The homological singularities of maps
in trace spaces between manifolds

Domenico Muccs

Abstract. We deal with mappings defined between Riemannian manifolds that belong to a trace space of Sobolev
functions. The homological singularities of any such map are represented by a current defined in terms of the boundary
of its graph. Under suitable topological assumptions on the domain and target manifolds, we show that the non triviality
of the singular current is the only obstruction to the strong density of smooth maps. Moreover, we obtain an upper
bound for the minimal integral connection of the singular current that depends on the fractional norm of the mapping.

1 Introduction

In the last years there has been a growing interest in studying the fractional Sobolev classes of mappings
defined between manifolds. In this framework, [6, 9, 10, 11, 12, 13, 35] deal with properties of general
fractional spaces. As to trace spaces, we address to [5, 27, 32] for the so called extension problem, to [8, 25]
for the analysis of the minimal connections of the singularities, and to [7, 8] for the lifting problem. Moreover,
we refer to [4, 8, 15, 21, 19, 22, 23, 34, 36, 38, 41] for questions about density of smooth maps, relaxed energies
and related variational problems. Finally, topological compactness theorems are presented in [33, 39].

In this paper, we let X and )Y be two smooth, connected, compact, oriented Riemannian manifolds
that are isometrically embedded into R' and RY, respectively. We shall equip X and ) with the metric
induced by the Euclidean norms on the ambient spaces, and we let n := dim X. We shall also assume that
the target manifold ) is without boundary, the model case being J = SP~1, the unit (p — 1)-sphere in RP.
The domain manifold X may have a (possibly empty) smooth boundary 90X, a manifold of dimension n—1,
the model cases being X = B"™, the unit n-ball, or X = S", the unit n-sphere.

For the sake of simplicity, in the sequel we shall always denote

wilr .— Wl—l/pm, p>1,

and we recall, see e.g. [1], that for any real exponent p > 1 the fractional Sobolev space Wl/p(.)() is the
Banach space of real valued functions u in LP(X) which have finite W!/P-seminorm

|u‘11)/p7X :

_ (@) @) o iy - o
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where H* is the k-dimensional Hausdorff measure, endowed with the norm
||u||11]/p’;( = ||uH1£p(X) + |u|117/p,;(- (1.1)

W/P(x,RN) is the space of vector valued maps u = (u',...,u") such that v/ € WYP(X) for every
j=1,...,N. If X = OM for some smooth manifold M, e.g., X = S", then W'/P(OM,RY) can be
characterized as the space of functions w that are traces on M of functions U in the Sobolev space
WhP(M,RYN). More generally, since X C R!, denoting by C"*! the (n + 1)-dimensional ”cylinder”

Ctl.=XxIcR xR, I:=[0,1],

W/P(x,RN) can be seen as the space of functions u that are traces on X x {0} of functions U in the
Sobolev space WhP(C"*t1 RY). Since Y C RY, we also let

WP (x,Y) = {ue WYP(X,RY) |u(z) € Y for H™ae. z € X}.



THE EXTENSION PROBLEM. The non-trivial topology of the domain and target manifolds plays a
role is the so called extension problem. It is well-known that the class of functions u : X — ) that are
traces on X x {0} of Sobolev maps in WH1(C"*1 RY) agrees with the class L'(X,)). Moreover, by
Gagliardo’s theorem [18] it turns out that each map w € L'(X,Y) is the trace on X x {0} of a Sobolev
map U € WH(C™1,Y). For this reason we shall restrict to the case of exponents p > 1. However, for e.g.
X = OM, setting

TYP(OM,Y) = {u € WP(OM,Y) | u=Upp for some U e W'P(M,Y)},

in general the strict inclusion TY/?(OM,Y) C W/P(OM,Y) holds, for p > 1.

This is related to the so called extension property: we say that property P(M, Y) holds if every continuous
map u:OM — Y admits a continuous extension U : M — Y. In fact, extending results by Hardt-Lin [27],
Bethuel-Demengel [5] showed that for p > n + 1 = dim(M)

TYP(OM,Y) = WYP(OM,Y) <<= P(M,Y) holds.
Moreover, in the case 1 < p < n + 1, the above equality holds provided that Y is (p — 1)-connected, where
p = [p] the integer part of p.

More precisely, denoting by m()) the k-dimensional free homotopy group of Y, they showed that if () =
0 for every k = 0,...,p — 1, then TVP(OM,Y) = WYP(OM,Y). Moreover, if m()) # 0 for some
k=0,....p—1,and 1 < p <n+1, they also showed the existence of a manifold M of dimension n + 1
for which the strict inclusion T%?(OM,Y) C W'/P(dM,Y) holds.

We remark that it is a difficult task to solve the extension problem P(M,)), see e.g. [31]. Of course,
for M = B™"*! we have that P(B"™1,Y) holds if and only if 7,()) is trivial. We also address to [32] for
the analysis of the topological obstructions to the above mentioned extension problem.

THE £,/,-ENERGY. In the sequel, instead of working with the W/P_norm (1.1), we shall work with the
equivalent energy &;/,(u) defined as follows. We define

Ext(u) € Whp ("t RY)

the extension of a map u in W'/P(X,)), as the Holder continuous function which minimizes the p-energy

integral
1

Dp(U) = IW

/ |DU (z,t)|P dH" T (,t)
Cn+l
among all functions U € W1P(C"t1 RY) that agree with u on X x {0}.

We also set

E1/p(u) = Dyp(Ext(u)),

so that clearly &,,(u) ~ ||ul|1/p,x. More precisely, by uniform convexity, and since ) is compact, it is
readily checked that for maps in W/P(X,)) the strong convergence u, — u in WP is equivalent to the
a.e. convergence plus the convergence of the energies &/, (ur) — E1/p(u).

MINIMAL CONNECTIONS. Let Q be an open subset of R™ and SP~! be the unit (p—1)-sphere in RP, so
that W1/P(Q,SP~1) agrees with the subclass of vector valued maps u € LP(Q, RP) such that |u(z)| =1 for
Lm-a.e. z € Q and each component u/ is the trace on © x {0} of some Sobolev map U’/ € W1P(Q x [0, 1]).

For n > p > 2 integers, Hang-Lin [25] defined the singularities of a map u € W'/?(Q,SP~1) by the
(n — p)-dimensional current J, in D,_,(§) acting on compactly supported smooth (n — p)-forms in Q as

1

= dop ANU#(dy' A---NdyP), ¢ eDP(Q). (1.2)
|B?| Jaxo1]

Ju(¢) :

Here |BP| is the measure of the unit p-ball, U := Ext(u) € WP(Q x [0,1],R?), and d¢ denotes the
differential of any smooth (n — p)-form ¢ in Q x [0,1] that extends ¢, i.e., such that ¢jq = ¢.



They showed that the minimal integral connection of the singularities of u is bounded in terms of the
W1/P_seminorm of u. More precisely, they proved that for every u € W'/?(Q,SP~1) there exists an integer
multiplicity (say i.m.) rectifiable current L € Ry—p+1(€2 % [0,1]) such that

@OL)L(Qx[0,1)) = J, and M(L) < c|ulpa, (1.3)

where ¢ = ¢(n,p) > 0 is an absolute constant.
As to the minimal integral connections of the singularities of W'/2-maps with values into the unit circle
St, we also refer to [8].

DENSITY PROPERTIES. Another relevant question recently studied has been to determine whether
smooth maps from X to ) are sequentially dense in W'/?(X,)) with respect to the W'/P-norm. Denoting

Hé/p(X,y) ={u e WP(X,Y) | there exists {uz} C C®(X,))

1.4
such that uy — u strongly in W1/P}, (14)

it is well-known, see [4, 8], that
HYP(X,Y)=W'P(x,y) if p>n+1. (1.5)
On the other hand, in case of higher dimension n > p — 1, in general the strict inclusion
H" (2. 9) C WX, Y)

holds. More precisely, Bethuel [4] noticed that if 7m,_1(Y) # 0, and n+1 > p > 1, even for X = B" or
X = S™ there exist functions u € W1/P (X,)) which cannot be approximated in WP by sequences of
smooth maps in W/P(X,)).

In order to obtain a suitable dense class of "smooth” maps, in the case n+1 > p > 1,i.e., n > p, Bethuel

introduced in [4] the classes R77,(X,Y) and T\’,(l)/p(X, Y). They are given by all the maps v € W/P(X,))

which are smooth, respectively continuous, except on a singular set ¥(u) of the type
S(w) =%, reN, (1.6)

where ¥; is a smooth (n — p)-dimensional subset of X with smooth boundary, if n > p+ 1, and ¥; is a
point if n = p. The following density property holds true:

Theorem 1.1 For every 1 <p <n+ 1, where n = dim(X), the class Rﬁp()(,y) is sequentially dense in
WHP(x, ).

In the case n = p = 2, Theorem 1.1 was proved in [41], compare also [8], for X = S? and with J = S,
the standard unit circle. For p = 2, it was extended in [22] to the case X = B™ or S", in higher dimension
n > 2 and for general target manifolds ), see also [24]. A complete proof in the general case is given in
[38]. Moreover, in [38] we also proved:

Proposition 1.2 If n <p <n+1, and p > 1, then H;/p(X,y) =WYP(X,Y) if and only if T,_1(Y) = 0.

In case of higher dimension n > p, i.e., n > p + 1, following observations by Hang-Lin [26], we showed
in [38] that the possibly non-trivial topology of the domain manifold X plays a role. To this purpose, we
recall that X is said to satisfy the k-extension property with respect to Y, where k € N, if for any given
CW-complex X on X, denoting by X¥ its k-dimensional skeleton, any continuous map f : X*+1 — ) is
such that its restriction to X* can be extended to a continuous map from X into ). In [38] we obtained
the following characterization, that we state here for the case 0X = (.

Theorem 1.3 If n > p > 1, smooth maps in C®(X,Y) are sequentially dense in WYP(X,Y), i.e.,
Hé/”(x,y) =WYP(X,Y), if and only if my_1(YV) =0 and X satisfies the (p — 1)-extension property with
respect to Y.



As a consequence of Theorem 1.3 we also have:

Corollary 1.4 If n > p > 1 and 7(Y) = 0 for every integer k =p —1,...,n — 1, then Hé/p(X,y) =
Wir(x)y).

Corollary 1.5 Let n>p>2 and k=1,...,p— 1 integer. If m;(X) =0 for every i =0,...,k—1 and
7;(¥V) =0 for every j=k,...,p—1, then Hé/p(X,y) =Wir(x,y).

In particular, in the model case X = S™ we have:

Corollary 1.6 If n +1 > p > 1, smooth maps in C®(S",Y) are sequentially dense in W'/P, i.e.,
Hé/P(thy) = W/P(S™,)), if and only if mp—1(Y) = 0.

Assume now that 1 < p < 2. According to Proposition 1.2 and Theorem 1.3, since ) is connected, we
have that 79()) =0 and that X trivially satisfies the O-extension property with respect to ). Therefore,
we immediately obtain:

Corollary 1.7 Let X and Y be two smooth, connected, compact, oriented Riemannian manifolds, with
n:=dim(X) > 1 and Y without boundary. Then for every 1 < p <2 we have

HYP(X,Y) = WP(x,D).

Finally, if the manifold X has a non-zero boundary, analogous density results can be obtained for maps
in W'/P(X,)) with prescribed boundary data, see Remark 6.6 below.

PLAN OF THE PAPER. On account of Corollary 1.7, in this paper we shall assume that p > 2.

In Sec. 2, using some background from Geometric Measure Theory [16, 42], and from the theory of
Cartesian currents by Giaquinta-Modica-Souc¢ek [20, 21], we shall introduce the class of n-currents G, in
X <Y carried by the graph of a function v € W/ P(X,Y), Definition 2.2. They are actually ”semi-currents”,
i.e., linear functionals acting on compactly supported smooth n-forms w = w(z,y) in X x )Y that contain
at most p — 1 differentials in the ”vertical” y-directions.

In Sec. 3, we shall then introduce the current P(u) that describes the homological singularities of w; it
will be defined in terms of the boundary 0G, of the current G,. Of course, due to the density property
(1.5), we shall restrict our analysis to the higher dimension n >p—1,ie, n>p:=[p] > 2.

Denoting by H;’lhl (¥) the spherical subgroup of the singular homology group H,—1(Y), see (3.10), we
shall always assume that both H,_1(Y) and the quotient space Hp_l(y)/H;Iihl (Y) are torsion-free, compare
[20, Vol. TI, Sec. 5.4.2]. We shall define the homological singularities P(u) of a map u € W'/P(X,)) as
a homology map in D, (X;Hp—1(Y;R)), ie.,, an (n — p)-current on X with values in the real homology
group Hy—1(Y;R), see (3.1) and (3.2). In the model case X = C R™ open, and Y = SP~!, our definition

of homological singularities agrees with the one given by Hang-Lin [25], see (1.2).

Sec. 4 is then dedicated to the subclass of maps u € W/P(X,)) satisfying the condition P(u) = 0. This
condition is equivalent to requiring that the graph of w has no "holes”, i.e., that the boundary current 9G,,
is zero when tested on a suitable subclass of compactly supported (n — 1)-forms in X x Y. We are therefore
led introduce the class of Cartesian mapsin WY/P(X,Y)

cart? (X, ) := {u € WYP(X,Y) | P(u) = 0}.

We shall first show, Theorem 4.2, that any map u € Wl/p(X, V) with no homological singularities, i.e.,
such that P(u) = 0, can be strongly approximated by maps uy € R(I) /p(X ,V) satisfying the same condition
P(uy) = 0, compare Theorem 1.1.

Trivially P(u) = 0 if u is smooth. Moreover, the strong convergence u, — u in W'/? implies the weak
convergence G,, — G, as currents, which preserves the condition P(uy) = 0, see Remark 2.4 below. On
account of (1.4), this clearly yields

HYP(X,Y) C cart'/? (X,)). (1.7)



Of course, the possible occurrence of the equality in (1.7) is due to the fact that the current P(u), i.e.,
the homological singularities describe all the obstructions to the density of smooth maps. We recall that the
first result in this direction was obtained by Bethuel [3] for the class of Sobolev maps W12(B3 S?).

In fact, Theorem 4.3, under suitable topological hypotheses on X and ) we shall obtain in any dimension
n>p:=[p| > 2 that

HYP(X,Y) = cart'/? (X,)) .

More precisely, since we use arguments from Theorem 1.3, in Theorem 4.3 we shall assume (in the case
of dimension n > p+1) that X satisfies the (p — 1)-extension property with respect to ). Moreover, in the
case p > 3, we shall assume that for any base point yo € Y the Hurewicz homomorphism from the (p — 1)
homotopy group m,_1(Y;yo) onto the (p—1)*" real homology group Hy—1(Y;R) is injective. Alternatively,
in the case p =2 we shall also assume that the first homotopy group m()) is commutative.

Notice that if the injectivity hypothesis on the Hurewicz maps fails to hold (or if 71()) is not commu-
tative, for p = 2), even in the case X = B¥, there exist functions u in cart'/?(B?,))), where p := [p] > 2,
smooth outside the origin, which cannot be approximated strongly in W'/? by smooth maps ug : B> — ),
i.e., such that u ¢ Hé/p(B",y), whence the strict inclusion holds in (1.7), see Example 4.4. Such maps
have a topological singularity at the origin that cannot be seen by the homology, and similar examples with
topological singularities of codimension p can be obtained for any n > p + 1. We address to [29, 30] for
recent results in the analysis of the topological singular set of Sobolev maps.

In Sec. 5, we shall first recall the notion of real and integral mass, collecting some general facts about
the connections of the homological singularities of maps in W'/?(X,)). We then extend above mentioned
result by Hang-Lin [25] about the minimal connection of the singularities .J, of maps u in W?/?(Q,SP~1).
More precisely, we will show, Proposition 5.5, that property (1.3) holds true for maps u € W/P(X,SP~1),
where X is a more general domain manifold of dimension n > p. Moreover, the integral connection L in
(1.3) may be chosen with support in X, provided that the upper bound of its mass contains an extra term,
namely

M(L) < ¢ (Ev/p () + | Ext()]Zp o) (1.8)

where Ext(u) € WHP(C"T1 RP) is the extension of u. Notice that
1y (k) + | Bt () P oy — €1 () + | Bxt() 2 o,

provided that u, — u strongly in W'/P. In Example 5.9 below, we shall describe the geometric construction
of the minimal connection. Moreover, we shall also consider the case of maps with prescribed boundary data,
Proposition 5.7.

In Sec. 6, we shall then solve the same problem for more general target manifolds ) (the nontrivial case
being the one of dimension dim()) > p — 1). Making use of some techniques from Pakzad-Riviere [40], we
shall see, Theorem 6.1, that the homological singularities of every map u in R‘fjp(X ,Y) can be closed by
an i.m. rectifiable (n — p + 1)-current L in X with mass satisfying a bound as in (1.8).

Finally, in dimension n = p, or n > p = 2, we are able to extend Theorem 6.1 to the whole class of
functions u € W'/P(X,)), see Proposition 6.4. As we shall explain in Remark 5.4 below, it is a nontrivial
matter to extend Theorem 6.1 to functions u € W/ (X,)), for general target manifolds ), in the case
n > p+ 1, when p > 3. However, in a forthcoming paper we will show that Theorem 6.1, in conjunction
with a strong density result, yields the boundedness of the relaxed energy of maps in W/? (X, ).

2 Graphs of maps with finite W'/P-energy

In this section we define the current G, carried by the graph of a function u € W/?(X,Y). We let p > 2
and denote p := [p]. Moreover, we shall assume n := dim(X’) > p — 1.
If U e whp(Ccntl RYN), and H* is the k-dimensional Hausdorff measure in C"*!, we denote by

1

D,(U) := pryes /cn+1 |DU (2)|P dH" " (2), z = (x,1)



the p-energy of u. For maps u € WYP(X,RY) and U € W'?(C"T1,RY), we write T(U) =u if U =wu on
X x {0}. Also, for u € W'/P(X ,RY)N L>®, we shall denote by Ext(u) a function in WhP(C"+1 RN) N L>
that minimizes the p-energy D,,(U) among all Sobolev maps U € WhP(C" T R¥)NL> such that T(U) = u.
Notice that W/P(X,Y) c WI/P(X , RN)NL>, as Y C RV is compact.

'Dk,,«—CURRENTS. Recall that n = dim X and set M := dim(}). Every compactly supported smooth
differential k-form w € D*(X x )), where k < n, splits as a sum w = ijfzo w) |k := min(k, M), where the
w@’s are the k-forms that contain exactly j differentials in the vertical ) variables. For fixed r = 1,...,k
we denote by DF7(X x )) the subspace of DF(X x )) of k-forms of the type w = Z;:()w(j), and by
Dy (X x V) the dual space of D7 (X x V). Of course we have Dy = Dy, the space of all k-currents.
Moreover, a sequence {I}} C Dy (X xY) is said to converges weakly in Dy ,, say T — T, if Tp(w) — T'(w)
for every w € DF7(X x Y). The class Dy (X x V) is closed under the weak convergence in Dy ,.. A similar
notation holds by replacing X and ) with C"*! and R, respectively.

Example 2.1 If U € W1P(C""1 RY), then Gy is a well-defined (n + 1,p)-current in Dy, 41 ,(C" x RY)
and, in an approximate sense, Gy := (Id > U)x[C"*1], where (Id > U)(z) := (z,U(z)), compare [20]. If
e.g. w=yAn€ D" xRYN), where v € D" FI=h(C"*L) 5 € DM(RYN), and 0 < h < min{n+1, M, p},
we have

Gu(y Am) = [C™H )(Td st UV (y A ) = [C7H [y A Uy) = / Y AU#.

Cn+1

Setting moreover
IGu | = sup{Gu(w) |w € DR x RY), ||| < 1},
where ||w|| is the comass norm of w, by the parallelogram inequality we infer that
[Gull < C(H"(X) +Dy(U))
for some absolute constant C' = C(n,p, X') > 0, not depending on U.

BOUNDARIES. The exterior differential of forms in X x ) splits into a horizontal and a vertical differential,
d =d; +d,. Of course 0,T(w) := T(dyw) defines a horizontal boundary operator 0, : Dy (X x V) —
Dj—1.,(X xY). However, the vertical differential d,w of any form w € D¥~17(X xY) belongs to D¥" (X xY)
if and only if dyw(r) = 0. Therefore, for every T € Dy, (X x )) the vertical boundary operator 9,7 makes
sense only as an element of the dual space of Z¥~17(X x )), where

ZRr(X x V) = {we DX x V) | dyw™ =0} .
For future use, we also set

BF (X x V) :={weDF(x xY)|Ine Dl xY) ™ =d,m)}

and b )
ZPT( X x Y
k,r -
HY(X x ) 7Bk’r(é\,’x3}) ,
and recall, see e.g. [24, Prop. 4.23], that
HET (X x Y) = DY) @ Hyg(Y), (2.1)

where H}5()) is the r-th de Rham cohomology group.

GRAPHS OF WY/P-MAPS. Recall that p := [p] > 2.

Definition 2.2 To any map u € WY/P(X,RN)NL>® we associate an (n,p —1)-current Gy, in Dy p1(X x
RY) by setting
Gu = (—1)"P0Gy L ((X x {0}) xRN)  on D"P~HX xRY), (2.2)

where U = Ext(u) € WHP(C"HL RY), see Example 2.1.



In particular, if v € W/P(X,)), by Federer’s support theorem [16], we infer that the current G, in
Definition 2.2 belongs to Dy p—1(X x V).

In order to write more explicitly the formula (2.2), we first observe that by Stokes theorem, since U =
Ext(u) is "smooth” in the interior of C"*1, we have

AGy L int(C"T) x RN =0. 2.3
(

Remark 2.3 Definition 2.2 does not depend on the choice of the Sobolev function U € W1r(C"H1 RYN)
such that T(U) = u, provided that (2.3) holds true.

Let n:[0,1] — [0,1] be a given smooth decreasing map such that n(t) =1 for ¢ € [0,1/4] and n(t) =0
for t € [3/4,1]. To every k-form ¢ € D*(X) we will associate the smooth k-form @ in C"*! defined by
pi=pAn.
Therefore, if k4+h =mn and h <p — 1, by (2.3) and Example 2.1 we infer that for every & € D"(RN)
(—1)"1Gulp A D) = 9Gy (F A D) (2.4)

whereas (2.4) does not depend on the choice of the cut-off function 7.
In particular, if v € W/P(X,)), since G, belongs to Dy p—1(X x V), denoting by i : Y — RN the
injection map, for every ¢ € D*(X) and w € D"(Y), with k and h as above, we have that

Gu(go/\w) = (*1)”718GU(§5/\@) ) (25)
where & is any h-form in D"(RY™) such that i#% = w.

Remark 2.4 In the case p = 2, Definition 2.2 is equivalent to the one from [21], that makes use of the
theory of distributions, see also [23]. If p > 3, it is not clear if it may be given a definition of G,, in terms of
distributions, i.e., that does not depend on the use of the extension map Ext(u). However, if u € W/P(X,))
is smooth, then G, agrees with the usual definition of current carried by the graph of u, i.e.,

Gu(w) = /X(Id u)fw  Ywe DI X %)),

where (Id < u)(z) := (z,u(x)). We also remark that in general G, is not an i.m. rectifiable current in
X x Y, even for p=2 and n = 1.

Finally, we observe that if {uz} C W'/P(X,)) is a sequence that converges to u strongly in W'/?, then
Uy := Ext(uy) converges to U := Ext(u) strongly in W1P(C"*1 RY). This yields that Gy, converges to
Gy weakly in Dyq1,(C"" x RY) and G, converges to G, weakly in D, ,_1(X x V), by (2.2).

3 The homological singularities of W'/P-maps

In this section we define the current P(u) that describes the homological singularities of a map u in
W/P(x,Y). We shall assume that n > p := [p] > 2.

THE BOUNDARY OF THE GRAPH OF W!/P-MAPS. Since the (p — 1)** homology group Hp—1(Y)
is torsion-free, we may and will denote by [y1],...,[ys] a family of generators of H,_1(Y). More precisely,
the v,’s are integral cycles (with finite mass) in Z,_1()), such that

Hy—1(Y) = {gns [vs] | s € Z}.

By using the de Rham duality between the (p — 1)** real homology group and the (p — 1)** cohomology
group H7 ' (V), we denote by [0'],...,[0°] a dual basis in H%5' (), so that ~4(0") = &g
The following proposition collects the main properties of the current 0G,,.



Proposition 3.1 Let u € WY/P(X,Y). Then for every form a € D" 1P~2(X x ) we have 0G,(a) =0,
and 9,0G, (&) =0 for every form & € D"~ 2P~2(X x ).

PRrOOF: If U := Ext(u), by a standard density argument we infer that Gy = 0 on forms in D™P~1(C"+! x
RM), i.e., with at most p — 1 vertical differentials. Therefore, if o = ¢ A w, with ¢ € D¥(X), w € D*(Y),
k+h=n—1,and h <p—2, by (2.5) we have

0Gu(a) = GuldpAw) + (—1)FGalp A dw)
= (=) OGy(dp AnAD) + (=1)"H*0Gy (e A A dD) = 0.

Moreover, if & = ¢ Aw as above, where this time k+h=n—2 and h <p—2,

0,0G, (@) = (—1)FOG,(p Adw) = (—1)*Gy(dp A dw)
= (=) HROGy(de A A dD) = 0.

The assertion follows by linearity and density of forms ¢ A w. O

Similarly to [20, Vol. II, Sec. 5.4.2], see also [24, Sec. 4.2], by Proposition 3.1 we infer that dG, =0 on
Br=Lp=1(X x V), whence dG,(w) depends only on the cohomology class of w € Z""LP=1 (X x V). As a
consequence 9G,, induces a functional (9G,). on H" LP=L1(X x Y) given by

(G (w + B P71 1= G, (w + B P = 9G,(w), we ZrThh

and by (2.1) the homology map (0G,). is uniquely represented as an element of D,,_,(X; Hp—1(YV;R)). More
explicitly, let 7: X xRY — X and 7 : X x RN — RY denote the orthogonal projections onto the first and
second factor, respectively. If ¢ € D" "P(X), we have [(0G,)«(¢)] € Hp—1(V;R) and for s =1,...,5

((0GW)(9),[0°]) = 0Gu(r"§ ANTH 0®),

,) denoting the de Rham duality between H,_1();R) and HP-H(V). Notice that in general (0G,). is
p dR
non-trivial.

THE CURRENT P(u) OF THE HOMOLOGICAL SINGULARITIES. Similarly to [23], we set
B(1) i= (0G). € D p(X; Hp 1 (ViR)). (3.1)
For each o € [0] € HY,' (V) we also define the current P(u;0) € D,y (X) by
Plu;0) i= (-1 (~1)" PO Ny (9G,) L 7#0)

so that for any ¢ € D" ?(X)

P(u;0)(¢) = (1P (-1)"PCDaG, (7o ArHe)
= (“1)POG.(T*e A FFa). (32)
Also, for every closed (p — 1)-form o € ZP~1(Y) we define the current D(u;0) € Dy—p11(X) by
D(u;0) == (1P P+ 7 (Gy L 7% d5) , U := Ext(u),
where & € DP~1(RY) satisfies i#G = o, so that for any v € D" P+1(X)
D(u; 0)(7) = (—1)P"PH) Gy (7% do A 777) = Gy (n#F ATH d5) . (3.3)

Proposition 3.2 For every u € Wl/P(X,y) the following properties hold:

(i) for s=1,...,3
P(u;0°)(¢) = (=1)"(P(u)(9), [°]),

i.e., P(u;0®) does not depend on the representative in the cohomology class [0°];



(ii) OP(u)L int(X) =0 and P(u) = (—1)° ZP(u;os) ® [vs], hence it does not depend on the choice of
s=1
Vs in [73];

(ili) for each representative o € ZP~H(Y) in [o] we have

OD(u;0) = P(u;0) on D"P(X). (3.4)

PROOF: Properties (i) and (ii) are easily checked, compare e.g. [23]. Moreover, we observe that for every
o€ ZP71(Y) and ¢ € D"P(X), since d¢ is compactly supported in X x [0,3/4], by (2.2), (2.3), and (2.5)
we have ~ ~ ~
Gy (n#dp N7#5) = (=1)" 1Gu(n#(ded + did) 1o A TH )
= (=) Gy (n*do ANTHT).
On account of (3.2) and (3.3), and since d7*o = 7#do = 0, we then compute
Bu;0)(9) = (~1)PGu(dn#én7to) = (~1PGy(x#dd A 7o)
= (=) PGy (r#dp AT#5T) = Gy(n#dp A da? o)
= Gu(n*dé NT#d5) = D(u; 0)(dg) = ID(u; 0)(9) ,
that yields (3.4). O

As a consequence of Proposition 3.2, we set
Ds(u) :=D(u;0%),  Ps(u) :=P(u;0°) (3.5)

for every s =1,...,3, so that by (3.4) we have
Ps(u) = 9Ds(u) on D" P(X) Vs. (3.6)

We finally notice that Ds(u) is a current of finite mass in Dy,—p11(X), as U = Ext(u) is a WP-function
and do* € DP(RY), with p = [p], see Example 2.1.

THE MODEL CASE. Assume that Y = SP~! and let wgy,—1 denote the normalized volume (p — 1)-form

Wep—1 1= (1) yddyt Ao Ady TEAdyTTE A AN dyP (3.7)

p
=1

1
Qyp 4

J

where a, :=HP~H(SP1), so that [SP~! J(wse—1) = [gp-1 wep—1 = 1.
u

Therefore, by (3.2), for every u € W¥/P(X SP~!) the currents Py(u) simply reduce to the current

P(u) € Dy,—y(X) given by
P(u)(¢) := (=1)? 0Gu(n"p AT wg—1), ¢ € D"7P(X),
and Ds(u), by (3.3), to the current D(u) € Dy—p1(X) given by
D(u)(7) := Gu(r*F A THdgy-1), v e D" PH(X), (3.8)

where U := Ext(u) € WP(C"1 RP) takes values into B'.
We may and do choose {gp—1 € DP~L(RP) in such a way that it agrees with the right-hand side of (3.7)
on the closure B’ of the unit ball. Since ap = p|BP|, this yields that

1
# A5 —[J#* —
U dwgp—l =U wpr , wpr = |Bp‘

As a consequence, since by (3.4) we have P(u)(¢) = D(u)(d¢), on account of (3.8) and of Example 2.1
we obtain that

dy* A NdyP. (3.9)

P)(©) = 51 [

Therefore, if X = Q for some open set  C R” we conclude that for every u € W1/? (X,SP~1) the current
P(u) agrees with the current J,, in (1.2) introduced by Hang-Lin [25].

dp NU#(dy' A---ANdy?) Ve D" P(X).



Remark 3.3 For general target manifolds ), we similarly obtain that for every u € W'/P (X,))
B.(u)(6) = Du(w)(ds) = Gu(v*d5 A 7#d5%) = | d5 AU*(d5")
cn+1
for every ¢ € D" 7P(X) and s=1,...,3.

SPHERICAL CYCLES. We finally observe, Proposition 3.6, that the current P(u) carrying the singularities
of maps u € Ri"; p(X ,V) is an integral flat chain, and that it actually only depends on the spherical subgroup

H2 (V) of Hp-1 ().

Definition 3.4 We say that an integral (p—1)-cycle C € Z,_1(Y) is of spherical type if its homology class
contains a Lipschitz image of the (p — 1)-sphere SP~1, i.e., if there exist a (p — 1)-cycle Z € Z,_1(Y), an
i.m. rectifiable p-current R € Rp,(Y), and a Lipschitz function ¢ :SP~' — Y, such that

C—-Z=0R and Z=¢u[S"'].

Denoting then

HP (D) = {ly] € Hp 1 (P) | 3 ¢ € Lip(SP™, ) | ¢4[SP '] € M}, (3.10)
since the quotient H,,_l(y)/H;Ith (¥) is assumed to be torsion-free, we may and do choose the ~,’s in such
a way that [v1],...,[vs] generate the spherical homology classes in H;}i ’g(y) for some s < 3. Therefore,

the dual basis of spherical (p — 1)-forms in pr_hl(y) is given by [0l],...,[0®].

S

Remark 3.5 In the case p = 2, clearly every integral 1-cycle in Z;()) is of S!-type.
Proposition 3.6 If n>p:=[p] and u € Ry (X)) we have:

i) P(u;0) is an (n — p)-dimensional i.m. rectifiable current for each o € o] € H* 1 (Y); moreover,

sph
P(u;0) =0 if [0] does not belong to H® ' ().

sph
i) P(w) is an i.m. rectifiable (n—p)-current in X with values in the subgroup HEP" (), i.e., P(u) belongs

p—1
to Ro_p(XH (D)), and

P(u) = (1P Y Pu(w) @[], Po(u) := P(u;0°) € Ry—p(X).

iii) if n =p, then P(u) is a finite combination, with integer coefficients d; s € Z, of Dirac measures at

points a; € X,
5 I
P(U) = Z Zdi,s(sai ® [’Vs} :

s=1i=1

PROOF: On account of (3.2) and (3.4), the proof is obtained by an adaptation, with minor modifications, of
the one of [24, Thm. 4.32], see also [20, Vol. II, Sec. 5.4.2]. For this reason, we omit any further detail. [

4 Removing homologically trivial singularities

In this section we analyze the subclass of maps u € W/ P(X,Y), for p > 2, which have no homological
singularities, i.e., such that P(u) = 0. We first show, Theorem 4.2, that any W'/P-map satisfying P(u) = 0
can be strongly approximated by maps uy € RY /p(X ,V) satisfying the same condition P(ux) = 0.

Under suitable hypotheses on the topology of X and ), we then show, Theorem 4.3, that any W'/P-map
satisfying P(u) = 0 can be strongly approximated by smooth maps in W'/?(X, ). Moreover, we shall see
that the additional topological assumption turns out to be optimal, see Example 4.4.
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CARTESIAN MAPS. On account of the definitions from the previous sections, see also Proposition 3.1, it
is readily checked that a map u € W'/P(X,)) has zero homological singularities, i.e., satisfies P(u) = 0, if
and only if the current G, associated to its graph has no inner boundary, i.e.,

0G, =0 on Z" P LA xY), p:=[p>2. (4.1)
For this reason, we give the following

Definition 4.1 Let p > 2. A map u: X — Y is said to be a Cartesian map in the class cartl/p(X,y) if
u belongs to WY/P(X,Y) and satisfies the null-boundary condition (4.1).

Trivially, condition P(u) = 0 holds true if w is smooth, say Lipschitz. Moreover, if ) has dimension
lower than p— 1, we have H,_;()) = 0 and hence trivially P(u) = 0, whence W/?(X,)) = cart'/? (X,)).
Therefore, in the sequel we shall tacitly assume that dim()) > p—1 and that the homology group Hy—_1())
is non-trivial, so that in general P(u) # 0, i.e., the strict inclusion cart'/? (X,)) C W/P(X,)) holds.

Moreover, since the null-boundary condition (4.1) is preserved by the weak convergence in D,, ,_1, and
the strong convergence u; — u in Wl/”(X,y) yields the weak convergence G, — G, in D, ,_1, see
Remark 2.4, according to (1.4) we immediately obtain that

HYP(X,Y) C cart'/? (X,)). (4.2)

THE CASE OF EXPONENTS p < 2. If 1 < p < 2, of course the definitions from Secs. 2 and 3 continue
to hold. However, for p := [p] = 1, the manifold ) being connected (the model case ¥ = SP~! cannot be
considered), we infer that Ho(Y) ~ Z and HYy(Y) ~ Z. As a consequence, compare [24, Prop. 4.23], for
k=0,...,n we have
Zk7O<X7y):,Dk(X)a BkVO(X,y):{O}
and hence, by (2.1),
HO (X x V) ~DFX) @ Z.

In particular, according to (3.1) and (3.2), the homological singularities of a map u € W/P(X,)) are
described by the current P(u) € D,,—1(X) given by

P(u)(p) = —0Gu(17¢), e D" (X).

Therefore, according to Definition 4.1, a map u € W/P(X,)) belongs to the class cart'/? (X,)) if the
current G,, € Dy, o(X x )) satisfies

G, (1) =0 VeeD"1(X).
However, by (2.3) and (2.5) we infer that
0G.u(p) = Guldp) = (—=1)"'0Gy (dp An) = 0.

This yields that for every 1 < p < 2 the class W'/P(X,)) agrees with the class of Cartesian maps
cart'/? (X, ), that is, every map u € WYP(X,Y) has no homological singularities:

Vuer/p(X,y), 1<p<2, wehave P(u)=0.

Of course, this last property can be seen as a consequence of Corollary 1.7, on account of (4.2).
DENSITY RESULTS IN cart'/?. Assume now that p > 2. Using arguments taken from the proof of
Theorem 1.1 from [38], we shall first prove the following

Theorem 4.2 For every Cartesian map u € cart'/P (X,Y) there exists a sequence of maps {ur} C

R(l)/p(/'\,’,y) Ncart'/? (X,Y) such that uy — u strongly in W/P.

We shall then prove that under suitable hypotheses on X and Y every map in cart’? (X,)) can be
approzimated by sequences of smooth maps in W'/?. On account of (1.5), we shall assume n >p > 2.
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Theorem 4.3 Let p > 2 and n > p := [p]. In the case p > 3, assume that for any base point yg € Y the
Hurewicz homomorphism from the (p — 1)*" homotopy group m,_1(Y;yo) onto the (p — 1) real homology
group Hy—1(YV;R) is injective. Alternatively, in the case p = 2, assume that the first homotopy group m(Y)
is commutative. Moreover, if n > p+ 1, assume that X satisfies the (p — 1)-extension property with respect
to Y. Then

cart/? (X, ¥) = HY/?(Xx,)).

Similarly to [23], we now see that even in the case X = B™, and n = p, the injectivity hypothesis of the
Hurewicz maps, in the case p > 3, or the commutativity hypothesis of the first homotopy group, in the case
p = 2, cannot be dropped from the statement of Theorem 4.3.

Example 4.4 Assume that the target manifold ) does not satisfy the injectivity hypothesis on the Hurewicz
maps (or that 71()) is not commutative, for p = 2). We claim that there exist functions u in cart!/?(B?,)),
where p := [p] > 2, which cannot be approximated strongly in WP by smooth maps uy : B® — Y, i.e.,
such that u ¢ Hé/p(Bp, Y), whence the strict inclusion holds in (1.7).

In fact, for any such target manifold ) there exists a Lipschitz function @ : SP~! — ¥ such that ¢ is
not homotopic to a constant map in ), but such that ¢ is homologically trivial. Arguing as e.g. in the
proof of [24, Thm. 5.3.6], we then find a Lipschitz function ¢ : S?~! — ) that is homotopic to @ in Y, but
such that the image current p4[SP~1] =0.

Consider the map wu := ¢(z/|z]). Clearly u belongs to W'/P(B?, ), as p < p + 1. Since moreover,
compare [20, Vol. I, Sec. 3.2.2],

(0G,)LB? x Y = =g x ox[SP '],

where &y is the unit Dirac mass at the origin, condition ¢4[SP~!] =0 yields that G, =0 in B® x Y, i.e.,
P(u) = 0, whence u € cart!/?(B?,Y). Now, if u were approximable by smooth maps from B* into ) strongly
in W'/?, whence strongly in W'/? | since the strong W'/P-convergence preserves the (p — 1)-homotopy type,
see [4, Lemma 1], we would obtain that ¢ is homotopically trivial, a contradiction. a

PROOF OF THEOREM 4.2: We follow the lines of the proof taken from [38, Sec. 2] of Theorem 1.1
above, where we denoted d := [p], to which we refer for the notation and for further details.

For this reason, we denote Q" :=]0,1[" and let u be a map in cart’/?(Q" ). We can improve the
slicing argument at the beginning of the proof of [38, Thm. 1], choosing for every m € N* the grid of size
1/m in such a way that the following properties are satisfied:

i) the restriction up to each k-face F of the k-skeleton C’,(,If ) of the grid belongs to cart!/?, i.e.,
Gy, =0 on ZFPFLEFxY),
for k=p—-1,...,n;
ii) if Fy, Fy are (p — 1)-faces of 7Y that intersect in a (p — 2)-face I, then

Gy, LI XY =—0Gy, LIxY on DX xD).

We first consider the case n = p.
THE CASE n = p. We recall that Y C R, and set

Ve = Us(y) ) (4'3)

where U.(A) := {y € RY | dist(y, A) < €} is the e-neighborhood of A C R¥. Since ) is smooth and
compact, there exists €9 > 0 such that for 0 < € < g¢ the nearest point projection II. of ). onto ) is a
well defined Lipschitz map with Lipschitz constant Lip(Il.) < (1 + ce) — 1+ as ¢ — 0T. In particular, for
0 < e < g, the e-neighborhood ). is equivalent to ) in the sense of the algebraic topology.

It is readily checked that the assertion follows if we show that we can find a sequence {h;} \, 0 such that

the traces T(W}E;")) of the approximating maps W}E:") from [38, Thm. 1] are functions in cart'/?(Q",V.,).
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We recall that {C; l(zbfl)n is a list of the (n + 1)-cubes in F,,, and we denote by F} the n-cube given

by the intersection of C; with Q™ x {0}. The approximating map W}(Lm) has been defined on C; by

(m) (. ) [t fi(z)
Wi =R (o))
where f; is a suitable bilipschitz homeomorphism between C; and the (n + 1)-cube [—1/(2m),1/(2m)]" 1,
and Vh(m) is given by [38, Prop. 3] in correspondence of a grid satisfying i) and ii). As a consequence, setting
v,(lm) = T(Vh(m)), in order to show that the trace T(Whm)) belongs to cart!/?(Q™,).,), and conclude the
proof of Theorem 4.2 in the case n = p, it suffices to prove Proposition 4.5. We are not able to find of a
more direct argument, see Remark 4.7 below.

Proposition 4.5 There exists a sequence {h;} \, 0 such that every I and j the (n — 1)-cycle v,(LT;ﬁ[[aFl]]
s homologically trivial in Ve, .

ProOOF: Since ), is equivalent to ) in the sense of the algebraic topology, for every s there exists a
closed (p — 1)-form o° in Y., that agrees with ¢® on ) and such that {5°}5_, is a basis of the subgroup
Hzghl (Ve,) of spherical (p —1)-forms in HZ;(JJEO), see Definition 3.4. Therefore, since n = p, the assertion

follows if we show that
v OR](E) =0  ¥s=1,...,5.

Looking at the proof of [38, Prop. 2], we observe that %(Py, h) intersects the (n—1)-skeleton B« {0}
if PyexiY x] — h/2,h/2]. Therefore, the same argument used in the above mentioned proof yields that
the approximating sequence {U,gm)}h actually satisfies U,(Lm)(x, t) € V., forevery (z,t) € OF;x]|—h/2,h/2|
and for every [, provided that h < h..

As a consequence, we readily infer that the approximating sequence {V}fm)}h given by [38, Prop. 3]
satisfies that same condition, i.e., Vh(m) (OF;x] — h/2,h/2]) C Ve, for every [, if h < he.

Setting now fo = Vh(m)\aF, X]0,h/2[° since the differential do® =0 and the map V}f is smooth, we have

OV 4([OF] x [(0,h/2)1)(%) = Viu([0F] x [(0,h/2)])(d5*) = 0.

Therefore, if cﬁ;lm) (x) = Vh(m) (x,0) for some suitable 0 < § < h/2 to be chosen, by a standard homotopy
argument we infer that
(m) OF 1(5%) = (m) OF (53 4.4
v, 2 [0F ](0°) = ¢}, . [OF ] (5°). (4.4)
Now, let &* be an (n—1)-form in D"~}(RY) such that i#5° = ¢ and j#5° = 5°, where j : Y., — RY
is the injection map. Since u € cart'/?(Q", ), by (4.1) for every test function ¢ € C°(Q") we have
Gu(dp No®) =0G,(pNo®)=0.

Taking the cut-off function 7 : [0,1] — [0,1] in (2.5) in such a way that »'(t) < 0 for ¢ €]0, h[, this
yields that
Gu(dp ANd(nN5°)) = —-0Gy(dp AmAG®) =0, U := Ext(u).

Therefore, choosing a suitable sequence of test functions {py} C C°(Q") that strongly converges in L!
to the characteristic function of Fj, since by Example 2.1
Gy (dpy Ad(n AT*%)) :/ doy A (dn NU#G* +n AU do*) ,
Q" x[0,1]
by a standard argument we obtain that

Gy, (d(nne®)) =0, where U :=Ujar,x[0,1] -

By the strong convergence of V}Em) to U; as h — 0, on account of properties i) and ii) above,

|0F; x[0,1]
this gives that for every sequence {h;} \, 0 and for every | we can find a subsequence {hy)} . 0 such that

Gui(dmAG)) =0 for h=h" Vj, Vs
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Moreover, since Vi (0F;x]0,h/2[) C V., and j#5° = &°, with d&* = 0, this gives

Gy (dn A 5*) = Gyi(dn A 5*)) = Gyi(d(n A 5*)) = 0.

Therefore, setting ¢’ () := Vh(gi) (x, 5§l)) for a suitable 0 < 5§l) < h§l) /2, by a slicing argument we find that

;410 ](6°) = 0.

Finally, a diagonal argument on [ = 1,...,(m — 1)™ yields the assertion, by (4.4). O

THE CASE n > p + 1. The proof is an adaptation of the one of [38, Thm. 1], using the same argument
as above. In fact, when extending W,Em) to the (p + 1)-cubes of the grid, we argue as in the case n = p.

Moreover, when extending W}Em) to the (k + 1)-cubes of the grid, for k =p+1,...,n, we see that actually
no boundary is "produced”. This is essentially due to the following lemma, that concludes the proof.

Lemma 4.6 Let k = p+ 1,...,n integer and u : B¥ — Y be given by u(x) = v(x/|x|) for some
v e Wl/p(aBk,y). Then u € cartl/p(Bk,y).

PROOF: Since k > p, trivially u € W/P(B*,Y). Moreover, if w : B¥ — RN is a smooth W' P-map such
that wppr = u, and R € Ri(RY) is the i.m. rectifiable current R := wy[B*], we have

dG,_B* x Y = —6y x OR. (4.5)

Since the integral flat cycle OR has dimension k — 1 > p, the property (4.5) gives automatically that
0G,(w) = 0 for every w € ZF-1P=1(B¥ x ))), i.e., the null-boundary condition (4.1), whence Lemma 4.6 is
proved, as required. O

Remark 4.7 Lemma 4.6 is false in dimension k = p, even if u(zx) = v(z/|z|) for some map v : Q — Y
in cart'/?(Q,Y), where B? cC Q C RP, see Definition 4.1. Actually, if v is smooth, then (4.5) holds
with R := vg[B?], an i.m. rectifiable current in R,()). Therefore, the integral flat (p — 1)-cycle OR is
homologically trivial, i.e., OR(c) = R(do) = 0 for every closed form o € ZP~1()), whence by (4.5)

G, =0 on ZPLPTL(BP ), (4.6)

ie., u € cart'/?(B?,)). However, this argument fails to hold if v is a generic map in cart'/?(Q, ), since in
general we cannot conclude that vg[ B | is an i.m. rectifiable current in R, (), even in the case p = p = 2.

PROOF OF THEOREM 4.3: By Theorem 4.2, it suffices to show that every map u € R(l)/p(/'\,’, y)ﬂcartl/p

is the strong W/P-limit of a sequence of smooth functions in W1/ P(X,Y)NC>. We distinguish two cases.

THE CASE n = p. Every map u € R?/p(.)(,y) N cart!/? is continuous outside a discrete set, see (1.6).

Since we use a local argument, we may assume that u € cart!/?(B¥?,)) and w is continuous outside the
origin. In order to remove the singularity of wu, using the same argument given for the case p =p =2 in
[23, Prop. 5.1], it suffices to show that for r > 0 small the set

=P
{weW"?(B2,Y)nC°B,,)) | Wippr = Wope
is non-empty. By the assumption on the Hurewicz maps, this holds true if we have
du|333#0520 Vs=1,...,5.

As in [23, Prop. 5.1], this follows from the null-boundary condition (4.1), i.e., from (4.6), that is equivalent
to the property Ps(u) = 0 for every s, see (3.5). A standard convolution and projection argument as e.g.
in [4] yields the assertion.

THE CASEn > p+ 1. Let u € R(l)/p(X,y) N cart’/? and let X be a cubeulation of X. Without
loss of generality, by using a slicing argument, we assume that X is in dual position with respect to wu,
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compare [38]. More precisely, we may and do assume that the (p — 1)-skeleton XP~! is disjoint from the
(n — p)-dimensional singular set ¥ (u) of wu, see (1.6), and that the properties i) and ii) at the beginning of
the proof of Theorem 4.2 are satisfied. Arguing as in the case n = p, the above properties, in conjunction
with the injectivity on the Hurewicz maps mp_1(Y;y0) — Hp—1(V;R), for p > 3, or with the commutativity
of 71 (), for p = 2, yields that the restriction u|x»-1 has a continuous extension g: X? — ).

Therefore, by the (p — 1)-extension property, the restriction wjxr-1 can be extended to a continuous

map from X into ). By applying [38, Thm. 3] we then obtain that u is the strong W/P_limit of a smooth
sequence in WY/P(X,Y) N C*, as required. |

5 Minimal connections of maps in W/P

In this section we discuss the minimal integral connection of the homological singularities P(u) of a wi/p.
map v from an n-dimensional manifold X into the sphere SP~!, giving also an explicit example. The next
section will be dedicated to the case of more general target manifolds. First, we collect the notion of real
and integral mass, and prove some general properties of the current P(u).

REAL AND INTEGRAL MASS. Welet n>p:=[p] >2 and Q C X be an open set. Recall:

Definition 5.1 For every I' € D,,_,(Q) we denote by

myo(T) = inf{M(D) | D € D,_p1(), (dD)LQ =T}
mio(T) = inf{M(L) | L € Rp_ps1(Q), (OL)LQ =T}

the real mass and integral mass of T' relative to Q, respectively. In case m; o(I') < oo, an i.m. rectifiable
current L € Rp_p41(2) is an integral minimal connection for the mass of I' allowing connections to the
boundary of Q if (OL)LQ =T and M(L) = m,; o(T).

We first show that P(u) is an (n — p)-dimensional real flat chain.

Proposition 5.2 For every u € W'Y/P(X,Y) the current P(u) is the real flat limit of the currents P(uy,)

in Rn,p(é\,’;’H;’lh1 (V)), where {ux} CRY9, (X, V) is a sequence that strongly converges in WP to u, and

P(u)(¢) = (=1)° Y Ps(u) (@) '] € KL (W R) Ve D" (X).

In particular, Ps(u) =0 for s=35+1,...,3.

PROOF: Using Theorem 1.1 and Proposition 3.6, the proof is obtained as e.g. in [20, Vol. II, Sec. 4.5.2]. O

In dimension n = p, moreover, we obtain that P(u) is an integral flat chain.

Proposition 5.3 Let n = p. Let v € WYP(X,Y) and {ux} be a sequence of maps in ’R‘fjp(X,y) that

strongly converges in WY/? to u. Then we have:

(i) M(Ds(ug) —Ds(u)) — 0 as k — oo for each s=1,...,35;

(i) there exists a current L € ’Rl(X;H;’ihl(y)), with M(L) < oo, such that P(u) = (OL)L int(X); in

particular, P(u) is an integral flat chain;
(iii) f L3, , denotes an i.m. rectifiable current in Ri(X) of least mass such that

(0L;, )L int(X) = Ps(u) — Ps(ux), s=1,...,5, (5.1)

Uk, U

then M(L: ) — 0 as k — oo;

Uk, U
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(iv) if 0X =0, or u= ¢ on OX for some smooth WYP-map ¢ : X — Y, then for each s =1,...,5 there
exist points a;,b; € X such that

oo

Ps(u) = Z(éai —0p,) Zdist;g(ai7bi) < 00,
i=1

i=1
where disty is the geodesic distance in X.

PROOF: Using (3.3), the proof of property (i) is similar to the one in [23, Prop. 1.4], and holds true even in
higher dimension n > p + 1. As to the rest of the theorem, we observe that Ps(uy) is a (n — p)-dimensional
im. rectifiable current in R,,_,(X). By Federer’s theorem [17], for n =p we then have that

M ine(x) (Ps (Uk)) = My ine(x) (Ps (u)) Vs=1,...,8, (5.2)
see Definition 5.1. Therefore, (i) and (3.6) give m; in¢(x)(Ps(ux) — Ps(u)) — 0, and the claims follow. O

Remark 5.4 The above argument fails to hold in higher dimension n > p + 1, for any integer p > 3. In
this case, in fact, we do not know whether (5.2) holds true, compare [37, 43|, or even if

My int(X) (]P)s (uk)) <c- My int(X) (Ps (uk))

for some absolute constant ¢ > 0, not depending on uy, a weaker condition that would give the assertion
of Proposition 5.3. We recall that in the case p = 2, Hardt-Pitts’ theorem [28] yields (5.2) and hence
Proposition 5.3, for any n > 2, see [23].

INTEGRAL CONNECTIONS. Assume now that J = SP~! and that X has no boundary. We show that
the current P(u) carrying the singularities of any map u € W/P(X,SP~1) is an integral flat chain.

Proposition 5.5 Let n > p > 2. For every u € WYP(X SP~Y) there exists an i.m. rectifiable current
LeRy_ps1(X) such that

OL=P(u) and M(L) < C (& /p(u) + || Ext(u)||’£p(cn+1)) :

where Ext(u) € WIP(C"H1 RYN) is the extension of u and C > 0 is an absolute constant, not depending
on u.

Remark 5.6 This property (and its local version) was proved by Hang-Lin [25] for p > 2 integer and for
X = R", using the coarea formula and the degree theory developed by Brezis-Nirenberg [14]. In the sequel we
shall give a similar proof based on arguments from Sec. 2. It turns out that the extra term || Ext(u) ||]£p(cn+1)

in the above formula can be removed if we require that the integral connection L belongs to 72n_p+1(C”+1)7
as in [25].

If the boundary dX is nonempty, for every smooth function ¢ : X — SP~! we denote
1/ p—1y . 1/ p—1 _
WoP(X,8P77) i={ue W/P(X,S"77) |[u=p on 0X}.
Similarly to Proposition 5.5, we also obtain:

Proposition 5.7 Let n > p > 2. For every u € Wé/p(X,S"_l) there exists an i.m. rectifiable current
L e Ry_ps1(X) such that OL = P(u) and

M(L)<C (gl/p(u) + | EXt(“)”ip(cnﬂ) + 81/]0(90) + || EXt(‘F’)Hip((jnH)) )
where C >0 is an absolute constant, not depending on u and .

We may similarly prove a local version of Proposition 5.5, concerning the integral mass of the singularity
P(u) relative to any open set Q C X, see Definition 5.1. This means that we look for an integral minimal
connection for the mass of the restriction P(u)L €2, allowing connections to the boundary of Q. We readily
obtain:
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Corollary 5.8 For every u € W'/P(X,SP~1) and every open set Q C X we have
mio(P(uw)) < C EXt(U)||€V1,p(QX[0,1]) ‘

AN EXAMPLE. We now give an explicit example that may clarify the statement of Proposition 5.5. We
follow an idea that goes back to Bethuel [4, 3.1].

Example 5.9 Consider the (n 4 1)-dimensional open cylinder C"*! := BP x B" P+l where n > p > 2,
and let X be the boundary n-manifold X := AC" 1. We shall denote by 04 and |-|; the origin and the
Euclidean norm on RY, respectively.

Let u: X — SP~! be given by

u(z) :

:ﬁ, z=(z,7) € RP x R"PTL ~ RFL,
P

It turns out that u € Rfjp(X,Sp’l), with singular set 3(u) = {0,} x S*P, see (1.6), and homological
singularities given by the i.m. rectifiable current

P(u) = [{0p} xS" "] € Ry (X).

We have to show that wu is the trace on AC"*1 of a smooth function U : C"t1 — BP that belongs to
the Sobolev space W1P(C"T1 RP), the other properties being readily checked.
To this purpose, consider the map V : B? x [0,1] — B* given by

T (.li,p — 1) ) :

I — if [(z,p—1 <1
v = et 6.0 = Dl

T otherwise,

where p € [0,1] and II: R x R — RP is the orthogonal projection onto the first p coordinates. Clearly
V' is smooth outside the point (0p,1), and V belongs to W4(B? x [0,1[,RP) for every 1 < g <p+1,in
particular for ¢ = p, as p = [p]. Moreover, the trace of V satisfies

X

V(z,p) = on (0BP x [0,1)) U (B? x {1}).

|2,
It then clearly suffices to define U by means of a rotation on the z-variables, i.e.,
Uz, ) :=V(z,|Z|p—pt1) -

‘We now observe that
U~ (Oge) = {Ops } x B" 7P,

In general, for every y € BP the pull-back U~!(y) is an (n — p + 1)-surface given by the rotation on the
x-variables (reflection, for n = p) of the 1-dimensional subset V~!(y) of B x [0,1], and we have

Vi) =1{ulg,

where I! is the line segment connecting the points P{ with P/, for ¢ =1,2, and

P= (1= \T-RR),  PY=(0p1), P{:=(50).

In particular, for every y the boundary of U~1(y) agrees with the (n — p)-sphere {Ogs} x S*~*, i.e., with
the singular set X(u) of w.
Let LyU denote the i.m. rectifiable current in R,_p+1(C"™!) given by the integration of forms in

Dn—PHL(C™H1) over the naturally oriented (n — p + 1)-surface U~1(y), see (5.5) below. It turns out that

OLY =P(u).
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Finally, choosing y so that |y|, > 1/2, and denoting by I:crntt \{O0pt1} — aC™t! = X the projection
z

maX{Mp, |5\n—p+1}’

I(z) := z=(x,7),

since T1uP(u) = P(u) we conclude that the current ﬁ#Lg € Rp—p+1(X) satisfies all the requirements of
Proposition 5.5.

PROOFS. We now give the proof of Propositions 5.5 and 5.7.

PROOF OF PROPOSITION 5.5: Let U(z,t) := Ext(u)(z,t)-n(t) € WHP(C"1 RP), where 1 :[0,1] — [0,1] is
a smooth decreasing function such that n(t) =1 for ¢t € [0,1/4], n(t) =0 for ¢t € [3/4,1] and ||| < 4.
Notice that we have

Dy, (U) < e1(p, X) Dp(U) < ca(p, X) (Dp(Exct(u)) + | Ext(w)l[], enss))

for some absolute constants c¢;(p, X) > 0, not depending on Ext(u), and recall that &;,,(u) := D, (Ext(u)).

By a projection argument we may assume that the image of U is contained in the closure B of the unit
p-ball. Moreover, by definition U is smooth on X' x]0,1], and U(z,0) = u(z), U(z,1) = Ogs.
Denote by J,(U) the p-dimensional Jacobian of U, so that

1

@\DU(zM" > J,(U)(2)  Vzexx]o1].

By the coarea formula, as in [2] we have

D)= [ @t = [ ) ).

Therefore, we find a regular value y € B? \ {Ogr } of U such that

HP U () < i Dy(U).

Define the current D(U) € Dy—p41(X) by

D(U)(7) = / FAUFwpe,  yeDPHI(X),

cntl
where 5 :=~y An € D" PH(C") and wps is given by (3.9). Arguing as in (3.6) for (3.8), we have
P(u) =0D(U) on D"TP(X). (5.3)

Similarly to [20, Vol. II, Sec. 5.2.1], we now define the smooth (n — p + 1)-vector field D(U) as the dual
to U#wps, i.c., in local coordinates,

(n, D(U)(2))dz :==n AN U"wpe (2) Vn e AnTPHL (R
More precisely, D(U) may be identified with « U#wpge, where x is the Hodge operator. We thus have
DU)(v) = / F, D)) dH" " (2) Yy e D"TPFI(X). (5.4)
Cn+1
Also, if U(z) =y the (n—p+1)-vector D(U)(z) is tangent to the naturally oriented level (n —p+1)-surface
U™Hy) :={zeC" | U(z) = y}.

As a consequence, the (n — p + 1)-current



turns out to be an i.m. rectifiable current LyU € Ry—p+1(C") with mass
M(LY) = H' =P (U ().

Moreover, since U(x,1) = Orw, and y # Oge, by (5.3) and (5.4) we infer that
(OLY)L X x [0,1] = P(u).

Setting L := H#LyU, where IT : X x [0,1] — X is the projection map II(z,t) := z, the assertion readily

follows. O
PROOF OF PROPOSITION 5.7: Let ®(x,t) := Ext(p)(x,t)-n(t) € WHP(C"T RY) and L) € Rp_p1(C™HY)

be given by
_ D(®)
LY = r(d 1 (y),1
p=r(eTw) ’|D(cI>)|)’

so that M(Lg) = H" P*1(®~!(y)). Since u=¢ on dX and P(p) = 0, this time we have

ALY —Ly)=P(u).

Similarly to Proposition 5.5, we readily prove the assertion. 0

6 The case of general target manifolds

In this section we extend Propositions 5.5 and 5.7 to more general target manifolds ) as in Sec. 4. More
precisely, in the case p = 2 we shall assume that w1 (Y) is commutative, whereas in the case p > 3, we
shall assume that 71()) =0 and that the Hurewicz homomorphism from the (p — 1) free homotopy group
mp—1(Y) onto the (p — 1) real homology group Hy—1(Y;R) is injective.

If the boundary X is nonempty, for every smooth function ¢ : X — ) we shall denote as above

(1>7p,<p(X7y) = {u € Rﬁp(?ﬁy) ‘ u =@ on 3%}

Theorem 6.1 Let n>p:=[p| >2. Let p: X — Y be a smooth function and let u € RY5p.o (X, Y). Then

for every s =1,...,5 there exists an i.m. rectifiable current Ly € Ryp_p41(X) such that OLs = Ps(u) and
the mass

M(Ls) <C (51/p(u) + || EXt(U)”ip(cnﬂ) + 51/p(80) + || EX‘L((p)Hip(an)) )

where C > 0 is an absolute constant, not depending on u and . Moreover, if 0X =0 and u € R‘ﬁp(éhy),
we have
M(L,) <C (gl/p(u) + I EXt(u)||iP(C"+1)) .

Remark 6.2 As in Remark 5.6, from the proof of Theorem 6.1 we infer that in the above estimates for
the mass of Ly we can remove the extra terms C (|| EXt(U)HIL)p(an) + Ext(cp)||’zp(cn+1)) provided that we

require that the integral connections L, belong to Rn,pH(C"‘”‘l). Moreover, since ) is compact, if the
boundary datum ¢ is constant we have &£;,,(¢) =0 and || Ext(ap)Hip(cnﬂyRN) <C.

Let 2 C X be an open set. According to Definition 5.1, we may look for an integral minimal connection
for the mass of Ps(u)L Q allowing connections to the boundary of . We thus readily extend Corollary 5.8
as follows:

Corollary 6.3 For every u € R‘fjp(X, V) and every open set Q C X we have

m;.a(Ps(u)) < C || Ext(u) Vs=1,...5.

1.0 @ (0,1])

In the case n =p, or n > p = 2, we finally obtain:
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Proposition 6.4 If n=1p or p =2, Theorem 6.1 and Corollary 6.3 hold true for the whole classes of maps
in Wé/p(?(,y) or in WY/P(X,)).

PROOF: Assume u € W;/p(x,y) and let {ur} C Rl/w(zc,y) converge strongly in WP to u, see
Remark 6.6. For s = 1,...,5, as in Proposition 5.3, we have that M(Ds(ui) — Ds(u)) — 0 as k — oo;
whence, if n = p, there ex1sts L ., € Ri(X) such that (5.1) holds and M(LS ) — 0 as k — oco. By

Uk, U Uk, U

applying Theorem 6.1 to each uy we find L¥ € R,,_,11(X) such that dLF = Py(uy) and
M(L) < C (Exyp(ur) + | Bxt(ur) 75 cnssy + E1/p(@) + | Ext(@)],cniy) -

Since & /p(ur) — &1/p(u) and ||Ext(uk)|\ip(cn+1) — || Ext(u )||Lp (cn+1y 88 k — o0, the assertion follows
by taking Ls := L , + LY for k large. Moreover, if p = 2, Hardt-Pitts’ theorem [28] yields (5.2),

Uk, U
whence Proposition 5.3 holds in any dimension n > 2, and we proceed as above. Finally, the extension of
Corollary 6.3 is proved in a similar way. O

PROOF OF THEOREM 6.1. The rest of this section is dedicated to the proof of Theorem 6.1. We shall
make use of arguments by Pakzad-Riviere [40], to which we refer for further details.
We first observe that by the hypotheses, all the homotopy groups m,_1(Y;yo) are canonically isomorphic,

and that there exists an isomorphism p, between H,_1(Y) and m,_1(Y). Since [11],...,[ys] generate the
spherical subgroup ’H;p_hl (¥), we infer that the equivalence classes I'y := py[vs] € mp—1(Y), for s =1,...,5,
generate the subgroup p, (H,” " () of mp_1().

According to Proposition 3.6, and following the notation from [40, Def. 2.7], for any given map wu €
p(X V), if B(u) € B = U o, where this time the o;’s are (n — p)-dimensional (and curvilinear)
non-overlapping polyhedra, we have

o
ZPS 9 5 ]P)s(u):zmi,s[[o—i]]eRn—p(X)a
i=1
for some integers m; s € Z. Moreover, we have
e(m ) - pp (3o mis 1)) = [, 0] = [y, 1y a0
s=1

for some given constant sign ¢(n,p) = £1, only depending on n and p.
We also recall from [40, Def. 2.8] that the current S, € Ry_y(X;7m,-1())) given by

S, = ; [o:] ® [u, o] (6.1)

describes the topological singularity of u. Notice that the induced homomorphism py. : R(X; Hp—1(Y)) —
R(X;mp—1(Y)) satisfies

Pp«((—1 ZIP’S ® ppls]
and we thus have R
Su=Y T.(u)®Ts,  Tu(u):=c(n,p) Ps(u). (6.2)
s=1

Remark 6.5 In the model case Y = SP~!, for u € Rl/p(X,Sp_l), we have
m
w) =Y mifo;] € Rup(X),
i=1
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with m; € Z, whereas the topological singularity is simply defined by

Sui=Y c(np)-mi[o],  clnp)-mi=[usg, ]r, @) €L (6-3)
i=1
We divide the rest of the proof in eight steps.
STEP 1: For p <1 < M + 1, where M := dim()), let Y'~! denote the (I — 1)-skeleton of some

finite (curvilinear) triangulation of ), so that Y™ = Y. For X = C>, WP, R‘lx/’p, or RT‘/’WP, where

p: X — V=1 is a smooth Wl/p—function, we shall denote
XX,V = {ue X(X,Y) |u(z) € Y= for H"-ae. z € X}.

Remark 6.6 If X = (), in this proof we shall identify Rf?p = R‘ﬁp o for some constant map ¢ : X — Y.
Similarly to Theorem 1.1, it is not difficult to show that for every p <1< M +1 the class R (X, Y71)

1/p.e
is dense in W;/p(z\,’, Y!=1) with respect to the strong W/P_topology.

l

x -

Let i' : Y'=1 < Y! denote the injection map from Y'~! into )'. Since the homomorphism i
mp—1 (V') — mp_1(V') induced by 4! is onto, we infer that m,_1(Y'~1) is finitely generated.
As a consequence, we may and do define the topological singularity of a map v = u!~! € R‘f?p(X Y

as the current SLt € Ry, (X;mp—1 (V7))

m
S€)71 = Z [[Uz]] Y [’U, O'i} ) [Ua Uz’} = [U|Za,5]ﬂ'p,1(3}l_1) .

i=1

Of course, S\~ agrees with S, from (6.1) in the case [ = M + 1, i.e., for maps u in R‘f‘;p(é\,’,y).

Finally, we shall denote by X. : Rp—p(X;mp—1(V'71)) = Ru—p(X;mp—1(Y)) the corresponding homo-
morphism induced by !, so that

m
%i(siil) :Zﬂaiﬂ®ii[vaai]v ii[vvgi] eﬂ-P—l(yl)'
i=1
STEP 2: Asin (4.3), for p <1 < M we denote by
Vi=U.00)

the e-neighborhood of ' in RY. Since the triangulation is finite, we can find £; > 0 and a Lipschitz
projection II; of yél onto V' satisfying the following properties:

1) HN(Hl—l(w)) =0 for every w € yl \ylfl;
ii) if y,y0 € VL, \ V', with y # yo, satisfy

y—yo _y—1h(y)
ly — ol di(y)

di(y) = [M(y) —yl, (6.4)
then IL(y) = IL;(yo) € VY
iii) setting for every yo € yél \ W

Ay(yo) = max{di(y) | y € V., \ V' satisfies (6.4)},

the function A; : ))él \ V! — R* is Lipschitz continuous, with Lipschitz constant Lip(4;) < ¢ Lip(Il;),
and Ay(yo) = di(yo) if yo € OVL,.
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STEP 3: For p <1< M, let
U= {(z,y) € B x B' |z # y}

and p; : U x U — OB! be such that p;(z,y) is the unique point on the boundary dB' which is on the ray
from z to y, see [40, Def. 2.9]. We recall that for every 0 < § < 1 we have

/ IDypi( yo)|P de < C(L,p,8) < 00 Vo € B, (6.5)
B1(0,1-5)

where the constant C(I,p,d) does not depend on yp.

As in [40, Sec. 4], write V' = L, N}, where & : B! — N! := ¢(B!) are diffeomorphisms and
each two different Nil’s either are pairwise disjoint or intersect on a lower dimensional face in Y'~'. For
w = (wy,...,wy ), where w; € NP\ Y= for every i =1,...,s;, let pl, : Y\ {wy,..., w5} — V=1 be the
map

W) { (el )67 ) i ye NNV =1,

Y otherwise .

Similarly to [40, Lemma 4.1], we obtain:
i) p!, is well defined and locally Lipschitz;
ii) for every (p — 1)-cycle C in V!, with support spt C C V' \ {wy,...,ws,}, we have

([P (O)my -y 91-1)) = [Clry o 5 (6.6)

iii) setting N!_:=¢/(B'(0,1—¢)) and N!:=Nj_x---x N

51,7

for every 0 < e <1 and y € Y we have
[ 1D @l ant @) < Cpt,e) < o (6.7)
Nt
STEP 4: For p <1 < M, using the projection map II; from Step 2, we extend p!, to the map
s1
Py VAN U (w) — RY
i=1

defined for every y € dom(PL)\ V' by

l L di(y) _ di(y) l
A= g+ (1- Gy o)

Since |D[p, (I;(y)]| < C (LipIL;)| Dpl,(I1;(y))| and |Dd;(y)| < C (LipIl;), whereas A, is Lipschitz contin-
uous, it turns out that P. is locally Lipschitz, too. Moreover, since P.(y) =y for y € Y., we may and

do extend P! to a locally Lipschitz map equal to the identity on RV \int(;))él).
By using (6.7), we similarly obtain that for every y € RY and for ¢ > 0 small

[ IDPLGP dr ) < 5 C.22,9) < o, (6.9
N

€

where the constant C(p,e,¢;,)) > 0 does not depend on y € RV,
In fact, as in [40, Lemma 3.1], if y € Hfl(NEl/z) we infer that (6.8) follows from the smoothness of P!,
the definition of p!, and (6.5). If y € RV \H;l(NEl/Z), then (6.8) follows from the fact that |DP.(y)| < K

for every w € N!, where K > 0 is an absolute constant.
Now, for every v € WYP(X,)!), where | > p, we denote by V the extension V := Ext(v) €
whrp(cntl RY), where C"H! := X x [0,1]. By (6.8) and Fubini’s theorem we have

[ D@ ai @ i w) < g Creay) [ v ae,

Nl cn+1 cn+1
€
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Since by the definition T(P!, o V) = p, ov, this yields that P, oV belongs to W1 ?(C"*1 RY), whence
pl, ov belongs to W/P(X, Y'=1) for H'i-a.e. w € N!. Moreover, we find a positive H'*'-measurable set
W C N!, with positive measure

2
(W) 2 2 H (N, (6.9)
such that for every w € W

O(p)8’8l7y)

l l
gl/P(pwov) SDP(F)wOVv) S Hlsl(NEl)

where & /p,(v) := Dy(V).
Finally, by the definition of P!, and by the compactness of ), for any such w we also have
|PLoV(z)| <C-|V(2)]  for H"Mae. z€C™M, (6.11)

where C = C(l,Y) > 0 is an absolute constant.
STEP 5: Let p <1 < M + 1, and recall, Theorem 1.1 and Remark 6.6, that the class R, (X, Y'71) is

1/pyp
dense in W;/p(é\f, Vi1, for every smooth W/P-function ¢ : X — Y'=1. Similarly to [40, Sec. 2.2], we now
show that a suitable subclass of radial maps in RY;,  is dense in W&,/ P,

To this purpose, since we use a local argument, and X is compact, taking a local coordinate chart we may

and do assume that X = Q™ :=[0,1]", and v € jow(gmyl*l). We then find a compact set B C int(Q™)

of the type B = U!_,0;, where the o;’s are non-overlapping (n — p)-dimensional polyhedra, such that the
singular set X(v) C B, see (1.6), and any two different faces of B intersect only on their boundaries. We set
VO ol ol — oy, and m: V% — B as in [40, Sec. 2.2], and we define vs : Q" — Y!=! by

v T it =z g
vs(2) :_{ ’UEZ();( ) ofthervfiSZ, (6.12)

where hs(z) € OV° is the unique point on the ray from 7(z) to . Notice that the §-neighborhood V?° is
contained in int(Q™), provided that ¢ > 0 is sufficiently small. Also, for X = Q™ we let

(V) 1= {us [0 € RY, (X, Y1)

denote the subclass of radial maps in Ri’?pﬁa. Similarly as for [40, eq. (2.3)], we observe that for 6; > 0
sufficiently small, there is some constant K, depending only on B, for which

K
/ IDExto)P dH" < = | D(Ext v)[P dH",
VXTI 01 Jysixr (6.13)
ID(Extog)|? dH™ < 6K | D(Ext )| dH"
VéxI oVIixI

for ¢ € Iy, a positive measure subset of [0, d;].
Since X is compact, repeating the argument for a finite cover of local charts of X, we obtain that (6.13)

holds true for every v € Rcﬁwp(){', Y!=1), where this time V? is a suitable ”d-neighborhood” of a compact

set B C int(X) that contains the singular set X(v) of v and is given by a finite union of non-overlapping
(n — p)-dimensional curvilinear polyhedra. By using Theorem 1.1 and Remark 6.6, property (6.13) yields

that also R‘fjpﬁ(p(é\,’,yl_l) is dense in Wé/p(X,yl_l).

STEP 6: Similarly to [40, Lemma 4.2], to which we refer for further details, we now prove:

Lemma 6.7 Let p <1l < M and ul e jop_wl(x,yl) for some smooth Wl/p—map <pl : X = VL. Then there
exists a map u'~': X — Y1, a smooth WYP-map o'~ : X — Y1, and a constant C > 0, independent

of ut and ¢, such that:

(a) u'™t € RS, i (X, V1)

(b) &1/p(0'1) S C - E1yp(vh) for both v =u and v = ¢;
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() [|Bxt(v' )| poentrpry < C - || Ext(v))||po(cnir gay for both v=u and v=p;

(d) according to Step 1, we have XL(S'71,) = St,.

ul—1

ProOF: Let U' := Ext(u!) € WhP(C"1 RY). Using (6.10) and (6.13), with v := u!, as in [40, eq. (4.7)]
we fix €1,€92,63 > 0 and 0 < § < d; such that

C(p7€7€l7y)

2 l n+1 l n+1
His (NT) <K / | DU P dH"™ +6K52+61>+53§ / |DUYP dH™ . (6.14)

Vo1 xI cntl

Moreover, since u! € R‘fjp(é\f'7yl), for Hl*-a.e. w = (wy,...,ws) € W, where W = W(u) C N! is the
positive measure subset constructed in Step 4, see (6.9), we obtain that ulil(wi) N (X \ V?) is a finite
mass smooth submanifold of X\ V? of dimension n — [, with smooth boundary contained in 9V?°, for every
1=1,...,s;. For any such w, and for £ > 0, we then find a Lipschitz diffeomorphism f., of X such that f./

is the identity outside a small neighborhood of i~ ul_l(wi)7 and we have:
) £ (V) = VO, fu(0VF) = 0V,
i) (ulo fo)"H(w;) N (X \ V?) is a polyhedral (n — [)-chain of &\ V?;
i) (ulo fo)~'(w;) N (OV?) is a polyhedral (n — I — 1)-chain of 9V?;

iv) / |D(Ul o (forvaldy)) — DU'P aH™ < ¢/,
cnt1

V) / ID(U' o (f b Idy)) — DU dH™ < &',
OVIixI

Setting ¢’ := min{e;, 2} and v' = (u! o fr)s, see (6.12), we infer that v' has the same topological
singularity as u! on components of B. Moreover, setting V! := Ext(v'), by iv) and v) above, and by (6.13),
as in [40, eq. (4.9)] we obtain

|DVl\de"+1 < / ‘DUl|p dHn—H + (KQ / |DUl|p dHn—i-l + 5[(52 + 5‘1) (615)

Ccn+1 cn+1 V51 xT

whereas by (6.10) we have

C(p,e,e,))
D(P. o VY|Parntt < 0207 / DV!P dH™ L. 6.16
/C"+1 ‘ ( w © )| = HZSZ(NEZ) o | ‘ ( )
Since T (P!, o V') = pl, oo, from the above we infer that v!~! := p! ov! belongs to W/P(x,Y!1), and

is locally Lipschitz away from
st

Yt = U(ul o for)5 Hw;) UB.
i=1
We now essentially repeat the previous construction with ' instead of u!. By using (6.9), with W =
W (v) C N! corresponding to both v = u! and v = ¢!, we may and do choose

we W)nw(e'),

so that actually v'~' belongs to W;l/ﬂ(.)(,ylfl), where ¢!~ : X — Y71 is smooth.
Also, by the construction we may and do find a map u'~! € ’R‘f?p WH(X,yH) that has the same
topological singularity as v'~!, i.e., Si;—ll = Si;_ll, and a Sobolev function U!=' € Wtr(C"*t! RN) such

that T(U'"1) = u!~! and
/ |DU'™ — D(PL o VY|P dH™ ™ < 3.
Ccn+1

24



Using (6.14), (6.15), and (6.16), we finally get:

O(p7€7€lay)

- -

+ 1) D,(U"),
where D, (U') =: & /,(u'), and we similarly obtain that

Ep(@™h) < CE (0.

The above yields the proof of (a) and (b), whereas property (c) follows from (6.11) and from the compact-

ness of X. Finally, property (d) is a direct consequence of (6.6) and of the construction of u'~!, compare

Steps 1 and 2. O

STEP 7: Since m,_1(YP~1) is finitely generated, we let {g,}7_, be a set of its generators. As in [40,
Lemma 4.3], but this time using Propositions 5.5 and 5.7, we now prove:

Lemma 6.8 Let ¢ : X — Y*~1 be a smooth WYP-map and v € Rl/pw()( YP=1). Then there erists a

current L € R, pt1 (X5 o1 (VP71), say L = Zg 1L ®9s, where Ly € Ry _ p—1(X), such that OL = Sp1
and for every s

M(L,) < C (E1p(v) + | EXt(0)I[7, ensr gry + E1/p(8) + I EXC), i gy

where the absolute constant C > 0 does not depend on v and 1p. Moreover, if 0X =0 and v € Rl/p(X, yr-h
we have

M(L.) < € (€1/p(0) + I Ext(0) 2, nir zov) -

PrOOF: For s =1,...,0, let ay:m_1(Y*') — Z be such that for every homotopy class a € m,_1(Y*~!)

we have a = 25:1 as(a) gs . Moreover, for every s we can find a smooth map p, : Y?~! — SP~! such that
for any (p — 1)-cycle C' in YP~1

[ps(c)]ﬂ'p—l(sp_l) = aS([C]wpfﬂy"_l)) . (617)
Now, psowv belongs to Rl/ e (X,SP1) for every v € Rl/w(x,y”—l), where 9, 1= pso1: X — SP~1

is a smooth W'/P-map. Moreover, the one-to-one group homomorphisms k* : Z — wp_l(ypfl) defined by
k*(n) :=ngs satisfy

Zkzs(as(a)):a Vaem_ ("),
By (6.17), this gives that

Z ki(spsov) = Sg_l )

s=1

where for any map u € R7Y (X,SP~1) satisfying (6.3) we have set

H K

kS(Su) =Y [oi] @k (c(n,p) - mi) = c(n,p) Y _mi[oi] @ gs.

=1 i=1

By applying Proposition 5.7 to ps o v, for every s we find Ly € Ry_p41(X) such that 0L, = P(ps o v)
and
M(Ls) < C (E1/p(ps 0v) + | Ext(ps 0 V)75 ensry + E1/p(¥s) + 1 Ext(vs) [0 ntr)) -

Since S,.00 = ¢(n,p) P(ps 0 v), see Remark 6.5, setting Ly := ¢(n,p) Ly , the current

Z = Z ki(zb) = Zzs ®gs € Rn—p-i-l(X; Wp—l(yp_l))
s=1
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satisfies B ~
. S . S
OL =Y ki(0Ls) = ki(Sp.on) =Sh~".
s=1 s=1
The last assertion is similarly obtained by using Proposition 5.5. O

STEP 8: We finally prove the assertion.
As in [40, Prop. 4.1], using Lemma 6.7 iteratively, with [ =p,..., M := dim()), we find a map uP~! €

R‘fjp 4p,,,l(./'\,’,y"_l) and a smooth W'/P-function ©P~': X — YP~! such that for both v = v and v = ¢

we have
E1yp(P ™) < Créyp(v) and || Ext(vP )| oenir mry < Cr | Ext(v)| Loensi gy s (6.18)
where C7 > 0 is an absolute constant. Also, property (d) in Lemma 6.7 yields
X(S55) =S,

where Yu : Ry—p(X;mp—1(IP 1)) — Ry p(X;mp—1(Y)) denotes the homomorphism induced by the injection
map i: Pl ).

Applying Lemma 6.8 to v = uP~!, with ¢ = ¢P~L, we find a current L = Zle L, ® g., where
Ly € Roy_p_1(X), ie., L € Ry_pi1(X;mp_1(YP 1)), such that OL = Sip__ll. Setting L := X.(L) €
Rp—p+1(X;mp—1(Y), we have

B
L=) L, ®igr, OL=x.(0L)=x.(S""1)=8,.
r=1
Moreover, it turns out that each 4,g, belongs to Py (H;’l hl ())). We thus can find some integers {\"}3_, C Z
such that

Gagr=» NIy  Vr=1,...8,
s=1

whence

B
Li@Ty, Ly=Y ML,.

1 r=1

M-

L =

S

On account of the notation from (6.2), property 0L = S,, means that
OL, = Ty(u) Vs=1,...,5.
Therefore, the currents L := ¢(n,p) fs satisfy the assertion, as the mass estimates follow from Lemma 6.8
and from (6.18). O
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