THE NEUMANN SIEVE PROBLEM AND DIMENSIONAL REDUCTION: A MULTISCALE APPROACH

NADIA ANSINI, JEAN-FRANÇOIS BABADJIAN & CATERINA IDA ZEPPIERI

ABSTRACT. We perform a multiscale analysis for the elastic energy of a *n*-dimensional bilayer thin film of thickness 2δ whose layers are connected through an ε -periodically distributed contact zone. Describing the contact zone as a union of (n-1)-dimensional balls of radius $r \ll \varepsilon$ (the holes of the sieve) and assuming that $\delta \ll \varepsilon$, we show that the asymptotic memory of the sieve (as $\varepsilon \to 0$) is witnessed by the presence of an extra interfacial energy term. Moreover we find three different limit behaviors (or regimes) depending on the mutual vanishing rate of δ and r. We also give an explicit nonlinear capacitary-type formula for the interfacial energy density in each regime.