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Abstract

We do three things. First, we characterize the class of measures µ ∈P2(M) such that for
any other ν ∈P2(M) there exists a unique optimal transport plan, and this plan is induced
by a map. Second, we study the tangent space at any measure and we identify the class of
measures for which the tangent space is an Hilbert space. Third, we prove that these two
classes of measures coincide. This answers a question recently raised by Villani. Our results
concerning the tangent space can be extended to the case of Alexandrov spaces.
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Introduction

Among the several papers devoted to the study of mass transportation problems, two can cer-
tainly be called cornerstones of the theory: the work of Brenier [6] (together with the general-
ization to the case of Riemannian manifolds due to McCann [24]) where existence, uniqueness
and structure of the optimal transport map is established, and the work of Otto [26], where it
is described the Riemannian structure of the space (P2(M),W2).

The theory has been deeply studied in the past years. A topic which became suddenly clear,
in particular for what concerns the Riemannian structure of the space of measures, is the fact that
there are ‘good’ measures (like absolutely continuous ones) near which the Riemannian structure
behaves nicely, and ‘bad’ measures (like deltas) at which such structure degenerates. The precise
borderline between these two kind of measures was up now not completely understood, and the
question of finding the ‘right’ structure of the space (P2(M),W2) was also recently posed in
Villani’s monograph [32].

The problem of the gray area between ‘good’ measures and ‘bad’ ones appears also in Brenier-
McCann theorems. Indeed, the typical statement of such theorem is: Assume that µ, ν ∈P2(M)
are such that µ gives 0 mass to dim(M)−1 dimensional sets, then there exists a unique optimal
transport plan, and such plan is induced by a map (where a structural characterization of the
map in terms of Kantorovich potential is also given). Now, the point is that the assumption made
on µ, although clearly sufficient to get the conclusion, is not necessary. Given the fundamental
importance of the Brenier-McCann theorems, it is natural to look for the sharp hypothesis in
their statement.

The aim of this paper is to clarify the situation, our main results being:

• the characterization of those measures to which Brenier-McCann theorem applies (Propo-
sitions 2.4 and 2.10),

• the identification of the tangent space at any measure µ (theorem 5.4),

• the proof of the fact that the class of measures for which the tangent space is an Hilbert
space coincides with the class of measures to which Brenier-McCann theorem applies (corol-
lary 6.6). Also, in this case the tangent space is naturally identified with the well known
‘space of gradients’.

From a purely geometric perspective, some of our results apply also to the case of Alexandrov
spaces with curvature bounded from below. In particular, the description of the tangent space at
a certain measure provided by theorem 3.4 is a sharper statement than the analogous appeared
in [25].

I would like to thank Luigi Ambrosio and Shin-ichi Ohta for valuable comments at the early
stage of development of this work.

2



1 Preliminaries and notation

M is a fixed smooth, connected Riemannian manifold without boundary, d its Riemannian
distance.

The natural set to endow with the Wasserstein distance is the set P2(M) of Borel probability
measures with bounded second moment:

P2(M) :=

{
µ ∈P(M) :

∫
d2(x, x0)dµ(x) <∞ ∀x0 ∈M

}
.

The set Pc(M) ⊂P2(M) is the set of Borel probability measures with compact support.
Recall that for any couple of topological spaces X,Y , any Borel probability measure µ on X

and any Borel map f : X → Y , the push forward f#µ of µ through f is the Borel probability
measure on Y defined by

f#µ(E) := µ
(
f−1(E)

)
, ∀ Borel sets E ⊂ Y.

The Wasserstein distance W2 on P2(M) is defined by

W2(µ, ν) :=

√
inf

∫
d2(x, y)dγ(x, y),

where the infimum is taken in the set Adm(µ, ν) of admissible plans γ from µ to ν, i.e. among
all the probability measures on M2 satisfying π1#γ = µ and π2#γ = ν, where π1 and π2 are the

projections onto the first and second coordinate respectively. The quantity
∫

d2(x, y)dγ(x, y) is
called the cost of the plan γ. A plan which realizes the infimum is called optimal and the set
of optimal plans for a given couple (µ, ν) of measures will be indicated by Opt(µ, ν). A plan is
said to be induced by a map, if it is of the form (Id, T )#µ for some measurable map T . This is
the same as to say that γ is concentrated on the graph of T .

It is well known that the function W2 is a distance on P2(M) and that the space
(P2(M),W2) is Polish; we skip the proof this fact: the interested reader may study the question
in detail on, for instance, [32, Chapter 6].

A central question of the theory is: when do we know that there is only one optimal transport
plan, and that this plan is induced by a map? The answer to this question is given by Brenier-
McCann theorems (Brenier’s theorem concerns with the Euclidean case, while McCann’s one
generalizes to the case of Riemannian manifolds), and the proof is essentially divided in the
following steps, each of which has its independent interest. Here and in the following we will

put c(x, y) := d2(x,y)
2 . One proves that:

• a plan is optimal if and only if its support is c-cyclically monotone (definition 1.1 and
theorem 1.2 below),
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• a set Γ ⊂ M2 is c-cyclically monotone if and only if there is a c-concave function ϕ
(definition 1.4) such that Γ is contained in the graph ∂c+ϕ of the c-superdifferential of ϕ
(definition 1.5 and theorem 1.6 below),

• ∂c+ϕ ⊂ exp(−∂+ϕ), where ∂+ϕ is the superdifferential of ϕ (proposition 1.8 below).

We will skip most of the proofs, as these are well known statements in the theory.

Definition 1.1 (c-cyclical monotonicity) A subset K of M ×M is c-cyclically monotone if
for every n ∈ N, every (xi, yi) ∈ K, i = 0, . . . , n− 1, and every permutation σ of {0, . . . , n− 1}
it holds:

n−1∑
i=0

c(xi, yi) ≤
n−1∑
i=0

c(xi, yσ(i)).

Theorem 1.2 Let µ, ν ∈ P2(M). A plan γ ∈ Adm(µ, ν) is optimal if and only if its support
supp(γ) is a c-cyclically monotone set.

Definition 1.3 (c+ transform) Let ψ : M → R∪{−∞}. The function ψc+ : M → R∪{−∞}
is defined as

ψc+(x) := inf
y∈M

(c(x, y)− ψ(y)) ,

Observe that we have the following trivial inequality:

ψ(x) + ψc+(y) ≤ c(x, y), ∀x, y ∈M.

Definition 1.4 (c−concavity) We say that ϕ : M → R ∪ {−∞} is c−concave if it is not
identically −∞ and there exists ψ : M → R ∪ {−∞} such that

ϕ = ψc+ .

Definition 1.5 (c−superdifferential) Let ϕ : M → R ∪ {−∞} be a c−concave function. Its
c−superdifferential ∂c+ϕ ⊂M2 is defined as

∂c+ϕ := {(x, y) : ϕ(x) + ϕc+(y) = c(x, y)} ,

and the c−superdifferential ∂c+ϕ(x) at a point x ∈M is the set of y such that (x, y) ∈ ∂c+ϕ.

Theorem 1.6 Let Γ ⊂M2. Then Γ is c-cyclically monotone if and only if Γ ⊂ ∂c+ϕ for some
c-concave function ϕ.

Given µ, ν ∈P2(M), we will say that a c-concave function ϕ is a Kantorovich potential for the
couple (µ, ν) if ∂c+ϕ contains the support of any optimal plan from µ to ν. It is well known
that a Kantorovich potential always exists.
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Remark 1.7 In case the two given measures µ, ν have compact support, there exists a
c−concave Kantorovich potential ϕ of the form

ϕ(x) = inf
y∈K

c(x, y)− ψ(y),

for some function ψ : M → R ∪ {±∞}, where K is a compact set which contains the supports
of µ and ν.

In particular, this potential is locally semiconcave. �

It is important to underline that the c−superdifferential at a certain point x is made of
points on the manifold, and not of tangent vectors. However there is a strict link between the
c−superdifferential and the usual superdifferential, as the following proposition shows: this link
was exploited in the setting of optimal transport by McCann in [24]. The same argument used
by McCann was already known to Cabré which used it in an earlier work on elliptic equation
on manifolds ([7]).

Theorem 1.8 (Cabré-McCann) Let ϕ : M → R ∪ {−∞} be a c-concave function and x, y ∈
M such that y ∈ ∂c+ϕ(x). Then exp−1x (y) ⊂ −∂+ϕ(x). Conversely, if ϕ is differentiable at x
and ∇ϕ(x) = v, then y := expx(−v) is the unique point in ∂c+ϕ(x).

Remark 1.9 The converse implication in this theorem is false if one doesn’t assume ϕ to be
differentiable at x: i.e. it is not true in general that v ∈ ∂+ϕ(x) implies expx(−v) ∈ ∂c+ϕ(x).
The question is related to the so called regularity of the cost function. A sufficient condition
for this regularity is the satisfaction of the Ma-Trudinger-Wang condition (see [21]). We won’t
stress this point further, the interested reader may look at [32], chapter 12. �

Theorems 1.2, 1.6 and 1.8 allow to understand when the optimal plan is unique and induced
by a map and to characterize this map.

Theorem 1.10 (Brenier-McCann) Let µ, ν ∈ Pc(M) and assume that µ is absolutely con-
tinuous. Then there exists a unique optimal plan from µ to ν and this plan is induced by the
map exp(−∇ϕ), where ϕ is a Kantorovich potential for µ, ν.

Proof By remark 1.7 we know that there exists a Kantorovich potential ϕ which is semiconcave
in some open set Ω containing the supports of both µ and ν. By a classical result of convex
analysis, ϕ is a.e. differentiable in Ω w.r.t. the volume measure. Thus, by the hypothesis on µ,
it is also µ−a.e. differentiable. By theorem 1.6 we know that every optimal plan γ from µ to ν
must be concentrated on ∂c+ϕ. By proposition 1.8 and what we said on the differentiability of
ϕ we get that for µ-a.e. x there is only on y ∈M such that (x, y) ∈ supp(γ), and that this y is
identified by y = expx(−∇ϕ(x)). Which is the thesis. �

By TM we intend the tangent bundle of M , which will always be endowed with the Sasaki
metric d∗ (see e.g. [9] Chapter 3 exercise 2). In particular, it makes sense to speak about the
metric space (P2(TM),W2), where here W2 is the quadratic Wasserstein distance built over
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the distance d∗. We will denote by P2(TM)µ ⊂P2(TM), µ ∈P2(M), the set of plans γ such
that πM# γ = µ, where πM : TM → M is the natural projection. This is the same as the set of
plans γ ∈P(TM) satisfying

πM# γ = µ,∫
|v|2dγ(x, v) <∞.

The exponential expµ(γ) of a plan γ ∈P2(TM)µ is defined as

expµ(γ) := (exp)#γ,

it is immediate to verify that expµ(γ) ∈P2(M), whenever γ ∈P2(TM). See also the appendix
of [4] and Chapter 7 of [17] for the properties of the exponential map1. The right inverse
exp−1µ : P2(M)→P2(TM)µ of the exponential map is defined as

exp−1µ (ν) :=
{
γ ∈P2(TM)µ : expµ(γ) = ν,

∫
|v|2dγ(x, v) = W 2(µ, ν)

}
,

or, which is the same, exp−1µ (ν) is the set of those plans γ ∈ P2(TM) such that (πM , exp)#γ
is an optimal plan from µ to ν and

∫
|v|2dγ(x, v) = W 2(µ, ν) (notice that the second condition

is not implied by the first one if on M some points have non empty cut locus). Observe that
plans in exp−1µ (ν) carry more information about optimal coupling from µ to ν then those in
Opt(µ, ν): indeed the latter one only specify from where to where the mass is moved, while the
former ones also specify which geodesic is chosen in this movement. The following statement
collects the main properties of geodesics in (P2(M),W2) which we will need:

Theorem 1.11 (Geodesics in P2(M)) A curve (µt) is a constant speed geodesic on [0, 1]
from µ to ν if and only if there exists a plan γ ∈ exp−1µ (ν) such that:

µt = expπM (tπ1)#γ, (1.1)

π1 being the map which associates to (x, v) ∈ TM the vector v ∈ TxM . The plan γ is uniquely
identified by the geodesic. Moreover, for any t ∈ (0, 1) there exists a unique optimal plan from
µ to µt. Finally, two different geodesics from µ to ν cannot intersect at intermediate times.

Introducing the notion of rescalation of a plan:

λ · γ := (πM , λπ1)#γ, ∀λ ∈ R, γ ∈P(TM),

equation (1.1) takes the more appealing form

µt := expµ(t · γ), ∀t ∈ [0, 1].

From the above theorem we get the following statement about constant speed geodesics starting
from µ:

1We call this map exponential because of theorem 1.11, but it should be noted carefully that exponentiation
does not produce geodesics in general.
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Proposition 1.12 Let µ ∈ P2(M) and (µt) a constant speed geodesic starting from µ and
defined on some right neighborhood of 0, say [0, a]. Then there exists a unique plan γ ∈P2(TM)
such that

µt = expµ(t · γ), ∀t ∈ [0, a].

Moreover, two constant speed geodesics (µt) and (µ̃t) defined on [0, a] and [0, ã] coincide on
[0,min{a, ã}] if and only if the associated plan is the same.

Proof Uniqueness follows from the uniqueness part of the theorem above. For the existence,
just reparametrize the curve by defining µ̃t := µat and observe that (µ̃t) is a constant speed
geodesic defined on [0, 1]. By the above theorem, we know that there exists a unique plan γ̃
such that µ̃t = expµ(t · γ̃). The conclusion follows by defining γ := 1

a · γ̃. The rest is obvious.
�

In the following we will need to work with couplings of plans in P2(TM)µ, in order to do
so, it is better to introduce some notation. By T 2M we intend the set defined as

T 2M :=
{

(x, v1, v2) : v1, v2 ∈ TxM
}
,

and we endow this set with the distance d∗2 defined by

d2
∗2
(
(x, v1, v2), (y,w1,w2)

)
= d2

∗
(
(x, v1), (y,w1)

)
+ d2

∗
(
(x, v2), (y,w2)

)
.

The space (P2(T
2M),W2) is then naturally build over (T 2M,d∗2). The three natural projec-

tions πM , π1, π2 are defined as

πM (x, v1, v2) = x ∈M,

π1(x, v1, v2) = v1 ∈ TxM,

π2(x, v1, v2) = v2 ∈ TxM.

A plan α ∈P2(T
2M) will be called an admissible coupling for γ1,γ2 ∈P2(TM)µ if:

(πM , π1)#α = γ1,

(πM , π2)#α = γ2,

in this case we write α ∈ Admµ(γ1,γ2).
The following characterization of compactness is well known, we skip the proof (see, e.g. [4,

Remark 5.2.3.]).

Proposition 1.13 (Stability of optimality and compactness) Let A1,A2 ⊂ P2(M) and
K ⊂P2(TM) be defined as

B :=
⋃

µ∈A1, ν∈A2

exp−1µ (ν).

Then B is a compact subset of (P2(TM),W2) if and only if A1,A2 are compact subsets of
(P2(M),W2).
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Also, for B1,B2 ⊂P2(TM), consider the set C ⊂P2(T
2M) defined as

C :=
⋃

γ1∈B1,γ2∈B2

Admµ(γ1,γ2).

Then C is a compact subset of (P2(T
2M),W2) if and only if B1,B2 are compact subsets of

(P2(TM),W2).

2 Sharp hypothesis in Brenier-McCann theorems

From the proof of theorem 1.10 it is clear that the problem of understanding for which µ we have
existence and uniqueness of optimal map is strongly related to the problem of convex analysis
‘how it is made the set of non differentiability points of a convex function?’. The answer to
the latter question is given by a theorem of Zaj́ıcek. To state his result, we need to give the
following definition:

Definition 2.1 (c− c hypersurfaces in Rd) A set E ⊂ Rd is a c− c hypersurface if, up to a
permutation of the indexes, there exist two convex functions f, g : Rd−1 → R such that E is the
graph of f − g, i.e.

E =
{

(y, t) ∈ Rd : t = f(y)− g(y)
}
.

The following theorem is proven in [33]:

Theorem 2.2 (Zaj́ıcek) Let ϕ : Rd → R be a convex function. Then the set of points where
ϕ is not differentiable is contained in the union of countably many c− c hypersurfaces.

Conversely, if a set E ⊂ Rd can be covered by countably many c− c hypersurfaces, then there
exists a convex function ϕ : Rd → R which is not differentiable at all the points in E.

The interest of this theorem, for our purpose, is that the set of points is completely characterized
by covering with c − c hypersurfaces (while other related results concern covering up to Hd−1
null sets).

From the theorem of Zaj́ıcek, the characterization we were looking for comes immediately,
at least for the case M = Rd.

Definition 2.3 (Regular measures on Rd) Let µ ∈ P2(Rd). We say that µ is regular if it
gives 0 mass to any c− c hypersurface.

Proposition 2.4 (Sharp hypothesis on Brenier’s theorem) Let µ ∈ P2(Rd). Then for
every ν ∈ P2(Rd) there exists only one optimal plan from µ to ν and this plan is induced by a
map from µ if and only if µ is regular.

Proof We start with the ‘if’ part. By theorem 1.6 we know that there exists a c-concave function
ϕ such that any optimal plan from µ to ν is concentrated on the graph of the c−superdifferential

of ϕ, where here c(x, y) = |x−y|2
2 . On Rd any c-concave function ϕ satisfies: x 7→ ϕ(x) − |x|

2

2
is concave and the graph of the c-superdifferential of ϕ is the same as minus-the graph of the
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superdifferential of x 7→ ϕ(x) − |x|
2

2 . Thus by Zaj́ıcek theorem and the hypothesis on µ we
know that the set of points x such that ∂c+ϕ(x) contains more than one point is µ-negligible.
Therefore the disintegration of any optimal plan w.r.t. the projection onto the µ coordinate has
to be a delta for µ-a.e. point: this means that the optimal plan is unique and induced by a map.

We turn to the ‘only if’: we argue by contradiction. Suppose that there is a c−c hypersurface
E such that µ(E) > 0. Then, again by Zaj́ıcek theorem, there exists a concave function ϕ :
Rd → R whose set of points of non differentiability contains E and thus has µ-positive measure.
It is easy to see that we can assume that ϕ has linear growth at infinity. Define the two maps
T1, T2 : Rd → Rd as:

T1(x) := the element of smallest norm in ∂+ϕ(x),

T2(x) := the element of biggest norm in ∂+ϕ(x).

Since ϕ has linear growth, T1, T2 ∈ L2
µ. Also, µ({T1 6= T2}) > 0. By construction, the plan

(Id,−T1)#µ+ (Id,−T2)#µ
2

,

is c-cyclically monotone and not induced by a map. �

Remark 2.5 The fact that ‘µ gives 0 mass to c− c hypersurfaces’ is a sufficient assumption to
get uniqueness of the optimal plan, and the fact that this plan is induced by a map, was already
noticed by Gangbo and McCann in [13]. This was a sharpening of the previous observation,
due to McCann [22], that it is sufficient to assume ‘µ gives 0 mass to d− 1 rectifiable surfaces’
(while the original version of Brenier’s theorem requires the absolute continuity of µ). �

The case of generic manifolds is analogous, the only thing we have to take care of, is that
there is no complete analogy between c-concave functions and semiconcave functions.

Definition 2.6 (c− c hypersurfaces in M) A set E ⊂M is a c− c hypersurface if it can be
covered by coordinate charts on each of which it can be covered by a countable number of c − c
hypersurfaces on Rd.

Remark 2.7 (Independence on the chart) A set E ⊂ Rd can be covered by a countable
number of c − c hypersurface if and only if the same is true for φ(E), where φ is a smooth
diffeomorphism of Rd.

This can be seen either by a direct application of the definition, or - in a heavier way - by
calling into play Zaj́ıcek’s theorem and observing that the composition of a convex function ϕ
with φ is locally semiconvex and that the set of points of non differentiability of ϕ◦φ is precisely
φ({points of non differentiability of ϕ}). �

Definition 2.8 (Regular measures on M) Let µ ∈ P2(M). We say that µ is regular if it
gives 0 mass to any c− c hypersurface.
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We will use the following lemma:

Lemma 2.9 Let ϕ : M → R be a −λ-concave function with compact support. Then for ε >
0 sufficiently small the function εϕ is c-concave and it holds v ∈ ∂+(εϕ)(x) if and only if
expx(−v) ∈ ∂c+(εϕ)(x).

Proof The thesis is equivalent to the following claim: there exists ε > 0 such that for every
x0 ∈M and every v ∈ ∂+ϕ(x0) the function

x 7→ εϕ(x)−
d2(x, expx0(−εv))

2

has a global maximum at x = x0. What is obvious is that x0 is always a local maximum, for
every ε > 0, and that x0 is a global maximum if it lies outside the support of ϕ.

Use the smoothness of M and the compactness of supp(ϕ) to find r > 0 such that

d2(·, ·)
2

:
{

(x, y) : d(x, y) < r,d(x, supp(ϕ)) < r,d(y, supp(ϕ)) < r
}
→ R

is C∞ and satisfies ∇2d2(·, y)/2 ≥ cId, c > 0, for any y s.t. d(y, supp(ϕ)) < r. Now observe that
since ϕ is semiconcave, real valued and with compact support, it is Lipschitz, thus for ε0 > 0
sufficiently small it holds ε0|v| < r/3 for any v ∈ ∂+ϕ(x) and any x ∈ M . Also, since ϕ is
bounded, up to decreasing the value of ε0 we can assume that

ε0|ϕ(x)| ≤ r2

12
.

Fix x0 ∈ M , v ∈ ∂+ϕ(x0) and let y0 := expx0(−ε0v). We claim that for ε0 chosen as above,
the maximum of ε0ϕ − d2(·, y0)/2, cannot lie outside Br(x0). Indeed if d(x, x0) ≥ r we have
d(x, y0) > 2r/3 and thus:

ε0ϕ(x)− d2(x, y0)

2
<
r2

12
− 2r2

9
= − r

2

12
− r2

18
≤ ε0ϕ(x0)−

d2(x0, y0)

2
.

Thus the maximum must lie in Br(x0). Recall that in this ball, the function d2(·, y0) is C∞ and
satisfies ∇2(d2(·, y0)/2) ≥ cId, thus it holds

∇2

(
ε0ϕ(·)− d2(·, y0)

2

)
≤ (ε0λ− c)Id,

where λ ∈ R is such that ∇2ϕ ≤ λId on the whole M . Thus decreasing if necessary the value of
ε0 we can assume that

∇2

(
ε0ϕ(·)− d2(·, y0)

2

)
< 0 on Br(x0),

which implies that ε0ϕ(·)− d2(·, y0)/2 admits a unique point x ∈ Br(x0) such that 0 ∈ ∂+(ϕ−
d2(·, y0)/2)(x). Since x0 is a local maximum, it must hold x = x0, which therefore implies that
x0 is the unique global maximum of ϕ − d2(·, y0)/2. By the arbitrariety of x0, v the proof is
complete. �
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Proposition 2.10 (Sharp hypothesis on McCann’s theorem) Let µ ∈P2(M). Then for
every ν ∈ P2(M) there exists only one optimal plan from µ to ν and this plan is induced by a
map from µ if and only if µ is regular.

Proof We start with the ‘if’ part. We claim that we can assume that µ and ν have compact
support. Indeed, let γ be an optimal plan from µ to ν and n 7→ Kn ⊂ M be an increasing
sequence of compact sets. Then γ is induced by a map if and only if each of the restrictions
γ|Kn×Kn is induced by a map. Also, observe that if each optimal plan is induced by a map,
then the optimal plan is unique, as if there were two different optimal maps T, S from µ to ν,
the plan 1

2

(
(Id, T )#µ+ (Id, S)#

)
would be optimal and not induced by a map.

So we assume µ, ν ∈ Pc(M). Then by remark 1.7 we can find a Kantorovich potential ϕ which
is semiconcave. Looking ϕ in charts, we have that it is a locally semiconcave function. Thus by
Zaj́ıcek theorem we know that the set of points of non differentiability of ϕ is µ-negligible. The
conclusion follows as in the case M = Rd.

Now we turn to the ‘only if’. Suppose that µ(E) > 0 for some c − c hypersurface E. Then
we can find an open set Ω ⊂ M diffeomorphic to Rd and a compact set K ⊂ Ω such that
E is a c − c hypersurface in Ω (having identified Ω to Rd), and µ(E ∩ K) > 0. By Zaj́ıcek
theorem, we can find a convex function ϕ : Rd → R which is not differentiable at any point in
E ∩K ⊂ Ω ≈ Rd. Pick a C∞c (Ω) cut off function which is identically 1 on K and observe that
the function χϕ : M → R defined by χϕ = 0 outside Ω, is semiconvex. Now apply lemma 2.9 to
find ε > 0 such that εχϕ is c-concave and v = ∇(εχϕ)(x) if and only if expx(−v) ∈ ∂c+(εχϕ)(x).
The conclusion follows as for the case M = Rd. �

Remark 2.11 Here we just proved that the optimal plan is unique and induced by a map,
but of course one may ask whether such a map can be recovered by taking the gradient of a
c-concave function. This is actually the case: we postpone the proof of this fact (which slightly
generalizes what proven in [12]) to the appendix. �

Remark 2.12 I don’t know whether, given a geodesic (µt) such that µ0 is regular, it holds ‘µt
is regular for any t < 1’ or not. �

3 The abstract tangent space

In this section we study from a purely metric perspective the tangent space of (P2(M),W2) at
a certain measure µ. We will stick to the case of the Wasserstein space built over a Riemannian
manifold, but actually all of what we are going to say here is valid in the setting of metric space
with Alexandrov curvature bounded from below (see remark 3.5).

In this section we will assume that the manifold M is compact.
Let rmin > 0 be such that t 7→ expx(tv) is the unique minimizing geodesic between x ∈ M

and expx(v) for any x ∈ M and any v ∈ TxM with |v| ≤ rmin. The fact that rmin is positive is
ensured by the compactness of M .

We don’t want to do a general discussion about tangent spaces of metric spaces, we just
recall that if a certain geodesic space (X, d) is ‘sufficiently well behaved’ near a certain point

11



x0 ∈ X, then we can define the angle θ(γ, γ̃) ∈ [0, π] between two constant speed geodesics
(γ(t)), (γ̃(t)) starting from x0 and defined in some right neighborhood of 0 by:

cos
(
θ(γ, γ̃)

)
:= lim

t,s↓0

d2(γ(t), x0) + d2(γ̃(s), x0)− d2(γ(t), γ̃(s))

2d(γ(t), x0)d(γ̃(s), x0)
,

where of course the problem is in proving that the joint limit exists (and typically it does not).
Assume that the angle always exists, and let Dirx0 be the set of constant speed geodesics starting
from x0, defined on some right neighborhood of 0, where we identify two of them if they coincide
near 0. Then one can define the distance D(γ, γ̃) between γ, γ̃ ∈ Dirx0 by the formula:

D2(γ, γ̃) :=
1

2

(
|γ′|2 + |γ̃′|2 − |γ′||γ̃′| cos

(
θ(γ, γ̃)

))
= lim

t↓0

d2(γ(t), γ̃(t))

t2
,

where |γ′|, |γ̃′| are the metric speed of γ, γ̃ respectively. The abstract tangent space at x0 is then
defined as the completion of Dirx0 w.r.t. the distance D.

We want to apply this construction to the space (P(M),W2), where M is a compact Rie-
mannian manifold. We start with the following concavity estimate.

Proposition 3.1 Let M be a compact smooth Riemannian manifold. Then there exists a con-
stant C < +∞ such that for any x ∈ M , v,w ∈ TxM and T, S > 0 such that T |v|, S|w| < rmin

it holds

d2
(

expx(tv), expx(Sw)
)
≥
(

1− t

T

)
S2|w|2+

t

T
d2
(

expx(Tv), expx(Sw)
)
−t(T−t)

(
|v|2+SC

)
,

(3.1)
for any 0 ≤ t ≤ T .

Proof Fix c ∈ R and let K ⊂ T 2M × R2 be the compact set defined by

K :=
{

(x, v,w, T, S) : |v|, |w| < c, T, S <
rmin

c

}
,

and consider the function Rem(x, v,w, T, S) : K → R given by

(x, v,w, T, S) 7→ d2
(

expx(Tv), expx(Sw)
)
− T 2|v|2 − S2|w|2.

By the definition of K, it is obvious that Rem is a C∞ function. Also, we know that

Rem(x, v,w, T, 0) = Rem(x, v,w, 0, S) = 0,

therefore it is possible to write

Rem(x, v,w, T, S) = TS Rem′(x, v,w, T, S),

for some C∞ function Rem′ : K → R.

12



Define the constant C ∈ R as

C := sup
K

{∣∣∣∣ ddT Rem′(x, v,w, T, S)

∣∣∣∣+
1

2

∣∣∣∣T d2

dT 2
Rem′(x, v,w, T, S)

∣∣∣∣} < +∞,

and observe that by a simple scaling argument C does not depend on c. Now fix (x, v,w, T, S) ∈
K and let f : [0, 1]→ R be defined by

f(λ) := d2
(

expx(λTv), expx(Sw)
)

= λ2T 2|v|2 + S2|w|2 + λTS Rem′(x, v,w, λT, S),

and observe that

d2

dλ2
f(λ) = 2T 2|v|2 + 2T 2S

d

dT
Rem′(x, v,w, T, S) + λT 3S

d2

dT 2
Rem′(x, v,w, T, S)

≤ 2T 2
(
|v|2 + SC

)
.

This bound implies the inequality

f(λ) ≥ (1− λ)f(0) + λf(1)− λ(1− λ)T 2
(
|v|2 + SC

)
,

which gives the conclusion by putting λ = t
T �

It is known that inequalities like (3.1) are inherited by the quadratic Wasserstein space (see
e.g. inequality 7.3.1 [4] and proposition 3.1. of [25]). In our case we have:

Proposition 3.2 Let µ ∈ P(M) and (µt), (νs) be two constant speed geodesics starting from
µ and defined on some right neighborhood of 0, say [0, a]. Then for T, S < rmina

Diam(M) it holds

W 2
2 (µt, νS) ≥

(
1− t

T

)
W 2

2 (µ, νS) +
t

T
W 2

2 (µT , νS)− t(T − t)
(
W 2

2 (µ, µT )

T 2
+ SC

)
, ∀t < T

(3.2)
where C is the constant provided by proposition 3.1.

Proof Given that the arguments we are going to use are pretty well known, we will be a bit
sloppy in the proof. We know by proposition 1.12 that there exists plans γ,η ∈P2(TM) such
that

µt = expπM (tπ1)#γ,

νs = expπM (sπ1)#η,

for any t, s < a. In particular, for γ-a.e. x, v, the curve t 7→ expx(tv) is a globally minimizing

geodesic in [0, a]: therefore |v| < Diam(M)
a for γ-a.e. (x, v). Similarly for η.

Now fix T, S < rmina
Diam(M) and choose t < T . Arguing as in the proof of proposition 3.1. of

[25], it is possible to show the existence of a plan α ∈P(T 2M) satisfying:

(πM , π1)#α = γ,(
expπM (tπ1), expπM (Sπ2)

)
#
α ∈ Opt(µt, νS)

13



Now pick (x, v,w) ∈ supp(α) and observe that since T |v|, S|w| < rmin we may apply proposition
3.1 and get

d2(expx(tv), expx(Sw)) ≥
(

1− t

T

)
S2|w|2 +

t

T
d2(expx(tv), expx(Sw))− t(T − t)(|v|2 + SC).

Integrating this inequality w.r.t. α and observing that it holds

(πM , expπM (Sπ2))#α ∈ Adm(µ, νS),(
expπM (Tπ1), expπM (Sπ2)

)
#
α ∈ Adm(µT , νS),

we get the conclusion. �

Inequality (3.2) is the key tool which allows the proof of existence of the angle between geodesics.
We will use the following simple lemma:

Lemma 3.3 Let F be a real valued function defined on an open set of the kind (0, a) ⊂ R2, for
some a > 0. Assume that F satisfies: for every ε > 0 there exists δ > 0 such that

t ≤ T ≤ δ
s ≤ S ≤ δ

}
⇒ F (t, s) ≤ F (T, S) + ε. (3.3)

Then there exists the joint limit limt,s↓0 F (t, s).

Proof Let L := limt,s↓0 F (t, s). Fix ε > 0 and find δ so that (3.3) is true. Also, find T, S < δ
such that F (T, S) ≤ L+ ε. Conclude observing that the inequality

t ≤ T
s ≤ S

}
⇒ F (t, s) ≤ F (T, S) + ε ≤ L+ 2ε,

implies that L ≥ limt,s↓0 F (t, s). �

Theorem 3.4 (Existence of angles between geodesics) Let M be a compact Riemannian
manifold, µ ∈P(M) and (µt), (νs) two constant speed geodesics starting from µ and defined on
some right neighborhood of 0, say [0, a]. Then there exists the joint limit of

F (t, s) :=
W 2

2 (µt, µ) +W 2
2 (νs, µ)−W 2

2 (µt, νs)

2W2(µt, µ)W2(νs, µ)
,

as t, s ↓ 0.

Proof Fix T, S < δ < rmina
Diam(M) , choose t < T , s < S and apply two times inequality (3.2) to get

W 2
2 (µt, νs) ≥

(
1− t

T

)
W 2

2 (νs, µ) +
t

T
W 2

2 (µT , νs)−
t

T

(
1− t

T

)
W 2

2 (µT , µ)− t(T − t)sC,

W 2
2 (µT , νs) ≥

(
1− s

S

)
W 2

2 (µT , µ) +
s

S
W 2

2 (µT , νS)− s

S

(
1− s

S

)
W 2

2 (νS , µ)− s(S − s)TC.
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Plugging together these inequalities we obtain

W 2
2 (µt, νs) ≥

ts

TS
W 2

2 (µT , νS) +
s

S

(
s

S
− t

T

)
W 2

2 (νS , µ) +
t

T

(
t

T
− s

S

)
W 2

2 (µT , µ)

− Cts(T − t+ S − s).
(3.4)

Then by short calculations we deduce:

F (t, s) ≤ F (T, S) + C(T − t+ S − s) ≤ F (T, S) + 2δC.

The conclusion follows by lemma 3.3. �

Remark 3.5 (The conclusion holds also in bounded Alexandrov spaces) The key re-
sult which allows the proof of the existence of angles between geodesics in P(M), is inequality
(3.1). Such an inequality concerns the behavior of the distance function along an edge of the
geodesic triangle x, expx(Tv), expx(Sw) and the constants C, rmin which come into play are the
only things which depend on the manifold we are working on.

Now suppose we are working on a bounded Alexandrov space (X, d) with curvature bounded
below by K. Say that its diameter is D and that, without loss of generality, K < 0. Consider
as reference manifold with constant curvature the Hyperbolic plane with curvature K: in this
case rmin = +∞. Now, the plane is not compact, obviously, but since X is bounded, any time
we have a geodesic triangle in X, we may consider a reference triangle in some fixed ball of
radius 2D inside the Hyperbolic plane. The validity of (3.1) and the definition of Alexandrov
space ensures that for any x ∈ X, and any two constant speed globally minimizing geodesics
γ, γ̃ starting from x and defined, say, on [0,1], we have

d2(γ(t), γ̃(S)) ≥
(

1− t

T

)
d2(x, γ̃(S)) +

t

T
d2(γ(T ), γ̃(S))− t(T − t)

(d2(x, γ(T ))

T 2
+ SC

)
,

where the constant C depends only on K and D. Once we have this inequality, we can proceed
as above and prove first its analogous on the Wasserstein space, and then the existence of angles
between geodesics.

This is a slight generalization of proposition 3.1. of [25], where it was firstly proven the
existence of the limit

lim
ε↓0

W2(µεt, νεs)

ε
=: f(t, s),

and then that the value of
t2|µ̇t|2 + s2|ν̇s| − f2(t, s)

2ts
,

is independent on t, s (here |µ̇t| and |ν̇s| stand for the metric speed of the geodesics (µt), (νs)
respectively). �

An immediate consequence of theorem 3.4 is the following statement:
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Proposition 3.6 Let µ ∈P(M) and (µt) (µ̃t) be two constant speed geodesics starting from µ
and defined on some right neighborhood of 0. Then there exists the limit

D
(
(µt), (µ̃t)

)
:= lim

t↓0

W2(µt, µ̃t)

t
.

and this limit defines a distance on the space of directions Dirµ (i.e. the set of constant speed
geodesics starting from µ, where we identify two geodesics which coincide in some right neigh-
borhood of 0).

Proof Straightforward. �

Therefore, the following definition is meaningful:

Definition 3.7 (The Abstract Tangent Space) Let M be a compact Riemannian manifold
and µ ∈P(M). Then the Abstract Tangent Space AbstrTanµ is defined as

AbstrTanµ := Dirµ
D
,

where of course by closure w.r.t. D we intend the abstract completion.

4 Directional derivative of the squared distance

We just proved that there exists an abstract notion of tangent space. Our goal now is to provide a
concrete representation of such space. The argument we are going to use is based on the precise
calculation of the directional derivative of the squared Wasserstein distance. Such a formula
is already known for the Wasserstein space built over an Euclidean space (see [4] proposition
7.3.6.2). The generalization to the case of manifolds is pretty straightforward. As in the previous
section, we are going to assume that M is compact.

Let us recall that if M is a compact Riemannian manifold, then there exists a constant C > 0
such that

d2(x, γ(t)) ≥ (1− t)d2(x, γ(0)) + td2(x, γ(1))− Ct(1− t)d2(γ(0), γ(1)), (4.1)

where γ(t) is any minimizing constant speed geodesic on [0, 1].
As already observed by Ohta [25], the Wasserstein space built over a space satisfying an

inequality like (4.1), satisfies the same kind of inequality:

Proposition 4.1 Let M be a compact Riemannian manifold and let C be the optimal constant
in (4.1). Then the space (P2(M),W2) satisfies

W 2
2 (µt, σ) ≥ (1− t)W 2

2 (µ0, σ) + tW 2
2 (µ1, σ)− Ct(1− t)W 2

2 (µ0, µ1),

where (µt) is a constant speed minimizing geodesic and σ is a generic element of P2(M).

Proof Same as proposition 3.1. of [25]. �

2observe that the formula is one of the key tools used to build a solid analysis of the properties of geodesically
convex functionals, thus the generalization of the results of [4] to the case of manifolds has to pass through this
formula. In particular, to prove that in a minimizer of µ 7→ F (µ) + 1

2τ
W 2

2 (µ, µ0) the subdifferential is non empty,
a directional derivation is needed
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Recall that given x, y ∈M and v ∈ TxM , the derivative of t 7→ 1
2d2(expx(tv), y) is given by

d

dt |t=0

1

2
d2(expx(tv), y) = − sup

w∈exp−1(y),
|w|=d(x,y)

〈v,w〉 , (4.2)

and that the supremum is always achieved.

Theorem 4.2 (Directional derivative of squared distance) Let M be compact, µ, σ ∈
P(M), γ ∈P2(TM)µ and define µt := expµ(t · γ). Then it holds

d

dt |t=0+

1

2
W 2

2 (µt, σ) = − sup

∫
〈v1, v2〉 dα(x, v1, v2),

where the supremum is taken among all α ∈P2(T
2M) such that

(πM , π1)#α = γ,

(πM , π2)#α ∈ exp−1µ (σ).
(4.3)

Observe that there are no assumptions on γ, therefore the curve (µt) may not be a geodesic.

Proof Observe that from proposition 4.1 we know that the map t 7→ 1
2W

2
2 (µt, σ) is semiconcave,

therefore the right derivative at 0 exists.
We start with ≤. Choose α satisfying (4.3) and observe that(

expπM (tπ1), expπM (π2)
)
#
α ∈ Adm(µt, σ),

therefore we have

lim
t↓0

W 2
2 (µt, σ)−W 2

2 (µ, σ)

t
≤ lim

t↓0

1

t

(∫
d2
(

expx(tv1), expx(v2)
)
− |v2|2dα(x, v1, v2)

)
. (4.4)

Now recalling inequality (4.1) we get

|v2|2 + d2(expx(v1), expx(v2))− C(1− t)|v1|2 ≤
1

t

(
d2
(

expx(tv1), expx(v2)
)
− |v2|2

)
≤ t|v1|2 + 2|v2||v1|,

from which we get the a uniform domination in t of the integrand in the right hand side of (4.4).
Therefore we can pass the limit inside the integral and, from formula (4.2), obtain

lim
t↓0

W 2
2 (µt, σ)−W 2

2 (µ, σ)

t
≤
∫

d

dt |t=0+
d2
(

expx(tv1), expx(v2)
)
dα(x, v1, v2)

≤ −2

∫
〈v1, v2〉 dα(x, v1, v2).
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Now we pass to the opposite inequality. Fix t0 and let γt0 ∈P2(TM)µt0 be defined by

γt0 :=
(

expπM (t0π
1), τ(π1)

)
#
γ,

where τ is the parallel transport map from x to expx(t0v) along the geodesic t 7→ expx(tv). In
particular observe that

expµ(t · γ) = expµt0

(
(t− t0) · γt0

)
.

Now choose αt0 such that

π0,1# αt0 = γt0 ,

π0,2# αt0 ∈ exp−1µt0
(σ),

and let T : T 2M → TM be the map defined by

d

dt |t=0
d2
(

expx(tv1), expx(v2)
)

= −2 〈v1, Tt0(x, v1, v2)〉 ,

expx
(
Tt0(x, v1, v2)

)
= expx(v2),

|Tt0(x, v1, v2)| = |v2|

i.e. T identifies the element of TxM which realizes the derivative in formula (4.2) with y :=
expx(v2). Define α̃t0 as

α̃t0 :=
(
πM , π1, T

)
#
αt0 ,

and observe that from the definition of T we have

expπM (π2)#α̃t0 = expπM (π2)#αt0 = σ,

‖v2‖α̃t0
= ‖v2‖αt0

= W2(µt0 , σ),

so that (πM , π2)#α̃t0 ∈ exp−1µt0
(σ).

Now argue as in the first part of the proof to get

lim
t↑t0

W 2
2 (µt, σ)−W 2

2 (µt0 , σ)

t− t0
≤ −2

∫
〈v1, v2〉 dα̃t0(x, v1, v2) ≤ lim

t↓t0

W 2
2 (µt, σ)−W 2

2 (µt0 , σ)

t− t0
.

By the semiconcavity of t 7→W 2
2 (µt, σ) we know

d

dt |t=0+
W 2

2 (µt, σ) = lim
t0→0

d

dt |t=t+0
W 2

2 (µt, σ) = lim
t0→0

d

dt |t=t−0
W 2

2 (µt, σ)

= −2 lim
t0→0

∫
〈v1, v2〉 dα̃t0(x, v1, v2).

(4.5)

Observe that (πM , π1)#α̃t0 = γt0 → γ in P2(TM) and that the family {(πM , π2)#α̃t0}t0∈(0,1]
is relatively compact by proposition 1.13. Therefore by proposition 1.13 again we know that
the family {α̃t0}t0∈(0,1] is relatively compact as well in P2(T

2M). Therefore there is a sequence
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tn ↓ 0 such that α̃tn converges to some α̃ in P2(T
2M). By the continuity of (πM , π1) and

(πM , π2) we know that

(πM , π1)#α̃ = γ,

(πM , π2)#α̃ ∈ exp−1µ (σ).

Since the function 〈·, ·〉 : T 2M → R given by (x, v1, v2) → 〈v1, v2〉 has quadratic growth, the
convergence in P2(T

2M) gives

lim
tn→0

∫
〈v1, v2〉 dα̃tn(x, v1, v2) =

∫
〈v1, v2〉 dα̃(x, v1, v2),

therefore the conclusion follows from equation (4.5).

�

5 The Geometric tangent space

In this section we will use the formula for the directional derivative of the squared distance to
provide an explicit representation of the tangent space.

We know that the abstract tangent space AbstrTanµ is defined as the completion w.r.t. to
the distance D of the set of constant speed geodesics Dirµ emanating from µ. Now, proposition
1.12 tells that to each (equivalence class of) geodesic (µt) ∈ Dirµ is canonically associated a
unique plan γ ∈P2(TM)µ via the formula

µt = (expπM (tπ1))#γ, ∀t� 1. (5.1)

The point we want to address here is to understand whether the distance D between geodesics
can be read - hopefully in a simple way - in terms of the plans associated.

To understand how this distance between plans should look like, observe that if we have two
plans induced by vector fields, then the arguments introduced in [26] suggest that their distance
should be the distance between the corresponding vector fields in L2

µ. A natural way to generalize
this distance to the case of general plans is via the following Wasserstein-like definition:

Definition 5.1 (The distance Wµ) Let µ ∈ P2(M) and γ,η ∈ P2(TM)µ. Then Wµ(γ,η)
is defined by

W 2
µ(γ,η) :=

∫
W 2

2 (γx,ηx)dµ(x),

where (γx) and (ηx) are the disintegration w.r.t. the projection πM .

Before studying the relationship between the function Wµ and the geometry of (P2(M),W2),
we briefly discuss the main properties of the space (P2(TM)µ,Wµ).
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Recall that given γ,η ∈ P2(TM)µ we defined the set Admµ(γ,η) of admissible couplings
between them as the set of plans α ∈P(T 2M) such that

(πM , π1)#α = γ,

(πM , π2)#α = η.

Now let the cost of a plan α ∈P(T 2M) be defined as∫
|v1 − v2|2dα(x, v1, v2).

Proposition 5.2 (Basic properties of Wµ) Let µ ∈P2(M), γ,η ∈P2(TM)µ. Then

Wµ(γ,η) = inf
α∈Admµ(γ,η)

∫
|v1 − v2|2dα(x, v1, v2). (5.2)

Also, the infimum is always achieved. The function Wµ : [P2(TM)µ]2 → R+ is a distance and
the space (P2(TM)µ,Wµ) is complete and separable.

Proof We start by proving ≤ in (5.2). Consider an admissible plan α ∈ Admµ(γ,η) and its
disintegration (αx) w.r.t. the projection πM . It is clear that αx ∈ Adm(γx,ηx) for µ-a.e. x.
Therefore it holds

W 2
µ(γ,η) =

∫
W 2

2 (γx,ηx)dµ(x) ≤
∫ ∫

|v1 − v2|2dαx(v1, v2)dµ(x) =

∫
|v1 − v2|2dα(x, v1, v2).

The opposite inequality follows by a measurable selection argument: basically, choose for µ-a.e.
x an optimal plan αx ∈ Opt(γx,ηx) and then define α ∈ P(T 2M) by dα := dµ(x) × dαx (we
omit the technical details). The same argument shows that the infimum is achieved.

Completeness and separability now follow as in the classical Wasserstein case. �

We will call a plan α which realizes the minimum in (5.2) an optimal plan from γ to η, and we
write α ∈ Optµ(γ,η). Also, we introduce the following notation

norm of a plan: ‖γ‖µ :=

√∫
|v|2dγ(x, v), ∀γ ∈P2(TM)µ,

scalar product of 2 plans: 〈γ,η〉µ :=
1

2

(
‖γ‖2µ + ‖η‖2µ −W 2

µ(γ,η)
)

∀γ,η ∈P2(TM)µ,

also, recall that we defined the rescalation of a plan as

λ · γ := (πM , λπ1)#γ ∈P2(TM)µ, ∀γ ∈P2(TM)µ, λ ∈ R.

It is immediate to verify that

〈γ,η〉µ = sup
α∈Admµ(γ,η)

∫
〈v1, v2〉 dα(x, v1, v2)

=

∫
〈v1, v2〉 dα(x, v1, v2), ∀α ∈ Optµ(γ,η),
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and that

‖λ · γ‖µ = |λ|‖γ‖µ, ∀γ ∈P2(TM)µ, λ ∈ R,〈
λ · γ, λ̃ · η

〉
µ

= λλ̃ 〈γ,η〉µ , ∀γ,η ∈P2(TM)µ, λ, λ̃ > 0.

Remark 5.3 In general it is not true that 〈λ · γ,η〉µ = λ 〈γ,η〉µ for negative values of λ. One
always has the inequality

〈λ · γ,η〉µ ≥ λ 〈γ,η〉µ , λ < 0

and this inequality can very well be strict. See also remark 5.8 and the proof of 6.6. �

With the notation just introduced, the formula for the directional derivative of the squared
Wasserstein distance reads as:

d

dt

1

2
W 2

2 (expµ(t · γ), σ) = − sup
η∈exp−1

µ (σ)

〈γ,η〉µ , ∀γ ∈P2(TM)µ, σ ∈P(M). (5.3)

Observe the formal analogy with equation (4.2).
Let us now define the set Dirµ ⊂P2(TM)µ as

Dirµ :=
{
γ ∈P2(TM)µ : t 7→ (expπM (tπ1))#γ is a geodesic in some right neighborhood of 0

}
,

and:

Definition 5.4 (The Geometric tangent space) Let µ ∈ P2(M). The Geometric tangent
space Tanµ(P2(M)) at µ is defined as the closure of Dirµ w.r.t. the distance Wµ.

Observe that being Tanµ(P2(M)) a closed subspace of a separable and complete metric space,
it is separable and complete as well.

Notice that if γ ∈ Dir, then the norm ‖γ‖µ coincides with the metric speed of the geodesic
t 7→ expµ(t · γ) defined on some right neighborhood of 0.

We are now ready to prove one of our main results:

Theorem 5.5 (Representation of abstract tangent space) Let M be a compact Rieman-
nian manifold and µ ∈ P(M). Consider the natural bijection Dirµ 7→ Dirµ which associate
to a plan γ ∈ Dirµ the (equivalence class of the) curve t 7→ expµ(t · γ). Then this bijection
is an isometry, which therefore extends to a canonical isometry between Tanµ(P2(M)) and
AbstrTanµ.

Proof The fact that the map considered is a bijection follows from proposition 1.12 and the
definition of Dirµ. Thus all we need to prove is that this mas is an isometry. By the definition
of distance on Dirµ and of scalar product on P2(TM)µ, our thesis is equivalent to

lim
t,s↓0

t2‖γ‖2µ + s2‖η‖2µ −W 2
2

(
expµ(t · γ), expµ(s · η)

)
2ts

= 〈γ,η〉µ , ∀γ,η ∈ Dirµ.
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By theorem 3.4, we know that the joint limit on the left hand side of this equation exists. In
particular, its value is unchanged if we first take the limit w.r.t. s and then w.r.t. t. Since for t
sufficiently small we have t2‖γ‖2µ = W 2

2 (µ, expµ(t · γ)), we have

lim
t,s↓0

t2‖γ‖2µ + s2‖η‖2µ −W 2
2

(
expµ(t · γ), expµ(s · η)

)
2ts

= − lim
t↓0

1

2t

d

ds |s=0+
W 2

2

(
expµ(t · γ), expµ(s · η)

)
.

Now we call into play the formula for the directional derivative of the squared Wasserstein
distance. Observe that for t sufficiently small theorem 1.11 ensures that the plan t · γ is the
unique element of exp−1µ (expµ(t · γ)), therefore we have

− lim
t↓0

1

2t

d

ds |s=0+
W 2

2

(
expµ(t · γ), expµ(s · η)

)
= lim

t↓0

1

t
〈t · γ,η〉µ = 〈γ,η〉µ ,

and the proof is complete. �

Corollary 5.6 Let M be a compact Riemannian manifold, µ ∈ P(M) and γ,η ∈
Tanµ(P2(M)). Then it holds

Wµ(γ,η) = lim
t↓0

W2

(
expµ(t · γ), expµ(t · η)

)
t

.

Proof The previous proof shows that the result is true if γ,η ∈ Dirµ. The conclusion follows
by a simple approximation argument, we omit the details. �

Remark 5.7 (On the topology of Tanµ(P2(M))) Easy examples show that the topology
induced by the distance Wµ is stronger that the one of (P2(TM),W2). �

Example 5.8 (Weird behavior of tangent plans) Suppose M = R, let µ := δ0 and con-
sider the plan

γ :=
1

2
(δ0,1 + δ0,−1) ∈P2(TM)µ.

Since µt := expµ(t · γ) = 1
2(δt + δ−t) it is immediate to verify that γ ∈ Dirµ (actually, in this

situation P2(TM)µ coincides with Dirµ). Along the curve (µt) the mass initially in 0 is split:
half goes to the left and half to the right. Now suppose we want to move from µ in the ‘opposite’
direction than the one indicated by γ. It is easy to be convinced that this means that the mass
which was moving to the right now has to move to the left and viceversa, or, which is the same,
that we have to consider the plan −1 · γ and then the curve t 7→ expµ(t · (−1 · γ)).

Now, the point is that −1 · γ = γ (!). Therefore in this case ‘to move back is the same as
to move forward’. In particular, it holds 〈−1 · γ,γ〉µ = 〈γ,γ〉µ (which is a concrete example of
strict inequality in remark 5.3). We will see in corollary 6.6 that this kind of behavior in some
sense characterizes tangent plans which are not induced by maps. �
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6 Relation between Tanµ(P2(M)) and the ‘space of gradients’

In the previous section we proved that the tangent space of P(M) at a measure µ is always
given by the space Tanµ(P2(M)). A natural question which arises is then whether this space is
an Hilbert space, and whether this Hilbert space may by identified with the well known ‘space
of gradients’ Tanµ(P2(M)) defined as

Tanµ(P2(M)) :=
{
∇ϕ : ϕ ∈ C∞c (M)

}L2
µ

.

Observe that we proved that Tanµ(P2(M)) coincides with the abstract notion of tangent space
whenever the manifold M is compact. Still, the definition of Tanµ(P2(M)) makes sense also
without such compactness assumption: in this section we drop it, and deal with a generic
Riemannian manifold M .

Observe that there is a natural embedding ιµ : L2
µ →P2(TM)µ given by

ιµ(v) := (Id, v)#µ,

and this embedding is also an isometry. As usual, we will say that a plan γ ∈ P2(TM)µ is
induced by a map, if γ = ιµ(v) for some v ∈ L2

µ. A natural right inverse of ιµ is the barycentric
projection defined by:

B(γ)(x) :=

∫
vdγx(v),

where {γx}x∈M is the disintegration of γ w.r.t. the projection πM . The barycentric projection
is characterized by the equality∫

〈u(x), v〉 dγ(x, v) =

∫ 〈
u(x),

∫
vdγx(v)

〉
dπM# γ(x) =

∫
〈u,B(γ)〉 dµ, ∀u ∈ L2

µ.

The two main results of this section are given in corollaries 6.4 and 6.6. In corollary 6.4 we
exploit the relation between Tanµ(P2(M)) and other natural sets of ‘potential tangent’ maps,
in corollary 6.6 we prove that Tanµ(P2(M)) is an Hilbert space if and only if µ is regular, and
in this case it coincides, via the embedding ιµ, with Tanµ(P2(M)).

We start with the following simple statement:

Proposition 6.1 Let µ ∈P2(M). Then ιµ(Tanµ(P2(M))) ⊂ Tanµ(P2(M)).

Proof By density, it is enough to show that ιµ(∇ϕ) ∈ Tanµ(P2(M)). This is true because of
lemma 2.9. �

Now we want to prove that B
(
Tanµ(P2(M))

)
⊂ Tanµ(P2(M)). From the technical point of

view, this will be the key enabler from which we will get our results. We will use the following
lemma, which will end to be a particular case of proposition 6.3, but needs to be proved apart.
Observe that we are going to use estimates concerning the regularization by convolution: the
proof of these estimates can be found in the appendix.

We will write ‖v‖µ for the norm of the vector field v ∈ L2
µ.
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Lemma 6.2 Let µ ∈ P2(M) be a measure absolutely continuous w.r.t. the volume measure
and ν ∈P2(M). Let v ∈ L2

µ be the (unique) vector field such that exp(v) is the unique optimal
transport map from µ to ν provided by McCann theorem. Then v ∈ Tanµ(P2(M)).

Proof Let n 7→ Kn ⊂ M be an increasing sequence of compact sets such that M = ∪nKn and,
for every n ∈ N, χn ∈ C∞c (M) be a cut off function satisfying 0 ≤ χn ≤ 1, χn|Kn ≡ 1 and

|∇χn(x)| ≤ 1 for every x ∈M .
Let ϕ : M → R be a c-concave potential for the couple (µ, ν). Assume for a moment that

K = supp(ν) is compact. Then from remark 1.7 we know that a choice of ϕ is given by

ϕ(x) := inf
y∈K

d2(x, y)

2
+ f(y),

for an appropriate f , so that ϕ is locally semiconcave and hence differentiable µ-a.e.. We know
that v = −∇ϕ belongs to L2

µ. The fact that y is taken among the elements of a compact set,
implies that ϕχn is a Lipschitz function and (recalling proposition 8.6) for any family of mollifiers
ρε defined as in the appendix and ε sufficiently small, we have

‖∇(ϕχn ∗ ρε)−∇(ϕχn) ∗ ρε‖µ → 0

as ε goes to 0 (actually, we will prove 8.6 only for smooth ϕ and not for Lipschitz ones - the
generalization is straightforward, we omit the details). This, together with the (obvious) fact
that ‖∇(ϕχn) ∗ ρε −∇(ϕχn)‖µ → 0 as ε→ 0, gives

‖∇(ϕχn ∗ ρε)−∇(ϕχn)‖µ → 0,

as ε→ 0. Since ϕχn ∗ ρε ∈ C∞c (M), we have that vn = ∇(ϕχn) ∈ Tanµ(P2(M)). Letting n go
to +∞ and using the dominated convergence theorem we deduce v ∈ Tanµ(P2(M)).

The generalization to the case in which ν has not compact support follows by approximation
and a stability of optimality argument. �

Let the normal space Tan⊥µ (P2(M)) be the orthogonal complement of Tanµ(P2(M)) in L2
µ and

Pµ : L2
µ → Tanµ(P2(M)) be the orthogonal projection.

Proposition 6.3 Let µ ∈P2(M). Then B(Tanµ(P2(M))) = Tanµ(P2(M)).

Proof Fix µ ∈P2(M) and γ ∈ Tanµ(P2(M)). By density and positive 1-homogeneity we may
assume that γ ∈ Dirµ and that γ is the unique element of exp−1µ (expµ(γ)). Observe that the
thesis is equivalent to ∫

〈w(x), v〉 dγ(x, v) = 0, ∀w ∈ Tan⊥µ (P2(M)).

Thus fix w ∈ Tan⊥µ (P2(M)). Choose a family of mollifiers ρε and define

µε := µ ∗ ρε,

wε :=
(wµ) ∗ ρε

µε
,
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where we are identifying the measure µε with its density w.r.t. the volume measure.
Choose ϕ ∈ C∞c (M) and observe that it holds∫

〈wε,∇ϕ〉 dµε =

∫
〈(wµ) ∗ ρε(x),∇ϕ(x)〉 dvol(x)

=

∫
〈w, (∇ϕ) ∗ ρε〉 dµ+ Rem

=

∫
〈w,∇(ϕ ∗ ρε)〉 dµ+ Rem + Rem′

= Rem + Rem′

since w ∈ Tan⊥µ (P2(M)). The reminder terms Rem and Rem’ can be bounded by using propo-
sitions 8.5 and 8.6 to obtain: ∣∣∣Rem + Rem′

∣∣∣ ≤ cε‖w‖µ‖∇ϕ‖µε ,
where cε goes to 0 with ε. Therefore we proved

‖Pµε(wε)‖µε ≤ cε‖w‖µ. (6.1)

Now let vε ∈ L2
µε be the unique vector field such that ‖vε‖µε = W2(µ

ε, ν) and the optimal
transport map from µε to ν is given by exp(vε). In other words, the plans γε := ιµε(v

ε) are
the unique elements of exp−1µε (ν). By the stability of optimality, the uniqueness assumption
on γ and the uniform bound on

∫
|v|2dγε(x, v) = W 2

2 (µε, ν) it is immediate to verify that the
following passage to the limit holds:

lim
ε→0

∫
〈ξ(x), v〉 dγε(x, v) =

∫
〈ξ(x), v〉 dγ(x, v), ∀ξ ∈ V(M).

Also, it is easy to check that from the validity of the such limit and the convergence of the wε

to w (we skip the details), that

lim
ε→0

∫
〈wε(x), v〉 dγε(x, v) =

∫
〈w(x), v〉 dγ(x, v).

Using the previous proposition, we know that vε ∈ Tanµε(P2(M)), therefore from (6.1) we
obtain ∣∣∣∣∫ 〈wε(x), v〉 dγε(x, v)

∣∣∣∣ =
∣∣∣ 〈wε, vε〉µε ∣∣∣ ≤ cε‖w‖µ‖vε‖µε = cε‖w‖µW2(µ

ε, ν).

Passing to the limit in ε we obtain ∫
〈w(x), v〉 dγ(x, v) = 0.

By the arbitrariety of w ∈ Tan⊥µ (P2(M)) we got the thesis. �
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Corollary 6.4 (Characterization of tangent maps) Let µ ∈ P2(M). The following three
sets are equal:

Tangent vector fields: Tanµ(P2(M)),

Closure of vector fields
which are optimal in a
right neighborhood of 0:

{
v ∈ L2

µ : ∃ε > 0 s.t. (Id, exp(tv))#µ is optimal for t ≤ ε
}L2

µ

,

Vector fields which
induce tangent plans:

{
v ∈ L2

µ : ιµ(v) ∈ Tanµ(P2(M))
}
,

Proof By lemma 2.9 we know that the first set is included in the second, while by definition of
Tanµ(P2(M)) as closure of Dirµ we know that the second is included in the third. To conclude,
pick v ∈ L2

µ such that ιµ(v) ∈ Tanµ(P2(M)) and observe that by proposition 6.3 above we have
B(ιµ(v)) ∈ Tanµ(P2(M)). Now just observe that B(ιµ(v)) = v. �

Remark 6.5 Observe that a priori the third of the spaces above could be strictly bigger than
the second one, as it may be the case that a certain plan in Tanµ(P2(M)) induced by a map
cannot be approximated by plans in Dirµ induced by maps.

Also, observe that a priori both the second and the third of the spaces above could be just
cones, rather than vector spaces.

What the corollary says, is that these kind of complications do not occur regardless of any
assumption on µ or on the manifold. �

Corollary 6.6 (The tangent space is an Hilbert space if and only if µ is regular)
The tangent space Tanµ(P2(M)) is an Hilbert space if and only if µ is regular. In this case
Tanµ(P2(M)) is canonically identified to Tanµ(P2(M)) via the map ιµ.

Proof We start with if. Assume that µ is regular. Then, since all the optimal plans are induced
by maps, the space Dirµ is canonically identified, via ιµ, to the set{

v ∈ L2
µ : ∃ε > 0 s.t. (Id, exp(εv))#µ is optimal for t ≤ ε

}
.

Since W 2
µ(ιµ(v), ιµ(w)) =

∫
|v−w|2dµ, the closure of Dirµ w.r.t. Wµ is identified to the closure

of the space above w.r.t. the distance L2
µ. By the corollary above, we get the claim.

Now we turn to the only if. Assume that Tanµ(P2(M)) is an Hilbert space and choose
γ ∈ Dirµ ⊂ Tanµ(P2(M)). Since Tanµ(P2(M)) is an Hilbert space, it must hold −1 · γ ∈
Tanµ(P2(M)) and

〈−1 · γ,γ〉µ = −〈γ,γ〉µ .

Define α := (πM , π1, π1)#γ ∈P2(T
2M) and α̃ := (πM ,−π1, π1)#α. It is obvious that α is the

unique element in Opt(γ,γ) and that α̃ ∈ Adm(−1 · γ,γ). Since

〈−1 · γ,γ〉µ ≥
∫
〈v1, v2〉 dα̃(x, v1, v2) = −

∫
〈v1, v2〉 dα(x, v1, v2) = −〈γ,γ〉µ ,
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it holds 〈−1 · γ,γ〉µ = −〈γ,γ〉µ if and only if α̃ ∈ Opt(−1 · γ,γ). By proposition 5.2 and its
proof, we know that α̃ ∈ Opt(−1 ·γ,γ) if and only if α̃x ∈ Opt((−1 ·γ)x,γx) for µ-a.e. x, where
as usual the subscript x stands for the disintegration w.r.t. the projection onto M . For µ-a.e.
x, the plan α̃x is induced by the map v 7→ −v; it is clear that such a map is cyclically monotone
if and only if it is defined on only 1 point. This means that α̃ ∈ Opt(−1 · γ,γ) if and only if
γ is induced by a map. By the arbitrariety of γ in Dirµ, we deduce that all the plans in Dirµ
are induced by a map. By proposition 2.10 this means that µ is regular. The result follows.

�

Remark 6.7 In the 1-dimensional case, the set of regular measures coincides with the set of
measures having no atoms. Its complement has 0 mass w.r.t. the entropic measure Pβ built
by vonRenesse-Sturm for any β > 0 in [29]. This tells that the natural measures in P2(R) are
concentrated on ‘nice’ measures, where ‘nice’ is intended w.r.t. the Riemannian point of view.
From a purely formal point of view, this fact has some analogies with the well known statement
‘the set of points in an Alexandrov space with curvature bonded from below whose tangent space
is not an Euclidean space has 0 volume measure’. From this perspective, it would be interesting
to know whether non regular measures have 0 mass also w.r.t. the Gibbs-like measures built by
Sturm in [30] in dimension bigger that 1. �

Remark 6.8 It can be proved that for any µ ∈ P2(M) and any γ ∈ Tanµ(P2(M)), it holds
−1 · γ ∈ Tanµ(P2(M)), so that the Geometric Tangent space is actually a space, and not just
a cone. For a proof of this fact in the case M = Rd see [15], the generalization to the case of
manifolds presents no difficulties. �

7 Appendix A - On the regularity of the Kantorovich potential

We proved in theorem 2.10 that if a measure µ ∈P2(M) gives 0 mass to c−c hypersurfaces onM ,
then for every other measure ν ∈P2(M) there exists and is unique the optimal transport map
from µ to ν. A natural question is then whether this map can be recovered by exponentiation
of (minus) the gradient of a c−concave Kantorovich potential.

In the recent paper [12] it is proven the following result:

Theorem 7.1 Let ϕ be a Kantorovich potential for some couple of measures µ, ν ∈P2(M), set
D := {ϕ > −∞} and let Ω be the interior of D. Then ϕ is locally semiconcave in Ω, ∂c+ϕ(x) is
non-empty for any x in Ω, and ∂c+ϕ is locally bounded in Ω. Moreover, D\Ω is (n−1)-rectifiable
(n being the dimension of M).

Since we know that µ is concentrated on D, this result almost answer the question, in the
sense that if µ does not charge n− 1 rectifiable sets, then the optimal map can be recovered as
exp(−∇ϕ), as discussed in [12].

However, we saw that the condition for the map to exist is that µ gives 0 mass only to c− c
hypersurfaces, and not necessarily to all n − 1 rectifiable sets. Therefore it would be better to
know that, in the notation of the theorem above, the set D \ Ω is a c− c hypersurface. This is
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the case. Actually, it can be proved that D \ Ω can be locally covered by graphs of semiconvex
functions (and it is trivial that such graphs are c− c hypersurfaces):

Proposition 7.2 With the same notation of the above theorem, the set D \ Ω can be covered
by charts on each of which it can be covered by a countable number of graphs of semiconvex
functions.

Proof We will prove that for any x ∈ D \Ω and any r > 0 there exists an open ball B of radius
r disjoint from D \ Ω such that x ∈ B. This, by standard rectifiability results, will imply the
thesis.

Fix x ∈ D \ Ω, r > 0 and find a sequence (xn) ⊂ M \D converging to x. Recall that since
ϕ is c−concave, it can be written as

ϕ(x) = inf
y∈M

d2(x, y)

2
− ψ(y),

for a suitable ψ : M → R ∪ {−∞}. We know by assumption that ϕ(xn) = −∞, thus for any
n ∈ N we can find yn ∈M such that

d2(xn, yn)

2
− ψ(yn) ≤ −n, ∀n ∈ N.

This implies ψ(yn)→∞. Also, since

−∞ < ϕ(x) ≤ d2(x, yn)

2
− ψ(yn),

we get that d2(x, yn) → +∞ as well. Now for any n ∈ N choose a geodesic parametrized
by arc length connecting xn to yn, call it γn. Define the open ball Bn := Br(γn(r)) (since
d(xn, yn)→∞, γn(r) is eventually well defined - and so is Bn).

We claim that ϕ(x) ≤ −n for any x ∈ Bn. Indeed, for such x it holds

d(x, yn) ≤ d(x, γn(r)) + d(γn(r), yn) ≤ r + d(xn, yn)− r = d(xn, yn),

and therefore

ϕ(x) ≤ d2(x, yn)

2
− φ(yn) ≤ d2(xn, yn)

2
− φ(yn) ≤ −n.

By compactness, some subsequence of (γn(r)) converges to some z ∈ M satisfying d(x, z) = r.
Since it holds

Br(z) ⊂
⋂
n∈N

⋃
k≥n

Br
(
γk(r)

)
,

we have ϕ(x) = −∞ for every x ∈ Br(z). This shows that Br(z) is disjoint from D. A fortiori
it is disjoint from D \ Ω. �
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Remark 7.3 This proposition comes from a collaboration with A. Figalli. Actually, its proof is
just a variant of the proof of the step 1 of the main theorem in [12]. Unfortunately, we realized
that the result in [12] could have been improved in the way presented above, only when it was
too late to modify our paper. We therefore agreed to include this new approach in this paper.
�

Adding everything up, we proved the following statement:

Theorem 7.4 Let µ, ν ∈ P2(M) and assume that µ is regular. Then there exists a unique
optimal plan, this plan is induced by a map, and this map may be written as exp(−∇ϕ) for any
c-concave Kantorovich potential for the couple (µ, ν).

Proof Straightforward. �

8 Appendix B - reminders on the convolution on manifolds

Here we recall some basic notions regarding how it is possible to define a convolution operator
for functions and vector fields on manifolds.

Throughout this section, ρε : RdimM → [0,+∞) will be a family of radial functions which are
smooth, supported in Bε(0) and satisfying

∫
ρ = 1. Also, we will denote by D(x, y) : TM → R

the Jacobian determinant of exp−1x (y). It is clear that for every compact set K ⊂M there exists
a constants C(K), C̃(K) > 0 such that it holds:

• for any ε < C(K), the functionD(x, y) is well defined, smooth and satisfies 1
2 ≤ D(x, y) ≤ 2

in the set {(x, y) : x ∈ K,d(x, y) < ε},

• for any ε < C(K) and for every x such that d(x,K) < ε the radius of injectivity of the
exponential map at x is bigger than ε

• for any ε < C(K), x ∈ K and y such that d(x, y) < ε it holds: |D(x, y) − D(y, x)| <
εC̃(K)D(x, y).

Given a compact set K ⊂ M , we will denote by Kε ⊂ M the compact set of those x such that
d(x,K) ≤ ε.

Definition 8.1 (Convolution of functions) Let f : M → R be an integrable function with
compact support and ε < C(supp(f)). The convolution f ∗ ρ : M → R is the function defined
by:

(f ∗ ρε)(x) =

∫
TxM

f(expx(v))ρε(v)dv =

∫
M
f(y)ρε

(
exp−1x (y)

)
D(x, y)dvol(y), (8.1)

Note that due to the fact that ρε is radially symmetric, there is no ambiguity in the identification
of TxM with RdimM (which is the domain of ρε) in the formula above. It is immediate to verify
that f ∗ ρε ∈ C∞c (M).

The convolution of a measure is defined analogously:
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Definition 8.2 Let µ ∈ Pc(M), ε < C(supp(µ)) and f : M → R such that ‖f‖µ < ∞. Then
(fµ) ∗ ρε ∈ C∞c (M)is defined as

(fµ) ∗ ρε(x) :=

∫
M
f(y)ρ

(
exp−1x (y)

)
D(x, y)dµ(y).

The convolution of vector fields and vector valued measures is defined analogously.

Definition 8.3 (Convolution of vector fields) Let v be a vector field on M with compact
support and with integrable norm and ε < C(supp(v)). The convolution v ∗ ρε ∈ V(M) is the
vector field defined as

(v ∗ ρε)(x) :=

∫
T xy (v(y))ρε

(
exp−1x (y)

)
D(x, y)dvol(y),

where T xy : TyM → TxM is the parallel transport map along the unique geodesic connecting y to
x.

Similarly, if µ ∈ Pc(M), v ∈ L2
µ and ε < C(supp(µ)) , (vµ) ∗ ρε ∈ V(M) is the vector field

on M defined by (
(vµ) ∗ ρε

)
(x) :=

∫
T xy (v(y))ρε

(
exp−1x (y)

)
D(x, y)dµ(y).

An important inequality is given in the following proposition, which is the analogous of the
similar result which hold in the case M = Rd and was proved in [4] (lemma [8.1.10]).

Proposition 8.4 Let µ ∈ Pc(M), v ∈ L2
µ and ε < C(supp(µ)) sufficiently small. Then it holds∫ ∣∣∣∣(vµ) ∗ ρε(x)

µ ∗ ρε(x)

∣∣∣∣2 µ ∗ ρε(x)dx ≤
∫
|v(x)|2dµ(x).

Similarly for functions.

Proof The proof of lemma[8.1.10] in [4] never uses the fact that the underlying space is Rd
rather than a generic Riemannian manifold, thus the conclusion follows by the same arguments
used there. We omit the details. �

The convolution on a manifold has the same smoothening and convergence properties that
are valid on Rd: this means that f ∗ ρε ∈ C∞c (M) as soon as ρε is C∞, and that ϕ ∗ ρε → ϕ in
L2
µ for any ϕ ∈ C∞c (M) and any µ ∈P2(M). Similarly for vector fields.

What one needs to care about, is the lack of commutativity in many operations that are
usually done with convolutions. This non commutativity may be estimated in terms of bounds
on the curvature of M , as we are going to show in the following propositions.

Proposition 8.5 Let µ ∈ Pc(M), v ∈ L2
µ, ξ ∈ V(M) and ε < C(supp(µ)). Then it holds∣∣∣∣∫ 〈(vµ) ∗ ρε, ξ〉 dvol−

∫
〈v, ξ ∗ ρε〉 dµ

∣∣∣∣ ≤ εC̃(supp(µ))‖v‖µ‖ξ‖µ∗ρε .
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Proof By definition we have∫
〈(vµ) ∗ ρε(x), ξ〉 dvol(x) =

∫∫ 〈
T xy (v(y)), ξ(x)

〉
ρε
(

exp−1x (y)
)
D(x, y)dvol(x)dµ(y),∫

〈v(y), ξ ∗ ρε(y)〉 dµ(y) =

∫∫
〈v(y), T yx (ξ(x))〉 ρε

(
exp−1y (x)

)
D(y, x)dvol(x)dµ(y).

Now observe that | exp−1x (y)| = | exp−1y (x)|, and thus ρε
(

exp−1x (y)
)

= ρε
(

exp−1y (x)
)
, and recall

that in the domain of our integrals it holds |D(y, x)−D(x, y)| ≤ εC̃(supp(µ))D(x, y) to get∣∣∣∣ ∫ 〈(vµ) ∗ ρε, ξ〉 dvol−
∫
〈v, ξ ∗ ρε〉 dµ

∣∣∣∣
≤ εC̃(supp(µ))

∫∫
|v(y)||ξ(x)|ρε

(
exp−1x (y)

)
D(x, y)dvol(x)dµ(y)

= εC̃(supp(µ))

∫
(|v|µ) ∗ ρε(x)|ξ(x)|dvol(x)

= εC̃(supp(µ))

∫
(|v|µ) ∗ ρε(x)

µ ∗ ρε(x)
|ξ(x)|µ ∗ ρε(x)dvol(x)

≤ εC̃(supp(µ))

∥∥∥∥(|v|µ) ∗ ρε(x)

µ ∗ ρε(x)

∥∥∥∥
µ∗ρε
‖ξ‖µ∗ρε

≤ εC̃(supp(µ))‖v‖µ‖ξ‖µ∗ρε .

�

Proposition 8.6 Let ϕ ∈ C∞c (M), µ ∈ Pc(M) and ε < C(supp(µ)). Then it holds:

‖∇(ϕ ∗ ρε)− (∇ϕ) ∗ ρε‖µ ≤ Cε‖∇ϕ‖µ∗ρε ,

where Cε is given by

Cε :=
(

1 + εC̃
(

supp(µ)ε
))(

cosh
(
ε
√
C
(

supp(µ)2ε
))
− 1

)
,

and in particular goes to 0 with ε (here (supp(µ))ε is the ε-neighborhood of supp(µ)).

Proof A direct computation of the derivative of ϕ ∗ ρε along the direction u ∈ TxM gives:

∇(ϕ ∗ ρε)(x) · u =

∫ 〈
∇ϕ
(

expx(v)
)
, Jv(u)

〉
ρε(v)dv, (8.2)

where Jv(u) ∈ Texpx(v) is the value at t = 1 of the Jacobi field jt defined along the geodesic
t 7→ expx(tv) with initial conditions j0 = u and j′0 = 0.

We want to bound the distance between Jv(u) and T yx (u). To this aim, let trt ∈ Texpx(tv)M be

the parallel transport of u along the geodesic t 7→ expx(tv) and observe that from d
dt |jt− trt|

2 =
2 〈j′t, jt − trt〉 we get

d

dt
|jt − trt| ≤ |j′t|,
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thus we have

|j′t| ≤
∫ t

0
|j′′s |ds =

∫ t

0
|R(v, js)v|ds ≤ C

(
supp(µ)2ε

)
|v|2

∫ t

0
|js|ds

≤
√
C
(

supp(µ)2ε
)
|v||u| sinh

(√
C
(

supp(µ)2ε
)
|v|t
)
,

and therefore

|Jv(u)− T yx (u)| = |j1 − tr1| ≤
∫ 1

0
|j′t|dt ≤ |u|

(
cosh

(√
C
(

supp(µ)2ε
)
|v|
)
− 1

)
.

Using this inequality with equation (8.2), we obtain(
∇(ϕ ∗ ρε)(x)− (∇ϕ) ∗ ρε(x)

)
· u ≤ Cε|u|

∫ ∣∣∣∇ϕ( expx(v)
)∣∣∣ρε(v)dv,

which is equivalent to∣∣∇(ϕ ∗ ρε)− (∇ϕ) ∗ ρε
∣∣(x) ≤ Cε

∫ ∣∣∣∇ϕ( expx(v)
)∣∣∣ρε(v)dv.

Taking the squares and integrating we get

‖∇(ϕ ∗ ρε)− (∇ϕ) ∗ ρε‖2µ ≤ C2
ε

(∫∫ ∣∣∣∇ϕ( expx(v)
)∣∣∣ρε(v)dv dµ(x)

)2

≤ C2
ε

∫∫
|∇ϕ

(
expx(v)

)∣∣∣2ρε(v)dv dµ(x)

= C2
ε

∫∫
|∇ϕ(y)|2ρε

(
exp−1x (y)

)
D(x, y)dvol(y)dµ(x)

≤ (1 + εC̃)C2
ε

∫∫
|∇ϕ(y)|2ρε

(
exp−1x (y)

)
D(y, x)dµ(x)dvol(y)

= (1 + εC̃)C2
ε

∫
|∇ϕ(y)|2µ ∗ ρε(y)dvol(y)

= (1 + εC̃)C2
ε‖∇ϕ‖2µ∗ρε ,

where C̃ = C̃(supp(µ)ε). �
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