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Abstract

In this paper we give a new simple proof of a result of Luigi De Pascale, which states that the
Morse-Sard Theorem holds under the hypothesis of Sobolev regularity. Moreover, as our proof
is independent of the Morse-Sard Theorem with Ck regularity, our result implies the classical
Morse-Sard Theorem.

The Morse-Sard Theorem is concerned with the size of the image of the critical values of a
differentiable function. To recall it and to state our result, we need some definitions.

Definition 1 Let Ω ⊂ Rn be open and let f : Ω → Rm be a C1 function. A point x ∈ Ω is said
to be a critical point if Df(x) is not of maximum rank. A point y ∈ f(Ω) is said to be a critical
value if y = f(x) for a critical point x. The set of all the critical points is called the critical set.

Let us denote by L m the m-dimensional Lebesgue measure. We can now recall the classical
Morse-Sard Theorem (for a proof, see [1, Paragraph 15]):

Theorem 2 (Morse-Sard) Let Ω ⊂ Rn be open and let f : Ω → Rm be a Cn−m+1 function, with
n ≥ m (C1 if m > n). Then the set of critical values of f has L m-measure zero.

After that theorem, many generalizations have been proved and, at the same time, many coun-
terexamples have been found in the case of not sufficient regularity. In particular, in [2] the same
conclusion of the Morse-Sard Theorem has been proved under the only assumption of a Cn−m,1

regularity, while in [3] only a Wn−m+1,p regularity, with p > n, is assumed (see [3] for more his-
torical notes). Here we give a simple proof of the result in [3]. We remark that, as our proof is
independent of Theorem 2, our result implies the classical Morse-Sard Theorem.

In the proof of our theorem we will need a refined version of the classical Morrey inequality (for
a proof, see [4, paragraph 4.5.3]):

Lemma 3 Let Ω ⊂ Rn be an open subset and let B(x, r) be a ball contained in Ω. Then for any
y ∈ B(x, r) we have

|u(x)− u(y)| ≤ Cr
1−n

p

(∫

B(x,r)
|Du(z)|p dz

) 1
p

∀u ∈ W 1,p. (1)
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We remark that, in particular, this inequality gives the embedding W 1,p ↪→ C0,α(p), with α(p) =
1− n

p , and, more in general, W l,p ↪→ C l−1,α(p).
We will also need the Kneser-Glaeser Rough Composition Theorem. In order to state it, we

recall that, given a positive integer s, a map f is said s-flat on A if Djf(x) = 0 for j = 1, . . . , s for
any x ∈ A.

Theorem 4 Let W ⊂ Rm and V ⊂ Rn be open sets; A∗ ⊂ W and A ⊂ V , with A closed relative
to V ; f : V → Rp of class Cr on V and s− flat on A; g : W → V of class Cr−s with g(A∗) ⊂ A.
Then there is a map H : W → Rp of class Cr satisfying:

(i) H(x) = f(g(x)) for x ∈ A∗;

(ii) H is s− flat on A∗.

The proof of this theorem relies on Whitney’s Extension Theorem (see for example [1, Theorem
13.2]). Indeed, differentiating the identity H = f ◦ g, one prescribes the derivative of H on A∗, and
then one only needs to check that the hypotheses needed to apply Whitney’s Theorem are satisfied
(see [1, Theorem 14.1] for a detailed proof).

Theorem 5 Let Ω ⊂ Rn be open and let f : Ω → Rm be a Wn−m+1,p
loc function, with p > n ≥ m.

Then the set of critical values of f has L m-measure zero.

Remark: as Wn−m+1,p ↪→ Cn−m,α(p), we will always refer to the Cn−m,α(p) representative. Moreover
we observe that with the only assumption of Cn−m,α regularity with α < 1 the result is false. The
key point is in fact the existence of another weak derivative summable enough, as we will see in
the proof.

Proof. First we observe that, as it suffices obviously to prove the theorem for f restricted to each
compact set of Ω, we can assume Ω bounded and f ∈ Wn−m+1,p(Ω,Rm). Thanks to this remark,
in the sequel we will always skip the subscript loc.
To simplify the notation, we define k := n−m + 1. We remark that, in the case n = m, the result
is just a corollary of the area formula for Sobolev functions 1 (for a proof and for more references
on then subject, see [5]), so we can assume n > m, that is k ≥ 2.
Let Cf be the critical set of f and let us define the sets

As := {x ∈ Ω | Dif(x) = 0 for 1 ≤ i ≤ s}, 1 ≤ s ≤ n−m,

and
K := {x ∈ Ω | 1 ≤ rank Df(x) ≤ m− 1}.

Then we have

Cf = K ∪
(
(A1 \A2) ∪ (A2 \A3) ∪ . . . ∪ (An−m−1 \An−m) ∪An−m

)
.

1Indeed we will see that, by our proof, one also has the following result: if f ∈ W 1,p
loc (Ω,Rn), with p > n, and E is

a L n-null set, then L n(f(E)) = 0 (see the first part in the proof of Step 2). This fact, the classical area formula for
Lipschitz functions, and a standard approximation of W 1,p functions with Lipschitz ones, imply the validity of the
area formula also in the Sobolev case.
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We will divide the proof into three steps. First we will see that one can always assume that K = ∅,
that is Cf = {Df = 0}. Then, in the second step, we will prove that L m(f(An−m)) = 0. This will
conclude the proof of the theorem in the case n = m + 1 (as, in this case, Cf = K ∪ A1) and will
allow us to start an induction argument on n −m. In fact, once we have proved the second step,
we can assume that the theorem holds for Wn−m,k maps from an open subset of Rn−1 to Rm. In
the third step, thanks to an Implicit Function Theorem, we will reduce the dimension from n to
n− 1 and we will conclude, by the inductive hypothesis.
Step 1: we can assume K = ∅.
This is essentially Step 1 in the proof of Theorem 4.1 in [3].
Let Ki := {x ∈ Ω | rank Df(x) = i}, 1 ≤ i ≤ m − 1, and fix x ∈ Ki. We can assume
det

(
∂(f1,...,fi)
∂(x1,...,xi)

)
(x) 6= 0. Then, in a small relatively compact neighborhood V of x, we can take

as coordinates (y1, . . . , yn) = Y (x) := (f1(x), . . . , fi(x), xi+1, . . . , xn). So, defining X := Y −1, f
assumes the form

f(X(y)) = (y1, . . . , yi, g(y1, . . . , yn)).

Now, since Y ∈ W k,p(V ), DY is invertible, k ≥ 2 and p > n, it is simple to verify that X is still
W k,p. Moreover, for k ≥ 2 and p > n the composition of functions in W k,p

loc is still W k,p
loc , and so we

deduce that g ∈ W k,p(Ṽ ,Rm−i), with Ṽ := Y (V ). In these coordinates we have

D(f ◦X)(y) =
(

Idi 0
∗ D(g|(y1,...,yi))

)

where g|(y1,...,yi) : Ṽ(y1,...,yi) → Rm−i is defined by g|(y1,...,yi)(yi+1, . . . , yn) = g(y1, . . . , yn), with
Ṽ(y1,...,yi) := {(z1, . . . , zn−i) ∈ Rn−i | (y1, . . . , yi, z1, . . . , zn−i) ∈ Ṽ }. Observing that rankD(f ◦X) =
rankDf = i, thanks to the Slicing Theorem for Sobolev functions (see [4, paragraph 4.9.2]) we
have, for L i-a.e. (y1, . . . , yi),

g|(y1,...,yi) ∈ W k,p(Ṽ(y1,...,yi),R
m−i)

and
D(g|(y1,...,yi)) = 0 on Ṽ(y1,...,yi) ∩ Y (Ki).

Once we will have proved the result in the case K = ∅, applying it to g|(y1,...,yi) we get

L m−i(g|(y1,...,yi)(Ṽ(y1,...,yi) ∩ Y (Ki))) = 0 for L i-a.e. (y1, . . . , yi).

By Fubini’s Theorem L m(f(V ∩Ki)) = L m(f ◦X(Ṽ ∩ Y (Ki))) = 0, and this concludes the proof
of the reduction to the case K = ∅.
Step 2: L m(f(An−m)) = 0.
We recall that, by the remark made at the beginning of the proof, we can assume that Ω is bounded;
this implies, in particular, that An−m has finite Lebesgue measure.
Let x ∈ An−m = Ak−1, y ∈ B(x, r) with r such that B(x, r) ⊂ Ω. As Dk−1f ∈ W 1,p(Ω), by the
Taylor formula with integral remainder and by (1) we get

|f(y)− f(x)| ≤
∫ 1

0

(1− t)k−2

(k − 2)!
|Dk−1f(x + t(y − x))−Dk−1f(x)||y − x|k−1 dt

≤ Cr
k−n

p

(∫

B(x,r)
|Dkf(z)|p dz

) 1
p

,

(2)
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that implies

|f(y)− f(x)|m ≤ Cr
m(k−n

p
)

(∫

B(x,r)
|Dkf(z)|p dz

)m
p

.

Now, using Young’s inequality with exponents p
p−m and p

m and taking r = |y − x|, we get

|f(y)− f(x)|m ≤ C|x− y| pm
p−m

(k−n
p
) + C

(∫

B(x,|y−x|)
|Dkf(z)|p dz

)
.

As k = n−m + 1 and m(k− 1) ≥ k− 1, we have km ≥ k + m− 1 = n, that implies pm
p−m(k− n

p ) =
m

p−m(pk − n) ≥ n. So, for |y − x| ≤ r ≤ 1 and x ∈ Ak−1, we have the estimate

|f(y)− f(x)|m ≤ C

∫

B(x,r)

(
1 + |Dkf(z)|p

)
dz. (3)

We now write An−m = F1 ∪ F2, where

F1 := {density points for An−m} ∩ {Lebesgue points of |Dkf |p}

and
F2 := An−m \ F1.

It’s a standard result in measure theory that L n(F2) = 0. Let us now show that L m(f(F2)) = 0.
Fix ε > 0 small. Being L n(F2) = 0, there exists an open set Eε ⊃ F2 such that Eε ⊂ Ω and
L n(Eε) ≤ ε. For any x ∈ F2 we take a ball Bx = B(x, rx) such that Bx ⊂ Eε. We now define
ρx := diam f(Bx), and we consider the covering of f(F2) given by F = {B(f(x), ρx)}x∈F2 . By
Vitali’s Covering Theorem (see [4, Paragraph 1.5.1]), there exists G = {B(f(xi), ρxi)}i∈I finite or
countable collection of disjoint balls in F such that

F2 ⊂
⋃

i∈I

B(f(xi), 5ρxi).

By the definition of ρxi we have
f(Bxi) ⊂ B(f(xi), ρxi),

which implies that the balls Bxi are also disjoint. Therefore, by (3) we get

L m(f(F2)) ≤ 5m
∑

i∈I

L m(B(f(xi), ρxi)) = Cm

∑

i∈I

(diam f(Bxi))
m

≤ C
∑

i∈I

∫

Bxi

(
1 + |Dkf(z)|p

)
dz ≤ C

∫

Eε

(
1 + |Dkf(z)|p

)
dz,

where Cm = 5mL m(B(0, 1)). Letting ε → 0, since L n(Eε) ≤ ε we obtain L m(f(F2)) = 0 as
wanted.
In order to prove that L m(f(F )) = 0, we have to show that L m(f(F1)) = 0. As we do not have
that L n(F1) = 0, we see that the inequality (3) does not suffice, but in this case, as F1 consists of
the density points of F , we will get a better estimate for |f(y)− f(x)| when x, y ∈ F1.
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Fix P ∈ N large. For any x ∈ F1 there exists rx > 0 small such that B(x, 2rx) ⊂ Ω and the
following hold:

L n(B(x, rx) ∩ F1)
L n(B(x, rx))

=
L n(B(x, rx) ∩An−m)

L n(B(x, rx))
≥ 1− 1

2(2P )n
, (4)

∫
−

B(x,2rx)

(
1 + |Dkf(z)|p

)
dz ≤ 2

(
1 + |Dkf(x)|p

)

and
1
2

(
1 + |Dkf(x)|p

)
≤

∫
−

B(x,rx)∩F1

(
1 + |Dkf(z)|p

)
dz

(this can always be done since x is both Lebesgue point of the integrated function and a density
point of F1). These equations imply a sort of doubling property: if x ∈ F1, then

∫

B(x,2rx)

(
1 + |Dkf(z)|p

)
dz ≤ 2n+1L n(B(x, rx))

(
1 + |Dkf(x)|p

)

≤ 2n+2L n(B(x, rx) ∩ F1)
(
1 + |Dkf(x)|p

)
≤ 2n+3

∫

B(x,rx)∩F1

(
1 + |Dkf(z)|p

)
dz.

(5)

Moreover, for each y ∈ F1 ∩B(x, rx), there exist P + 1 points {x0, . . . , xP } ⊂ F1, with x0 = y and
xP = x, such that

|xi − xi−1| ≤ 2rx

P
∀1 ≤ i ≤ P.

Indeed, first take y1, . . . , yP−1 the P−1 points on the line segment [y, x] such that |yi−yi−1| = |y−x|
P

and then observe that, by (4), B(yi,
rx
2P ) ∩ F1 is not empty for each i, and so it suffices to take a

point xi in that set. By this and (2), it follows that

|f(y)− f(x)| ≤
P∑

i=1

|f(xi)− f(xi−1)|

≤ C
P∑

i=i

|xi − xi−1|k−
n
p

(∫

B(xi,
2rx
P

)
|Dkf(z)|p dz

) 1
p

≤ C

P∑

i=1

(
2rx

P

)k−n
p

(∫

B(x,2rx)
|Dkf(z)|p dz

) 1
p

whenever y ∈ B(x, rx). Again using Young’s inequality, we get

|f(y)− f(x)|m ≤ CP
m(1−k+n

p
)
∫

B(x,2rx)

(
1 + |Dkf(z)|p

)
dz ∀y ∈ B(x, rx).

Thus by (5) we obtain that, for all x ∈ F1,

|f(y)− f(x)|m ≤ CP
m(1−k+n

p
)
∫

B(x,rx)∩F1

(
1 + |Dkf(z)|p

)
dz ∀y ∈ B(x, rx). (6)
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We are now able to prove that L m(f(F1)) = 0.
For any x ∈ F1 we take the ball Bx = B(x, rx), where rx was defined above. We now define
ρx := diam f(Bx ∩ F1), and we consider the covering of f(F1) given by F = {B(f(x), ρx)}x∈F1 .
Using again Vitaly’s theorem we find G = {B(f(xi), ρxi)}i∈I finite or countable collection of disjoint
balls in F such that

F1 ⊂
⋃

i∈I

B(f(xi), 5ρxi).

In this case, by the definition of ρxi we have

f(Bxi ∩ F1) ⊂ B(f(xi), ρxi),

which implies that the sets Bxi ∩ F1 are disjoint. Arguing as for F2, thanks to (6) we obtain

L m(f(F1)) ≤ C
∑

i∈I

(diam f(Bxi ∩ F1))m

≤ CP
m(1−k+n

p
)
∑

i∈I

∫

Bxi∩F1

(
1 + |Dkf(z)|p

)
dz ≤ CP

m(1−k+n
p
)
∫

Ω

(
1 + |Dkf(z)|p

)
dz,

and we conclude letting P → +∞, as k ≥ 2 > 1 + n
p .

Step 3: L m(f(As−1 \As)) = 0, for 2 ≤ s ≤ k − 1.
Fix x ∈ As−1 \ As. In order to prove the claim, it suffices to show that there exists an open
neighborhood V of x such that L m(f((As−1 \ As) ∩ V )) = 0. We recall that, by what we already
said, our function is Ck−1,α(p). Now, as x ∈ As−1, f is (s− 1)-flat at x, but some partial derivative
of order s is not zero. Hence we may assume that

∂nw(x) 6= 0, w(x) = ∂i1 . . . ∂is−1f(x) = 0.

We observe that w ∈ Ck−s,α(p), and hence, by the Implicit Function Theorem, there is an open
neighborhood V of x such that V ∩ {w = 0} is a (n− 1)-dimensional Ck−s,α(p)-graph, and so have
V ∩As−1 ⊂ g(W ), where W ⊂ Rn−1 is open and g : W → Rn is Ck−s,α(p).
Let us now consider the subset A∗ ⊂ W defined by A∗ := {x ∈ W | g(x) ∈ As−1}.
By Theorem 4, there exists a function F : W → Rm of class Ck−1 such that:

(i) F (x) = f(g(x)) for any x ∈ A∗;

(ii) DF (x) = 0 for any x ∈ A∗.

Therefore we have f(As−1∩V ) ⊂ F (CF ∩W ), where CF denotes the critical set of F . So it suffices
to prove that L m(CF ∩W ) = 0, and this follows by the inductive hypothesis since

F ∈ Ck−1(W,Rm) ↪→ W k−1,p
loc (W,Rm).
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