmin(F(©)),

thus we have actually made a selection among minimum points of F(©).
The combined computation of the zero and of the first order I'-limit as above is formally
written as the I'-development

Fo = FO 4 A0 FD 400\ (),

with o(A(!) (¢)) meaning that the next interesting scale is of order less than A()(¢), as ¢ — 0.

If necessary, this procedure can be iterated obtaining other scales A (), \®)(¢),... and
consequently other terms in the development. This may provide a considerable improvement
of (CT)) and in some cases, may give a complete characterization of the asymptotic behavior of
(F:). Notice that moreover, since in applications one would like to construct theories operative
at small but finite ¢, a development by I'-convergence can be also viewed as the simplest way to
bring a small scale back into the problem.

A well-know example of a I'-development is that of the gradient theory of phase transition

M1, 40]. Consider the family of minimum problems

m. = min {Fa(u) L we W2(0,1), /01 wdz = d} () = /01 (W(u) + 2()?) de,

with W a double-well potential with wells at +1 (e.g., W (u) = min{(u — 1)?, (u + 1)?}) and
|d| <1 (to exclude the trivial case of constant minimizers). Then the I'-limit of (F.) computed
with respect to the weak L2-convergence is simply
1
W**(u)dz if we L?*(0,1) and Yude =d
T (0.1) and |,

400 otherwise,

where W** is the convex envelope of W.

By the Jensen Inequality min F(O)(u) = W**(d), moreover W**(s) = 0 = W**(d) for every s
such that |s| < 1. Then the zero order I'-limit only provides the information that sequences of
minimizers (v.) may develop oscillations and their weak limit can be any function v € L%(0,1)
such that |v| <1 a.e. and satisfying the volume constraint fol vdxr =d.
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A simple scaling argument (see [3), 15]) suggests that the next meaningful scale is A (g) = e.
The first-order I'-limit is given by

Cw#S(u) if ue BV((0,1);{£1}) and [ udr =d

FO(u) =
400 otherwise,

where S(u) denotes the set of discontinuity points of u and Cy := 2 fil VW (s)ds (Modica-
Mortola’s Theorem).

Now, the minimizers of F!) are only the two functions +sign(z — 1%‘1) and we deduce the
convergence of (v:) to one of this two functions. In this case, the Modica-Mortola Theorem also
improves the convergence to strong L?-convergence. As the development of minimum values is

concerned, we get
me =eCw +o0(e), as € —0.

In this case it is also possible to compute that the next meaningful scaling is A\(?) () =¢ e~ 1/2

and thus we may further write
me :ECW+€€71/2€5W+0(€671/2€), as € — 0.

However, the minimizers being essentially uniquely characterized by the analysis at order €, this

last information only provides a better approximation of the minimum values m..

In a general framework one does not encounter problems containing a single parameter but
rather energies depending on different small parameters. In fact a physical model with a varia-
tional structure may well contain, for instance, small parameters of various nature (e.g., consti-
tutive, geometrical).

In this [23] we investigate the combined effect of small-scale heterogeneities (fine microstruc-
tures) and singular gradient perturbations on the asymptotic development described above.
Specifically, we focus on a prototype that is a special, one-dimensional variant of Modica-Mortola
(or van der Waals-Cahn-Hillard) energy as we are mainly interested in a careful description of

the different meaningful scales involved in the I'-development.

The model we analyze is the following: let k be a real number such that 0 < k < 1; for all
€,0 > 0 consider the functional Ff((so) : L2(0,1) — (0, 4+0oc] defined by

1
k f 2 1AV . 172
Fk(o)(u)— /0 (W (5,u>+6(u))dx if ue WH%(0,1)

400 otherwise,

(1.2)

where W* : R x R — [0, +-00) is 1-periodic in its first variable and on the interval (0, 1) is given
by

Wi(s—k) if ye(0,3)
Wi(s+k) if ye(3,1)

N[

Wk(y, s) =
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with W the double-well potential given by
W (t) = min{(t — 1)%, (¢t + 1)*}.

FIGURE 1. The double-well potential W.

Then we may interpret this situation as modelling the presence of spatial heterogeneities at a
scale ¢, which locally determine the zero set of the potential W*. Moreover, a simple dimensional
analysis shows that the pre-factor €2 multiplying the gradient term, introduces € as a length scale
to the problem. Finally the (fixed) parameter k, which will play an essential role in the creation
of the scales occurring in the development, simply gives the width of the translation of the
potential W* with respect to W, on each period. Notice that in particular for k =0, W* =W
and () reduces to

1
R = [ W+ ) de

For the vectorial analogous of the investigated problem, we refer the reader to [35] where, among

other, a complete and very general analysis of the zero order I'-limit is given.

A similar, though in some aspects more complex, model was recently proposed by Dirr,
Lucia and Novaga [33]. The authors consider a perturbation of the Modica-Mortola energy by

a rapidly oscillating field with zero average. More precisely they consider the functionals

W(u) s 1 sz
/Q <T + e|Vul* + = g<€7> u> dz,

where g is a 1-periodic function and W a general double-well potential. Then when v > 0 both
the amplitude and the frequency of g become large (for € small) and the infimum of the energy
can even tend to —oo as € — (. Hence, to fit in the framework of I'-convergence, the introduction
of an additive renormalization is needed. So if on one hand in our model we do not encounter

the difficulty arising from this renormalization (and in particular from the related fact that the
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functionals have non constant global minimizers whose energy is not uniformly bounded from
below), on the other hand, our particular choice permits to detail an asymptotic expansion that

is not pursued in [33].

2. Zero order I'-limit

As already observed, our energy is a particular, one-dimensional version of a more general,
multidimensional energy introduced in [35]. Thus, with in mind the idea of a I'-development
for (C2), in this section we adapt to our setting the I'-convergence results of Theorem 2.1 and
Theorem 2.3 in [35].

These two results are summarized in the following theorem.

THEOREM 2.1. Let 6 = d(e) be such that 6 — 0 as € — 0 and set

Then the family of functionals ng(o) = ng(zi) defined as in [(LA), T'-converges with respect to

the weak L?-convergence to the homogeneous functional defined on L?(0,1) by

FFO) () — /0 Wk () d (2.1)

Moreover the integrand Wzk depends on £ in the following way:
(1) if £ = +o0, then

Wk (s) = inf{/o1 Wk (z,v)dz - v e L*0,1), /Olvdx = 5} ; (2.2)

(2) if £ € (0,400), then

n 1 n
Wk(s) = inIf;]inf {][ (Wk(z,v) + 6—2(1/)2) dz : v e Wh(0,n), ][ vdr = 5} ;
ne 0 0

(3) if £ =0, then

WE(s) = (W)™ (s)

where

1
W (s) = /O Wk (y, s) dy. (2.3)

REMARK 2.2. From the definition of W¥, a priori we only know that the family (ng(o)) is
equi-coercive with respect to the weak L?-convergence (for any choice of § = §(¢)), for this reason

in Theorem ZTl above, the I'-limit is computed, in each regime, with respect to this convergence.

We only give a brief heuristic description of the result stated above while we refer the reader
to [35], for a rigorous proof.
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(1)

The case £ = 400 corresponds to € < §; i.e., to the case in which the scale of oscillation
¢ is much larger than the scale of the transition layer . The result is that we have
a separation of scales effect, indeed we may first regard § as fixed and let ¢ — 0 and
subsequently let § — 0. In this way, we first obtain an inhomogeneous functional which
can be explicitly computed as

! x
/ (Why= (—, u) dx
0 1)
where the convexification of W is with respect to the second argument. Then the limit
as § — 0 falls within the framework of homogenization leading to an integral functional
whose density is the convex, homogenized potential given by the cell formula ZZ).

Hence, we have that in this case the presence of the singular perturbation does not

affect the homogenization process.

The case ¢ € (0,+00) corresponds to € ~ J; i.e., when ¢ and ¢ are comparable. Now
the two effects cannot be separated and the presence of the singular perturbation con-
tributes to the definition of Wf .

The case £ = 0 corresponds to € > §. In this case we again find a separation of scales
phenomenon: the total effect is that the singular perturbation forces the homogenized
energy to be (the convex envelope of) the average of the microscopic energy over the
period.

2.1. The effective potential ng. Since we are interested in describing how the two

different parameters € and § interact in the creation of the various scales of the I'-development,

from now on we focus only on the two regimes § > ¢ and § < ¢, the regime § ~ £ being,

somehow, less interesting than the extreme ones.

The starting point of our analysis consists in a complete characterization of the zero-order
I-limit. Then, recalling the definition of our given W¥, in this section we want to find the
explicit expression of the effective potential Wf for £ = 400 and £ = 0.

If £ = 400, Theorem EZT] asserts that WE is given in terms of the cell formula (ZZ), that is
equivalent to

Wk (s) = min{/Ol(Wk)**(x,v) dzr :v e L*0,1), /Olvdx = s} :

thus by using Jensen’s inequality it is easy to check that

1 1
Wk (s) = min {gW**(sl —k)+ §W**(82 +k): s1+s0= 25} .

Finally, a straightforward calculation gives

0 if s <1

(Js| —1)2 if |s| > 1. (2.4)

Wh (s) = W™ (s) = {
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If £ =0, then trivially

k

W"(s) = %(Wk(s—k)+Wk(s+k)) _ 524 (1 — k)2 it |s| <k

82 —2ls|+ K2 +1 if |s| >k

hence by a direct computation we get

k2 if [s| <1
wis) =" o
s*—=2ls| +k*4+1 if |s|>1
for k < %,While
52+ (1 —k)? if [s| <k-—3
3
WE(s) = (2k = Dls| — &+ 5 if k—L1<|s|<k+1
s2—2s|+k2+1  if |s|>k+3
fork:>%.
\
Wi
=k
l\ /\W
I\ /7 \
/AN 7
/ ~ ,/ \
! (1—k)?>
1 0 1 s

FIGURE 2. The effective potential Wé“ for k < % and k > %

3. Optimal scalings

In the previous section we have shown that the effective potential Wék has a large set of minimizers

for both / = 4o0o and ¢ = 0, k < %; more precisely, Wf(s) = min Wf for every s such that

|s| < 1. As a consequence, every function u € L?(0, 1) satisfying |u| < 1 a.e., is a minimum point
for the zero order I'-limit F; f ©, Hence, if for any fixed € > 0, v, minimizes Fek © (notice that the
existence of a minimizer for ng(o) over L?(0,1) can be proved via standard lower semicontinuity

(0)

and compactness results) then the fact that every limit point v of (v.) minimizes F, Zk actually

gives little information about v.
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As v, minimizes also

FFO) _ mgo) .
A () (3.1)
for every A((g) > 0, with mg]) ‘= min Ff(o), information about the limit points of (v.) can

be recovered also by the I'-limit of the scaled functionals (Bl), which may be less trivial for
a suitable choice of )\(1)(5). So now the problem arises of finding the optimal scaling; i.e., the
AD () such that the I-limit of BI) gives the largest amount of information. Once A1) (¢) is
determined, the I-limit of the scaled family of functionals (BI) will be the first order term of
the I'-development.

At this point some scale analysis must be performed for both £ = 400 and £ = 0, k < %, to
understand what the relevant scaling A()(¢) is. Moreover, we remark that we expect AV () to
depend also on the regime £ and on the parameter k. To not overburden notation, at this stage
we only explicit the dependence on £ so that, in what follows, we denote the scaling by )\gl)(e).

If needed, we will iterate the above procedure to obtain more scales in the development and
consequently, a more accurate description of the limit points of (v.).

Finally, referring to the remaining case £ = 0, k > %, we want to point out that the non strict
convexity of Wé‘“ (see Figure @) permits to determine an asymptotic development for Fek O iy
this case too by adding an integral constraint to the problem, which in turn allows to add an
affine perturbation to the energies. For details we refer to Section [ (see also Section EZ32).

4. § > e: oscillations on a larger scale than the transition layer

In this section we treat the case when the scale of oscillation § is much larger than the scale of

the transition layer ¢; i.e., the case £ = +oo.
(1)

In order to guess what the first meaningful scale A& (¢) is, we start by performing a prelim-
inary qualitative scale analysis.

Using the same argument proposed to examine the Modica-Mortola Model [41), 40] we want

k(0) . (0)

to estimate the order of me"’ := min ng ,as € — 0.

To this end, we focus on a single d-interval: to fix the ideas, say the interval (0, d). Then, when
we come to minimize Fek (0), on one hand the term f(f W’%%,u) dx favors those configurations

which take values “close” to the (varying) zero set of W¥:i.e. close to (at least) two different

é
’2
5). In other words, the potential term in the energy favors a

constant values: one chosen in {1 4+ k,—1 + k} when z € (O ), and the other chosen in

{1 —k,—1 —k} when z € (3,
phenomenon of phase separation. On the other hand, the gradient term &2 fo(s(u’)2 dx penalizes
spatial inhomogeneities thus inducing a phase transition phenomenon as well. When ¢ is small

the first term prevails, and the minimum of

] 05 G) 207)

is attained at a function which takes “mainly” values close to the set {1+ k,—1 + k} in (O, g)

and close to {1—k,—1—k} in (g, 5), but which also makes a transition on a “thin” layer around
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g. Then a scaling argument (see e.g. [3] and [I5], Chapter 6) proves that the transition between
two different zeroes chosen as above, actually occurs in a layer of thickness of order e (recall
that 6 > ¢) and gives an energy contribution of order ¢ too.

Clearly the previous heuristics can be repeated on each d-interval thus yielding a total energy
contribution of order %. Hence, we claim that

M) =5,

and the proof of this claim will be made rigorous with Theorem

Finally, we want to remark that, as the above qualitative scale analysis shows the presence of
periodic phase transitions with a consequent distribution of the energy of a minimizing sequence
on the whole interval (0,1), we expect that now the first order I'-limit is again a “bulk energy”
(i.e., an integral functional). This represent a first difference between our model and the Modica-
Mortola one in which the energy of an optimal transition concentrates on a “small” layer thus
leading to a first order energy of surface type.

4.1. Estimate for the phase transition energy. We now move the first step towards a
rigorous justification of the qualitative argument discussed in the previous section.

In what follows, we make use of some well-known facts related to the so-called optimal profile
problem in the Modica-Mortola Model. For a detailed and exhaustive treatment of the one

dimensional case, we refer the reader to [3], Section 3a or to [15], Remark 6.1.

We want to find an explicit formula for the phase transition energy; to this purpose we set
Wh(s) = W(s —k) Wh(s) = W(s +F),

and for any fixed € > 0, we let 1,29 € R be such that 1 < z3, 19 — 21 < g and g € (x1,x2).
We start by giving an estimate on the contribution of the integration on (x1,x2) in Ff © (u) in

terms of z1 := u(x1) and 29 := u(xz2).

We have
/:2 (W"g (%,u) + 62(u')2> dx

1

_ . ( / 1 (éW{“(u)—l—a(u')Q) do + /5 " <éW2k(u)+€(u’)2> dx)

z2

~ ¢ < /1 (Wf(v) + (v')Z) dx + /; (Wzk(v) + (v')Z) dx) , (4.1)

2e

N[>

where v is defined as
v(z) := u(ex).
By the change of variable y =z — 2%, (&) becomes
0 T
([ o+ [+ Py,

-7y
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with

0 — 2$1 L 2$2 -0 L 1)
5o 2= and z(y) := v(y—i— 2—6>

Hence we find that a lower bound for the energy of a transition between the values z1, 23 is given

by

T1 =

0 T
5T1%12f>0inf { /Tl(Wf(z) + ()% dy +/0 (WH(2) + (2D dy -

S Wl’z(—Tl,TQ), Z(—Tl) =21, Z(Tg) = 22}. (42)
Now let Zf be the set of the zeroes of Wik for i =1, 2;i.e.
28 ={-14+k1+k} Z§={-1-k-1+k},

if 2, € ZF (i = 1,2) we know that

0
jiln>f0inf {/Tl(Wlk(z) + () dy : z € WH(=T1,0), 2(=T1) = 21, 2(0) = zo}

0
— inf {/ (WE2) + (2} dy = 2 € W2 (—00,0), 2(—00) = 21, 2(0) = ZO} (4.3)

—00

and

T
T12n>foinf {/0 (W(z)+ () dy : ze WH0,Ty), 2(0) = 2, 2(Tp) = zz}

= inf {/OJFOO(WQIC(Z) + () dy: z € Wﬁ)’f(O, +00), 2(0) = 29, 2(4+00) = 22} (4.4)

where z(—o00) and z(+00) are understood as the existence of the corresponding limits. Then, it
is easy to check that (E2)) can be rewritten in terms of the two optimal profile problems (3]

and [@4), as

5inf{inf{/0 (WER2) + () dy = z€ W2 (—00,0), 2(—00) = 21, 2(0) :zo}

Z0 —0

+ inf { /O+OO(W2]“(Z) + () dy: z € VV&;?(O,—FOO), 2(0) = zg, z(+00) = 29, }}

aig)f{Q /Zjo\/mczs /Z:Q\/mczs } (4.5)

Hence, if for every (y,(s € R, we set
C2
/ \/ W (s)ds } , (4.6)
20

Cyr(C1,¢2) == ig)f {2 ‘/:0 \/ WE(s)ds

/:n? <Wk‘ <§,u> + 62(u/)2> dx > € Cyi(z1, 22). (4.7)

1

and finally as
+2

+2

we have

At the end, recalling the definition of the potential W*, in order to explicitly compute Cyy (21, 22)
we have to distinguish three cases.
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Case 1: z1=1+k; 2o=1—-k

1+k 20
Cki=Cur(l+k,1—Fk) = inf{2/ \/Wksds—l—Q/ \/Wksds}
1 w( ) pon » 1() _— 2()
1+k 1
:2/ Wksds—i—Q/ Wk(s)ds
sz [ W)
2k2.

Moreover, it is immediate to prove that Cyx(—1+ k,—1 — k) = C’{“.

Case 2: z1=—1+4+k; 20=1—k

20 1-k
Cy=Cyn(-1+k1—k) = inf{Q/ Wlk(s)ds—l—Q/ Wé“(s)ds}

Case 8: z1=1+k; »o=—-1—k

k+1 20
O = Cy(14+k,—1—k) = ig}f{? \/Wlk(s)ds—i—Q/ Wf(s)ds}

k+1 1
= 2 WE(s)ds + 2/ W¥(s)ds

REMARK 4.1. The constant C¥ is greater than both of CF,C} for every k € (0,1); i.e. the
transition between the two extreme zeroes 1+ k and —1 — k is always energetically unfavorable.
While

1
Cr <Gy = k<y, (4.8)

or in other words, the transition from 1+ k to 1 — k (or equivalently from —1 4k to —1 — k) is
more convenient than the one from —1 4+ k to 1 — k if and only if k£ < %

4.2. First order I'-limit. We are now ready to state the I'-convergence result for the

family of scaled functionals

1/s .
FkQ) = M — / <_ ‘ <%,u> + 55(“')2> dex ifue [/1/172(07 1)

Ay (e +00 otherwise.

(1)

(4.9)

Notice that to not overburden notation, in ng we omit its explicit dependence on £.



34 1. A MODEL FOR THE INTERACTION BETWEEN MICROSTRUCTURE AND SURFACE ENERGY

A

Ficure 3. Different types of transitions with their (minimal) energy contribu-
tion, for k < %

THEOREM 4.2. The family of functionals ng(l) defined as in [{.9), I'-converges with respect
to the weak L?-convergence to the integral functional defined on L*(0,1) by

1
FMO (4) = /o Wu)de f we’(01) and Jul<lae

400 otherwise ,

where
2CF ifk <

¥i(s) = k k koo
2(CY = C3F)|s| +2C5  ifk >

N[—= N

Before proving the I'-convergence result for the functionals Fek M e need some preliminary
results.

In the following proposition, 7 is the “small” positive parameter that we will let go to zero
in the I'-limit procedure.

PROPOSITION 4.3. i) The family of functionals Gﬁ defined on L2(—i7 i) by

(L R, u ) ) dx if u 1211
iy - L (G o) ae i wewray

+o00 otherwise
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I'-converges with respect to the strong L?-convergence to the functional defined on L2(—%7 %) by

Cw (#(S(w)) — 1) + Cyye (w(0"), u(07))
GF(u) = ifue BV ((-5,1):ZF U ZE) - WF(z,u) =0 a.e.

400 otherwise,

where u(0), w(07) are the values taken a.e. by uw on (0,r) and (—r,0), respectively, for r > 0
small enough.
i1) (Compatibility with integral constraint). Let s € R and let Gf,’s be defined on L? (—i, i)
by
1
k : 12( 11 1 _
Gg’s(u) _ Gn(u) ifueW ( T 4) and fji udr = s
+00 otherwise.
Then the family of functionals Gf]’s defined as above, I'-converges with respect to the strong
L?-convergence to the functional defined on L? (—i, i) by
1
GF(u) ifueL?(=11) and £7, udz = s
Gk’s(u) _ ( ) f ( 4 4) JC_%

+00 otherwise.

PRrROOF. The proofs of i) and i) exactly follows the line of those of Theorem 6.4 and Theorem
6.6 in [15], with the only difference that now the zero set of the potential W* varies with z,
being equal to Zf“' in (O, %) and to Zé“' in ( — %,O), thus forcing sequences with equi-bounded
energy to an additional transition in an n-neighborhood of x = 0. O
COROLLARY 4.4 (convergence of minimum problems). For any fized n > 0 and for every

s €R, let cpf] be the function defined as

S(s) 1= min {/_i <%Wk(x’u) 4 77(7/)2> de :u € Wh? (—%7 %) 7][_

1
4

PN

udr = s} . (4.10)

1
4
Then for every s € R

: k _ Ak
Ly oy, (s) = " (s)

where
ckif s=-1;1
koo _
cpk(s): ¢y if s=0 1 1
Ch if 0<|s|<1, k<3 Ci+Cw if 0<|s|<1, k>3
+oo if |s|> 1.

Proor. We preliminary observe that

Ch+Cw=0CF ifk<

min GF*! = CF, minGF0 = %, min GF* =
Cég + Cw if k>

1
f for 0<|s| <1,
2
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while the set of functions u : ( — %, ) — R such that

1
1
1
4 .
with |s] > 1

1 1
U € BV((O, Z);Zf), U € BV((— Z,O);Zg) and ][ LU=,
1
is empty. Then, since Gg’s x, GF_ the desired convergence result immediately follows by the
O

general property of convergence of minimum values.
REMARK 4.5. By Remark B and since C§ + Cy > OF, we have that 2 (o)™ (s) = 1*(s),

for any s such that |s| <1, and for every k € (0, 1).
A

|

FIGURE 4. The functions ¢* and (¢*)** for k < § and k > 1.

PROPOSITION 4.6. Let cpf] be the function defined as in [{{-10); then

1. <pf](s) < ¢, for some ¢ > 0, independent of n and for every s such that |s| < 1;
2. if [s] < 1 and vy is a test function for gpf](s) (i.e., a function for which gof](s) =

f—zi (%Wk(:c,v;;) + 77(1);3')2) dx ), then there exists a constant M > 0, independent of 7,
such that ||vy|lec < M.
1
» such that {4, v7dz = s and
4

PROOF. 1. For every s with [s| < 1, we exhibit a function v;

for which
1
4 1 S S
/ (HWk(x,vn) + 77(1),,/)2) dx <c

1
4

for some ¢ > 0.
For later references, we treat in detail the cases s = 0 and s = %1, while for 0 < |s| < 1 we

only give the idea of the construction of a possible vj.
We start by s = 0; then as vg we take the function defined by

0,— .
D) = o (z) i —1<a2<o0
! v,o]’+(x) if 0<z<i,
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where 097’7, v2’+ respectively solve
0 1 i1
min / <—(v —14+k)?2+ 77(1/)2) dx, min / (—(v +1—k)?2+ n(v')Q) dx;
vewl2(—1,00/ -1 \7] vewl2(0,5)Jo M
v(0)=0 v(0)=0
or equivalently, the associated Cauchy problems
1 1
v —v+1-k=0 in (——,0) v —v—1+k=0 in (0,—)
1 4 and 1 4
0(0) = 0 v'(—1> ~0 v(0) = 0; v'(4) ~0.
A
1—k
oy
i % -
1 1
-1 0 1 x
-1+k
FIGURE 5. The function vg.
Hence, by directly solving the above equations we get
1
1—k+ (k—1)cosh (f) +(k— 1)sinh<f)tanh (—) it —l<z<o0
. 7 7 4n
vp(T) =

—1+k—(k—1)cosh <%> + (k — 1) sinh (%) tanh <$> if 0<z<

thus immediately
1
1
0 7. _
/ R vy dx = 0.

4
Moreover, a straightforward calculation gives

1
4

/ (%Wk(x,vg) + 77(02/)2) dx = C} tanh <4177>,

1
4

37
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and finally
1
k(o) < Ok k
¢, (0) < C3 tanh (477) < Cy.

If s =1, we proceed as above now taking as a test function for gog(l), 1)717 defined by

<z<0

W=

oy (z) i —
v,%’Jr(a:) it 0<z<

)

=

1,4+

1— 1, . .
where v; , vy’" are respectively solutions to

1

min /01 (Cw-14824n0)?)ds,  min /0 "1k ) de

vewl2(— 4,0/ 1 \1T] vewl2(0,1) n
v(0)=1 v(0)=1
or to
1
" —v4+1—k= in (——,0) v —v+1+k=0 in (0,—)
1 and 1 4
’U(O) — 1’ ’UI( —_ Z) — 'U(O) = 1, UI(4) — 0

N
o
N
8

FIGURE 6. The function v%.

Hence, we find

1—k—|—kcosh<%)+ksinh(%)tamh(%) if —igxgo
v}?(m) =
1+ %k — kcosh <%)—|—ksinh (%) tanh (%) if nggi,

(4.12)
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i 1
vndle.

1
4

and we have

Then, a direct computation gives

1
1 1 / 1
gpf,(l) < /411 (;Wk(x,v}?) + n(v% )2) dz = C} tanh <%> <cr.
Notice that if s = —1, we simply take v;l = 1)717 — 2.
We now turn to the case 0 < |s| < 1 and we sketch the proof for s > 0, the one for s < 0

being analogous.

s
n

combining it, for instance, with an optimal transition between the two zeroes of the potential
Wlk, 1+kand —1+ k.

In this case a test function v; can be obtained as in Figure [ by suitably modifying v% and

1+k

AN
|
8

o

-1+k

FI1GURE 7. The function v;"].

More precisely, v,’? is defined by

|8
AN
8
IA

= ®»
= ®»
|8
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where v is the solution to the optimal profile problem

inf { /+OO <W(u) + (u’)Q) dr . u(—o0) =1, u(4+o00) = —1}.

—00

1

Then, as it can be easily checked that the energy contribution of the linear modification to v,

and v,’; is (exponentially) small as n — 0, we get
cpﬁ(s) <CF+Cw+0(1), as n—0,
and thus <pr is bounded.

We remark that the last construction is not “optimal” since the bound on cpg can be improved
for 0 < |s| <1 to
Ph(s) = min{CE, G5 + O ).

2. Let [s| <1 and let v € Wh2(—1 1) be a test function for gpfl(s).
We argue by contradiction supposing the existence of a point 2’ € (—i, i) such that

vp(x') > M > 3(1 + k). (4.13)

To fix the ideas, and without loss of generality, we may additionally assume that =’ € (0, %)

Now, appealing to 1. we have for instance

1

4

1
4 1 S S
Ao = [ W) +e)?) do < 0

and from it we deduce that the restriction of v; to (0, %) converges in measure to ZF, as n — 0.

In fact, for any fixed o > 0
1
Hx € (0, Z) : dist(v;;(m),Zf) > a}‘ min{W(7): ||| =1 >n} <C¥n -0 as n—0.
Then, for sufficiently small n > 0 there exists 2 € (0, 1) such that
min {[o3 (") — (1 + B, [0 — (~1+ K)[} <o
Let us suppose that |v; (") — (1 + k)| < o, hence in particular
vp(2") <201+ k), (4.14)

having also chosen o0 =1 + k.
Finally, using the so-called “Modica-Mortola trick” together with (I3 and EI), we get

1 S (!
1 1 Un(x )
oh(s) > /O (;Wlk(vfl)—i-n(vf]/)Q) deQ/( ) VWi(s)ds
vy (z”

M
> / As—1—k)ds=M>—2M(1+k)>3(1+k)?%>Ck
2(1+k)

and thus the contradiction.
Notice that if v; converges in measure to the constant —1+ k, then since —1+k < 1+F, the
same argument again applies to get the thesis. O



4. § > e: OSCILLATIONS ON A LARGER SCALE THAN THE TRANSITION LAYER 41

In all that follows, the letter C' will stand for a generic strictly-positive constant which may

vary from line to line and expression to expression within the same formula.

Proof of Theorem Step 1: I'-liminf inequality
We have to prove that if u. — u in L*(0,1), then F*M(u) < liminf. g Ff(l)(ug). Notice that
if moreover sup, Ff(l)(ug) < 400 then, by the definition of . lul <1 a.e.

By virtue of the nonnegative character of W, we have

FFO(y,) = /01 <ng <%,u€> +65(u;)2> dx
3-1)

@i+1)§ /5 -
> E Ok (L /12
o /(21‘—1)g <€W (5’%) +ed(ue) > dx

=1

then, by the change of variable

and setting

we get
FFO () > [%i]&/i (éwk <t+ %,@.) + 5(@;)')2) dt
_ Za/_ (—Wk (t,01) + %(@3)’)2) dt
A (W (et + Sty )
where

We now remark that

min{/_z (gwk(t,v) +§(v')2> dt ]1_% v dt :s}

as a consequence we find
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Hence, by using the notation introduced in Corollary EE4l, (TH) becomes

[5-3] +1)8
5 (22+1)4
FFO (y,) > 2 54,0’% <][( ue dt

2i—1)2

e(z) = <]{2z‘1)i uadt) Y(emngemn©

we finally have

1
liren_%lf FEO () > 2liminf/0 @

e—0

>lo

(U ) dz,

where in the last inequality, we have used the uniform boundedness of % .
B
Notice that moreover, @i.—u in L?(0,1).
Now our goal is to give an estimate from below on the function ¢%. To this effect we first

B
consider the case |s| > 1. On one hand (see also ([Z4))), for every s € R we have that

1 1
go’%(s) > inf{g 4Wk(t,v)dt:][ vdt:s}

_1 1
4 4

PN

0 1 1
= - min {ZW**(sl + k) + ZW**(SQ —k): s14+s2= 28}
e 2
so in particular
§(|s] — 1)?
gol%(s) > gw Vst |s| > 1. (4.16)

On the other hand, for any fixed 1 > 0 there exist o,g9 > 0 such that
gp’%(s) >CF—n? Vse(l,140), Ve <eg (4.17)

and the above inequality can be proved by means of the following contradiction argument. If
(ETT) does not hold true we can find two sequences s, — 1,&, — 0 for which

Pren () < CT = (4.18)
for every n € N and for some 19 > 0. Appealing to Corollary EE4l we can also deduce

n—4+oo = §(en)

and combining it with (ZIX) we find the contradiction. Note that, by symmetry, [EIZ) also
stands for every s € (=1 — o, —1).

Hence, gathering ([@I0) and ([@I7) we deduce that for every n > 0 and for any sufficiently
small £ > 0,

sl — 2
(> (et - v (2

o I

@ > Vs @ |s| > 1. (4.19)
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Now it remains to give an estimate on ¢% for |s| < 1. To this purpose, for any fixed n > 0, let
B

us consider the set
11 . s k
Al = {t € <_Z’ Z) o dist(vi(¢), Z5(t)) > 77},
where v? is a test function for w’% (s) and Z¥(t) is defined by
zZk it te (=310
Zk:(t) — 2 ( 4 )
Zy it te(0,%).

Then, arguing as in the proof of Proposition EL&-2., we deduce that the measure of A7 tends to

zero as € — 0. In fact, we have
| A7 [ min{W(7) : [[7| = 1] > n} < %C§ —0, ase—0.

As a consequence, for any sufficiently small € > 0 we can find ¢t~ € (—%, 0), t* € (0, i) such that
dist(v2 (t5), Z* (%)) <.
Let us suppose for a moment that one of the following inequalities holds true
WI(t7) = (1=K <n, [(t7) - (1+Ek)| <, (4.20)
assuming for instance the first, we deduce

1
1 (6
o= [ (S + 50?) de > Cun-1 = k14 k)

i
with Cyyx(-,-) as in ([E6); finally
pE(s) = CF — On?. (4.21)

Now our plan is to prove that whenever 4n < |s| < 1 at least one of the inequalities in ([E20)
is fulfilled. Arguing by contradiction we can find a number 7y > 0 and a sequence &, — 0 such
that for every n € N

w2, () = (=1=k)[ >mno we<—i,0>, W (t) — (L +k)| >mno vm(o,i). (4.22)

If we set

1—k if te (=10
Z5(t) = el
-1+k if te€(0,%),

in view of ([E22)), A7» can be rewritten as
En 11 . s k
A =<te 11/ dist(vZ (), Zg(t)) > mo
and again, for the complement of A7» we have

n c J— ny TL7+
(Ailo) - Bf]o U Bf]o (4'23)
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where
_ 1
B;gh = {t S <—Z,O> : |’U§n(t) — (1 — k‘)| < 770} ,
(4.24)
1
and
| B ™| = |By | — 0, as n — +o0. (4.25)
Without loss of generality, we can suppose s > 0, therefore
1
4
2ng < / vi dt = / vi dt + / vi dt.
- i (A5
Now by ([E2Z3), [E24) and appealing to Proposition ELG-2., we deduce
2ng < / vi dt +/ vZ dt +/ vi dt
A By~ Bt
< MIAG |+ (no + (1= k)| Bry ™| + (o + (=1 + k)| By ™|
7o
< MIAG|+ 5+ (=R (B[ = 1B,
moreover by (L2H]), for any sufficiently large n, we have
" 1o
|A7€70| > M
and from it, the contradiction.
Then, for |s| < 47 it is easy to check that
30]% (s = C5 = Crp. (4.26)
Finally, combining [ET9), [21]) and [26]) we get
Cy — Cp? if [s| <7
Ph(s) 2 ) s(s) == Cf = Cn? if n<|s|<1

(CF— ) v (g<|8§1>2> it |s| > 1

for every s € R and for every 0 < n < 1; hence

hm mf FFO(4,) > lim 1nf2/ Q,Z)n

To conclude the proof, we note that, for any fixed s € R, the sequence (z/)k (s )) increases with

€

—, so in particular for every m > 0, there exists €9 > 0 such that
€

wsg(s) > ¢f,7m(s), VseR, Ve < gq.
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4. §>e€:
k k
wmﬁ ¢77,2
s (s+21>2 N 5 (s—1)2 s <s+21>2 . 5 (s—1)2
= ck—cn c e cr —con? c

1 1 h T |

| | \ !
i ‘ **Cf i f "\ s—C§ - on? ,"
\ | ! \ | !
\\} : }/l \H : ‘/l
~1 -n 0 7 1 f ~1 —n 07 1 ¢

FIGURE 8. The function ¢S s for k < % and k > %

e
Then
1 1
liminf [ " ;(@.)dr > liminf ,’;m(ﬁg) dx
e—0 0 777; e—0 0 ’
Lo Lo
. . X s~ *
> hrgrilélf/ (wmm) (te) dx > / (wn,m) (u) dx,
0 0

in the last inequality using the fact that . — uin L?(0,1) and the L?-weak lower semicontinuity
)** (u) dx. Moreover, by the Monotone Convergence Theorem

of u:— fol (@b’;’m
1 1
lim | (W) (w) de = /0 i ()" (u) do = / (¥) (u) dz

m— 400

where

DO =

wf,(s) =CF—0n? if|s] <1 for k<

or
Cy - Cip if [s] <7

1
f k> —.
or 5

k pu—
1/}17 (8) Ck _ Ck Ck _ Ck
%LSH—C%“—%n—CnQ ifn<|s| <1

_/rI p—

Collecting these inequalities we find that

1
I- liIEILiélf FFO () > 2/0 ¢,’;(u) dx

and by the arbitrariness of n

I'-liminf Ff(l ) > 2sup/ ¢k dx.
e—0 77>0

Hence, again applying the Monotone Convergence Theorem we obtain the desired result for both

k<landk>1

Step 2: I'-limsup inequality
To check the limsup inequality for the I'-limit, it will suffice to deal with the case of a constant
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target function u = ¢ (=1 < ¢ < 1), sice by repeating that construction we can easily deal with
the case u piecewise constant and then the general case follows by density.
We start approximating ¢ = 1. Fix n > 0; by @Z), H) there exist 77,75 > 0 and

v1 € WH2(=T1,Ty) such that v1(—=Ty) =1+ k, v1(T2) =1 — k and

0 T>

[ (ke +002) dos [ (When) + @4)7) e <+

-7 0

Note that it is not restrictive to suppose 177 = 15 =: T. Then, for instance, as a recovery

sequence, we can take

1+k if0<x<g

us(x) = Qi (z) if (4i—3)8 <z<(i+1)] for i=1,...,[+—1]

1+k if (4[3-3+1)5<a<1

where
1+ k if (4i-3)2<x<(2i—1)3—eT
vl<w) if (2i—1)8 —eT <2< (2i—1)3+eT
vea(@)=q 1-k if (20—1)8+eT < <id—el ieN  (4.27)
v1<i‘5;x) if 6 —eT < <id+el
[ 1+k if 64T <x< (4i+1)3.

In fact, recalling that € < § it is easy to check that u. — 1in L?(0,1), while

k(1) i g g K (T V2
limsup F. us) = limsu / (—W —vkq) +ed((vly) >dx
manp () = Tmawp 3 f (G (Frvh1) +e0(E1))

IN

1 1
lim [5_1] 6(2CF +m) =2CF +n, V>0

permits to conclude that
lim sup FFO (u) < FEO(1),

e—0
Replacing 1 4+ k with —1 £+ k and v, with its analogous v_1, a similar construction yields véﬁl
and consequently the I'-limsup for ¢ = —1.
If —1 < ¢ < 1, it is necessary to make a distinction between the cases k < %, k> %

Let £k < %; writing ¢ as a convex combination of 1 and —1, we have

c+1 1-c
c= — .
2 2

Now let (n}), (n%) be two sequences of positive integers such that

n_‘f_)c—{—l

14 14
ny,ny — +oo and
2 ny 1—¢’

as v — 0. (4.28)
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With fixed v > 0, we choose € > 0 such that (ny +n4 + 1)d < 1. With this choice we consider
the (n¥ + n4 + 1)d-periodic function UY, on R™, which on (g, (4(n¥ +n¥) + 5)%) is defined as:
vly(x) if @€ ((4i-3)5,(4i+1)9) fori=1,...,n¥

we () if xze ((4ny+ 1)%, (4ny + 5)%)

vé’_l(:c) if ze ((4 —3)%,(42’ + 1)%) for i =nf+2,...,n¥ +nj

We(z) if @€ ((4(n} +n8) + DE, (4(nf +nf) +5)%)

1 . . 1 . . . .
where v; ; is as in @21) and v _, is its analogous. Moreover w is given by

v (@) it (4% +1)8 <o < (@2ny + 1) T

1-k if 20+ 1) +eT <z < (nf+1)5—eT”
we(z) = 0 (w) if (nf4+1)0—eT’ << (n’+1)6 4T

—-1+4+k ) if (nf+1)0+eT’ <z < (4nf+5)8

with 7" > 0 and vy € WH2(=T",T") such that vo(=T1") =1 — k, vo(T") = —1 + k and

[ (w2 aes [ (o = ) <t

while 0, is defined as

~1+k if (4(n} +n¥) +1)8 <a < (2(nY +n¥) + 1) — T’
iy — 4 () e @ ) + D)8 - T < < Q0 )+ DS 4T
1-k if (2nY +ny) + 1) +eT’ <z < (0¥ +ny+1)5 —eT
VI () it (n¥ 40y +1)0—eT < < (4(n +n¥) +5)2
Taking u? := UY (1), we have
imsup FAO () < lim(2CE -+ n)(nf + )6 + (205 +)0) | ]
e—0 e=0 (nf +ng +1)6
= QO 1) + QO )y =
Moreover,

lim a®" = 2CF + 7

v—0
then a diagonalization argument (cf. [I0], Corollary 1.18) permits to find a positive decreasing
(as € decrease) function v = v(e) such that v(¢) — 0 as ¢ — 0, for which
lim sup FFO) (02 < 20F + 1.
e—0

Finally, using ([28]) and the fact that ¢ < ¢ it is easy to check that we also have

u?® —~ ¢ in L*0,1)
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and hence, the I'-limsup for —1 < ¢ < 1 and k < %

Let k& > %; now to approximate a constant ¢, on one hand, it is no more “optimal” to oscillate
between 1 + k, 1 — k and —1 + k, —1 — k, because in this case the most convenient transition
is the one from 1 — k to —1 + k (see Remark ETl). While on the other hand, using convenient
transitions (following the construction made for ¢ = 1) only permits to approximate ¢ = 0.
Then, for instance, to obtain a recovery sequence for 0 < ¢ < 1 it is necessary to mix, in the
right proportion, oscillation between 1+ k, 1 — k with those between 1 — k, —1 + k. In this way,
following a procedure which is similar to that of the previous case, but now with

1%
n C
Mo

as v—0
ny 1—c¢ ’

it is possible to construct a sequence u. — ¢ in L?(0,1) such that

14 v 1
lim sup Fek(l)(ue) < lim ((20{“ + n)(nl(e) +1)6 + (2C% + n)n2(€)6> e e
e—0 e—0 (ny7 +ny ' +1)0
= ¢(2CF 4+ ) + (1 —c)(2C5 +n) = 2(CY — CY)c + 205 + 1.
And this concludes the proof of the I'-limsup inequality. O

4.3. Second order I'-limit. In the spirit of studying the asymptotic behavior of the family
of functionals (ng(o)), Theorem suggests that the characterization of the limit points of

k
€

for k < % In fact, for k < %, F*(1) = 2C% 50 that we are again in the case when the (first-order)
I'-limit only provides the information that the weak limit of sequences of minimizers can be any
function v € L?(0,1) such that |v| <1 a.e.

For k > %, the functional F*¥() admits the unique minimizer v = 0. Nonetheless, as we will

sequences of minimizers, as well as the development for the minimum values m%, can be improved

show in Section EE32, the non strict convexity of ¥ permits to consider a further scaling and

thus another term in the I'-development, in this case too.

Since the two cases k < %, k> % need a different investigation, we discuss the second order
asymptotic analysis for (ng(o)) in two separate sections. The first one, Section EE31] is devoted
to the case k < %, which is also addressed to as the case of small perturbations; while the second
one, Section 32, deals with k& > %, that is the case of large perturbations.

4.3.1. k< % small perturbations. In terms of the asymptotic development for the minimum
value mlg, the combined computation of the zero order and the first order I'-limit gives
€

4]

3

0

mk = 20{“—1—0( ), as € — 0.

Then to further improve the above development, we need to quantify the “small” error 0(%), and

hence to identify the next meaningful scaling that we denote by Ag%) (¢) (not to make confusion

with the scaling for & > 3 that we in the sequel denote by XE,? ().
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Once Ag%) () is conjectured, we study the I'-limit of the scaled functionals

FF?) .= - 9 “
22 (e)

So the next step is trying to guess, by means of a heuristics, what the second meaningful scale
A2 (¢) is. To this end, we first observe that in order to make FFO £2C¥ vanish, a sequence
must oscillate (except possibly on a finite number of §-intervals) between 1+ k, 1 —k or between
14k, —1— k.

Then, we focus on a g—interval, for instance (g, % 9) and we estimate the contribution of

O _ £2C% over this interval. We have

)

[ (94 (Zn) 200 e <
= ¢ (/;5 (éwk(g,u) +6(u')2) dx—Cf)

= E(f <6W1k<v>+§<v’)2)dx+/j (5W§(v)+§(v’)2)dx—cf), (4.29)

e :
with v(z) := u(d x). Then a direct minimization of [EZ9) yields

ECf(tanh <4£> —1> :O<€e_2%), as ¢ — 0,

€

and it is easy to check that the above minimum value is attained, for instance, at the function
v(z) = v}(3—2) (with v} defined as in ([@IT), Proposition EEB, with n = £). Thus, by repeating
the previous argument over each %—interval (except possibly a finite number of them) we get a
first energy contribution of order %e‘f_s.

The energy (E29) is minimized also by v(z) —2 (i.e. by a transition with average —1), hence
the total energy of a minimizing sequence may well be the result of a finite number of passages
from oscillations with average 1 to oscillations with average —1 and viceversa. Since each of
these transitions between the “oscillating phases” gives an additional contribution of order &,
the total energy contribution of a minimizing sequence turns out to be of order

€ _»

e 2
56 +ée

If we have

€ _5 _3s
56 2 > <= e 2 >0,

then Ag,) (e) = %672%. Loosely speaking, when this scale is relevant, we have to consider first
the error that we make “cutting the tails” of the 1/ infinite transitions that we are gluing one
each other. Thus, in this case we expect to find again a constant I'-limit which now is given by

i 2CT (tanh () —1) 40k

e—0 672%
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If we have
o3 < 0, (4.30)

then Ag,) (¢) = € and this choice penalizes the passages from the oscillations “around 1” to those
“around —1” and viceversa. Therefore, if A2 () = € we expect that (ng@)) I'-converges to a
surface energy which penalizes the jumps of the limit configuration, between 1 and —1.

It is worth to point out that assumption (E30) it is very natural since, for instance, it
comprises the case § = ¢!/ for all & > 1.

As we are concerned not only with a better development for mlg but also with an improvement
in the characterization of the asymptotic behavior of sequences of minimizers, we decide to focus

)
on the case e” 2 < ¢ and hence, on the case

AD(e) ==
Then, we look at the scaled functionals
» FEO (u) — <20}
Fe( )(u) - -
Lr71 T 20k
“WR (2 u) + e 2> de — =L if u e Wh2(0,1
= /0 (8 <5 ) () 4] 1) (4.31)
+00 otherwise.

We now come to a rigorous justification of what has been only heuristically conjectured.
To start, we want to prove that the uniform boundedness of ng @ (ue) implies for the limit
configuration u, both the constraint u(z) € {£1} a.e. and u piecewise constant.

LEMMA 4.7. If sup, ng@) (ue) < 400 then, up to an extraction, (u;) converges to some
function u € BV ((0,1); {#1}) with respect to the weak L?*-convergence.

PROOF. With fixed € > 0, starting by 0, we partition [0, 1] into subintervals I?, i = 1,..., [%]
of length § (except possibly the last of length less than ). Let u. be such that sup, Ff@) (ug) <
+00 and set uf;t(x) = u* (%), where u~,u™ are the 1-periodic functions on R™, which on (0, 1)
are defined as

u(t) = ~1+k if te(0,3) () = 1+k if te(0,4) (432)
| -1-k it te (1) 1-k if te (1) '

The first step of the proof consists in showing that for any fixed n > 0, if Ig is the set of all the
indices i in {1, e [%]} such that

<]{5 Jue = uz | dw) A <]115 |ue =y | dw) <, (4.33)

(3

then
lim 64£(Z)) = 1. (4.34)
e—0
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In other words, we are saying that for every n > 0, ([33)) is satisfied on a “large” number of
intervals I9 (provided that ¢ is sufficiently small). In order to prove (@3], we give an estimate

on the cardinality of the family of indices ¢ for which

(y{? [ d:c> A (7116 e — | dw) -

Let us call j,;s such a family. Before starting, we notice that the following statement
there exists M > 0 such that |u.(z)] < M, Yz € I? (4.35)

holds true, with the same constant M (e.g. M = 2), except for at most a bounded number of
indices 4. In fact, arguing as in the proof of Proposition EE6l-2., the above statement can be easily
deduced by the uniform boundedness of @ (ug). So from now on, we focus our attention only
on those intervals I9 in which ([E35) is satisfied.

Ifi e j,;s we have that

n < ][{ug—uj{{dx
1
1

=5 |u€ — u(ﬂ dx +
{xEIf:|u5—u;\§g}

n+c(M)Hx€Ig: fue —uf] > 1},

1

+
U — UL | dx
1) {melfz|u5—u;>g}| : 5‘

2 0

IN

hence
Hx el’: |ue — uf | > g}‘ > ¢(M,n)o.

Notice that the same conclusion also holds replacing u('s" with uy. As a consequence,

/[{5 wk <%,u5> dx > C6, forevery i€ j,;s

and this implies

FFO(ug) > #(79)C6. (4.36)
By hypothesis gl (ue) < C, therefore
FFO () < e C + % 20k = 0 (%) as £ — 0 (4.37)

then, gathering ([36]) and [E31) we get
6#(j7f) —0 ase—0

and hence the desired result.

Let N be the overall number of transitions of u. between 1+ k+nand —1—k+n; 1+k=£n
and —1+k+ml—k+npand -1 —k+n;1—k+nand —1+ k£ n. From now on we refer to
these transitions as the “expensive” transitions. To conclude the proof we notice that the most
convenient among these transitions is the one from —1 4+ k +n to 1 — k —n and, in terms of
Fek (0), it costs at least e(C5 — Cn?). Then, recalling that C§ > CF, for sufficiently small  we
have C%§ > CF — Cn?, thus from the uniform boundedness of @ (ue) we deduce that N, < N,



52 1. A MODEL FOR THE INTERACTION BETWEEN MICROSTRUCTURE AND SURFACE ENERGY

for some N € N. As a consequence, (up to an extraction) u. makes a number of “expensive”
transitions which is actually independent of ¢; we call this number V.

Let Sc = {t5,...,t5_;} (with ¢, <t; . ;,n=1,...,N —2) be a set of points dividing (0,1)
into N subintervals each containing only one expensive transition for u.. Up to possible, further
extractions we can suppose that

to —t, as €¢—0, for n=1,...,N —1.

Then, for fixed o > 0, if we consider the N intervals
Jr =ty +0,thy1 —0), n=0,...,N—1 (withty=0,ty=1)

we have that
JrNS. =g, (4.38)

for sufficiently small ¢ and for every n =0,..., N — 1.
By virtue of ([E3])), applying to JJ' the result established in the first part of the proof, we
have that, for instance,

lim Sup/ ‘ua - u(ﬂ dx < Cn. (4.39)
J?’L

e—0
o

On the other hand, by weak compactness we have u. — u in L2(J?), while from @32) uf — 1
in L2(J7); thus by the weak lower semicontinuity of the L!-norm we deduce

/ \u—l]dmgliminf/ ‘ug—uﬂdx,
Tz =0 Jg

and combining it with 39) we find
/ lu—1|de <Cn Vn,0>0.
Iz

Finally by the arbitrariness of  and o it follows that w = 1 on J™ = (¢,,t,+1). Thus by repeating
the above argument on all intervals J" (n =0,..., N — 1), which determine a partition of [0, 1],
we get the thesis. O

In the remaining part of this section, we work under the additional assumption % € N. This
assumption will be in some cases essential, as it avoids to consider the effects due to boundary

mismatch, while, in other cases, it will provide only some technical help.

THEOREM 4.8. Let § be such that § > e~3 and % € N. The family of functionals Ff@)
defined in [f-31) T'-converges with respect to the weak L?-convergence to the functional defined
on L?(0,1) by

(C3 = CT)#(S(w) = CF  if u € BV((0,1); {£1})

+00 otherwise.

FF@)(y) =



4. § > e: OSCILLATIONS ON A LARGER SCALE THAN THE TRANSITION LAYER 53

PRrROOF. Step 1: I'-liminf inequality
We have to prove that if u. — wu in L?(0,1) and sup, ng(z)(ue) < 400, then FF?)(y) <
liminf._g Ff@) (ue).

By Lemma ET we already know that w € BV((0,1);{x1}); let us set N := #(S(u)).
For fixed ¢ > 0, we consider the partition of the interval (g,l — %) into subintervals If =
((2i —1)%,(2i +1)%) with i =1,...,2 — 1 and we rewrite @ (ue) as

s 5!
1 /1 \ 1
FH) () = /0 (EWl’“(ua) + s(u;)2> dr+ ) <EF€k(o)(u5;I{S) - Cf) —CF
=1

" /113 GW;(%) + 6(u;)2> de

where
(2i+1)2

Fek(o) (e IZ‘S) = /

(2i-1)8

(VV’C <%,u5) + az(u;)Q) dx.
By a straightforward calculation we find that

. 1 o _s
vevf/qgl(lf) <2Ff(0)(v;lf) — Cf) = Cf(tanh (E) — 1) =0(e2e) as ¢ —0,

for every i =1,..., % — 1 and the minimum is attained at

vé(z — E) if 7 is odd

| 2 0 2
ul i (z) = for z € I?, i=1..., 51, (4.40)
vi(% — %) if 7 is even
where v} is as in {@I2) with n = %
If N =0, since
21
1

FFO(ug) >3 <g FFO) (g 19) — Cf) —cF (4.41)

i=1

we then obtain the thesis simply taking the minimum of each term on the right hand side of
(EZ10) and recalling that by hypothesis

_5
€ 2

lim =0.

e—=0 ¢
If N >0, let N; be as in Lemma ET], then, as already observed, N; is bounded and moreover
limiélf N, > N. (4.42)
E—

To get the liminf inequality for the I'-limit we need a lower bound for the energy of the expensive
transitions. Then we first give an estimate on the measure of the set where a transition between

two of the zeroes of W* may occur. Let n be a positive number and set

J? = {t el?: dist(uE,Zik’&(t)) > n} ,
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where
zb ifte ((2i - 1)2,49)
ZF0(t) = if i is odd,
z§ ifte (i3, (20 + 1))
while
zk ifte ((2i—1)2,4%)
Zf’(s(t) = if ¢ is even.
zF ifte (i3, (2i+1)%)
We have
RO 1) 2 RO ) > o]
€ € £
and from sup, FF® (us) < +oo we deduce that, for every i, |J| = O(e) as ¢ tends to zero.

Hence we can conclude that an expensive transition may only be of two different types.

Type 1: the transition entirely occurs in an interval 11‘60 for some %g; in this case we have
1
- FFO(u; 12) > Cpe(1 =k — 1, =1+ k +n) > C% — O, (4.43)

Type 2: the transition occurs between two adjacent intervals Ifo ,Ifo 41 for some ip; in this

case we have

€9 20

1 1
g Fak(O) (u ; I{S ) + g Fak(O) (uE; Iz‘éo-i-l)

v

CWIIc(l—i-k—n,—l-i-k"i‘n) (: Cwéc(l—k—n,—l—/{?"i‘n))
> Ow — Cn. (4.44)

So if we call NZ (7 = 1,2) the number of the expensive transitions of type j, then N, = N} + N2,
By combining ([Z3) and @Z4]) we find that (at least)

2 1)
(51— on2) ot (rann () - 1)
+ NI(CF —CF = Cn?) + N2(Cw — 2CF = C?) = Cf
2
1)
in the last inequality using that Cyyy = 2 and 2 > C’{“ + C’g. Finally, passing to the liminf, in

view of (EZ2) we get

lim inf F*®) (u.) > N(C§ —CF —Cnp?) —CF, ¥n>0

e—0

Y

Ff@) (ue)

> C’f(tanh (4%) - 1) + N.(Ck — Ok — on?) — CF

and thus letting 1 go to zero, the I'-liminf inequality.
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Step 2: I'-limsup inequality
Let g € (0, 1), to check the limsup inequality for the I'-limit, it will suffice to deal with the case

-1 if z<ux
u(r) =
1 if z> x.
Let u;l be as in ([20) and set uéfl = uél —2fori=1,..., % — 1. As a recovery sequence we
take
(
u;l(g) if x € (0, g)
ul | (x) if xe ((20—1)2,(20+1)3) for i=1,...,2[%L] -2
u(z) = < . (x) if v ((4[%]-3)2,(4[2]+3)9)
ul i (x) if x€((20—1)2,(20+1)2) for i=2[%]+2,...,2 -1
3-1 5y 5
ul (1-9) if ze(1-4,1)
with

WA A ni e <o < 3]+ 9

where v0, v} are as in ([@I]) and @I2) respectively and [ is the linear function defined by

£

£ 1

vy P H) G (x— (4[2] 1) +2) +e0(5-2).

0 0 4
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1+k

FIGURE 9. The joining transition .

In fact it is easy to check that u. — u in L?(0,1) and that the energy contribution due to the
linear, joining function I is of order ¢~3=. Then

1-2 k
1 2
lim sup F¥® (u.) = lim sup / ’ <—Wk (E,ug) —i—s(u;)Q) dr — 207
e—0 e—0 S € o 1)

< g (5 - ot () 20t am () o () - )

[

= (G5 -0 = Cf = F*O(u)
and this completes the proof. O

The I'-convergence results stated in Theorem 1 Theorem and Theorem are formally
summarized by the I'-development

1
FEO () = /O W™ (u) da + %20{c +e((Ch— CRY#S(u)— CF) — ge—z% 40F 4 o<ee—%). (4.45)

r

4.3.2. k> % large perturbations. For k > % Theorem E2 states that ng(l) — F*1) where

FRO () = /0 L () de

with % (s) = 2(CF — C%)|s| +2C%, for every |s| < 1. In this case, mingg < Yk (s) = ¢*(0) = 20%
and F*() admits the L2-function u = 0 as the unique minimizer. Nevertheless, as we are going
to show, the nonstrict convexity of ¥* permits to consider a further scaling and consequently
to recover some additional information on sequences minimizing ng(o) also in the case of large
perturbations. To start, we focus on the limit behavior only of those minimizing sequences
satisfying the integral constraint

1
/ ve =d (4.46)
0
with d # 0; to fix the ideas, let d € (0,1).



4. § > e: OSCILLATIONS ON A LARGER SCALE THAN THE TRANSITION LAYER 57

REMARK 4.9. The zero order and the first order I'-limits for the Modica-Mortola functionals
are stable by adding the “volume” constraint (Z6]) (see [41], and [15] Proposition 6.6 and
Theorem 6.7, for the one-dimensional case).

In our case, since we are dealing with a variant of the Modica-Mortola Model and with
the different scaling %, and since moreover integral constraints (as well as continuous lower
order terms and boundary conditions) may not be automatically compatible with the refinement
process of the computation of higher order I'-limits, we actually need to prove that (under some
additional hypotheses) the I'-convergence result stated in Theorem preserves the integral
constraint (E40).

We notice that since the constraint (246 is closed for the weak L2-convergence the liminf
inequality is trivial. To check the limsup inequality it again suffices to deal with piecewise
constant functions (satisfying (46)). For simplicity we only detail the case of the constant
target function u = d.

Let (uc) be a sequence mixing oscillations “around 1” with oscillations “around 0” as in
Theorem B2 Step 2. Then, setting d. := folue dx, we have

de :n;g (1+O<%>> +n2§0(§) with ng%—n; = %,
0

- are the number of transitions of u. between 1 + k,1 — k and

where, for fixed ¢ > 0, nl,n
1 — k,—1+ k, respectively. Hence by letting nl varying from 0 to %, d. goes from d. ~ 0 to

d. ~ 1 (for € small). Moreover, the difference between two values of d. corresponding to two
0,1

consecutive values of n! is of order 6. Then, we may choose n?,n! in a way such that u. is a
recovery sequence for d, and we have that
|d —d.| <O() as € —0. (4.47)

Now starting from u. we want to construct a sequence v, such that
1 1
ve —=d in L*0,1), / veder=d and FFY(y,) — / Y* (u) da.
0 0

To this end, we focus on a %—interval of type ((2i— 1)%, (22’—1—1)%), with ¢ odd (the case ¢ even can
be treated similarly) and we suppose that on this interval u. = U;p where v;l is as in (EZT).
Up to an extraction we can always assume that d — d. has a constant sign, to fix the ideas let
de < d. Then, we define v on the interval ((2i — 1)%, (20 + 1)%) in the following way (see also

Figure [I0)

—7)‘x—(4z'—1)é+€T (d—d.)o

. . 5 .5
3 7+W+1+k if (22—1)Z§$§Z§—€T

vl () if i —eT <z<(2i+1)3.
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= (d_ ds)

\G][S%)

i i

| . ;
T T T T T =

(20 —1)2 i3 2i+1)3 =
FIGURE 10. The recovery sequence v. on the interval ((2i — 1)%, (20 + 1)%).

A straightforward computation gives

L () = )

i 1)6

2
iS—eT _ _
- é/( ’ <_72(d dE)g ‘g; — (4i — 1)§ N Gl d€)5> dz

o \G=e) 5721 ()
= lm (4.48)
3 (-eD)e
and
(2i+1) é iS5—eT 4(d — d.)262
55‘/ ()P - @) do| = 55/2 M Zde) 07
2i—1 % (2i—1)8 (g —eT)
4 _ 252
= 55M(§—5T). (4.49)

[
(3 —<T)
Since we want a recovery sequence satisfying the volume constraint (EE46]), we repeat the above

construction (and similar for U;,o) on each interval of length %, thus obtaining a sequence v,
such that

! ! 2 5
/ vg(x)dm:/ us(r)+ = (d—ds)z =de +d—d. =d.
Then, in view of (A1), (4] and ) we get
Fek(l)(us) - Fk(l)(ve) = O(_

€

hence, under the assumption
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the desired convergence.

We now consider the family of integral functionals given by
1
FFO () = FFO (4) — / l(u) dx (4.50)
0

where [ is a linear function. By virtue of the stability of I'-convergence under continuous per-
turbations, we have that (L) I-converges to

FHO () = FFO (y) — /1 l(u)dz
0

for any u € L?(0,1) such that |u| < 1 a.e. and, with the additional hypothesis 6* < ¢, satisfying
the integral constraint (EL46]). Since .7:5 ) differs from Fek W by a constant, information on

minimizing sequence of FF (satisfying (FE46])) can be recovered from information on those

(1)

minimizing ff
Notice that in view of the nonstrict convexity of 1*, it is possible to choose the function I in

a way such that
wh(s) = 1(s)

attains its minimum on a large set. In fact, choosing, for instance,
I(s) = r*(s) == 2(CF — C%)s + 2C%
we have

VF(s) =1k (s) >0 Vs: |s| <1 and ¢F(s)—r¥(s)=0 Vs: 0<s<1.

wk_rk

k
¥ L 20%F

20%

N

FIGURE 11. The functions 1* and ¢ — r*.

Thus min F*1) = 0 = F*M (y) for any u € L?(0,1), 0 < u < 1 a.e. and such that fol udr = d.

This means that .7-"5 ) I’-converges to a “degenerate” functional hence now we may look for a
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meaningful scaling for (@A) and to consider

k(2) L
F (u) - 7}\@ © .
Theorem Step 2, combined with the choices [ = r¥ and d € (0,1), suggests that in this case
the relevant transitions are those from 1+ k to 1 — k and those from 1 — k to —1 + k (i.e., the
transitions with average 1 and 0, respectively).

Arguing as for k£ < % and since the passage from oscillations around 1 to oscillations around
0 seems, at a first approximation, energetically negligible, one could conjecture that the next
meaningful scaling is e~3=. On the contrary, a more accurate scale analysis (performed in
Theorem IO below) shows that the interaction between these two different types of microscopic
phase transitions gives rise to an extra scale that is of lower order with respect to ¢~3=. This
scale, which turns out to be %, as we will prove in Theorem EET0, takes into account the fact
that we are mixing periodic phase transitions with different energy contribution. What happens
is that for any fixed € > 0 a minimizer v. will be the result of a suitable mixture of oscillations
(i.e., periodic transitions) with average s. > 0 (sc — 0, as € — 0) and oscillations with average
1 4 se. Loosely speaking, using this two averages (instead of 0 and 1), since v, has to satisfy
the integral constraint (A6, permits to use a smaller proportion of energetically expensive

transitions (i.e., transitions with average 1).

We consider

62 1 T 6 1
— wk(= 2’2d——/k dr if wb2(0,1), [fu=d
FHO) () = 52/0 ( <5,u>+€(u)) T~ Or(u)m if ue (0,1), fyu
+00 otherwise.

(4.51)

THEOREM 4.10. Let § be such that 6> < ¢ and % € N. The family of functionals .7-}“2)
defined by [@X) I'-converges with respect to the weak L?-convergence to the functional defined
on L*(0,1) by

FEO) () — —(CF-CH? if ue L?0,1), 0<u <1ae., and fol u=d

+00 otherwise.
Before proving Theorem we need the the following lemma.
LEMMA 4.11. Let apg be defined as in Corollary then

Cchanh (L) i<
— anh [ — if |s|<c
2n 2 4n - \/ﬁ

oh(s) = (4.52)

—1)2 1

7(’8’277 S 4 CF tanh (%) if |s|>1—cyi

for some positive constant c.
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PrOOF. We prove the equality @X52) only for |s| < ¢,/f (with ¢ suitably chosen) the proof
of the other case being analogous.

Let |s| < ¢y/n, with ¢ > 0 to be determined. We start giving an estimate on above on gog.
By definition, we trivially have

1
1 (1 11 1
cpf](s) < min {/ <5 Wk(x,u) +77(u')2> de :ue Wh? <_Z’ Z) ,][4 udr = s, ||ul|e < k}

<l W (2, u) + n(u’)2> de :ue Wh? <—i, i) ][ udr = s} ; (4.53)
n _

FNT

Ll N [N

.

where
—14+k)? if -1
WE(z,u) == (u i 4

v (4.54)
(u+1-Fk)? if 0<z< '

Following the Lagrange Multipliers Method we explicitly determine the minimum value (E53])
by means of the auxiliary minimum problem

MF(N) = min{/_ <% WF (2, u) + n(u)? +)\u> de :u € Wh? (-3 1)} (4.55)

4’4
with A € R.
Also taking into account the definition of W¥ (R4, it is easy to check that Mff (M) can be
equivalently expressed as

N

1
1

0 /1
M,IZC()\) = min min / <— (u—1+k)?+n) + )\u> dx
uo 1,2 (_1 ) -1\"n
ueW 70 4
u(0)=uo

N

1
+  min / <— (u+1—Ek)?+n)*+ )\u> dx
wewl:2 (0%) 0 n

u(0)=ug

Then by a straightforward computation we find that the minimum (E55) is attained at

1—k—¥+(k—1)cosh(%)—i—(k—l)sinh(%)tanh(%) if—igxgo
ug(:n):

—1+k—¥—(k—1)cosh<%>—i—(k—l)sinh(%)tanh(%) if nggi.

(4.56)

Moreover, in (00 the dependence on A can be rephrased in terms of s by imposing the integral
constraint

_2s

which gives \ = —%. Notice that u, " = vj + s, with v)) as in EII).
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2s

Finally, evaluating the energy in ([E53)) at u,; m by a direct computation we get

2
ko) < 5° k )
©p(s) < o + C5 tanh <477>' (4.57)

Now we want to prove that ([E57) is actually an equality. We show that in particular if vy is a
test function for gplg(s), then [|vg|[oc < k. To this effect, we additionally assume that s > 0 (the
case s < 0 being symmetric).

To start we claim that supposing v;(O) = k, yields to a contradiction. In fact, on one hand

we have

gpg(s) > mim{/0 <%(u—1—|—k)2—|—77(u’)2> dzx - uerQ(—i,O),u(O)zkz}

sl

B

<% (u+1-— /<:)2 + n(u')2> de: wewh? <O, %), u(0) = k}

— tanh <%> + (2k — 1) tanh <%>
= 14+ @2k—12+ 1+ (2k—1)%) (tanh (ﬁ) - 1) (4.58)
= CF+Ck+0(1), as n—0. (4.59)

While on the other hand, from (EXT) and since 0 < s < ¢,/7, we also find
cpﬁ(s) < g +C5 4+ 0(1). (4.60)

As a consequence if we choose ¢ < 2C¥, gathering (@5J) and ([E6) we get the contradiction

and thus the claim.

s
n

one among those for which the function vy does not satisfy |[vp]| < k. So in particular this

Then it is easy to check that the case v;(0) = k is actually the most energetically convenient
permits to exclude the existence of a point x; € ( — %, %) such that v;(xn) > k.

Moreover, we notice that the additional hypothesis s > 0 combined with the previous argu-
ment also excludes the possibility v%(mn) < —k for some x,, € ( — %, %) which would clearly be

even more unfavorable. This concludes the proof of the lemma for s > 0. O

Proof of Theorem Step 1: T-liminf inequality
We prove that if u. — uin L?(0, 1) and sup, FE® (us) < 400, then F*?) (u) < liminf. g FE@ (ue).
Notice that, in view of the definition of ff (2), we have 0 < u <1 a.e.
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We write .7-"5 @) as the sum of three main terms

‘7:5(2)(“6) = gz/o <W1 (u€)+€( ))dw—é/ogrk(ue)dx

3

/jilf <W’LC <§,u5> +€2(u'€)2> dx — g /(% 5

2

x (s

+ > 1 <Wk(u )+62(u')2> dm—é 1 r* (u) dx
52 1_% 2 € € g 1_% ©
and we set
6% (3 2, 12 1
IE1 = 2/ <W1 (ue) + & (ul) )dx— —/ r(ue) dz,
€ 0
52 1 1
Ig == <W2k(u5) + 52(u;)2) dx — —/ rk(ug) dz,
€ J1-2¢ 1-2
hence

lim inf F*® (u,) > hm 1an + lim 1(1]qu

e—0
2_q . 5 . 5
9 52 (2i41) 5 (2i+1) %
+ liminf —2/ ! (W’LC <£,ug) +€2(u'€)2> dr — —/ ! r*(ue) d | .
=0 =\ &7 J2i-1)? 0 €J(@2i-12

We now claim that

liminf I >0 and limi(r]lf 2 >0.
£—

e—0

We prove this claim only for I}, the proof for I? being analogous.
1
Let . ::][ ue dx, then recalling that § > ¢
0

82 (6 52
.. 1 .. kY k% ko/— .. ke #F k-
11£IL151f I; > 11I€IL161f P (E (W)™ (ae) —r (u€)> > llIEIL%lf P ((Wl) (tg) —r (u€)>
> liminf 5—2 min <(Wk)**(s) - ’I“k(S)) = lim inf ﬁ(—7/’62 +5k—1)=0
B e—0 4e seR ! e—=0 ¢

where the last equality follows by hypothesis. Thus we get

lim inf ]:f(Q) (ue)
e—0
. J 2Z+1)4 2(,1\2 0 e k
> llirilglf ' <—2/ % 5) +e*(u) ) dx — g/(m‘—ni " (ue) da
s 3-1 5 (21+1 % i o (2i+1)8 .
> Z Z _
> hran_}gf : 23 21 1% W (5 5) + e(uy) > dx ]{2@'—1)% " (ue) dx
.. - ko~
> liminf = 5(230§(ue)—7“ (@),

-
I
_.
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with ©% as in Step 1, Theorem EE2 and . : (0,1) — R defined by
B

2
21

i (2i4+1)%
e () :Z ]{ Ug dt X((z¢—1)§,(2i+1)g)($)-

. [}
i=1 \/(2i-1)g

Notice that by virtue of Lemma ETT]

)

(0) —r*(0) = O(e2:) as e — 0,

Sl T

2¢

then in view of the definition of %, we deduce that

k o/~ k/~
: - dx =
s (2@3(%) r*(Ge)) dz =0,

3 1
lim 0 /4 (2@% (te) —rk(ﬂg)) dx = lir% 0 /

0 T
consequently

1
lim iglf FF2 (4,) > lim infé / (230’% (te) — ’I“k(ﬂe)) dzx.
E— 0

e—=0 ¢

So now we want to give an estimate from below on the function 2¢% (s) — r¥(s). As the estimate
B

on go% already established in Theorem EE2 Step 1 is too coarse to be used at this scale, we need
to refine it. By means of Lemma FLTT], we start by improving this estimate in a neighborhood of
s =0. To this end, for (small) fixed 0 > 0 we consider those s such that |s| < o and we denote
by v a test function for gp’% (s). Arguing as in Lemma ELTT] if ||vf||c < k we have that

0 0
k _ 2 k
g0§(5) =58 + C3 tanh (46),

while for ||vf||e > k it is easily seen that the combined argument of Theorem B2, Step 1 and
Lemma ECTT] yields

gp’% (s) > CF +CY — Co”.

Thus, for every s such that |s| < o we have

¥

Sl T

(s) > min {%52 + C% tanh <£>,C’f +Ch — 002}

0 2 k 0 : 0
25 + C5 tanh (E) if [s| <s.,
_ (4.61)

CF+ b - Co? if s2,<|s|<o

with

5270, = \/§(2C'£€ (1 — tanh (4%5)) +2CF — 2C’02) 2 = O<\/§), as € —0.
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An similar analysis can be performed for o < |s| <1 giving

min {%(\s\ ~ 1)2 + C¥ tanh (4%),0{“ + Ok - 002}

AS)
o T
—

»
S~—
vV

0 2 k 0 ; 1
— — + — < <
26(\3\ 1) Cy tanh( 6) it s |s|] <1
(4.62)

CF +Ck — Co? if o<s<sl,
with S;,J =1- \/§<2C’f<1 — tanh <£>) + 207 — 2C’02>1/2.

Hence, gathering ([@61l), (E62) and Lemma BT (for |s| > 1), for every s € R we derive the
following estimate

§ J .
%52 + C% tanh <E> if [s] <2,
PE(s) = ¢ (s) = { CF + C — Co? it s2, <|s| <sl,

0 2 k oy . 1
\%(|5| — 1) 4+ C7 tanh (E> if [s] > s,

A
¢
R
Cr 4+ ck - co?
\% chk tanh(f—s)
Ck tanh(2)
o3
— | 1 b -
1 0 0 1
-1 —Seo S0 0 Se,o Se.o 1 s

FIGURE 12. The function QSIE e

€ b
As a consequence we get

1
lim i(I]lf FF2(u,) > liminf 0 / (2(;5]2 (Te) — Tk(ﬂg)) dx
E—> 0 € 0

e—=0 ¢

v

iminé 1 k) () — (@ z
I f/0(2(¢5)(e) (c)) de,

e—0 e 7
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where
0 o k d . _
_ — <
525 T C5 tanh (4€> if |s| <.
((]ﬁlg ) (s) = (Ck — Ck) tanh <i) |s| + C¥ tanh (i) (C Ck)2 tanh? <i>
e? 1 2 4e 2 4e 2501 2 4e
if 5.<|s|<1+s.

J 2 k Y . _
_ _ — >
26(|5| 1)* + C7 tanh (46) if |s| > 1+ s,

with 5. := %(Cf — C¥) tanh (4%5)

o )
Since the sequence (E(Q(QSIE o) (s) — ’I“k(S))) increases with o for any fixed m > 0 there

6 b
exists g > 0 such that

< (¢ )7 (5) = 15(s) > m(2(dh, )" (5) = (), Ve <<

Then by lower semicontinuity

hmmf}“k( J(ue) > liminf m 1( ((bma)**(&g) —rk(ﬁa)) dz

e—0 e—0

Zm/ 26k, )™ () — ¥ (u)) da.

Finally, as it can be easily checked that

0 if s=0,1
l. *% _ k — = ’
limm (2 (¢m,)™(5) = 7%(5)) = £(5) —(Ck—ck? if 0<s<]1,

a direct application of the Monotone Convergence Theorem gives

lim 1£1f FFO / flu

thus immediately

liminf F¥® () > —(CF — C%)?,

e—0

and hence I'-liminf inequality.

In view of the analysis performed above, to better explain the presence of the scaling
- €
)\g%) (e) = 5 e remark that the final effect of subtracting the line r* to the original poten-

tial W* is that of considering, in place of
0 5 i 0 1) 0
02420k h(—), % (s —1)%+ 20k h<—>,
6s—i— 2 tanh { = 6(s )° +2C7 tan =

the two parabolas

g $2-9 (Cf—Cé“)s—i—QCé“(tanh (4%) —1), g (s—1)*—2(Cf—C%)(s—1)+2CF (tanh <£> _1)
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which have their vertices respectively in

—( Sk _ kY. _Eok _ kN2 k AN
V0—<5(C1 C3); 5(01 CQ)+2C2<tanh(4€) 1)>

_ (€ nk k1. Eimk kN2 k i_

Then, for instance, from

€ 1) € 5 €
—2(CF = )P+ 20f (tanh (=) = 1) =0(5) +0(e7) = O(5), for £ =0
5( 1 5)° + 203 1 5 +O( ) 5) —
€
we deduce that the correction due to the translation by r* is actually visible at scale 5
Step 2: I'-limsup inequality
To prove the limsup inequality, it is enough to deal with constant target functions, since the
case of piecewise constants can be treated similarly; then the general case follows by density.
Since the (constant) target function has to satisfy the volume constraint, we actually deal
with the case u = d.

. ) . €
Let v2, v} be respectively as in ([EIT), ETD), with n = = and set

)
R
€ . .
with s = S(Cf — C%). Then it is easy to check that v’ and v} are test functions for ¢* (s.)
s

and ¢ (1 4 s.), respectively (see also the proof of Lemma BEIT), while in view of @B3) we get
o

€ 0
20k (s2) = rM(s.) = —=(CF — C4)* + 2c§<tanh (4_5) - 1) o
4.64

205 (14 52) = F(1 + 52) = —%(C{“ —Ch?+ 2Cf(tanh (%) - 1).
Now, arguing as in the proof of Theorem B2 Step 2, we consider two sequences of positive
integers (ny), (n4) such that
14 14 nllj d
ny,ny — +oo and n_gﬁlfd’ as v — 0. (4.65)
With fixed v > 0, we choose ¢ > 0 such that (n} + n5 + 2)d < 1. With this choice we consider
the (n¥ + n¥ + 2)d-periodic function u?, on R*, which on (4, (4(n¥ +n% + 1) 4+ 5)9) is defined
as

(b (2) v (4, (nt +1)3)
() v € ((4n¥ +1)§, (4n¥ +5)3)
o ug () z € ((dnf +5)3, (4(nf +n¥) +5)7)
2e((4nf + 205 +5)5 —x) @ € ((4(nf +n¥) +5)9), (4(nf +n5 +1) +5)9)),
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where
1
ol (i-g=3), we (i35 4i- 1)
u;+55($) = ‘= 1,.”,nT,
ol (S-d), we(@i- DS @i+ )
and
1
wi(img-3) we(Ui-35@i-1)
U (@) = i=ni+1..nf+ny+1
o (5 -4). ze ((4i—1)3, (4 +1)9)
While the joining transition z. is defined as follows
1
pltse (n’f + i %) z € ((4nf + 1)%55/5)
o T
Ze(x) = g + qc T e (.%'6,.%'5)

#(G-nt-1)  we @it o)),

\

with ¢. (and consequently x.,z”) chosen in a way such that

(4n¥+5)4 (4n¥+3) 1 (4n¥+5)%
/ o ze(x) dx = / 1 41);“5 <n'f+——£> dx+/ e vie <£—n’1’—1> dx. (4.66)
( ( 2 (

any+1)3 any+1)8 0 any+3)5 0

1+s
(o= €

1—k+ s

Se

Ve

FIGURE 13. The mismatch between vé*sf and vge.

In fact, if we set
(4n¥+5)2

I(g.) = /( 2o(w) da,

4ny+1)4

it can be easily checked (see also Figure[[3) that for g, := 1—k+s.+(k — 1) ( cosh (4%))71 - 4n£+3
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(4ny+3)% 1 (4n¥+5)3
I(@;)Z/ 4U€1+85<n‘1’+——£>dm+/ 4v§$(£—n§—1>dm,
(dn¥ +1)8 2 0 (dn¥ +3)8 0
while for g_:=1—k+s. — (k- 1)( cosh (4%))_1 - 4”3—'—3, we have

I(q

=&

(4n¥+3)2 1 (4n¥+5)8
)g/ 4v€1+85<n‘1’+——£>dx+/ 4v§5(£—nﬁ—1>da@,
(4n¥ +1)8 2 0 (dn¥ +3)8 0

hence by the continuity of I we deduce the existence of a value ¢Z € (¢_,g.) for which (ELGH) is
satisfied.

We notice that  — a2l =24 e~ and it can be proved that the energy contribution due to
the linear modification in z. is of order ¢ e~ too.

With an abuse of notation we now indicate with u¥ the restriction of u¥ to the interval (0, 1);

then by virtue of (64

) 1)
: k(2) (, vy — 13 _(k _ ~kN2( v v v k 9N o
lim 75 () g%< @) C’z)(n1+n2)5+n15201<tanh<4€> 1)5
n n552C§(tanh (i) —1)§+0(5e*4‘%) [;}
de € (n¥ +nf +2)6
V+nV
—  _(Ck _ kY2 3 2
(cf - ohp
Since
O P e S T L NP e
b S B D i R B T

a diagonalization argument permits to find a positive decreasing (for decreasing ¢) function
v = v(e) such that v(e) — 0 as € — 0, for which

lim 2@ (/) = —(CF - C3)”.
E—
Moreover, by using (64 it is easy to check that we also have

u?© —~d in L*(0,1).
©

Finally, starting by us'~ a similar construction to that described in Remark B9, together with

the assumption 6% < ¢, yields a recovery sequence wu, also satisfying the integral constraint

1
/ ue dxr = d,
0

and hence the limsup inequality. O

Since F#®) is constant, Theorem I shows that also the analysis at the second oder gives few
information on the asymptotic behavior of minimizing sequences. Moreover, the scale analysis
)

performed in the proof of Theorem BTl suggests that the next meaningful scaling could be e™2¢

as well as 56_4%, as the higher order energy contribution in terms of the scaled energy .7-"5 @ i

0 _ s _5
—€ 2 —|—(56 4e |
g
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Then, if
0 _s _3 _5
—€e 2 > e 1t &= I >¢
€

we deduce Z\Sf? — 3 and, as a consequence, the following I'-convergence result for the scaled

family
PO < (CF - oy
.7:5( )(u) = 5
e 2
§ 1 2
- / (W’“(%u) +e2(u)? - %rk(u) + E—Q(Cf - 05)2) o ifueWh2(0,1), [lu=d
_ lEe e (4.67)
+00 otherwise.

THEOREM 4.12. Let € be such that ¢ K e~i= and % € N. The family of functionals ]:Ek(s)
defined by [@BD) I'-converges with respect to the weak L?-convergence to the functional defined
on L2(0,1) by

4(Ck —cofyd —40%  if we L2(0,1), 0<u<1a.e., and folu =d

400 otherwise.

FEO (u) =

PrOOF. The proof essentially follows that of Theorem EETO. We remark that at this scale
we see the correction due to the difference between the values of the ordinates of the vertexes
of the two parabolas ([E63]). Loosely speaking, this is the scale of the energy contributions due
to the periodic optimal transitions with average 1+ s. and with average s, which, in the limit,

give rise to
20{“<tanh (i) - 1) QC§(tanh (i) - 1)
lim r — 40, lim 45

5 5
e—0 e 2e e—0 e 2

= —4CF,

respectively. Hence, for a recovery sequence that in order to preserve the integral constraint is
a suitable combination of the two types of oscillations as above, we get the limit energy

4(Cy — ckyd —ack.
O

)
We notice that unfortunately the assumption e~ >> ¢ together with §2 < ¢ (see Theorem
ELT0) is quite restrictive since essentially reduces d to be of type ve|logel|, with 0 < v < 4.

4)

The last remark to this section is that actually \so (€) < & e~ since a more accurate analysis
shows that the choice of the linear function, joining the two different types of transitions in
Theorem EETQ, Step 2, can be improved to obtain an energy contribution of higher order.

Finally, if

€ _98
FrW () +<(Cy = CF) e 264((05 ~Ci)d - 405)

70 = )
& (e

£
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we moreover conjecture that ]:Ek @ LI, 7k with

CH#(S(uw)) if uwe BV((0,1);{0,1}), and folu:d

400 otherwise,

FED (u) =

and C* positive constant.

At the end, in the case of large perturbations, by virtue of Theorem B2, Theorem and
Theorem we have established the following development by I'-convergence

1
FEO () = /O ¥¥(u) dz — ¥(d) — 2(CF = C§)? + e7% (4(CF — CF)d — 4CS) + o).

5. § < e: oscillations on a finer scale than the transition layer

In this last section we treat the case when the scale of oscillation ¢ is much smaller than the scale
of the transition layer €. In particular, we show that in this case, upon choosing ¢ sufficiently
small, the presence of small scale heterogeneities does not essentially affect the I'-convergence
process at first order too.

We start recalling that for k£ < % Theorem 1] asserts that

Fek(O) AN Fé“(o)

with Fk(0 fo W (u) dz and min F) MO = 2 = Fok(o) (u) for every u € L?(0,1), |u| <1 a.e.
Thus we are now mterested in determining the scaling )\él) (), to study the asymptotic behavior

of the family of scaled functionals
FFO (u) — 2
1
2 )

To this purpose, we perform a first heuristic scale analysis. For the sake of simplicity we assume

IFD () =

that % € N. Then we start noticing that, for instance, v. = 1 is a minimizing sequence for
(ng(o)) as min F") (v:) = k%. Nevertheless, we want to show that for any (small) fixed ¢ > 0,

U, is not an absolute minimizer for ng(o). In fact,

min F¥© < min {Ff(o) cu(0) =u(l) =1}
(1 [ T
< mln{g/o (Wk(g,u) + 62(1/)2) dz : u(0) =u(d) = 1}

min {(15 /%((u —1-k)?+2)?) dr

-
5/ (u =14 K 4 ) de u(0) = u(d) = 1}

< min 2 /0 w1kt 2@ e w@ =u(3) =1} 5)

- S (1) -0 - LG g Tro(F) w0 62
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and the minimum (&J) is attained at v(x) := 1+ k — k cosh (513””) <cosh (4%))71 . Hence the
previous computations show that it is more energetically convenient to oscillate “around 1” than
to be identically 1. Clearly, the same conclusion still applies to the constant phase —1. Thus a
minimizing sequence may well be the result of a combination (on a suitable scale) of oscillations
around 1 with oscillations around —1. Finally, as the presence of the singular perturbation in
the gradient introduces ¢ as the length for the layer of a transition between the two “oscillating
phases” £1, we deduce that the contribution of minimizing sequence in terms of the energy

FFO g2 g (at least) of order

02 o
6+6—2+6—4—|-...

FIGURE 14. The qualitative behavior of a minimizer v,.

3/2

This section will be entirely devoted to the case § < €°/¢ which yields

M (e) =¢,
)

since in view of (.2) we expect to obtain constant I'-limits for other choices of the scaling )\((]1 .

We finally remark that also the asymptotic analysis for the “critical case” § ~ g3/2 (or more
in general, § ~ ¢(2n+1)/ 1) yields a I'-limit of Modica-Mortola type. Nonetheless it seems that
in this case the two phenomena of oscillations and phase transition may interact in a non trivial
way thus introducing some additional difficulties to the problem, but we will not develop this

point here.
THEOREM 5.1. Let k < % and let 6 be such that
5 < &3 (5.3)
Then the functionals I defined on L?(0,1) by

oo /01 (é <Wk (%,u) — ]g2> +e(u’)2> dr if uwe W2(0,1)

+00 otherwise
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I'-converge with respect to the strong L*-convergence to the functional

Cip_a#(S()) if we BV((0,1); (1)

+o00 otherwise

1
with W" as in (Z3) and Cpe 5 = 2/ \/Wk(s) — k2ds.
-1

REMARK 5.2. The above theorem states that morally we may first perform the homoge-

I*(u) =

nization procedure for fixed ¢, by letting § — 0 and then apply the Modica-Mortola Theorem
to

1
/ (Wk(u) —k* + & (u))?) da.
0

PrOOF. Step 1: U'-liminf inequality
Let u. — u in L?(0,1) be such that sup, I*(u.) < +o0; with fixed ¢ > 0 let us define the set I°
and, on I, the function v, respectively as
3] o
Po=J=1)5,i8)  wve(@) =Y ulx(a-1ss) ()
i=1

=1

4 i6 1
ué::][ Ue dt forizl,...,[g].
(i-1)s

By the Jensen Inequality it is immediate to check that

with

[vell 210y < [luell 219 (5.4)

while from the Poincaré Inequality and its scaling properties we have
||ue — U6HL2(15) < 5”“2’&2(16)- (5.5)

A first estimate gives

1

I (u.) > /[6 <§ (Wk <%,u5) - k2> —i—s(u;)z) dx — k; ] dx

1
5

hence
1
lim inf 7% (u.) > lim inf / (— (W (5. u) - #2) +e<u;>2) dz.
1% o

e—0 e—0 IS

We claim that the quantity

() ) £

tends to 0 as ¢ — 0. To prove this claim we first remark that W¥(y,-) satisfies the following
local Lipschitz property

Wy, 1) — W¥(y, 50)] < (1 + |s1] + |s2])|s1 — 52| for ae. y€R, V51,50 €R (5.7)
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for some positive a. A simple averaging over (0,1) demonstrates that (B7) is satisfied also by
W". Moreover by the definition of v, and the 1-periodicity of W*(-,s) the following string of
equalities holds true

Then by adding and subtracting 1 [;; W* (%,v.) dz in (E8) and by virtue of () and the local
Lipschitz continuity of W~ we have

[ (v (o) - 7))

< LW G a2

W (ue) — W (ve)| dx

3
9

1
< 2 [ 200+ fucl + oDl - vl do
g Jrs
1
< z C(1+ [|uellz2(roy + |Jvell L2 (o)) [ue — vel| 219y
)
< CEHUQHL%OJ) (5.8)

in the last inequality having used (&2l and (&H).
Recalling that sup, f s(us) < 400 in particular implies

C

[uzllr2(0,1) < 7 (5.9)

by combining (B.8)), (29) and invoking hypothesis ([B3) we get the claim. At the end we obtain

o o ] I p— /
lim inf I¥ (u.) > lim 1nf/0 (—(W (us) — k%) + 6(u€)2> dx, (5.10)

e—0 e—0 IS

so that we reduce to deal with a sequence of functionals with a homogeneous, double-well
potential, with wells at +1. Moreover, up to a slight modification to the proof the Modica-
Mortola Compactness Result, (EI0) permits to deduce that if (uc) is such that sup, I¥(u.) <
+00, then u, — w in L?(0,1), with u € BV ((0,1); {£1}).

Finally, a direct application of the Modica-Mortola Theorem yields

a /1 ___
lim inf If(ug) > liminf/ <—(Wk(u5) — k:2) + a(u'e)2> dx
e—0 e—0 0 £

<2 /_11 \/mds> £(S(u) N (0,a)),

\%

Y
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for any fixed a € (0,1). Then, passing to the sup on a € (0,1) in ([EIl), we get the I'-liminf

inequality.

Step 2: I'-limsup inequality
We have to construct a recovery sequence for v € PC(0,1) with v € {£1} a.e.; it will suffice to

approximate

~1 if z <
u(z) = nrs (5.11)
1 if x> xg,

with zg € (0,1).
We want to show that the limsup inequality can be easily obtained acting as if we were

studying the convergence of the functionals
Ry g 2 N2
/ (—(W (u) — k) + £(u) > da. (5.12)
0

To this effect, arguing as in Modica-Mortola construction, for any fixed n > 0 we can find a
number 7' > 0 and a function v € W12(—T,T) such that v(—=T) = —1, v(T) = 1 and

/T (W) — k2 + (v)?) dz < 2/1 VIV (s) = k2ds + (5.13)
-T -1

then, recalling that 0 < €, as a recovery sequence for (BI1)-([I2)) we can take

-1 if 2 <af—ceT
_ 0
ue(z) = v<x x”) if 2) —eT <z <ad+el

€

1 ifﬂ:>x8+6T

with acg = [%0] 6. We next claim that wu. is a recovery sequence also for [ f s- In order to prove
it, testing Ifé on u, we find

x5+5T
k _ 0 1 k(% 1.2 1\2
IF(ue) = /mg_aT <€ <W <5,u5> k ) + e(ug) ) dx

= /i (Wk <%x,v) k24 (v')2> dz.

Then the next step is proving that

T T

. k(€ N =k
il_)r% _TW (51',1)) dx = /_TW (v) dx. (5.14)
Setting
k k(€
Wo(x) =W (gx,v> for a.e. z € (—=T1,7),
we have

0<WFE<BA+ ) ae in (=T,T) for some positive 3,
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from it we deduce ||[WF||;1_77) < C and that (WF) is equi-integrable on (=T,T). Then by
applying the Dunford-Pettis criterion, upon passing to a subsequence (not relabelled)

Wk~ f inLY-T,1), (5.15)

while by the Lebesgue Theorem
T+r
f(z) = lim fly)dy forae. ze (-T,7T).

r—0F Jo_p

Moreover from (BIH) we have that in particular, for z € (=7, T) and for sufficiently small » > 0,

x+r A T+r
i WE@dy = sy
and consequently
z+r
lim lim WE(y)dy = f(z) forae. ze (=T,T).

r—0+t e—0 z—7

On the other hand, from

[t = ) [ (Gt a

+]{:—:T wk <§y,v(x)) dy (5.16)

with
W (o) - W (Cpo@))) dy] < a1 fo@)] + oDl — o)l dy
L Ge) =t (o)) anf <o~
and
i W (Gow) dy=f T 0w dy = )

Passing to the limit in (2I6]) first letting e, then r go to zero, we obtain
flz)= Wk(v(x)) for a.e. z e (=1,7)
hence, from (BI0) we get (BI4). Finally, combining (BI4) and (EI3) gives

1
limsup I*(u.) < 2/ \/Wk(s)—k:2d8+77
-1

e—0

= I"(u)+n
and by the arbitrariness of 7, the thesis. O

REMARK 5.3. Since as for the Modica-Mortola functionals, the equi-coercivity at scale e
improves to strong-L? equi-coercivity, then we may (a posteriori) compute also the zero order
I'-limit with respect to the strong L?-convergence, obtaining

O = /0 1 W (u) dz.
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Thus, for § < €, k < % we have that a I'-development for ng(o) with respect to the weak

L?-convergence is given by

1 2
L ** J
FFO () = /0 ()" () o+ = O, #(S() +0( %), (5.17)
while a I'-development with respect to the strong L2-convergence is
K(0) 1 " 52
FFO) () = /0 W () d -+ Copn_,#(S() +0(5). (5.18)

The last part of this section is devoted to the case k > % In this regime, for the zero order I'-limit
we have min F*() = (1 —£)? and the minimum is attained at u = 0 (see Figure Bl). Nevertheless,

since the effective potential Wé‘“ is not strictly convex, we may proceed as in Section Thus,

setting
3
™(s) =2k —1)s — k + 1
we can consider, for instance, the family of functionals
1
FHO) () — / () da, (5.19)
0
which, under the assumption
! 1 1
udx:de(k——,kJr—), (5.20)
0 2 2

(0)

only differs from ng by a constant.

Now it is immediate to prove that the I'-convergence result stated in Theorem BTl preserves
the integral constraint (20]) and hence that (EI9) I'-converges to the functional

1 1
/ (W) — 7%(w)) dz, e L*0,1), / udr =d
0 0

which vanishes at any function u € L?*(0,1), |u — k| <  ae. and such that foludac = d.
Moreover, a similar scale analysis to that performed for k < % applies also in this case leading

to the following result.

THEOREM 5.4. Let k > % and choose 0 satisfying (223). Then the functionals If defined on
L%(0,1) by

/1 <l (Wk (E u) — Tk(u)> +€(u')2> dr if we WhH2(0,1) and flu =d
Ti(u) = Jo \€ g’ ’ ‘
+00 otherwise
I'-converge with respect to the strong L?-convergence to the functional
Con__#(S(w)) if we BV((0,1);{k+3}) and [ju=d

+00 otherwise

k+d ==k
where Coe = 2/ _%2 VW (s) — 75(s) ds.

Ik(u) =
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PrOOF. The proof follows the line of that for k < %, while a recovery sequence satisfying

(B20) can be obtained by a carefully chosen translation of a recovery sequence for the non

constrained problem (see e.g., [I5] Theorem 6.7). O



CHAPTER 2

The Neumann sieve problem and dimension reduction

1. Motivation and setting of the problem

For an ever increasing variety of applications, an interesting problem to be explored is to model
the debonding of a thin film from a substrate.

If we consider a stretched film bonded to an infinite rigid substrate, the elastic energy of this
film scales as its thickness. If the film debonds from the substrate, on one hand its elastic energy
tends to zero, while on the other hand this creates a new surface and then an interfacial energy
independent of the thickness.

In [T2] Bhattacharya, Fonseca and Francfort examine, among other, the asymptotic behavior
of a bilayer thin film allowing for the possibility of a debonding at the interface, but penalizing
it postulating an interfacial energy which scales as the overall thickness of the film to some
exponent. Thus the energy they consider consists of the elastic energy of the two layers and the
interfacial energy with penalized debonding.

The present chapter deals with thin films connected by a hyperplane (sieve plane) through
a periodically distributed contact zone. Thus we see the debonding as the effect of the weak
interaction of the two thin films through this contact zone and we recover the interfacial energy
term by a limit procedure.

Since we are mainly interested in describing the interaction phenomenon due to the presence
of the sieve, we make a simplification choosing two thin films having the same elastic properties

(for a generalization to the case of two different materials interacting, we refer the reader to [5]).

Consider a nonlinear elastic n-dimensional bilayer thin film of thickness 20 with layers con-
nected through (n—1)-dimensional balls B?~1(z¢) centered in 2§ := ic, i € Z"~! and with radius

r > 0. Thus the investigated elastic body occupies the reference configuration parametrized as
Qg,r =0 Uw U (e, x {0})

where w is a bounded open subset of R*™1 wt? 1= w x (0,6), w™ := w x (=4,0) and w, , :=
Usezn—1 B 1 (2f) Nw (see Figure 1).
In the nonlinear membrane theory setting the (scaled) elastic energy associated to the material
modelled by Qf;r is given by
1

- W(Du) dz, (1.1)
0 Jaz,

where u : Qgr — R"™ is the deformation field and W is the stored energy density.

79
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FIGURE 1. The domain ng

The I'-convergence approach has been used successfully in recent years to rigorously obtain
limit models for various dimensional reductional problems (see for example [13], 19}, 20, B9}, 47]).

We study the multiscale asymptotic behavior of (LTl) via I'-convergence, as ¢, § and r tend
to zero, assuming that 0 = d(¢), r = r(e,9) and with W : R™*" — [0, +00), Borel function
satisfying a growth condition of order p, with 1 <p <mn — 1.

The case p = n — 1 requires a further appropriate analysis and it cannot be easily derived
from p < n—1 by slight changes. Unfortunately, three dimensional linearized elasticity falls into

this framework.
)

e,r?

Since the sieve (w \ we,) x {0} is not a part of the domain QY ., for any fixed ¢,6,7 > 0
we have no information on the admissible deformation across part of the mid-section w x {0}.
This possible lack of regularity might produce, in the limit, the above mentioned debonding and
correspondingly an interfacial energy depending on the jump of the limit deformation. Moreover,
we expect that this interfacial energy will depend on the scaling of the radius of the connecting

zones with respect to the period of their distribution and the thickness of the thin film.

The cases 6 = 1 and § = ¢ have been studied by Ansini [5] who proved that, to recover a
non trivial limit model; i.e., to obtain a limit model remembering the presence of the sieve, the
meaningful radius (or critical size) of the contact zones must be of order e™~1/("=P) and gn/(n=p)
respectively. In fact a different choice should lead in the limit to two decoupled problems (if
r tends to zero faster than the critical size) or to the same result that is obtained without the
presence of connecting zones in the mid-section (if r tends to zero more slowly than the critical
size).

The proofs of the I'-convergence results in [5] (see Theorems 3.2 and 8.2 therein) are based
on a technical lemma ([5], Lemma 3.4) that allows to modify a sequence of deformations u.
with equi-bounded energy, on a suitable n-dimensional spherical annuli surrounding the balls
B 1(z5) without essentially changing their energies, and to study the behavior of the energies
along the new modified sequence. Both in the case § = 1 and § = € the ['-limits consist of
three terms. The first two terms represent the contribution of the new sequence far from the
balls Bffl(x‘l? ); more precisely, they are the I'-limits of two problems defined separately on the
upper and lower part (with respect to the sieve plane) of the considered domain. The third



1. MOTIVATION AND SETTING OF THE PROBLEM 81

term describes the contribution near the balls B"~!(x%) through a nonlinear capacitary-type
formula that is the same for both § = 1 and 6 = . The equality of the two formulas is due to
the fact that the radii of the annuli suitably chosen to separate the two contributions are less
than ce, with ¢ an arbitrary small positive constant. In fact as a consequence, all constructions
can be performed in the interior of the domain, and the same procedure yielding the nonlinear
capacitary-type formula, applies for § = 1 and for § = € as well. The cases € ~ § and € < § can
be treated in the same way.

This approach follows the method introduced by Ansini-Braides in [7), 8] where the asymptotic
behavior of periodically perforated nonlinear domains has been studied; in particular, Lemma
3.4 in [5] is a suitable variant, for the sieve problem, of Lemma 3.1 in [7].

For other problems related to this subject, we refer the reader to Attouch-Damlamian-Murat-
Picard [29], [42], [43], Attouch-Picard [11], Conca [24), 125}, 26], Del Vecchio [31] and Sanchez-
Palencia [45, 44}, [46], among others.

We focus our attention on the case § = §(¢) < €. As in [B], we expect the existence of a
meaningful radius r = r(¢,0) < ¢ for which the limit model is nontrivial but now we expect
also to find different limit regimes depending on the mutual vanishing rate of  and §. Moreover
Lemma 3.4 in [5] cannot be directly applied to our setting since the spherical annuli surrounding
the connecting zones B~ !(x%) as above, are well contained in a strip of thickness ce but not in
Qgr (since § < ). However, we are able to modify Lemma 3.4 in [5] by considering, instead of
spherical annuli, suitable cylindrical annuli of thickness of order ¢ (see Lemma and Lemma
E3). As a consequence, also in this case the asymptotic analysis of ([IIl) as e, § and r tend
to zero can be carried on studying separately the energy contributions far from and close to
B 1(z5). We get three terms in the limit; the first two terms still describe the contribution

“far” from the connecting zones; i.e., they are the I'-limits of the two dimensional-reduction

problems defined by

1 1
—/ W(Du) dx , —/ W(Du) dx;
0 Jo+s 0 Jo-s6

while the third term, arising in the limit from the energy contribution close to the connecting
zones, represents the asymptotic memory of the sieve: it is the above mentioned interfacial

energy.

This chapter is organized as follows: after recalling some useful notation in Section B, we state
the main results, Theorem and Theorem Bf, in Section Bl Then, in Section H we list some
auxiliary results as rescaled Poincaré type inequalities and joining lemmas. Section His devoted
to give a preliminary definition of the interfacial energy density which is in terms of limit of
minimum problems. In Section @ we prove the I'-convergence result (Theorem B3)). It is only
in Section [ that we compute the explicit expression of the interfacial energy density of each
regime (Theorem B.6).



82 2. THE NEUMANN SIEVE PROBLEM AND DIMENSION REDUCTION

2. Notation
Given z € R", we set © = (x4, %,) where x, := (x1,...,2,—1) is the in-plane variable and
D, := (8%1’ el 836271) (resp. Dy,) the derivative with respect to x4 (resp. z,).

R™*™ gtands for the set of m X n real matrices. Given a matrix F' € R"™*",

we write F' = (F|F,) where F = (Fy,..., F,_1) and F; denotes the i-th column of F, 1 <i<n
and F € R™*(n=1),

The Lebesgue measure in R"™ will be denoted by £™ and the Hausdorff (n — 1)-dimensional
measure by H""!. Let A be an open subset of R? (d =n — 1, d = n). If s € [1,+00], we use
standard notation for Lebesgue and Sobolev spaces L*(A;R™) and W1(A4;R™).

Let w be a bounded open subset of R*~! and I = (—1,1), we define Q := w x I. In the sequel,
we will identify L®(w;R™) (resp. W1#(w;R™)) with the space of functions v € L*(£;R™) (resp.
WH3(Q; R™)) such that D,v = 0 in the sense of distribution.

For every (a,b) C R with a < b and q1,¢2 > 1, L% (a,b; L% (R™1);R™)) is the space of
measurable m-vectorial functions ¢ such that

The notation

a1

/ (/ |C(@a, 20)|* dza) ? dwy, < +o0.
b Rn—1

Let a € R* ! and p > 0, we denote by B/’;*l(a) the open ball of R*~! of center a and radius p
and by Q;L*l(a) the open cube of R”~! with center a and length side p. We write ng instead
of Bg_l(O) not to overburden notation. Let 25 = ie with i € Z"!, we set Q:;l = QU (a5).

We define UT® := U x (0,a) and U~® := U x (—a,0) with U C R""! and a > 0, while if
a=1,then Ut =U M and U~ =U"L.

We set C o := {(24,0) € R" : 1 < |24} and Cy v := {(24,0) € R" : 1 < |z4] < N} for every
N > 1.

Let p > 1, we denote by Capp(B{hl; A) the p-capacity of B{Lil with respect to A C R%:

Capp(B{hl;A) = inf {/A |DypPdz: ) € Wol’p(A) and ¢ =1 on B’fl} .

The letter ¢ will stand for a generic strictly-positive constant which may vary from line to line

and expression to expression within the same formula.

3. Statements of the main results

Since we are going to work with varying domains, we have to precise the meaning of “converging

sequences”.

DEFINITION 3.1. Let Q; = w0 Uw™%U(wy, o, x{0}). Given a sequence (u;) C WHP(€; R™),

we define Uj(Ta,Tn) = uj(Za,0;xn). We say that (uj) converges (resp. converges weakly) to
(ut,u™) € WHP(w; R™) x WHP(w; R™) if we have
@;r = Aylyr —uin LP(WTR™)  (resp. weakly in WHP(wt; R™)),

a; = djl,- —uin LP(wT;R™) (resp. weakly in WP (w™; R™)).

Similarly if we replace € by w0,
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We say that the sequence (|Du;|P/8;) is equi-integrable on w*% if (‘(DaﬁjI%Dnﬁj){p) is
equi-integrable on w*.
REMARK 3.2. By virtue of Definition Bl a sequence (uj) C W5HP(Q;;R™) converges to

(ut,u™) € WHP(w; R™) x WHP(w; R™) if and only if

1
lim —/ lu; — uF P da =0, (3.1)
Jj—4o0 6_] w:l:éj
while BJ]) and
1 1L A
sup — | Du;|P dx = sup Dytuj|—Dpu; || dx < +oo (3.2)
JEN 05 Ju*0i jeN Ju* 9

imply the weak convergence.

Note that Remark is still valid if we consider the domain w% U w=% in place of Q.
The main results of this chapter are the following:

THEOREM 3.3 (I-convergence). Let 1 < p <n —1. Let w be a bounded open subset of R~
satisfying H" 1 (0w) = 0 and W : R™*" — [0, 4+00) be a Borel function such that W (0) = 0 and

satisfying a growth condition of order p : there exists a constant 3 > 0 such that
|FIP =1 <W(F)<B(FIP+1), forevery F € R™*". (3.3)

Let (), (6;) and (r;) be sequences of strictly positive numbers converging to zero such that

lim — =0
J—+oo g
and set
r
(.= lim 2
eVl
If
n=l-p
e (0,400], and 0< R® = lim -2 —— < +00
j—+oo 6?
or
ri P
=0, and 0<R®:= lim ——— < +oo,
Jj—+o0 5j 6?

then, up to an extraction, the sequence of functionals Fj : LP(Q2;;R™) — [0, 4+00] defined by

1

5_/ W(Du)dz ifu € WhHP(Q;;R™),

Filw) =4
400 otherwise

I'-converges to

FOW u™) = / Qn AW (Dyu™) dx,, +/ Qn 1\ W(Dgu™) dxo + RO / Ot —u") dzg

w w
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on WIP(w;R™) x WHP(w; R™) with respect to the convergence introduced in Definition B,
where W (F) = inf{W (F|z) : z € R™}, Q,,_1W s the (n — 1)-quasiconvezification of W and
o 1 R™ — [0, 400) is a locally Lipschitz continuous function for any £ € [0, 400].

REMARK 3.4. Note that if ¢ € (0,4o00] the only meaningful scaling for r; is that of order
6§n71)/(n717p) - i.e., for both R® =0 and R®) = 400 we loose the asymptotic memory of the
sieve. In fact, if R®Y) = 0, we obtain two uncoupled problems in the limit, while if R() = 400,
limit deformations (u™,u ™) with finite energy are continuous across the mid-section (u™ = u~

in w) as in Le Dret-Raoult [39]. Similarly, for ¢ = 0.

REMARK 3.5. If ¢ € (0,400) then

n—1—p n—p
0< RO = fim <400 ifand only if  0< RO = lim —Z :
= = y 1 < = lm o < T00;
jotoo g7 j—oo §j €]

hence, in this case the two meaningful scalings are equivalent.

The following result provides a characterization of the interfacial energy density o for each
¢ € [0,+00].

THEOREM 3.6 (Representation formulas). Let p* = (n—1)p/(n—1—p) be the Sobolev exponent

in dimension (n — 1). Then, upon extracting a subsequence, there exists the limit

g(F):= lim T?QnW(rj_lF),

Jj—+oo

for all F € R™*"™  where Q,W denotes the n-quasiconvezification of W, so that:
if £ € (0,400),

pO(z) = inf{ / 9(DaCleDnC) du : ¢ € WP (R™! x I)\ Cy o; R™),
(R"*IXI)\CLOO
D¢ e LP(R™ x 1)\ C1oo; R™ ™), ( =z € LP(0,1; L (R";;R™))

¢ e LP(—1,0; L7 (R"—l;Rm))};

P (z) = inf { / (20-19(DaC) + Quo1 5(DaC)) dwa : ¢F € WEH(R™HR™),
R7—
¢F=¢in BT Da¢t e PRYHR™MOY),

(€T =2),¢ € Lp*(Rnl;Rm)} ;

where g(F) := inf{g(F|z) : z € R™} and Q,,_17 is the (n — 1)-quasiconvezification of g;
if =0
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PO = inf{ [ eDOdn: ¢ e WEER CLoiR™), DC € R\ G i R™),
R"\Cl,oo

¢ —z € LP(0,+o0; LP" (R";R™)), ¢ € LP(—o00,0; LV (R"‘%Rm»} :

for all z € R™.

REMARK 3.7. Without loss of generality we may assume that W is quasiconvex (upon first
relaxing the energy); hence, by [B3]), W satisfies the following p-Lipschitz condition (see e.g.
[27]):

W(F) = W(F)| <c(l+|FP!+ |RP Y F - F|, foral F, F, ¢ R™", (3.4)

4. Preliminary results

4.1. Some rescaled Poincaré Inequalities. Since we deal with varying domains depend-
ing on different parameters, it is useful to note how the constant in Poincaré-type inequalities

rescales with respect to these parameters.

LEMMA 4.1. Let A be an open bounded and connected subset of R~ with Lipschitz boundary
and let A, := pA for p > 0.

(i) There exists a constant ¢ > 0 (depending only on (A,n,p)) such that for every p,§ >0
sy < D gP P
/A;,'E“ |u U,A;ta’ dx < C/APM (pP|Doul? + 6P| Dyul?) dx,

for every u € Wl’p(A;)t‘s; R™) where T 45 = f4+5 uda.
p p
(ii) If B is an open and connected subset of A with Lipschitz boundary and B, := pB
then there exists a constant ¢ > 0 (depending only on (A, B,n,p)) such that for every
p,0>0

a7 p p vy p
/Aﬂ =T dar < c/Aﬂ (PP| Doul? + 67| Dyul?) da,

p P

for every u € Wl’p(A[jf‘S; R™) where ﬂBgca = JCB}‘s udz.

Proof.  Let us define v(zq,2,) := u(pra,dx,) then v € WHP(A%;R™). By a change of

variable, we get that u ,+s = v 4+. Moreover, by the Poincaré Inequality, there exists a constant
o

¢ =c(A,n,p) > 0 such that

_ D — n—1 .. |P
/Aﬂ\u uA;JJE(s\ dx dp /Ai\v U+ P dy

P

IN

c6p"_1/ |Dv|P dy
AT

= c/ (0P| DaulP 4 6P| Dpul?) dx
Aié

P
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and it completes the proof of (i). Now, if B, C A,, we get that

Uis|P
/A;jf‘s |u uBgt5| dx

o p n—1lq/m—1 — = p
< c</A;t6]u uA:pl:(S’ dz+0p"H (A)\quca uBgE§]>
HL(A)
< T aslP ML ) T aslP T s |P
< C/Apﬂm quca| dx—l—cHnil(B) /Bj[“ |u uA255| dx+/B}“ |u UB;'E5| dx
<

c/ (PP |DaulP + 0P| DyulP) de.
Aﬁ:é

p

4.2. A joining lemma on varying domains. If not otherwise specified, in all that follows
the convergence of a sequence of functions has to be intended in the sense of Definition Bl

The following lemma, is the key tool in the proof of Theorem B3 It is a technical result which
allows to modify sequences of functions “near” the sets Bﬁ?_l)(x?). It is very close in spirit
to Lemma 3.4 in [5] although now the geometry of the problem yields a different construction

involving suitable cylindrical (instead of spherical) annuli to surround the connecting zones.

LEMMA 4.2. Let (g5), (0;) be sequences of strictly positive numbers converging to 0 and
such that 6; < e;. Let (u;) C WIP(wr% Uw™%;R™) be a sequence converging to (u™,u~) €
WP (w; R™) x WEP(w; R™) satisfying sup; Fj(uj) < +o00; let k € N. Set pj = ye; with v < 1/2
and

Zj={iez" " dist(z;,R" 1\ w) > ¢;}.
For every i € Zj, there exists k; € {0,...,k — 1} such that having set

Cji» = {xa cw: 27y <ry — 2| < 2_kipj},

u'E ::][ w; dx 4.1
] (C;)iéi J ( )
and 5
p;- = 1271%,0]',

there ezists a sequence (w;) C WHP(wt% Uw™%;R™) weakly converging to (u™,u™) such that

wj =u; in <w\ U C;)hsj, (4.2)

’iEZj

wj :uéi on (aBgfl(x?j))iéj (4.3)

7
and satisfying

1
lim sup — /;té |W(ij) — W(Duj)| do < —. (4.4)
wE%

Jj—too Y

o
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Proof. For every j € N, i€ Z;, k€ Nand h € {0,...,k — 1}, we define

Avh._ . 7h71 €j 7h
C; .—{xaew.Q pj <lzqg —a;| <2 pj},

i,hnt )
(uj )T = ]{Cz’,h)ﬂj uj dx

Avh Pp— 3 7h
Py = 12 pj-

and

(2

87

(4.5)

Let ¢ = qﬁ}’h € CSO(C;’h; [0,1]) be a cut-off function such that ¢ =1 on 3BZZ-;}(JU?J') and |Dy¢| <
J

c/p;’h. In (Cjiyh)ﬂsj, we set
wi" (@) = ¢(aa) (") + (1 = é(ea)us,
then

h h

/(Ci,h)iéj |Dw;' Pde < C/(Ci,h)iéj (|D°‘¢|p|uj N (uz’ JHP + | Du; |p> du

J j
ish

_ *p
< ¢ M + |Du; P | dx.
RGO AN OT :

J

i

Applying Lemma BTl (i), with p = pj’h and A, = C’;’h, we have that

h
/(Ci’h)ﬂj \Dw; |P dx

J
c/ D u»yp+(i)pyD ;[P dm—i—c/ |Du,|P da
[e% ; n
(C;,h)iaj J pl'vh J (C;,h);téj J
, 1P
< mj(k:,’y)c/ N | Du;|? dx,

(€M)*
where by (E0)

IN

J

k+1 p P
mj(k,v) == max{l, <23—7) (g_]> }

and since 6; < €5, mj(k,y) — 1 as j — +o0o. As

k—1
| <1+|Du»|p>dxs/ (14 |Duy ) da,
hzo /<C;’h>“a' ’ By @)+ ’

there exists k; € {0, ...,k — 1} such that, having set CJ’: = C’;’ki, we get
1
1+Du'pdac§—/ 14 |Du;|P) dx.
/(C;)ﬂ; DY [ D)
Hence, if we define the sequence
w;k’ in (C’;)ﬂf for i € Z;
U}j =

uj otherwise,

(4.6)
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FIGURE 2. The (n — 1)-dimensional annuli CJ’: .

by the p-growth condition (B3), &), @) and Remark we have
1

1 -
5s /iéj ‘W(ij) B W(Duj)| de = Z 5 /( )£, |W(ij7kl) - W(Duj)| dx
Il iez; (G

c 1
< Smy(k,) —/ (14 |Duyl?)de
k J ZEZZJ 5] B:,L]._l(x? ):l:éj J

c 1
< —m;k, 1+ sup — Du;|P dx
7 M 7)( sup 5 s, 1Pl )

< —mj(k,7),

ol e

which concludes the proof of ({4]). Note that, by construction, (w;) satisfies (2) and #3]) and
it converges weakly to (u™,u™). In fact,

1 e = 2 i g
5—]'/&[% lwj —uF|Pde = 5_]'.622/(;)*5]' lpui™ + (1 — ¢)u; — u™|P du
i€Z;

1
+—/ lu; — uE P da
0 JwEi\Uje 7, (CH*

c c '
< — luj — uF|Pde + — / luj — uit|P da,
5 ol 5 22 Joys ™
while by Lemma BT (i) applied with p = pé- and since §; < ¢j, pé- < ¢j, we get

1/ +1p c/ + 1
— w; —u P de < — w; —uT|Pde + e — Du;|Pdx. 4.8
5] wi‘sj ’ J ‘ 5] wiéj ’ J ’ _]5] wi‘;j ‘ ]‘ ( )

Moreover by (E6) we have
1 c

- 1P < 1P
5. /wﬂj | Dw;|P dz < 5, /wﬂj | Du;|P da. (4.9)

<
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Hence (), [E3), the convergence of (uj) towards (u't,u™), sup; 5% [ s; |Duj|P dx < +00 to-
gether with Remark imply the weak convergence of (w;) towards (u™,u™). O

REMARK 4.1. Note that to prove Lemma we essentially use that p; < ¢;/2 (but not
necessarily equal to ve;) and lim; .4 (d;/p;) = 0. Hence, Lemma is still true if we replace
the assumptions 0; < €; and p; = ve; by p; < €;/2 and lim;_, 1 (d;/p;) = 0.

Since we will apply Lemma when p; = ve; (v < 1/2) and §; < €;, we prefer to prove it
directly under these assumptions.

If the sequence (|Du,;|P/§;) is equi-integrable on w®% (see Definition BI)), then we do not
have to choose for every i € Z; a suitable annulus C]i» but we may consider the same radius

independently of ¢ as the following lemma shows.

LEMMA 4.3. Let (u;), (g5), (6;), (p;) and Z; be as in LemmaBEA and suppose that (|Du;|P /6;)
is equi-integrable on w*%i. Set

. 2 4 "
C = {ﬂ:a Ew:gp; < |Tq — ;7| < 5,0]} and  ui = ]{C;)ﬂj u; dx
J

for every i € Z;. Then, there exists a sequence (w;) C WLP(wH0i Uw™%; R™) weakly converging
to (ut,u™) such that

w; = u; in <w\ U C’j)i(Sj, (4.10)

1€Z;
w; = u}i on (83;)‘],*1(35?))&]' (4.11)
and
l;rgigop % /ﬂj |W(ij) - W(Duj)‘ dr <o(l) as v—0". (4.12)

Moreover, the sequence (|Dw;[P/5;) is equi-integrable on w0 .

Proof. Let ¢ = gb; € Cé’o(C]i»; [0,1]) be a cut-off function such that ¢ = 1 on aB;}j_l(x;:j) and
|Dag| < c¢/pj. In (Cj)i‘sf, we define

w§ = qﬁ(azcoé)u;i + (1 — o(za))y;.

Then, reasoning as in the proof of Lemma B2 we have that

W(Dwt) dx < c/ (1 + |Duj|P) dx.
/(cpi“f ’ (Ciy*s ’

Hence, if we define
wi  in (C})i‘sf for i € Zj,

u; otherwise,
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wj satisfies (EI0) and (EIT). Moreover,

5 /ﬂ W (Dw;) — W(Du;)|dz < Z /mS Duw}) — W(Duy)| dz
1€Z;
< e —/ (1+ D, P) da
ZEZZ 4 /3( ])ﬁ )ié ]

Since #(Z;) < c¢/e}™ ! we get that

et (Yo i) <o
1€EZ;

and by the equi-integrability of (|Du;[P/d;) we obtain ([IZ). Finally, the weak convergence
of (wj;) can be proved as in Lemma while the equi-integrability of (|Dw;|P/d;) is just a

consequence of the definition of (w;). O

5. A preliminary analysis of the energy contribution “close” to the connecting

zones

For later references, in the following section we study the asymptotic behavior of a sequence
of functions which will turn out to represent the energy contribution “close” to the connecting
zones. The results listed in this section will be applied in Section 6 to prove the I'-convergence
of (F;) as well as in Section 7 to compute the explicit formula for @,

Before starting, let us recall that we consider the domain €); = wtdi Uw™ii U (wrj@j X {0})
where wr; o = U;jczn— Bf}j_l(xfj ) Nw. Our I'-convergence analysis deals with the case where
the thickness d; of €2; is much smaller than the period of distribution of the connecting zones
€55 i.e.,

lim % =0.
J—+o0 €5
Moreover, we can exclude that r; > €;/2 otherwise the zones may overlap. More precisely, we
assume that r; < ¢;; i.e.,
Tlim 2 =0. (5.1)
J—+0o0 Ej
This choice will be justify a posteriori since (E]) will be the only admissible assumption to get
a non trivial I'-convergence result (see Remark BZl).

Finally, it remains to fix the behavior of r; with respect to d;. Let us define
= lim —.

This yields to consider all the possible scenarii, namely to distinguish between the cases: £ finite,

infinite or zero.

For any fixed ¢ € [0,+o00], we consider the sequence of functions (cp%.) defined in ([22) and
(ET13). Propositions Bl and establish the existence of the function ¢ as the (locally
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F1GURE 3. The domain (Bsf\,;l) x I)\ C1n; -

uniform) limit of (gp(f}) as j — +oo and v — 07 while Proposition will allow us to prove

that o) is actually the interfacial energy density in F© (see e.g. Proposition [62]).
5.1. The case ¢ € (0,+00]. Setting N; = ¢;/r;, we define the space
X)(2) = {g € WHP((BIy! x 1)\ Crany i R™) ¢ =2 on (9BIy1)*, ¢ =0 on (aBg];jl)—} :

where I = (—1,1) and we consider the following minimum problem

wg‘i)j(z) := inf / ) i W (r]flpaq(s]flpnc) dr: (e Xj(z)¢. (5.2)
(B} xD\C1aw,

)

) as j — +oo and v — 0.
7.

In the next proposition we study the behavior of (¢

PROPOSITION 5.1. Let ¢ € (0,400]. If

PP
0<R®:= lim L— < +00 (5.3)
j——+oo 5? 1

then,
(i) there exists a constant ¢ > 0 (independent of j and 7y) such that

4 _
0 <) < el +9"7Y)
forall z € R™, j € N and v > 0;
(1) there exists a constant ¢ > 0 (independent of j and ) such that

[4 [ n—1)(p— _ _ _
08 (2) — oD (w)] < cle —w| (P DEDP 4Pl =t ) (5.4)

for every z,w € R™, j € N and v > 0;

)

© converges locally uniformly on R™ to ¢

(iii) for every fized v > 0, up to subsequences, ©.)

as j — +oo and
087 (2) = ) ()] < elz = w] (YOTDETIE 4 2P g ) (5.5)

for every z,w € R™ ;
(0)

(iv) up to subsequences, @y’ converges locally uniformly on R™, as v — 0%, to a continuous

function o) : R™ — [0, 4+00) satisfying
0<¢®(z) <z, 09 (2) = O ()| < elz —wl (|27 + [wP)  (5.6)
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for every z,w € R™.

Proof. Fix v > 0, then yN; > 2 for j large enough.
(i) According to the p-growth condition B3,

en—1
0<¢(z) <3 (%(z) RN B ) (5.7)

<Da< %Dnc>
J

Since C, ;(z) is invariant by rotations, reasoning as in [5] Section 4.1, we can consider the

where

p
de: (€ X;Y(z)

C, ;(z) == inf /

—1
(B3I xD\C1 1w,

minimization problem with respect to a particular class of scalar test functions as follows

Crs(2) = inf / <Da7/)‘ T—JDn¢>
[P (BIR XI\C1 J

p
dr : € WHP((BIy! x 1)\ Cion,)s

¥ =1on (8B;LK,J_1)+ and ¢ = 0 on (OBI/LNJ_I)_}

< inf{bZWIODa¢+Vﬁ+LDa¢W)dx: (dﬁ*_l),¢*e£wgm(B$E)

YN,

and YT =4~ in B{Ll}. (5.8)

Let ¢F be the unique minimizer of the strictly convex minimization problem (EX). It turns
out that in := 1 — 97 is also a minimizer. Thus by uniqueness, wf = szi and in particular,
¢1i =1/2in B’ffl. Hence,

Cyj(z) < [2/Pinf { /B Dot P+ (Do P) dag : (0F = 1), 4 € Wy P(BIG)),

YN

1
and ¢t =~ = 3 in B{Ll}

2

= 2|z|Pinf /
B

‘Z’p i 1 n— . n—
= o1 inf . |Dop|P dae = € Wy ’p(Bq/le) and ¢ = 1 in Bj 1

YN

1
IDaylPdza v Wol’p(B;LK,jl) and ¢ = = in B’fl}

TN

|2|P -1 -1
= 2p710app(B{L ;B;LNJ-)' (5.9)

Since
lim Capp(B?_l;B::];jl) = Capp(B?_l;Rnfl) < 4003

j—+oo

hence, by (£3), (1) and (B3] we conclude the proof of (i).
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(ii) For every n > 0, there exists ¢, ; € X;’(z) such that

_ — 4
/(B"_lxl)\C’ 7’? w <7”j lDag“%j](Sj anCw') dx < @E/)](z) + . (5.10)
YN LyN;

)
V.J
we just have to modify ¢, ; on a neighborhood of (3ny‘]§})+ to change the boundary condition

We want to modify ¢, ; in order to get an admissible test function for . (w). More precisely,

z into w. To this aim we introduce a cut-off function 6 € C°(R"~!;[0,1]), independent of x,,,
such that
1 if z,€ B
0(zq) = and |D,0| <c.
0 if 2o ¢ By !

Hence, we define CNW‘ € X;Y (w) as follows

) Crj+ (1 =0(za))(w—2) in (BiyH*
C%j:
Cr.j in (Bly)” U (BrT < {0}).

By (ETI0), since ¢y,; = (5 in (Bf;&})*, we have that

P (w) — o2

),

< Tf/ - (W(TJIDQGJWJIanm) - W(TleQC%J'WlD"C’YJ)) dz 41
(Bl xD\C1aw,
= ’I“f /(Bnl)+ <W(T;1Da§7,j|5j_1Dn§%j) B W(Tj_lDaC%JMJ'_lD”C“”j)) dz + -
YN

By (B4)) and Holder’s Inequality, we obtain that

l Y4
P (w) — o (2) =1

‘ /<B"-1>+ <r§ o KDQCW ‘%D"CW >
TN J

<Da<~%j - Da(%j‘g_j(Dnéw - DnC%j))' dz

c/ ) (7,1;1 +9 ' <Dag‘%j‘%DnC%j>
(Bin)* J

IN

)

+ [ D[Pt |w — z]p_1> | Do 0] |w — z| dx

o D.C 'QD ;o

X

p—1

IN

< c|z—w|p/ |Da9|pdaca—|—cr§1|z—w|/ |Do0| dx,
Bf:;,; B;L];;
. p—1
+2c|z — w ||Da9||Lp(BnIG1;Rn,1) ‘(Dagfy,j %Dngw,j> .
TN j LP((BI:IG;)*;R’”X")
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Since yN; > 2 and Supp(f) C ng’ we obtain that

P (w) — o (2)

),

p—1

_ _ T
< clz —w <|Z — w4 T? L H (Da<77j‘_JD”C“/7j>

5 )) +7n. (5.11)

Lr B"_1 +.Rmxn
(( —yN].) ?

By the p-growth condition (B3]), (&I0) and (i), we have that

/(B (Dagmj‘g_anCv,j)

P
dzx

—1
:/LNJ' )"

< / » 7’? W <7’j_1DaC%j’5j_1DnC%j) dx + 7’? Hnil(BZJ?/jl)
(BRI
gn1
< ¢U@ +nt+e! rnil,p
J 61'171
< cef|zfP +4"h +77+07"71Tn]_1_p- (5.12)

Hence, by (&110), (B12) and (B3)) we have that

@j(w) = (=) < ez = wl (o 4 w4 ah 4 ATV o)

and (4] follows by the arbitrariness of 7.

By (ii) and Ascoli-Arzela’s Theorem we have that, up to subsequences, <p(z)

V.J
formly on compact sets of R™ to gogg) as j — +oo. Moreover, passing to the limit in (4] as

converges uni-

j — +oo we get
4 () = ()] < ez = w] (JaP~" + fuwlP~! 400D

Hence, we can apply again Ascoli-Arzela’s Theorem to conclude that, up to subsequences, (pf(f)

converges uniformly on compact sets of R™ to o) as v — 01, In particular, ¢(© : R™ — [0, +00)

is a continuous function and
0<¢(2) <z, 10 (2) — D (w)] < e (2P~ + [wP) |z — w]
for every z,w € R™. O

5.2. The case ¢ = 0. In this case we expect that the energy contribution due to the presence

of the sieve is obtained studying the behavior, as j — 400 and v — 0", of the sequence (gogo;)

defined as follows

cp,(y(?;- (2) = % inf

/ P W (rj_lDaqéj_anC) dr: (€ X](z)
5 n—1
J (B»«/Nj XI)\Cl,wNj

J

= inf / . r?W(rj_lDC)dx: (eY](z) (5.13)
(B N; XIj)\Cl,WNj
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N y///\ B x 1

\;_»"_\:_»:; _________ _———"K Cl,q/Nj

FIGURE 4. The domain (B ") x ;)\ C1 4w, .

where [; := (—=6;/r;,0;/r;) and

v7(2) = {C e WH((BIR! % L)\ Croni R™) & ¢ =2 on (OB O/,

¢=0on (8B§];j1)‘(5f/rf>}.
Note that in this case we are interested in the limit behavior of a sequence that is obtained from
the one corresponding to ¢ € (0,4o0] multiplying it by 0;/r; (see (I3) and recall (2)). Let
us try to motivate this choice.
Let ¢ € (0,+00), then starting from (&22) by a change of variable it is immediate to check
that

T -
p,(2) = 5—3 inf / B i W(r; 'DO)dx: ¢ Yi'(2) ¢ (5.14)
J (B:/LN] XI]')\CLA/NJ.

Now assuming that lim; oo 75~ "/(9; 6?_1) < +o00 (or equivalently that lim;_ r?_l_p/sy_l <

O
Vd
uniformly in R™, as j — +oo0 and v — 07 (Proposition BJl). Then if £ € (0,+00), studying

the limit behavior of ([BI3)) is perfectly equivalent to study the limit behavior of (B2). While
if £ =limj_.4o07;/0; = 0, (I4]) suggests that, to recover nontrivial information in the limit,

+00; see Remark BH) we know that the sequence (¢ ;) converges to ¢ @O for some ¢, locally

we have to study the asymptotic behavior of the sequence obtained from (EI4]) dividing it by
r;/0;, that is to study the asymptotic behavior of the sequence given by ([I3).

Following the line of the proof of Proposition Bl we want to establish an analogous result

0)

for the sequence (<p§ i)

PROPOSITION 5.2. Let ¢ = 0. If

ri P
0<RO = lim L — <+ (5.15)
j—too 816,

then,
(i) there exists a constant ¢ > 0 (independent of j and 7y) such that

0<)(z) <e (|2l +97)
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for all z € R™, j € N and v > 0;

(1) there exists a constant ¢ > 0 (independent of j and ) such that

04(2) — ehw)] < ez —w| (YD =l el gt (5.16)

for every z,w € R™, j € N and v > 0;
(0)

VJ

(0)

11) for every fized v > 0, up to subsequences, converges locally uniformly in R™ to
(] v ¥ g Y Y Py

as j — +00, and
P0(2) = o0 )] < ez —wl (3" DO 4 2P ) (5.17)

for every z,w € R™;

(iv) up to subsequences, Lpgo) converges locally uniformly in R™, as v — 07, to a continuous

function ¢ : R™ — [0,400) satisfying
0<o0(z) < 2P, 0 (2) = O (w)| < clz —w| (|27~ + |wP) (5.18)
for every z,w € R™.

Proof. Fix v >0, then yN; > 2 and ¢§;/r; > 2 for j large enough.
(i) According to the p-growth condition B3,

5jen !
0<eV(z)<p (c%j(z) oK (B 4! i L ) , (5.19)
J
where
Cy,j(z) = inf / |D¢|Pdx: (€ Y]“’(z)

—1
(B::N] XIj)\Cl,WNJ'

Arguing similarly than in the proof of Proposition BJl, we can rewrite

Cyi(2)

|2|P

= inf / |Dy|Pdx = ¢ € Wl’p((B;LK,_l x I;)\ C14n;),
(BIn) XI)\C1 3w, !
=1 on (332&_1)4-(6]'/7’]')7 ¥ =0 on (332&_1)—(6]'/7‘]')}_ (5.20)

Let 11 be the unique minimizer of the strictly convex minimization problem ([20). It turns out

that ¥2(za, xn) = 1 — ¢1(x4, —xy) is also a minimizer. Thus by uniqueness, 1; = 15 and in
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particular, 1 = 19 = 1/2 on B{Lil x {0}. Thus
, — P; Pdr - Lp((gn=1y+(3;/r;)
Ciz) = 2] mf{ /(B;w;)wj/w D da: e WhR((BI ),
J

1
1 =0 on (8321?[],1)“57/”) and 1) = 5 on Bt x {O}}

2P

. Lp(( gn—1\+(;/r;)
o1 { /(BnN1)+<6j/rj) [Dyfde = € WH((BN; )™ ),
TN;

1 =0 on (8321?[],1)“57/”) and ¢ = 1 on B! x {O}}

z|P _ _
%Capp(B’f 1;B,:LNJ,1 x I;) . (5.21)

IN

Since

. —1. pn—1 _ ~1. )
jBToo Capp(B’f ,B;LNJ_ X Ij) = Capp(B{L ,R") < 400;

hence, by (13), (BI9) and (EZI)) we conclude the proof of (i).

(ii) We can proceed as in the proof of Proposition [ (ii) using a different cut-off function
also depending on z,,. Namely, let 6 € C2°(R™;[0,1]) be such that

1 if (2, 7,) € B! x (—1,1),
O(za,zn) = and |DO| <ec.
0 if (za,2n) & By ' x (=2,2)

(0)

g We define

Hence, if ¢y; € Y]V(z) is a sequence which ‘almost attains’ the infimum value ¢
W R= Yf’(w) as follows

Crj+ (1 =0(@)(w—2) in (Bly)*/m),
Crg =
Gr.d in ((B;L];jl)—(éj/rj)) U (B{z—l x {0}).

By (&I0) we conclude the proof of (ii) reasoning as in the proof of Proposition (1] (ii).
The proof of (iii) and (iv) follows the line of the proof of (iii) and (iv) in Proposition Bl O

Now we are able to describe the energy contribution close to the connecting zones as j — 400

and v — 0T,

PROPOSITION 5.3 (Discrete approximation of the interfacial energy). Let (u;) C WhP(Q;;R™)N
L>®(9;;R™) be a sequence converging to (u™,u~™) € WhP(w;R™) x WHP(w;R™) such that

sup; Fj(u;) < +oo and satisfying sup e ||ujll e @, mm) < +00. Let (u;i) be as in @T). If

11—
TP

(e (0,4] and 0<RY = lim L — < +0
jotoo g7 !
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or
n—p
(=0 and 0< RO = lim < 400
Jj—+oo ]{—:
then
lim 1 ‘ O (it — i ot — 0Ot —u ) d =0, 5.22
Ji timenp [ 37 00" 45 xgr — et =)o o2

1€Z;
for every £ € [0, +00].

Proof.  Since sup,ey Hu]'HLoo(Qj;Rm) < 400 by Propositions B or we have that

lim sup/ ‘ Z 80%(%* _ uéi)XQ?;_l — Ot — u_)‘ dxa
w . Y

j—too
< lim sup/ Z ‘gp ' ) o® (uz ‘XQn 1dz,,
jotoo 1€Z;
+ lim sup/ ‘ Z o) (u;Jr - u;’»i)XQv_L—l — O (ut - u_)‘ dz,,
oo Jul S e
< ) + hmsup/ Z @ - u;.*)Xan — Ot — uf)‘ dz,,
jotoo Juwlicy "o

as v — 07. By (B8) or (I]) and Holder’s Inequality we have that

lim sup/ ‘ Z (p(f) (u;"‘ — u;»_)XQ?;; — 4,0(5) (ut — uf)‘ dx o
w ()

URSES 1€Z;

= limsup Z / Z»+ - u;_) — Ot — )| daq
Jooo 1€Z; 1€
. . 1/p
¢ lim sup Z Z-+ —ut|P + luy” —u” P dwa> .
Jotoo 1€Z;

IN

Hence, it remains to prove that

lim sup Z ut — u§i|p dre =0. (5.23)
Jotoo 1€Z; Qi s]

By Lemma BTl (ii) applied with p =¢;, B, = C and A, = ! and since 0; < €5, we have

ZEJ
+  _itp ﬁ(/ T / o it >
u” —ui |Pdr, < uj —u|Pde + u; — u' TP de
/%1! e < 5 (g 197 o, 5
c n c ?
S 5 uj — w= P de + —+ |Du; [P dz, (5.24)
6j (ng—jl)iéj 6j (an,s_jl)iéj

for all 4 € Z;; hence, summing up on ¢ € Z;, we find

ce’
| Zi|pdaca§— uj — uE|P dx + 3 | Du|P dx ,
n—1 (5 +46, J
g JwT

iEZj Qi,s

B
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then passing to the limit as j — +oo by the convergence of (u;) towards (v, u ™) and sup; Fj(u;) <

+oo we get (23] and then (B222). O

6. I'-convergence result
6.1. The liminf inequality. Let (u;) C WhP(Q;; R™) N L>(;;R™) be a sequence con-
verging to (ut,u”) € WhP(w, R™) x WP (w,R™) such that supjen ||l Lo (0;:rm) < +o00 and

lim inf Fj(u;) < +00.

]~>+oo
By Lemma[EZ, for every fixed k € N, there exists a sequence (w;) C WIP(;; R™)NL®(£,; R™)
weakly converging to (u™,u™) satisfying [EZ), () and such that

hminf— </ W (Duy;) dx +/ W ( Du])dx>
j—+o0 0,

> hmmf— (/ W (Duw;) dm—i—/ W( Dw])dx> _ <
]~>+oo i k
1
> liminf — / W (Dwj) dx +/ W(Dw;) dx
j=teo 05 \ J(w\B;) (\E;) ™%
1
+liminf — ( W (Duwj) dm—i—/ W Dw])dm> ~ & (6.1)
j——+o0 j E 5j k
where I := Uier B;}?l(azjj).

We first consider the energy contribution ‘far’ from the connecting zones. In this case, we suit-
ably modify the sequence (wj;) in order to get a constant inside each half cylinder B (n— )(azf R
Then, we apply the classical result of dimensional reduction proved in [39] to w+5ﬂ and w ™%,
separately.

PropPOSITION 6.1. We have

1
lim inf — / W (Dwj) dx + / W (Dwyj) dx
J=+00 0 \ J(w\E;) % (\Ey) ™"
> / (anIW(Dau—’—) + anlw(Dau_)) dz,.
w
Proof. We define
wj i (w\ By,
Y= utin B%—l(x‘jf V9 if i € Z;. (6:2)
Then (v;) € WHP(Q;;R™) converges weakly to (u™,u™). In fact,
1
sup — / |Dv;|P dz < sup — | Du;|P dx < +o0. (6.3)
jeN 0j jEN 05 JoE

Moreover, since ,0] < pj < €;/2, then B” Y(27) € QI hence,

za’

. :I:pd </ o :I:pd n / + i‘ipd
Vi — U XL w u X E u u X
/uiéj|] | (w\E) | | j| J |

+4
1€Z; ( i, sj )
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and, by (B24)), we obtain that

1 1
—/ lvj —uFPde < —/ |wj—uj[|pdac—}—£ lu; — ut P da
5j ey 5]' Wt 5]' e
1
+ecel sup — ., [Dujl da. (6.4)
JjeEN Y5 Jw™%

Passing to the limit as j — 400 in ([G4), by (63)) and Remark we get that (v;) converges
weakly to (u™,u™).
Since W (0) = 0, by (E2) and [39] Theorem 2, we have

lim mf — W (Dwj) dx + / W (Dwj) dx
oo 9 w\E (W\E;) %

= lim 1nf — W (Dwv;) dx + / W (Dwj) dx
J=+ee 0 w\E (@\E;)~%

= hminf— < W (Dwj;) dx—i—/ W (Dwvj) dx >
j—+o0

v

/Qn_1W(Dau+)dma+/ Qn AW (Dyu~) dz,, .
O

Now let us deal with the contribution ‘near’ the connecting zones. We always work under

the assumption

, T('nflfp)
(e (0,4+00] and 0<RY = lim < —— < o0,
J—+o0 &j
or
(n—p)
(=0 and 0<RO= lim L —— < +o0.
j—+oo 5j€;-‘

In the following proposition we suitably modify (w;) in each surrounding cylinder in order to
get an admissible test function for the minimum problem (B2) or (BI3).

PROPOSITION 6.2. Let ¢ € [0,+00]. Then

1
lim inf — W (Dwj) dx + W (Dw;)dz | > RY / O (ut —u)drg + o(1),
J—+00 (5] EJ__HSJ E J w

asy — 0.
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Proof. Let £ € (0,+00], the case £ = 0 can be treated similarly. Let ¢ € Z; and N; = i—j Since

p; < 7ej, we can define

. . .
w;(@;” + 15 Ya, 05 Yn) — u; (BZ]/TJ I) \ Clvpj/rj
; it i— : n—1 n—1\+
CJZ — (uj —ul ) in (BA/N], Bp;._/rj)
: n—1 n—1\—
| 0 in (BVN], Bp;_/rj) )

i - i i i— n—1\+
where N;j = €;/r;. Then (; € lep(( j x 1)\ C1an; R™), G = (] o+ —uj ) on ((9B,Yle)
and C]Z. =0 on (831;1\/].1) . Since W(0) = 07 changing variable, by ([2) we get

1

= W(Dwj)d W (Dw;)d
5] /Bni_1($:j)+6j ( wj) v /Bni_l(l’:j)éj ( wj) v
5 ol

= /(B )+W(rj1Da<;i|6j1Dn<;i)dy+ /( Bnl)w(rjlpag;:wjlpng) dy

5 /7]

: W (r; ' Dagfl05 ' DnC} ) dy
’ /<B”N?x1)\cl,wj (j . J>

n—1-p (f) H— i

Summing up in (G5, for i € Z;, we get that

1
—( W (Dwj) dm—l—/ W (Dwj;) dx )
(5] E J

1V
= — W (Dw; dac+/ W (Dw;) dx

J Pj
rnflfp
n—1-p @) ¢, i+ iy _ _J n—=1 (0 o i+ i
" Doyt —u) = 1 Dt —u). (6.6)
i€Z; J €2}

Passing to the limit as j — +oo we get, by (B3]) and Proposition B3], that

1
lim inf — ( W (Dwj) dx + W (Dwyj) dx )
J—+o0 j E 55 E 55
> R(g)/cp(g)(zﬁ—u_)dxa
£) i+, i _ O+ -
+R 1j19_££/<2g0 u; )XQZ;; e (uT —u )) dzx,,

= RWY / o0 (ut —u)dzg + o(1),
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as v — 07, which completes the proof. O

We now prove the liminf inequality for any arbitrary converging sequence.

LEMMA 6.3. Let £ € [0,+00]. For every sequence (u;) converging to (u™,u™) we have

liminf Fj(u;) > /Qn1W(Dau+)dxa+/Qn1W(Dau)dxa

J—+o0

+R® / OO (ut —u7) dag .

Proof.  Let (uj) — (u™,u”) be such that liminf; ;. Fj(uj) < +oc. Reasoning as in [5]
Proposition 5.2, by [I8] Lemma 3.5, upon passing to a subsequence, for every M > 0 and
n > 0, we have the existence of Ry; > M and of a Lipschitz function ®,; € C}(R™;R™) with
Lip(®ps) = 1 such that

z if |z| < Ry,

Pu(z) =
0 if ‘Z’ > 2R
and
lim inf Fj(u;) > liminf F;(®as(uj)) — 7. (6.7)
J—+0o0 J—+o00

Note that (®ar(uj)) € WHP(€;R™) N L°(Q55R™), supjey [ ()l Lo (,mmy < R and it
converges to (@ (u™), @pr(u~)) as j — +oo. Hence, if we apply (6.1I), Propositions Bl and G2
to (Par(uy)) in place of (uj), letting v — 0 and k — +o00, we get that

J—+00

liminffj(‘I)M(Uj)) > /Qn_1W(Da‘I>M(U+)) dxa+/ Qn—lw(Daq)M(u_))dxa
+RO / O (@ () — Dur(u”)) da. (6.8)

Moreover ® 7 (u®) — u® weakly in WP(w; R™) as M — +oo; hence, by @), [EX), the lower
semicontinuity of [ Qn_1W (Dyu) dx,, with respect to the weak W1P(w; R™)-convergence, and
(EX) we have that

lim inf F; (u;)
j—+o0
> / Qn W (Dou™)dzo + / Qn AW (Dou™ ) dzg + R / go(g) (ut —u7)dze —1(6.9)
and by the arbitrariness of 7, the thesis. O

6.2. The limsup inequality. For every (u*,u™) € WHP(w,R™) x WP (w, R™) the limsup
inequality is obtained by suitably modifying the recovery sequences (uji) for the I'-limits of

1 1
—/ W(Du)dxr and —/ W(Du) dzx.
05 Jutds 0j S5
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LEMMA 6.4. Let{ € [0, +oc] and let w be an open bounded subset of R" 1 such that H" ! (0w) =
0. Then, for all (ut,u™) € WHP(w,R™) x WLP(w,R™) and for alln > 0 there exists a sequence
(;) C WHP(Q4;R™) converging to (u™,u™) such that

limsup Fj(a;) < /Qn_1W(Dau+)dma+/Qn_1W(Dau_)dxa

j—+oo

+R® / Ot —u")deg + nROH 1 (w).

Proof. The proof of the limsup is divided into three steps. We first construct a sequence
(uj) C wlp (€2;;R™) that we expect to be a recovery sequence. In the second step we prove
that (@;) converges to (u*,u™). Finally, we prove that it satisfies the limsup inequality. We

first deal with the case ¢ € (0, +00].

Step 1: Definition of a recovery sequence. Let u™ € WP (w; R™)NL>®(w; R™). Accord-
ing to [39] Theorem 2 and [I4] Theorem 1.1, there exist two sequences (u;t) C WhP(wt9%; R™)

such that qu — u*, the sequences of gradients (]Du;t P/8;) are equi-integrable on w¥% respec-
tively, and
lim / W ( Du )dx = / Qp_1W(Dout) dq, . (6.10)
j—+o0 6

Moreover, using a truncation argument (as in [7] Lemma 6.1, Step 2) we may assume without

loss of generality that

+
sup 105 1| oo (05 oy < F00-

Let u; := u+x +3; T U X5 € WP (w9 Uw™%;R™) and let (w;) be the sequence obtained

from (u;) as in Lemma B3 then sup;cy Hw]HLoo +5; < +o0.

JR™)

We first define (u;) ‘far’ from the connecting zones; i.e.,

@ = w; in < v B )ﬂj . (6.11)
iezZn—1
Then we pass to define (@;) on each ng_l(xfj)i‘sﬂ'
i€Zjand i€ Z"\ Z;.
If i € Z;, by (&2, for every n > 0 there exists C%. € X?(u;+ - u;_) such that

making a distinction between the indices

W (17 DaCl 107 Du¢l ) do < 0 (ult —uiT) 40 (6.12)
/(B" 1><I)\Cl AN (3 RN %]> IR J
Then, we define

e
0 e Cl A Lo — xij @ + u@'— in Bn—l(m?fj):l:5j = (6 13)
J TS rj ’ 5] J Pj ( ’ J ’

. _ . _ . :l:6
In particular, u; = u}i = w; on (aB;}j 1@?)) .
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Let us now deal with the contact zones not well contained in wj; i.e., with the indices i € Z;.
For fixed v > 0 and j large enough we have that yN; > 2. Let ¢» € WhP(By1;[0,1]) be such
that ¢y =1 on 8B§_1 and ¥ =0 in B{L_l and define

0 in (B;L];jl)—
V(@) = q $(re) in (BYH)T
1 in (BN \ By Ht

_ + N —
Then ¢’yj € Wl’p((B;Lle x I)\ C14n;;[0,1]), 1y =1 on ((9B" 1) and v, ; = 0 on (aB’;NJ_l)
Let w = wj X_+s;, we extend both of them to the whole w x (—0;,0;) by reflection; i.e., we
define wj[(xa,xn) = wj-[(ma, —x,) for z € w¥% and ﬁ}]i(ac) = wi(z) for z € W

J
define

Ej Ej
_ To—x, T\ To—x,” Tn _
- . o | 1— S = = . 6.14
= Vg ( ri 0 > Ot < Yrd ( ri 9 ) )w] o-19

n (Bp='(2}7) x (=35,6;)) N Q; and for i € Z"~'\ Z;. In particular, we have that #; = w; on
(0B (x77) x (=8,0;)) N Qy; thus (a;) € WHP(Q5R™).

. Hence, we

Step 2: The sequence (u;) weakly converges to (u,u™). Let us check ([B1) and B2).
We will only treat the upper cylinder wt%, the lower part being analogous. First

l/ |i; —ut|P dx
5 / (AUseznt BE 1)

€j
¢i Lo —Li" Tn Lo —
579 r 5. J
i J j

T — T T P
A e e B ] t T nT o
+5; 1/)%]< - ,5j)(w w; ) +w; —u

+5; \w —ut|P dx

P
dz

s
R
_l’_
U
8

IA

| =

—

=

|
N
iy

3
i~y
8
_I._
o

Cut - u§+ P dzq

£j p
- l‘a - 'CL‘Z x_n _ Z+ o 71—
ZEZ
+—/ S <\w*\p+\@f\p+‘“+‘p) de. (6.15)
5j (meieZ"—l\Zj B;Lj_l($i])>+] J J

Since lim;_, oo H" ! (w N Uieznfl\zj B;‘j_l(azjj)> = 0 and supjey ||w ||Loo w0 gmy < 00, we
have that

lim < / L (|w+|p+ 55 [P + |u+|p) dz = 0. (6.16)
J—+oo 5j (meiEanl\Zj ng_l(x? )) +o ’ ’
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Moreover, reasoning as in the proof of Proposition (see inequality ([.24])), we have that

lim " /Bn1 y ut — it P dag =0, (6.17)
Z; pj (z;7)

J—+oo
i

and, by the convergence w; — (u*,u™), it remains only to prove that

lim Z
Jj—+oo 5 By Yz 7)o

ZEZ

p
dr =0. (6.18)

€j

i [ Ta T Tn it i
$r.d (7@ '3, = (uj" —uy7)

In fact, changing variable, we get that

€; p
- Z / Lo xz ﬂ _ (uz—i— o uz ) dx
B" 1 ’J r ’ (5]'
ZEZ
. p
_ nlz/ L) = i =) de,
1€Z;

and by, Poincaré’s Inequality

. . P .
[ [Gsanmn) = i =] dra < N [ DG szl da
By By

for a.e. x, € (0,1). Hence, by the p-growth condition [B3]) and (EI2Z) if we integrate with
respect to x,, and sum up in 7 € Z;, we get that

 (To -1 x ; |
1 g(ai_n> I
gy / 0.6 i
1€EZ; n_ )"
< el prz/ <Da§;7j‘%Dn§;7j) dz
1€Z; J
1 j— -1 -1
< ery N Y (wm )+ B)))
1€Z;
n 1— —p A ) nfl
e Y (U <n+C’Y"1 o1 p> H'Hw) | - (6.19)
] 1€Z; J

By Proposition and (B3), passing to the limit as j — +oo in ([@I9), we get (EIX]).
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It remains to prove that (B2) holds. In fact,

1
—/ | Dt |P da
(5]' wtdj

5_j /(W\Uieznl B;Lj_l (95? ))

+
+5; |ij [P dx

7 ] (5o (o oty (2 ) )
— r |, — ) | — — T
05 Wier, By @y N7 TNy T ST IRy g
1
+—/ B D, dz. (6.20)
5j (UiEZn—l\Zj ngfl(xi])mw)-’_éj
It can be easily shown that
£j £j P
: (e e ()
/ Uiez, B3 M) (r] @1 rj 01 " ri 0 )
n 1-p rn—l—p
1 i - 1 j “1) .
< (Zgn 907] }))""Hn (w)(n 1 + " ), (6.21)
1€EZ; J
while,
-/ Da;pd
- .. ) Uj X
0 (UiEZn_l\ZJ’ B:,Lj_l($ij)ﬂw>+61
< e 3 (1 / |pav La =8 )P (e 4y ) d
< ¢ — @ %j(i,—)‘ w; W T
iz g, \73% JBg et T ’ ’
i/ (IDwt P + | D |P) da
0 Sy @) !
1
< o i [ IDaul e, + D P da
Br 55 By @ )rwy T
i€z~ 1\Z 2
1 _
+— . |Dw; [P dx
05 J (B () 7%
PP 1
<c ( H Q) ++ / |Dwt PP da
iezn\z; \ i 05 By ynw)E
1

— . |Dw; [P dx | . (6.22)
5j (ng_l(xi])ﬁw)f‘sj J

Note that the previous sum can be computed over all 5 € Z" =1\ Zj such that Q ﬂw # (). Let

/. n—1
w] T U ’i75j ’

€2 INZ;, QWD
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then

> H Q) = ) — Y (@w) = 0. (6.23)
zeZn—l\zj,Q;;jlmw;A@

Moreover, by Lemma we have that sup; (% fw:téj |Dw]j.[|p dxr < +o00; hence, by Proposition
J

B3 B3), @20), E21) and B22) we get [B.2).

Step 3: The sequence () is a recovery sequence. We now prove the limsup inequality.

lim sup/ W (Du;) dx

j—4oo J

1
= limsup — / . _ W(Dﬁ]) dx + / . W(Dﬁ]) dx
j—too 0 ( (AUiegno B3 @)™ Uiez, By M)+

7

.5, W(Diiy) dm) . (6.24)

7

+ .
(meieZ”—l\Zj ngfl(z.a))
We deal with the first term in (E24]). The definition of u; (EI1), Lemma B3 and (&), yield

lim sup —

_ W (Du;)dx
j—too 0j /(w\Uiezn—l B,’;]fl(xjf )> +5; J

W (Dwj) dx

) 1
= limsup —

j—too 0j /(w\Uiezn—l By Y(ay )> +4;

1
< limsup—/ W (DuF)dz + o(1
map - [ W(Du)dz -+ o)

— / Q1AW (Dout) dao + o(1), (6.25)

as v — 0. For every i € Z;, by (GI3) and (EI2) we get that

1 /
5 W(Du, dw+/ W (Da;) dzx
5_] ( B:)l]fl(lfj)-l’éj ( .7) Bg'jfl(zéj)_éj ( ]) >

7 7

= ! W <T51Da<§,j|5len<§,j) dx

/(BS;; xD\C1n,

—1— Y4 ; —
P (T ) )

IN
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hence, by (&3] and Proposition B3 we get

1
limsup — / W(Du, dm—}—/ W (Du;) dz
Jtee 5]’( Usez, By (@)™ o) Uiez, Biy (@)™ o) )
< R(é)/go(g)(zﬁ u”)dze + RO H" N w)n
+1im SUP/‘Z SD%J - uéi)XQ*f—l — O (ut - U_)‘ dzq
j—+oo szZ e
= R(g)/go(@(zﬁ —u‘)dwa%—R(@ H"‘l(w)n+0(1), (6.26)

as v — 0T. Finally, for ¢ ¢ Z;, by the p-growth condition ([B3) and (E22), we obtain
1

— W (Du;) dx
5]' </<Uiezn—1\z Bn 1( )ﬂw)ié] J )

< ?(/ . <1+1Dujrp>dx)
ieZ”fl\ZJ‘ J (ng_l(wij)ﬁw) J
< cH"_1< U B;}j_l(x?)ﬂw)
’iEanl\Zj
e Z (’I“n 1_pH” LQr- 1) i/ |Dwl|P dx
ieZ”fl\ZJ‘ 6] e 6.7 (ngil(xjj )mw)+6j !

Since
. _1 _1, &j .
A e U Btene) =0,
ZEanl\Zj
by ([&3)), the equi-integrability of (|Dw]j.[ P/6;) on wt% and @Z3), we deduce

W (Di;)dz = 0. (6.27)

lim sup —/ _ ,

jotoo 0j (wﬂUiezn—l\z By Y(a ))ﬂf
Gathering (624)-(GZ7) and passing to the limit as v — 07 we get the limsup inequality for
every ut € WP (w;R™) N L®(w; R™).

We remove the boundedness assumption simply noting that any arbitrary W (w; R™) func-
tion can approximated by a sequence of functions belonging to W1 (w; R™) N L™ (w; R™), with
respect to the strong W1P(w;R™)-convergence. Then, by the lower semicontinuity of the I'-
limsup and the continuity of

(vt,v7) = / Qn AW (Do) day, +/ Qn W (Dav™) dg + R® / o0 (vt —v7) dzg
w w w

with respect to the strong W1P(w; R™)-convergence we get the thesis for £ € (0, +o00].
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If £ = 0, we can follow the line of the previous case with slight changes. Let us start by
dealing with Step 1. First, we have to notice that for the definition of (%;) in B;Lj_l(xfj )*95 , for
i € Zj, we have to consider, for any n > 0, a function ¢, ; € Yf/(z) such that

J AW (1706 ) dr < A+

-1
N X I\CLaN;

hence,

&j
T — T, T o 1, eits .
2T ) fwl in BY (@) for i€ Z;.

r; T J P ¢
j j

ﬁj(xomxn) = Cfiy,j <

While for the definition of (#;) in ng_l(xfj)i‘sf, for i € Z"~1\ Z;, we have to introduce a suitable
function v, ; different from the one used in (EI4). In fact, for a fixed v > 0 and j large enough
we can always assume that yN; > 2 and §;/r; > 2. Let 1» € W'P(By ™! x (0,2); [0, 1]) such that

Y =0o0n B! x {0} and 1) = 1 on 9By ! x (0,2). We then define

0 i (B,
Uigla)=§ (o) o (B
Lo (BRI (BT

The functions ¢, ; belong to Wl’p((Bzﬁjl xI;)\C14n;;[0,1]) and satisfy ¢, ; = 1 on ((9B§K,j1)+(5j /i)

and 1, ; = 0 in (B;K,jl)_(‘sﬂ' /mi). Hence, we define

€j €j
_ To —X;" T\ 4 Lo — T;7 Tn -
Uj = Py == + | 1=y | ——— — w;
. , J , . J
Tj T T Ty

in (B;Lj_l(:c?) x (—6;,6;)) NQ; and for i € Z"~!\ Z;. In particular, we have that @; = w; on
(0B M (x;7) x (=05,05)) N Q.

Taking into account the definition of (%;) we can proceed as in Steps 2 and 3 also for £ = 0. [

7. Representation formula for the interfacial energy density

This section is devoted to describe explicitly the interfacial energy density ¢ for ¢ € [0, +00].
As in [5], we expect to find a capacitary type formula for each regime ¢ € (0,400), £ = +00 and
£=0.

We recall that ¢ is the pointwise limit of the sequence (i
where for ¢ € (0, +o0]

Efg»), as j — +oo and v — 0T

. i -
o (z) = in / 1 W (rj ! (Dac‘(;—?DnQ) dr: Cex)(2)y,
(B:,LJQJ. XI)\Cl,wNj J

while for ¢ = 0,

P (2) = inf / WD) dr s (e Y] (2)
(BYN; <I)\C1an;



110 2. THE NEUMANN SIEVE PROBLEM AND DIMENSION REDUCTION

(see Section H). The main difficulty occurring in the description of ©® is due to the fact that
the above minimum problems are stated on (increasingly) varying domains. This do not permit,
for example, to deal with a direct I'-convergence approach in order to apply the classical result
on the convergence of associated minimum problems. Thus the proof of the representation
formula will be performed in three main steps: we first prove an auxiliary I'-convergence result
for a suitable sequence of energies stated on a fixed domain, then we describe the functional
space occurring in the limit capacitary formula, finally, we prove that ¢ is described by a

representation formula of capacitary-type.

We introduce some convenient notation for the sequel. Let g; : R™*™ — [0,+00) be the

sequence of functions given by
gi(F) := 7“? W(’I“;lF)
for every F' € R™*". By [B3)) and (B4 it follows that
|FIP — 7% < g;(F) < B(rf +|F|P), for all F € R™*" (7.1)
and the following p-Lipschitz condition holds:
l9;(F1) — gj(F2)| < c(rf‘l + |FP L 4 |BP Y F — |,  forall Fy, F, € R™*",

Then, according to Ascoli-Arzela’s Theorem, up to subsequences, g; converges locally uniformly

in R™*™ to a function g satisfying:
|FIP < g(F) < B|F|P, forall F eR™" (7.2)

and

lg(F1) — g(F)| < c(|FL PPt + | BB P Y|Py — Fy|,  for all Fy, Fy € R™™. (7.3)
7.1. The case ( € (0,+00). We define
Xn(z) = {g eWWP (BT x )\ CLv;R™) : ¢ =z on (9B )
and ( =0 on ((9BK,_1)7}
for N > 1 and I = (—1,1). We recall the following I'-convergence result.
PROPOSITION 7.1. Let

0= lim e (0,+00),
J—+00 i

then the sequence of functionals Gg.g) CLP((BYt x I)\ Cinv; R™) — [0, +00], defined by

g; (DaC

/ ﬁmg) dr  if €€ Xn(2)
GO) = d B HDNCuN 9;
J T

400 otherwise ,
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T'-converges, with respect to the LP-convergence, to

/ - 9(Dal D) da if ¢ € Xn(2)
G(@(C) = (BN xD\Ci,N

~+00 otherwise .
Proof. Since ¢ = lim;_,(7;/0;) € (0,400), by the locally uniform convergence of g; to g we

have that the sequence of quasiconvex functions F + g;(F|(r;/0;)F,) pointwise converges to
F + g(F|(F,). Hence the conclusion comes from [17] Propositions 12.8 and 11.7. O

REMARK 7.1. We denote by p* the Sobolev exponent in dimension (n — 1) i.e.

n—1—p

We recall that if (a,b) C R, the space LP(a, b; LP" (R"~1; R™)) is a reflexive and separable Banach
space (see e.g. [4] or [48]). Hence, by the Banach-Alaoglu-Bourbaki Theorem, any bounded
sequence admits a weakly converging subsequence.

PROPOSITION 7.2 (Limit space). Let

n—1-p
. r.
(= lim 2 e(0,+4x), 0<RO= lim < <400 (7.4)
j—too b jmtoo €]
and let ((y,5) € X;f(z) such that, for every fized v > 0,

r
sup/ B gj <DaC7,j‘§DnC7,j) dx < c. (7.5)

jEN (BZNJ’ XI)\CI,-yNj J

Then, there exists a sequence Cj € WEP(R x 1)\ C1,00; R™) such that

loc
G=Cn in (Biy x 1)\ Cran,

and such that, up to subsequences, it converges weakly to ( in I/Vll’p((R”*1 X I)\ C100;R™).

ocC
Moreover, the function ( satisfies the following properties

D¢ € LP((R™! x I) \ Cyo0; RN,

¢~z € LP(0,1; LV (R"-1;R™)), (7.6)

¢ € LP(—1,0; LP" (R" 5, R™)).

Proof. By (IZl), (C4) and (ZH) we deduce that, for every fixed v > 0,

sup ‘(Dagw“g—anCw) ‘p dx <c. (7.7)

jEN /(BZ;,JI XI)\CLWNJ'
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We define
z in (R*\ B;LJQJ.l)+7
Gi=14 Gy i (Biy x D)\ Ciyn,,
: _ —1\—.
L 0 I (Rn 1\B,TYLNJ) ’
hence,
Ci(ywy) — 2 € WHP(RPLR™)  for ae. z, € (0,1)
and

(i ) € WHP(RHR™) for ae. x, € (—1,0).
Moreover by (1) we get that

Lo SO e [ (i) ase. o3

Since p < n — 1, according to the Sobolev Inequality (see e.g. []), there exists a constant

¢ =c(n,p) > 0 (independent of x,) such that

_ . p/p* B
(/ I¢j (20, n) — 2|P daca) <c / |DaCj(xa,xn)|?P dzo (7.9)
Rnfl Rnfl

for a.e. x, € (0,1), and

R X p/p* R
</ ) ¢ (za, zn) P dxa> <c / ) |DoCj(xa, xn)|P dao (7.10)
R7— Rn—

for a.e. x, € (—1,0). If we integrate (L) and ([ZI0) with respect to x,, by [Z8) and Remark
[Tl we get that there exist ¢; € LP(0,1; LP" (R*™1;R™)) and (» € LP(—1,0; LP" (R"~1;R™)) such
that, up to subsequences,
G=z=C in LP(0,1; LV (R R™)),
GG in - LP(—1,0; LP" (R~} R™)),

D¢ — DG in LP((RY1) T RM*n),
D{; — D¢ in LP((R"H)—;R™™),

In particular, we have that

GGtz i Wl(RDHRT),

p . 1 1y —

G — G in W P(R1) 75 R™).
Then, since (1 +z = (2 on B{L_l in the sense of traces, we can define

= (1+2z in (Rnfl)Jr
’ Co in (R"H~u(By ! x {0}),

and it satisfies (Z4). O
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Now we are able to describe the interfacial energy density ¢©) as the following nonlinear

capacitary formula.

PROPOSITION 7.3 (Representation formula). We have

0O(z) = inf { / 9(DoC|¢DyC) d = ¢ € WEP(R™E % I)\ Oy o; R™),
(R*=1XI)\C1,00
D¢ € LP((R™ x 1)\ Cy oo; R™™), ¢ — 2z € LP(0,1; LY (R"; R™))

and ¢ € LP(—1,0; LF (R”I;Rm))}

for every z € R™.

Proof. We define

pO(z) = inf{ / 9(DalltDyC) dx : ¢ € WP(R™ 5 I) \ C1 o R™),
(R*"=1xI)\C1,00
D¢ € P((R™ x )\ Cy oo; R™™), ¢ — 2z € LP(0,1; LY (R"; R™))

and ¢ € LP(—1,0; L” (Rn_l;Rm))},

we want to prove that o) (z) = () (2) for every z € R™. For every fixed 17 > 0, by definition
of Lp(g) (2) (see (B2)), there exists (. ; € X;/(z) such that

v.J
T5 0
/ ) 9j (Da<777‘§D”<77j> dr < SDE,Z(Z) +1.
(BZ;TJ XI)\CI,WNj J
By Proposition EI(i) we have that ([Z3) is fulfilled, then by Propositions and [Tl we get

lim go(g)(z)—}—n > liminf

~ | T ~
‘ i i gi | D C‘_JD <> dr
j—+too j—Ho0 /(ng;xf)\cle ! ( g

> liminf

~ | T ~
! gj Dag‘_]Dn<> dx
Jj—+oo /(B]'{,_lxl)\Cl,N ! < ’ 0; ’

> 9(Dall€DnC) dx

/(B}\L,_IXI)\CLN

with ¢ € I/Vli’f((R"_l X I)\ O 00; R™) satisfying ([Z8]). Note that for every fixed v > 0 and j
large enough we can always assume that yIN; > N for some fixed N > 2. Hence, passing to the

limit as N — +o00 and v — 07, we obtain

O 49> / 9(DaCltDC) de > $O(2) (7.11)
(]R"_lxl)\CLoo

and by the arbitrariness of 7 we get the first inequality.
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We now prove the converse inequality. For every fixed n > 0 there exists { € W'l})’f((Rnfl X
I\ C1,00; R™) satisfying (L8] such that

/ 9(DaClEDn¢) dx < 9O (2) + 1. (7.12)
(R”—lxl)\Cl,oo

Let N > 2, for every fixed v > 0 and j large enough we have that yN; > N. We consider a
cut-off function Oy € C°(B% 1;[0,1]) such that 5 =1 in BK&;, |DoOn| < ¢/N and we define
On(2a)¢ + (1= On(za))2 in (By )T,
(N =
On(za)C in (By 1)~ U BT x{0})

so that {y € Xn(z). By Proposition [l there exists a sequence (C]N) C Xn(z) strongly
converging to (y in LP((B% ! x I)\ O y;R™) such that

/ (Dl |eDuCy) dz = lim 9 (Dacjv
(By 'xD\C1, N J=Hoo J(BR X D\Cr N

Ty N
Let us define ¢, ; € X;Y(z) as

. n—1 n—1\+
z in (B’YN]’ \ By )7,

Cji =19 ¢V in (BY ' xI)\Ciy,

0 in (Biy \By ')

Consequently, ¢, ; is an admissible test function for ([2)) and since g;(0) = 0 we get that

IN

s
gj <Da<'y,j ‘ _]DnC’y,j) dx

P\ (2) 5
J

),

/(BZ;,JI XI)\CI,-yNj

. ,
/ 9 (Da|ZDuck,) da.

(By~ ' xI)\C1,n J
Passing to the limit as j — 400, using (LI3]) and the p-growth condition ([C2) satisfied by g,

we obtain

lim (p(z) (Z) g(DozCNanCN) dx

/(Bx—l xI\C1,n

Jj—+oo Vs -
< / 9(DaCltDoC) de + ¢ / DCxJP da
(B2 XD\C1,n/2 (By "\By )T
+c / | D¢ [P da . (7.14)
(B \B}j5)™
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Let us examine the contribution of the gradient in ([ZI4)),

/< NEBy 3t |D<N|pdx+/< - o
By \BY, BXf B

N/2 N/2

<e / (IDabNPIC — 2P + |DCP) da
(By\B

n—1
N/2)

ve | (Db PIC + DCP) da
(By "\Bjy

—1
<c </
(Rn— 1\BN/2) N/g)*

N/2
&
4+ / \C—z\pdac—l—/ \g\pm) - (7.15)
NP ( (B By b+ (B By 1)

|DC|P dx + /
Since p* > p we can apply Holder Inequality with ¢ = p*/p obtaining

(Rr—1\B]
- (/ c-srdes [ mp)
NP\ J BBy b+ (By By b
1 *
< c/ (/ ¢ — 2P dwa)p/p dz,,
0 NBYTNBY,
0
+c/ (/
-1\ By 1\BN/2
! « p/p*
< c/ (/ 1 dwa) dxy,
0 \Rr-1\BL S
0
+c/ (/
-1 R"*l\BKJQl

Hence by ([Z8), (ZIH) and ([ZI6) we have that, for every fixed v > 0,

i)

N/2

>p/p* de,

/ *
)pp dz,.  (7.16)

lim |DCy|P da = 0
N—+oc0 (B" I\BN/2)

which thanks to (ZI2) and ([ZI4]) implies that

. l
Jim o) <00 4o

Then we get the converse inequality by letting v — 07 and by the arbitrariness of 7. U

7.2. The case { = +oo. In this case the study leading to the representation formula for
©(®) involves a dimensional reduction problem stated on a varying domain. As before, we
start proving some I'-convergence results (see Propositions [[Z4] and [[H) for suitable sequences of
functionals stated on fixed domains. This will allow as to apply some well-known I'-convergence
and integral representation theorems due to Le Dret-Raoult [39] and Braides-Fonseca-Francfort
[20] respectively.
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Let G : LP((BR )% R™) — [0, +00] be defined by

. 1,p n—1\+. pm
/ 9 (DaC‘r—anC> dr i © €W NUBY )R
Gy = d B 0 ¢=zon 0By
] :
+o00 otherwise
and
. 17p n—1 —. m
/ 4 <Da§ T—JDn§> g it | CEW BN )HRY)
G(¢):={ JBYT 0 ¢=0on (8By")
J
+00 otherwise.

ProrosSITION 7.4. Let

(= lim 2= +o00,
Jj—+oo (5]'

then, the sequences of functionals (Gj[) I'-converge, with respect to the LP-convergence, to

J

Q1 9(Dal)dwa  if ¢~z € WP (BY T R™)

GO =
+00 otherwise
and
| QuagDaO)dza i e WoH B R
Q=9
400 otherwise ,

respectively, where G(F) = inf{g(F|F,) : F, € R™} for every F € R™*(=1),

Proof. We prove the I'-convergence result only for (Gj), the other one being analogous. Ac-
cording to [20] Theorem 2.5 and Lemma 2.6 there exists a continuous function § : R™*(»=1) —
[0, +00) such that, up to subsequence, (G;r) I'-converges to

/ ) §(DoC)dxy if(—z€ Wol’p(BKfl;Rm)
B
GH(¢) = N
400 otherwise .
Hence, it remains to show that § = Q,,_1 7. By [20] Lemma 2.6, it is enough to consider W1P-
functions without boundary condition; hence, it will suffice to deal with affine functions. Let

((q) := F - 24, by [20] Theorem 2.5, there exists a sequence ((;) C WHP((By%1)*;R™) (the
so-called recovery sequence) converging to ¢ in LP((By1)T;R™), such that

L(A](F) CN = G+(<) = lim : gj (Dagj‘g_]Dn<]> dz (717)
+ J

Jj—+o0 (Bjrtr—l
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where cy = H" '(B%!). Moreover, by [14] Theorem 1.1, we can assume, without loss of

generality, that the sequence (‘(Dagj|%Dan)|p ) is equi-integrable. By ([ZI7) and (Z1I), we
J
have that

Ty p
sup (DaCj —Dngj)‘ dx < c;
JENJ(BR Y+ 0;
hence, for every fixed M > 0, if we define
e r;
A;"/I::{xe(BN 1)+: ‘< aC] ‘ ]Dan )>‘§M}7

we get that £7((Bry 1)+ \ A;-w ) < ¢/MP for some constant ¢ > 0 independent of j and M. Fix
M > 0, by (ZI1), we have

§(F) ey > limsup /AM 9; <Dagj‘5j Dn§]> . (7.18)
i

j—+oo

Moreover, for all x € A;-VI ,

5 (D600 ) =5 (P @) F0:60)) | < sup 1ay(F) = a(F)

|F|<M
’I“j ’I“j
9j DaCj‘KDan ) Dagj 5_Dngj dx
Af/f J J

< ¢y sup |gi(F)—g(F)|.
|FI<M

Hence, by the local uniform convergence of g; to g, we have that

- (Duc |, - 1ip ) de =
LN (g] (Dacj( 5an<]) g(Dacj( 5an<]>> dz = 0.

By (ZIR), we get

and then,

Dan) dz. (7.19)

Note that, since £™((By ')+ \A;VI) — 0 as M — +o00, by the p-growth condition ([[Z2) and the

equi-integrability assumption, we find

§(F)en > lim sup/ g (Dagj ]
A;VI 5

j—+oo

limsup/ g <Da<j‘ﬁDn<j> dx =0(1), as M — +co. (7.20)
J—oo (B AN %
Consequently, (ZI9) and ([Z20) imply that
§(F)eny > limsup/ ( agj‘rﬂ Dan) dx. (7.21)
j—+oo J(BYTH

Finally, from [39] Theorem 2, we know that

tmin [ g (Dacj(ﬁDn<j> dr > Q1 (F) e :
(Bn—l)+ 5_]

J—+00

hence, by (ZZ1) we obtain that §(F) > Q,_1g(F).
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We now prove the converse inequality. By [39] Theorem 2, there exists a sequence ((j)
belonging to WP((B%1)T;R™) and converging to ¢ in LP((B% 1)*;R™) such that

9 19(F)ey = lim g <Da<j‘%Dan> dx . (7.22)
j

j=too J(Brt+

Without loss of generality, we can still assume that the sequence ( | (DaCj|g—§Dan) ‘p ) is equi-
integrable. Thus arguing as above, from (L22) we deduce

J— . T
Qn-19(F)en > hmsup/ i (Dagj‘ﬁDan> dz . (7.23)
jotoo J(Bp1y+ j

Now, by [20] Theorem 2.5, we have that

. . ,,’l‘ ~
lim 1nf/ L9 (DaCj‘ﬁDan> dr > g(F)cn;
(By )t J

j—+o00
hence, Q,,_1G(F) > §(F), which concludes the proof. O

REMARK 7.2. By [39] Theorem 2, for every ¢ € Wl’p(B]’\L,_l;Rm) the recovery sequence is
given by (;j(zq,xn) = ((za) + (§;/7;) xn bj(z4) for a suitable sequence of functions (b;) C
Cx (B]’ffl; R™). Note that by definition ((;) keeps the boundary conditions of (. Reasoning as
in the proof of Proposition [[4] we can observed that (¢;) is also a recovery sequence for (Gj)

(see e.g. ([LZJ)). The same remark holds for (G).

PRrRoPOSITION 7.5. Let

J—+00 05

then the sequence of functionals G§°O) CLP(BY < I)\ CLnv; R™) — [0, 4+00] defined by

[ a(pa
(By  xI\C1,n

+00 otherwise

%Dnc) dr if ¢ € Xn(2)
J

I'-converges, with respect to the LP-convergence, to

/ 1 On-19(DaC)dx  if ¢ € Xn(2) and D¢ =0
G (¢) = (By™ " xD\C1,n

+00 otherwise .

Proof. The liminf inequality is a straightforward consequence of Proposition [C4
Dealing with the limsup inequality, let us consider {( € Xy(z) with D,,{ = 0. We denote
by ¢t € WI'P(BYH(0); R™) the restriction of ¢ to (B ')* and (B% ')~, respectively. By
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Proposition [[4 and Remark [, there exist two sequences (C]i) c WhP((B%H*;R™) such
that
¢f = ¢Hin LP((BR)HR™), ¢ =2 on (9B )*

(7.24)
(; — ¢ in LP(BY ) 5R™), ¢ =0o0n (9By ')~
and
li (Dot YD, ct) d :/ 1 G(DaCT) i,
]irfoo (BXFI)_,_ g] < C] ‘(57 Cj > x BK;I Q 1g( C ) z
.
li A Do LD ) de = / 1 G(DoC ) day . 7.25

Moreover, since ¢ € W'P((B% ! x I)\ Cy n;R™), by Remark [[2) (C]Jr) and (¢; ) have the same
trace on B{Lil x {0}; hence, C;L =(; =(on B{Lil x {0}. Then we can define

¢- i (BEHT,
=4 ¢ on By 'x{0},
¢ i (BT,

with {; € WhP((By ! x I) \ C1,n;R™). In particular, by ([ZZ4]) we have that {; € Xy(z) and
(j — Cin LP((B% ! x I)\ C1 n;R™). Finally, by (Z2ZH) , we have

im G°E) = lim g; (Dag‘ﬁDng) da
— [ QB0+ [ Q0§D da
Byt Byt
-/ Q1 F(DaC) da
(BRtxD\C1, N
which completes the proof of the limsup inequality. O

PROPOSITION 7.6 (Limit space). Let

n—1—p
. r.
(= lim 2 =400, 0<R™ = lim <% —— <400
j—to0 d; jotoo £
and let ¢, ; € X;/(z) such that, for every fized v > 0,

"
sup/ 9; <Dag“%j‘5—anC%j) der <c. (7.26)
jEN (B:];;xz)\cle j

Then, there exists a sequence j € VVll’p((Rn_l x I)\ C1,00;R™) such that

ocC

G =G in (B x I\ Cran,
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and such that, up to subsequences, it converges weakly to ¢ in VVI})’(?((R"*I)*;RT”) and to (~
n I/Vli)’f((R"_l)_;Rm). Moreover, the functions C* satisfy the following properties

(¢t e Wl ROD;R™),
(t=¢ in BYT

DQC:I: c Lp(Rn—l; Rmx(n—l)),

(¢t —2) and ¢~ € LP" (R L, R™).

Proof. We can reason as in Proposition using the fact that, by (ZZ0),

x di\P
[ g <e(2)
(Rnfl)i V“j
hence, in the limit we have that D,¢ = 0 a.e. in (R*~1)*, O

PROPOSITION 7.7 (Representation formula). We have

e (2) = inf { /Rn1 (20 1T(DaCt) + On 1 G(Dal™)) dag = ¢F € WEP(RTLR™),
Ct= (¢ in BITY, Duct e IP(RTLR™X (D),
(Ct—2)and " € Lp*(R"_l;]Rm)}
for every z € R™,

Proof. Reasoning as in the proof of Proposition [[3, by Propositions and we get the
representation formula for ¢(°°), 0

7.3. The case ¢ = 0. We first recall the following I'-convergence result.

PROPOSITION 7.8. The sequence of functionals G§0) D LP((BY ! x (=N, N)) \ C1 n;R™) —
[0, 4+00], defined by

/ g;(D¢)dx  if ¢ € WHP((BY ' x (=N, N))\ Cn; R™),
GOy . ) I BY IXENNNCLY
j Q)=

400 otherwise ,

I'-converges, with respect to the LP-convergence, to

fo o(DC)de 17 ¢ € WHH((BY x (<N, N))\ Oyx: B,
GO(¢) = (BN X (=N,N)\C1,n

+00 otherwise .
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Proof. The result is an immediate consequence of the pointwise convergence of the sequence of
quasiconvex functions g; towards g together with Proposition 12.8 in [17]. O

PROPOSITION 7.9 (Limit space). Let

, PP
(= lim 2 =0, 0<R”= lim -2 — <400 (7.27)
j—+00 0; j=too €570,
and let ¢, ; € 1/]7(27) such that, for every fized v > 0,
sup 9; (D¢ ) dx < c. (7.28)

wf.
IEN (B X I\C1 v,

Then, there exists a sequence (; € WP (R™\ Cl,00; R™) such that

loc

G=Cy in By x L)\ Cian,

and such that, up to subsequences, it converges weakly to ¢ in VV&)’?(R" \ C1,00; R™). Moreover,
the function C satisfies the following properties

[ D¢ € LP(R™\ Cf oo R™M),

¢ — z € LP(0, +o00; IF" (R*;; R™)), (7.29)

TP (Rn—1.
| ¢ € LP(—00,0; L7 (R"™H;R™)).
Proof. By (Z29), ([[LT)) and ([Z27), we deduce that, for every fixed v > 0,

sup

/ |D¢y, P dx < c. (7.30)
JEN (BN X I;)\Cran;

Let us first extend ¢, ; by reflection
( Crj <xa,2i—§ - xn> it z, € B?&jl and z,, € (8;/r;,265/r;),

Gi(@) =9 Gle) it xe (Bl x L)\ Cran,, (7.31)

| i <xa, —25—j - xn) if x4 € B:{L&jl and x, € (—26;/r;,—9;/7;)

T

and then, we extend it by (2d;/r;)-periodicity in the x,, direction. The resulting sequence, still
denoted by QT%]', is defined in (B;LK,JI X ]R) \ C1,n;. Hence, we define on R" \ C1 o,

z in (R"! \B;LK,JI) x (0, 400),
G(x) =1 Gy(x) in (BIy) xR)\ Ciyn;, (7.32)
0 in (R""\ BIyt) x (—00,0).
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Let us now introduce the cut-off functions ¢; € Ce°((—20;/r;,26;/7;);[0,1]) such that ¢;(z,) =1
if |z,| < 65/15, ¢j(xn) = 0if |x,| > 26;/r; and |Dp¢;| < c(rj/6;). Then, we introduce our last

sequence,

0j(2n)C(Tasn) + (1 — @j(xn))z i (a,2n) € R x (0, +00),

Cj(xa,xn) =
¢ (2n) i (Tay Tn) if  (7q,2n) € R x (—00,0).
Note that
G =Gy i (Biy x L)\ Ciyn, - (7.33)
Moreover, by ([Z30)-([Z33]) we have that
sup/ |D.C|P dx < c, (7.34)
JEN JR™\C1 00

while, for every (a,b) C R, with a < b, we have

|D,G|P da < ¢, (7.35)

/(R"—l x(a,0))\C100

for j large enough and c¢ independent of (a,b). Reasoning as in Proposition [[2, with (0, 400)
and (—o00,0) in place of (0,1) and (—1,0), respectively, we can conclude that there exist (; €
LP(0, +o0; LP" (R™ 5 R™)) and (3 € LP(—o0,0; LP (R R™)) such that, up to subsequences,

(j—2z—C in LP(0,+o0; LY (R"H;R™))
and
G =G in LP(=00,0; L7 (R"";R™)).
Moreover, by (34 and ([Z3H), we have that, up to subsequences, Ej converges weakly to ¢ in
VVﬁ)’p(R" \ C1,00; R™) where

) G+z in R x(0,400)
‘= Co in (R"! x (—00,0)) U (B! x {0}).

In particular, for any compact set K C R™ \ ('} o, we have that
/ |DC|Pdx < nminf/ |D|P da < ¢
K J=t0 JK

for some constant ¢ independent of K; hence, we get that D¢ € LP(R™ \ C o0; R™*™) which

concludes the description of the limit function (. O
PROPOSITION 7.10 (Representation formula). We have
¢V(z) = inf { / g(DC)da : ¢ € WEP(R™\ €1 o; R™), D¢ € LP(R™\ Clo0; R™M),
R"\Cl,oo

¢ —z € LP(0,4o00; LP" (R" L R™)) and ¢ € LP(—o0,0; L7 (R"—l;Rm))}

for every z € R™.
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Proof. We define

PO (z2) = inf{ / g(D¢)dx : ¢ € WEP(R™\ Cp00; R™), DC € LP(R™\ O} o0; R™™),
R"\C1,00

¢ —z € LP(0,+00; LP" (R"1;R™)) and ¢ € LP(—o0,0; LP" (R”l;Rm))}

and let us prove that ¢ (z) = ¥(0)(2) for every z € R™.

By definition of cp,(yo’;- (see (B2T3)), for every fixed n > 0, there exists (,,; € Y}'(z) such that

/ B 9;(DGy,5) da < wg?}(Z) +1n; (7.36)
(B:Nj XI;)\C1,4N;

hence, by Proposition (i), [C28) is satisfied. Then by Propositions [[8 and [[9 we get that

lim @E/?)»(z)—i—n > liminf g;(Dj) dx

j—+o0 j—+o0 /(B:lexlj)\cl,wj

> liminf/ g;(Dé;) da:
I=+o0 J(BY ) (= N,N))\Ciw i(DG)

> / 9(DC) da (7.37)
(B x(—=N,N))\C1,x

for some fixed N > 1, where ¢ satisfies (ZZ9). Thus, passing to the limit in (Z37) as N — +o0
and v — 07T, it follows that

PO (2) > / g(DO)d > $0(2)
R"\C1,00

Let us prove the converse inequality. For any fixed n > 0, let ¢ € Wfllo’f (R™\ C1,00;R™) be as in
(C29)) and satisfying
[ aD¢de < v+ (7.39)
R"\Clyoo

. . . -1
For every j € N and v > 0, we consider a cut-off function 6, ; € C‘C’O(B;LNJ_ ;[0,1]) such that

6,;=1in B(@?\/ﬂ)/? |Dab,j| < ¢/yN; and we define ¢, ; € Y;'(2) by

0y (2a)C + (1 = 055(z0))2 in (BSJQJ.I)JF(%/TJ‘)
Gy =

0,.5(a)C in (BJy,)" /) u (BT x {0}).

Consequently, ¢y ; is an admissible test function for (BI3]) and we get that

0
SUCES 9;(DG, ) da.
(BIn; XI)\C19n;

The same kind of computations as those already employed in the proof of Lemma now with
gj in place of g and with other obvious replacements (see ((LI4)-(ZIH)) gives

lim cp(o;(z) < limsup

i / DO dr +o(1), a5 0"
j—too TP oo J(BINIXI\CLyw;
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On the other hand, Fatou’s Lemma and (Z1I) imply

sDOdr< [ gDdr+on), a0t
R"\Clyoo

limsup/
j—oo (B;L];;xfj)\cl,wj

Hence by (Z38)), passing to the limit as v — 0T, we get that
P 0(z) < 0(z) +1n

and by the arbitrariness of 7, the thesis. O

REMARK 7.3. As already recalled, in [5] it is proved that if §; = 1 or J; = ¢; then the
(n—1)/(n—p) n/(n—p)

j or €; , respectively; moreover,

the interfacial energy density is described by the following formula

e(z) = imf{/]R < g(D¢)dz: ¢ € I/VI})f(R"\C’LOO;]Rm)
n 1,00

critical size r; of the contact zones is of order

(-2 WHRLR™), ¢ € WHP(RLR™) |

where R = R"™! x (0, +00), R” = R"™! x (—00,0) (see [5] Section 7, the case p = ¢, with
pe, =15, Wy=U, =W, W, =0, =g and R _UBI1(0) =R"\ C} o).
We want to point out that from the analysis we carried on in the case £ = 0 and in particular

from
ri P
0<R? = lim

Jj—+oo 5j6

n—1
J
we recovered both the critical sizes founded in [5] and correspondent to the two cases J; = 1
and 6]' =£&j.

Moreover we want to show that ¢ = ¢(©). We have to check only the inequality ¢ < (9, the
other one being obvious.

For any fixedn > 0let ¢ € VVﬁ)’f(R"\C’Lm; R™) be such that (—z € LP(0, +oo; LP" (R"~1; R™)),
¢ € LP(—00,0; LP" (R"1;R™)), D¢ € LP(R™ \ O o0; R™*™) and

/ g(D¢)dx < O (2) +17. (7.39)
R"\Clyoo

For every N > 2 we denote by By the n-dimensional ball of radius N centered in zero and
by Bﬁ the set of the points € By such that +x, > 0; we consider a cut-off function Oy €
C°(Bn;[0,1]) such that O =1 in Byys, |[DOn| < ¢/N and we define

ON(C—2)+2z in B,

9N
I

On¢ in By U (B! x {0})
so that ¢ € WYP(By \ C1,n;R™), ( = z on 0B}, and { = 0 on §Bj. Hence,

[ awoa= [ o(Dg)do+ [ 9(DC) d
BNn\C1,N Bn/2\C1,n/2 (BN\Bn/2)\C1,N
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in particular, by (L2), we have

/ oDde < ([ IDoNPIc-aPdet [ DonPIgP ds
(BN\Bn/2)\C1,~ BY\BY, /5 BN\By/s
+ / IDCJP dr)
(BN\Bn/2)\C1,Nn
C
< ([ dmspder [ cPds
5 Unga, s, )

+/ |DC|P dz .
(R™\Bpn/2)\C1,00

Since ¢ — z € LP(0,4o00; LP" (R""LR™)), ¢ € LP(—00,0; LP" (R""1R™)) and D¢ € LP(R™\
C1,00; R™*™), we can easily conclude that
lim g(D¢)dz =0. (7.40)
N=+00 J(By\Bn/2)\C1,n
Hence, by ([Z40), we deduce

Q@4 2 [ o [ 9(D¢) dx
R™\C1,00 Bn/2\C1,n/2

= [ O ds o)
Bn\C1,N

> inf{/ g(D¢)dx : ¢ € Wl’p(BN \ C1,n;R™)
Bn\C1,N

(=zondByY, (=0on 3B&} +o(1)

as N — 4oo. Finally, passing to the limit as N — 400, by the arbitrariness of n, we get
0@ > .

Note that the proof of the explicit formula for ¢ in [5] relies on the fact that §; is of order
g; or bigger than it, while in Proposition [[9 and Proposition 7.12 we have to take into account
that §; < ;. This is the reason why our proof is different from the one of [5] even if, at the
end, the two representation formulas turn out to coincide.






APPENDIX A

Equi-integrability in dimension reduction problems

1. Setting of the problem

A very handy tool in the study of the asymptotic behavior of variational problems defined on
Sobolev spaces is Fonseca, Miiller and Pedregal’s equi-integrability Lemma [34] (see Theorem
21 below; see also earlier work by Acerbi and Fusco [2] and by Kristensen [37]), which allows
to substitute a sequence (w;) with (Vw;) bounded in LP by a sequence (z;) with (|Vz;[P) equi-
integrable, such that the two sequences are equal except on a set of vanishing measure. In this
way the asymptotic behavior of integral energies of p-growth involving Vw; can be computed
using Vz; and thus avoiding to consider concentration effects. This method is very helpful for
example in the computation of lower bounds for I-limits (see, e.g., [15]).

In the framework of dimensional reduction, we encounter sequences of functions (ws) defined
on cylindrical sets with some “thin dimension” §; e.g., in the physical three-dimensional case
either thin films defined on some set of the type w x (0,d) (see, e.g., [39, 20]), or thin wires
defined on dw x (0,1) (see, e.g., [1, B8]), where w is some two-dimensional bounded open set. In
order to carry on some asymptotic analysis such functions are usually rescaled to a -independent
reference configuration 2 (see Fig. 1), so that a new sequence (us) is constructed, satisfying some

“degenerate” bounds of the form
1
/ (|Vau(;|p + —|V5u(;|p>dx <C <40 (1.1)
Q oP

whenever the sequence of the gradients (Vws) satisfied some corresponding LP bound on the
unscaled domain. Here, V, represents the gradient with respect to the unscaled coordinates
(denoted by z,) and Vg represents the gradient with respect to the “thin” coordinate directions
(denoted by ). In the case described above of thin films x3 = x3; for thin wires, x5 = (21, 22).

Q=wx(0,1) dw x (0,1) w x (0,6)

FIGURE 1. Scaled domain, a wire and a thin film.

127
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A theorem by Bocea and Fonseca [14] states that an analog of Fonseca, Miiller and Pedre-
gal’s result still holds in this framework, and an “equivalent sequence” (vs) can be constructed
such that the sequence (|Vqvs|” + 35|V 305[P) is equi-integrable on €. In their result they deal
specifically with the case of thin films; i.e., when the space of the x3 is one-dimensional in the
notation above. An earlier mention of the equi-integrability result in this form can be found
without proof in a paper by Shu [47], where it is suggested that the same argument of [34] could
be followed. This path is not pursued by Bocea and Fonseca’s as it would necessitate re-proving
a number of fine results for maximal functions in a periodic context; their proof instead relies
on a direct argument.

This appendix provides an alternative proof to that of Bocea and Fonseca, that we think
worth pointing out since its method could be applied to other types of problems involving
thin structures and extends to a general nD-to-(n — k)D dimensional-reduction framework. Its
argument is essentially the following: we consider the unscaled functions ws defined on some €5
(e.9., w x (0,9)) on which we have an LP bound of the gradient and extend them to 2J-periodic
functions in the 23 directions. These extended functions still satisfy an L” bound, now on each
fixed €2 (e.g., a cube), so that we may apply Fonseca, Miiller and Pedregal’s result to find z5 with
the equi-integrability property. This property is quantified by de la Vallée Poussin’s Criterion,
which ensures the existence of a positive Borel function ¢ with superlinear growth such that
Jo¢(|Vzs]P) de < C < 4o00. By this remark and a simple but careful counting argument we can
choose a set differing from the original Q5 by a 2d-periodic translation in the x4 directions (and
hence it is not restrictive to suppose that this set is precisely €2s5) such that

i/ o(|Vz5P) de < C < +o0, (1.2)
o Ja,

(k denotes the dimension of the space of the xg) and still z5 equals w; except for a set with
relative measure tending to zero in 5. By scaling such z5 we conclude the proof since (C2)
exactly states the desired equi-integrability property.

Since our method does not rely on space dimensions, we state and proof our result in a
general n-dimensional setting. In particular it also comprises the physical case of thin wires
not covered in [I4]. Thin wires are generally dealt with by more direct arguments exploiting
their one-dimensional limit nature, but our general equi-integrability result may nevertheless be
useful in the case of thin wires with an unprescribed heterogeneous nature, in order to obtain

general compactness results as for thin films (see [20]).

2. Preliminaries

In this section we recall two results which will be the key tools in the proof of Theorem Bl The
first one is Fonseca-Miiller-Pedregal’s decomposition Theorem for “unscaled gradients” while
the second is a classical equi-integrability criterion.

In what follows m,n will be two positive integers, €2 a bounded open subset of R™ and p a
real number such that 1 < p < 4o0.
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THEOREM 2.1 ([34] Lemma 1.2). Let (w;) be a bounded sequence in W1P(Q;R™). Then there
exists a subsequence of (w;) (not relabelled) and a sequence (z;) in WHP(Q;R™) such that

E"({zj #* wj} U {VZ]' #+ ij}) — 0,

as j — +o0, and (|Vz;P) is equi-integrable on Q. If Q is Lipschitz, then each zj can be chosen

to be a Lipschitz function.

PROPOSITION 2.2 (de la Vallée Poussin’s Criterion). Let (w;) be in L' (Q;R™); then (wj) is
equi-integrable on Q if and only if there exists a positive Borel function ¢ : [0,4+00) — [0,400]
such that

o(t)

Am == +00 and Sl]lp/ﬂ o(|w;]) dz < 4o00.

A proof of de la Vallée Poussin’s Criterion can be found in Dellacherie-Meyer [32].

3. Statement and proof of the result

Let k be a positive integer such that £ < n. Given z € R", we set * = (zq,73) where
To = (21,...,2p_k) and g = (Tp_g41,.- -, Tn) is the ‘thin variable’; then Vo = (04, ..., 0y, )

Yy YTk

is the gradient with respect to x, and Vg = (8

Tr—k19 *

. ,axn) the gradient with respect to xg.

THEOREM 3.1. Let w, C R"7F, wg C R* be open bounded sets and assume that wg 18
connected and with Lipschitz boundary. Let (§;) be a sequence of positive real numbers converging
to zero and let (uj) be a bounded sequence in WhP(wq x wg; R™) satisfying

1
sup/ (\Vauj]p + —p\Vﬁuj]p> dr < +00. (3.1)
J Wa Xwg 5]’

Then there eists a subsequence of (uj) (not relabelled) and a sequence (v;) in WP (wq X wg; R™)
such that

L"({v; # u;} U{Vv; # Vu,;}) — 0, (3.2)
as j — +oo, and <|Vavj P+ %|ngj|p> is equi-integrable on wo X wg. If wy is Lipschitz then
j

each vj can be chosen to be a Lipschitz function.

PROOF. Let (uj) be a bounded sequence in WHP(w, x wg; R™) satisfying (B]). Since wg
is connected and with Lipschitz boundary, by applying a standard extension technique (see for
instance Adams [4], Theorems 4.26 and 4.28, and Section 4.29 for details) we may assume to
deal with a W1P(w, x QF; R™)-sequence, for Q% C R¥ open cube containing wg, still preserving
the same boundedness properties of (u;). Moreover, up to possible scalings and translations, we

can always suppose that Q¥ = (0,1)F.
Set 4;(x) = uj(xq, fs—f); then (4;) C WHP(w, x (0,6;)%; R™) and by hypothesis

1
sup 5_14:/ |ﬂj|p dx = sup/ |u]' |p dx < 400, (33)
7 7 waX(07(5j)k J waX(O,l)k
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while

1 N N
swps [ (Vay P [Vpip) do
J 95 Jwax(0,65)k

1
= sup / (IVawsl? + 5V gusl?) do < +oo, (3.4
wa X (0,1)k i

J J
and from (B3] in particular
1
sup _k/ |V, P de < +o0. (3.5)
i 0] Juax(0,8;)
We extend @; to wq x (=9, 5j)k by reflection in the k variables x,,_gi1,...,2, by defining
() = 1 (Ta, [Tnopril, - |Tn]) 0 wa x (=85, 6;)F.

Note that (i;) C WIP(w, x (=6,;)%;R™) and (74, ) has the same trace on the opposite
faces of (—d;,8;)" for a.e. 74 € w,. Thus %, can be extended by (—d;,8;)"-periodicity in 4, to
the whole w, x R¥ obtaining the V[/'l})’f(wa x R¥; R™)-sequence defined as follows

Uj(2) i= Uj(Ta,tp — 20;1) N wy x (200 + (—85,0;)%), for i = (iy,...,i1) € Z".

We want to prove that (@;) is bounded in WP(w, x (0,1)¥;R™). By the periodicity and
symmetry properties of 4;, denoting by [¢] the integer part of ¢t € R, we have

[1/26;]+1

;[P de < / u;|? dx
AQX(O,I)k ’ Z u}aX(25j i+(75j,5j)k) ’ j’

11500 =0
/ |a;|” da
ik Wa X(O,(Sj)k

= Y [ =
Tlyenslp wa X (=0;,07)" U150yl

# (] +2) [ o0
= — u;|P dx
20; wax (05)F

2k
_k/ |t;|P dx (3.6)
05 Jeax(0,6;)

for j sufficiently large.

Gathering (BH) and B3] we deduce

IN

sup/ |u;|P do < 4o0;
J Jwax(0,1)k

an analogous argument combined with (B yields
sup/ |V, P de < +o0.
J Jwax(0,1)k
By these estimates (u;) fulfills the hypothesis of Theorem Tl which ensures (up to an extraction)

the existence of a sequence (z;) C WhP(w, x (0,1)%; R™) satisfying

LM({z # 4} U{Vz # Vi;}) N (wa x (0,1))) = 0, as j— 400



3. STATEMENT AND PROOF OF THE RESULT 131

and such that (|Vz;[P) (or equivalently (|V42;|P +|V5z;[P)) is equi-integrable on w, x (0,1)%. As
a consequence, in view of Proposition Z2, there exists a positive Borel function ¢ : [0, +00) —
[0, 4+00] such that

t
lim o) _ +o0o and sup/ ©(|Vazil? + |VzP) de < +o0.
totoo t i Jwax(0,1)F

Hence, (0,[1/4;]6;)F € (0,1)% and the nonnegative character of ¢ yield

e(IVaz; [ +[Vpzl?) da S/ o P(IVazjlP +[Vpz[P)de (3.7)
wa % (0,

/WaX(07[1/5j]5j)’C
while the monotonicity of the Lebesgue measure implies
L™(({2 # @5} U{V25 # Vag}) 0 (wa x (0,[1/8;]67)7))
< L({zj # 15 }U{Vz # Va}) N (wa x (0,1)F)). (3.8)

To shorten notation, set

M; 1=/ v (IVazil” +[Vpzl?) de,
wax(0,1)k (3.9)
mj = L"(({z # 45 } U{Vz # Vii}) N (wa x (0,1)F))
and recall that
(i) supM; < +o0, (i) mj; — 0. (3.10)
J
From () and (0, [1/6;]6;)* = Uﬁ/éj]lgio(éj i+(0,8;)%), (B1)-(EF) can be rewritten respectively
as
[1/8;]-1
> P (Vo +[V52l") do < M, .11
i1yeyin=0 wa X (d;i+(0,6;)%)
and
[1/65]-1
Y LMz #a ULV # Vigh) N (wa x (85 +(0,8)%))) < my. (3.12)
i1 yeensiy=0

For fixed j, we now consider only those cubes 4,17 + (0,5j)k with @ = 2h for h in Z; := {h €
ZF: 0<hy,....hy < 3([1/5;] — 1)}. Note that for h € T, Uj |y x25;h4(0,5,) coincide with the
20jh-translation of 4; in the xg variable.

By BII) and BI2) we have that in particular

/ o (IVazl? + [V pzlP) de < M, (3.13)
hEIj Wa ><(26jh+(0,6j)’“)

> LM(({z # a4 U{Vz; # Vi) N (wa X (265 h+ (0,5)7))) < mj. (3.14)
hez;

Then from [BIJ), for at least half of the indices h € Z; (i.e., for [1/2#(Z;)] indices) we must
have

/ o (Vazs? + [VazlP)dr < (#(T;) — [1/24(T)] + D7IM;. (3.15)
wa X (26;h+(0,6;))
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In fact, let otherwise Ij/ :={h €Z;: BI) does not hold} be such that

#(L)) > $4(T;) — [1/24K(T5)] + 1 (3.16)

then

3 / o (Vazl? + |VszlP) de

hGIj a><(25jh+(0,5j)k)

> ¢ (IVazj|P + |VpzilP) da

her! /da ><(26jh+(0,6j)k)

J

> #T)FHT) - [12#T)) + 1)1 M

and combining it with BI0), by BI3) we find a contradiction.
Since #(Z;) = ([3 ([1/8;] — 1)] + 1)¥ it can be easily checked that, for j large enough

1
#(Z;) — [1/24#(T)] + 1 > Sakiigh’
J
therefore from ([BI0) we get that for at least [1/2#(Z;)] indices h € Z;
/ o (Vazsl? +[Vsz]?) < 2241650, (3.17)
wa><(25jh+(0,5j)k)

for any sufficiently large j. Moreover, in view of (BI4]) we can again use an averaging procedure
to find among those [1/2#(Z;)] indices h satisfying (BI7), an index such that

L7(({zj # 45} U{Vzj # Viij}) N (wa % (26; b+ (0,6,)F)))
< [1/24(Z))] 'my < 22765 my, (3.18)

for j large enough.

Finally, we have selected an index in Z; for which both [EI7) and ([BI8) (definitively) hold
true. Let us call this index h*. Then by the (—d;, 5j)k—periodicity of u; in the xg variable, up to at
most k translations in the z, 41, ..., zp-directions, we can always suppose that h* = (0,...,0).

Abusing notation we denote by z; the restriction of z; to w, x (0, d;)¥; we show that our (v;)

can be obtained from (z;) just by unscaling. In fact, having set
vj(2) := 2j(Tas 0j2p),

then (v;) C WHP(w, x (0,1)%;R™) and by @I1) with h = h* = (0,...,0) we have that

1
/ Q0<|vavj|p+ —p|ngj|p) dx
wax(0,1)k 0;
1
= _k/ O(|VaziP + |V 2;|P) de < 221 M.
7 WaX(O,éj)k

=
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Thus, by virtue of (BI0)(i), again applying de la Vallée Poussin’s Criterion we get that (]Vavj\p +
6%|Vﬁvj [P) is equi-integrable on w, x (0,1)F. Moreover by [BIR) we deduce
j

L"({vj # uj} U{Vv; # Vu;})

= 2 £z £ 55} ULV # Va1 0 (e x (0,6)1) < 25 m
J

and by ([BI0)(ii) we find [BZ). Clearly these two conditions can be restricted to wq X wg if such

was the domain of the starting sequence.

Finally, note that if w, is Lipschitz, by appealing to Theorem Tl we can choose any z; to be
a Lipschitz function, then for every z,y € wy x (0,1)%

vj(@) —vi(W)| = |zj(2a, dj28) — 2j(Ya, 6;95)| < Lip, |z — yl,

thus v; is still a Lipschitz function and Lip, < Lip, . O
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