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Abstract. We deal with mappings defined between Riemannian manifolds that belong to a trace space of Sobolev

functions. The homological singularities of any such map are represented by a current defined in terms of the boundary

of its graph. Under suitable topological assumptions on the domain and target manifolds, we show that the non triviality

of the singular current is the only obstruction to the strong density of smooth maps. Moreover, we obtain an upper

bound for the minimal integral connection of the singular current that depends on the fractional norm of the mapping.

1 Introduction

In the last years there has been a growing interest in studying the fractional Sobolev classes of mappings
defined between manifolds. In this framework, [6, 9, 10, 11, 12, 13, 35] deal with properties of general
fractional spaces. As to trace spaces, we address to [5, 27, 32] for the so called extension problem, to [8, 25]
for the analysis of the minimal connections of the singularities, and to [7, 8] for the lifting problem. Moreover,
we refer to [4, 8, 15, 21, 19, 22, 23, 34, 36, 38, 41] for questions about density of smooth maps, relaxed energies
and related variational problems. Finally, topological compactness theorems are presented in [33, 39].

In this paper, we let X and Y be two smooth, connected, compact, oriented Riemannian manifolds
that are isometrically embedded into Rl and RN , respectively. We shall equip X and Y with the metric
induced by the Euclidean norms on the ambient spaces, and we let n := dimX . We shall also assume that
the target manifold Y is without boundary, the model case being Y = Sp−1, the unit (p− 1)-sphere in Rp.
The domain manifold X may have a (possibly empty) smooth boundary ∂X , a manifold of dimension n−1,
the model cases being X = Bn, the unit n-ball, or X = Sn, the unit n-sphere.

For the sake of simplicity, in the sequel we shall always denote

W 1/p := W 1−1/p,p, p > 1 ,

and we recall, see e.g. [1], that for any real exponent p > 1 the fractional Sobolev space W 1/p(X ) is the
Banach space of real valued functions u in Lp(X ) which have finite W 1/p-seminorm

|u|p1/p,X :=
∫

X

∫

X

|u(x)− u(y)|p
|x− y|n+p−1

dHn(x) dHn(y) < ∞ ,

where Hk is the k-dimensional Hausdorff measure, endowed with the norm

‖u‖p
1/p,X := ‖u‖p

Lp(X ) + |u|p1/p,X . (1.1)

W 1/p(X ,RN ) is the space of vector valued maps u = (u1, . . . , uN ) such that uj ∈ W 1/p(X ) for every
j = 1, . . . , N . If X = ∂M for some smooth manifold M, e.g., X = Sn, then W 1/p(∂M,RN ) can be
characterized as the space of functions u that are traces on ∂M of functions U in the Sobolev space
W 1,p(M,RN ). More generally, since X ⊂ Rl, denoting by Cn+1 the (n + 1)-dimensional ”cylinder”

Cn+1 := X × I ⊂ Rl × R , I := [0, 1] ,

W 1/p(X ,RN ) can be seen as the space of functions u that are traces on X × {0} of functions U in the
Sobolev space W 1,p(Cn+1,RN ). Since Y ⊂ RN , we also let

W 1/p(X ,Y) := {u ∈ W 1/p(X ,RN ) | u(x) ∈ Y for Hn-a.e. x ∈ X} .
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The extension problem. The non-trivial topology of the domain and target manifolds plays a
role is the so called extension problem. It is well-known that the class of functions u : X → Y that are
traces on X × {0} of Sobolev maps in W 1,1(Cn+1,RN ) agrees with the class L1(X ,Y). Moreover, by
Gagliardo’s theorem [18] it turns out that each map u ∈ L1(X ,Y) is the trace on X × {0} of a Sobolev
map U ∈ W 1,1(Cn+1,Y). For this reason we shall restrict to the case of exponents p > 1. However, for e.g.
X = ∂M, setting

T 1/p(∂M,Y) := {u ∈ W 1/p(∂M,Y) | u = U|∂M for some U ∈ W 1,p(M,Y)} ,

in general the strict inclusion T 1/p(∂M,Y) (W 1/p(∂M,Y) holds, for p > 1.
This is related to the so called extension property: we say that property P(M,Y) holds if every continuous

map u : ∂M→ Y admits a continuous extension U : M→ Y. In fact, extending results by Hardt-Lin [27],
Bethuel-Demengel [5] showed that for p ≥ n + 1 = dim(M)

T 1/p(∂M,Y) = W 1/p(∂M,Y) ⇐⇒ P(M,Y) holds .

Moreover, in the case 1 < p < n + 1, the above equality holds provided that Y is (p− 1)-connected, where

p := [p] the integer part of p .

More precisely, denoting by πk(Y) the k-dimensional free homotopy group of Y, they showed that if πk(Y) =
0 for every k = 0, . . . , p − 1, then T 1/p(∂M,Y) = W 1/p(∂M,Y). Moreover, if πk(Y) 6= 0 for some
k = 0, . . . , p − 1, and 1 < p < n + 1, they also showed the existence of a manifold M of dimension n + 1
for which the strict inclusion T 1/p(∂M,Y) ( W 1/p(∂M,Y) holds.

We remark that it is a difficult task to solve the extension problem P(M,Y), see e.g. [31]. Of course,
for M = Bn+1 we have that P(Bn+1,Y) holds if and only if πn(Y) is trivial. We also address to [32] for
the analysis of the topological obstructions to the above mentioned extension problem.

The E1/p-energy. In the sequel, instead of working with the W 1/p-norm (1.1), we shall work with the
equivalent energy E1/p(u) defined as follows. We define

Ext(u) ∈ W 1,p(Cn+1,RN ) ,

the extension of a map u in W 1/p(X ,Y), as the Hölder continuous function which minimizes the p-energy
integral

Dp(U) :=
1

pp/2

∫

Cn+1
|DU(x, t)|p dHn+1(x, t)

among all functions U ∈ W 1,p(Cn+1,RN ) that agree with u on X × {0}.
We also set

E1/p(u) := Dp(Ext(u)) ,

so that clearly E1/p(u) ' ||u||1/p,X . More precisely, by uniform convexity, and since Y is compact, it is
readily checked that for maps in W 1/p(X ,Y) the strong convergence uk → u in W 1/p is equivalent to the
a.e. convergence plus the convergence of the energies E1/p(uk) → E1/p(u).

Minimal connections. Let Ω be an open subset of Rn and Sp−1 be the unit (p−1)-sphere in Rp, so
that W 1/p(Ω, Sp−1) agrees with the subclass of vector valued maps u ∈ Lp(Ω,Rp) such that |u(x)| = 1 for
Ln-a.e. x ∈ Ω and each component uj is the trace on Ω×{0} of some Sobolev map U j ∈ W 1,p(Ω× [0, 1]).

For n ≥ p ≥ 2 integers, Hang-Lin [25] defined the singularities of a map u ∈ W 1/p(Ω,Sp−1) by the
(n− p)-dimensional current Ju in Dn−p(Ω) acting on compactly supported smooth (n− p)-forms in Ω as

Ju(φ) :=
1
|Bp|

∫

Ω×[0,1]

dφ̃ ∧ U#(dy1 ∧ · · · ∧ dyp) , φ ∈ Dn−p(Ω) . (1.2)

Here |Bp| is the measure of the unit p-ball, U := Ext(u) ∈ W 1,p(Ω × [0, 1],Rp), and dφ̃ denotes the
differential of any smooth (n− p)-form φ̃ in Ω× [0, 1[ that extends φ, i.e., such that φ̃|Ω = φ.
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They showed that the minimal integral connection of the singularities of u is bounded in terms of the
W 1/p-seminorm of u. More precisely, they proved that for every u ∈ W 1/p(Ω,Sp−1) there exists an integer
multiplicity (say i.m.) rectifiable current L ∈ Rn−p+1(Ω× [0, 1]) such that

(∂L) (Ω× [0, 1[) = Ju and M(L) ≤ c |u|1/p,Ω , (1.3)

where c = c(n, p) > 0 is an absolute constant.
As to the minimal integral connections of the singularities of W 1/2-maps with values into the unit circle

S1, we also refer to [8].

Density properties. Another relevant question recently studied has been to determine whether
smooth maps from X to Y are sequentially dense in W 1/p(X ,Y) with respect to the W 1/p-norm. Denoting

H
1/p
S (X ,Y) := {u ∈ W 1/p(X ,Y) | there exists {uk} ⊂ C∞(X ,Y)

such that uk → u strongly in W 1/p} ,
(1.4)

it is well-known, see [4, 8], that

H
1/p
S (X ,Y) = W 1/p(X ,Y) if p ≥ n + 1 . (1.5)

On the other hand, in case of higher dimension n > p− 1, in general the strict inclusion

H
1/p
S (X ,Y) (W 1/p(X ,Y)

holds. More precisely, Bethuel [4] noticed that if πp−1(Y) 6= 0, and n + 1 > p > 1, even for X = Bn or
X = Sn there exist functions u ∈ W 1/p(X ,Y) which cannot be approximated in W 1/p by sequences of
smooth maps in W 1/p(X ,Y).

In order to obtain a suitable dense class of ”smooth” maps, in the case n+1 > p > 1, i.e., n ≥ p, Bethuel
introduced in [4] the classes R∞1/p(X ,Y) and R0

1/p(X ,Y). They are given by all the maps u ∈ W 1/p(X ,Y)
which are smooth, respectively continuous, except on a singular set Σ(u) of the type

Σ(u) =
r⋃

i=1

Σi , r ∈ N , (1.6)

where Σi is a smooth (n − p)-dimensional subset of X with smooth boundary, if n ≥ p + 1, and Σi is a
point if n = p. The following density property holds true:

Theorem 1.1 For every 1 < p < n + 1, where n = dim(X ), the class R∞1/p(X ,Y) is sequentially dense in
W 1/p(X ,Y).

In the case n = p = 2, Theorem 1.1 was proved in [41], compare also [8], for X = S2 and with Y = S1,
the standard unit circle. For p = 2, it was extended in [22] to the case X = Bn or Sn, in higher dimension
n ≥ 2 and for general target manifolds Y, see also [24]. A complete proof in the general case is given in
[38]. Moreover, in [38] we also proved:

Proposition 1.2 If n ≤ p < n+1, and p > 1, then H
1/p
S (X ,Y) = W 1/p(X ,Y) if and only if πn−1(Y) = 0.

In case of higher dimension n > p, i.e., n ≥ p + 1, following observations by Hang-Lin [26], we showed
in [38] that the possibly non-trivial topology of the domain manifold X plays a role. To this purpose, we
recall that X is said to satisfy the k-extension property with respect to Y, where k ∈ N, if for any given
CW-complex X on X , denoting by Xk its k-dimensional skeleton, any continuous map f : Xk+1 → Y is
such that its restriction to Xk can be extended to a continuous map from X into Y. In [38] we obtained
the following characterization, that we state here for the case ∂X = ∅.
Theorem 1.3 If n > p > 1, smooth maps in C∞(X ,Y) are sequentially dense in W 1/p(X ,Y), i.e.,
H

1/p
S (X ,Y) = W 1/p(X ,Y), if and only if πp−1(Y) = 0 and X satisfies the (p− 1)-extension property with

respect to Y.
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As a consequence of Theorem 1.3 we also have:

Corollary 1.4 If n > p > 1 and πk(Y) = 0 for every integer k = p − 1, . . . , n − 1, then H
1/p
S (X ,Y) =

W 1/p(X ,Y).

Corollary 1.5 Let n > p ≥ 2 and k = 1, . . . , p − 1 integer. If πi(X ) = 0 for every i = 0, . . . , k − 1 and
πj(Y) = 0 for every j = k, . . . , p− 1, then H

1/p
S (X ,Y) = W 1/p(X ,Y).

In particular, in the model case X = Sn we have:

Corollary 1.6 If n + 1 > p > 1, smooth maps in C∞(Sn,Y) are sequentially dense in W 1/p, i.e.,
H

1/p
S (Sn,Y) = W 1/p(Sn,Y), if and only if πp−1(Y) = 0.

Assume now that 1 < p < 2. According to Proposition 1.2 and Theorem 1.3, since Y is connected, we
have that π0(Y) = 0 and that X trivially satisfies the 0-extension property with respect to Y. Therefore,
we immediately obtain:

Corollary 1.7 Let X and Y be two smooth, connected, compact, oriented Riemannian manifolds, with
n := dim(X ) ≥ 1 and Y without boundary. Then for every 1 < p < 2 we have

H
1/p
S (X ,Y) = W 1/p(X ,Y) .

Finally, if the manifold X has a non-zero boundary, analogous density results can be obtained for maps
in W 1/p(X ,Y) with prescribed boundary data, see Remark 6.6 below.

Plan of the paper. On account of Corollary 1.7, in this paper we shall assume that p ≥ 2.
In Sec. 2, using some background from Geometric Measure Theory [16, 42], and from the theory of

Cartesian currents by Giaquinta-Modica-Souček [20, 21], we shall introduce the class of n-currents Gu in
X ×Y carried by the graph of a function u ∈ W 1/p(X ,Y), Definition 2.2. They are actually ”semi-currents”,
i.e., linear functionals acting on compactly supported smooth n-forms ω = ω(x, y) in X × Y that contain
at most p− 1 differentials in the ”vertical” y-directions.

In Sec. 3, we shall then introduce the current P(u) that describes the homological singularities of u; it
will be defined in terms of the boundary ∂Gu of the current Gu. Of course, due to the density property
(1.5), we shall restrict our analysis to the higher dimension n > p− 1, i.e., n ≥ p := [p] ≥ 2.

Denoting by Hsph
p−1(Y) the spherical subgroup of the singular homology group Hp−1(Y), see (3.10), we

shall always assume that both Hp−1(Y) and the quotient space Hp−1(Y)/Hsph
p−1(Y) are torsion-free, compare

[20, Vol. II, Sec. 5.4.2]. We shall define the homological singularities P(u) of a map u ∈ W 1/p(X ,Y) as
a homology map in Dn−p(X ;Hp−1(Y;R)), i.e., an (n − p)-current on X with values in the real homology
group Hp−1(Y;R), see (3.1) and (3.2). In the model case X = Ω ⊂ Rn open, and Y = Sp−1, our definition
of homological singularities agrees with the one given by Hang-Lin [25], see (1.2).

Sec. 4 is then dedicated to the subclass of maps u ∈ W 1/p(X ,Y) satisfying the condition P(u) = 0. This
condition is equivalent to requiring that the graph of u has no ”holes”, i.e., that the boundary current ∂Gu

is zero when tested on a suitable subclass of compactly supported (n− 1)-forms in X ×Y . We are therefore
led introduce the class of Cartesian maps in W 1/p(X ,Y)

cart1/p (X ,Y) := {u ∈ W 1/p(X ,Y) | P(u) = 0} .

We shall first show, Theorem 4.2, that any map u ∈ W 1/p(X ,Y) with no homological singularities, i.e.,
such that P(u) = 0, can be strongly approximated by maps uk ∈ R0

1/p(X ,Y) satisfying the same condition
P(uk) = 0, compare Theorem 1.1.

Trivially P(u) = 0 if u is smooth. Moreover, the strong convergence uk → u in W 1/p implies the weak
convergence Guk

⇀ Gu as currents, which preserves the condition P(uk) = 0, see Remark 2.4 below. On
account of (1.4), this clearly yields

H
1/p
S (X ,Y) ⊂ cart1/p (X ,Y) . (1.7)
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Of course, the possible occurrence of the equality in (1.7) is due to the fact that the current P(u), i.e.,
the homological singularities describe all the obstructions to the density of smooth maps. We recall that the
first result in this direction was obtained by Bethuel [3] for the class of Sobolev maps W 1,2(B3,S2).

In fact, Theorem 4.3, under suitable topological hypotheses on X and Y we shall obtain in any dimension
n ≥ p := [p] ≥ 2 that

H
1/p
S (X ,Y) = cart1/p (X ,Y) .

More precisely, since we use arguments from Theorem 1.3, in Theorem 4.3 we shall assume (in the case
of dimension n ≥ p+1) that X satisfies the (p−1)-extension property with respect to Y. Moreover, in the
case p ≥ 3, we shall assume that for any base point y0 ∈ Y the Hurewicz homomorphism from the (p− 1)th

homotopy group πp−1(Y; y0) onto the (p−1)th real homology group Hp−1(Y;R) is injective. Alternatively,
in the case p = 2 we shall also assume that the first homotopy group π1(Y) is commutative.

Notice that if the injectivity hypothesis on the Hurewicz maps fails to hold (or if π1(Y) is not commu-
tative, for p = 2), even in the case X = Bp, there exist functions u in cart1/p(Bp,Y), where p := [p] ≥ 2,
smooth outside the origin, which cannot be approximated strongly in W 1/p by smooth maps uk : Bp → Y,
i.e., such that u /∈ H

1/p
S (Bp,Y), whence the strict inclusion holds in (1.7), see Example 4.4. Such maps

have a topological singularity at the origin that cannot be seen by the homology, and similar examples with
topological singularities of codimension p can be obtained for any n ≥ p + 1. We address to [29, 30] for
recent results in the analysis of the topological singular set of Sobolev maps.

In Sec. 5, we shall first recall the notion of real and integral mass, collecting some general facts about
the connections of the homological singularities of maps in W 1/p(X ,Y). We then extend above mentioned
result by Hang-Lin [25] about the minimal connection of the singularities Ju of maps u in W 1/p(Ω, Sp−1).
More precisely, we will show, Proposition 5.5, that property (1.3) holds true for maps u ∈ W 1/p(X , Sp−1),
where X is a more general domain manifold of dimension n ≥ p. Moreover, the integral connection L in
(1.3) may be chosen with support in X , provided that the upper bound of its mass contains an extra term,
namely

M(L) ≤ c
(E1/p(u) + ‖Ext(u)‖p

Lp(Cn+1)

)
, (1.8)

where Ext(u) ∈ W 1,p(Cn+1,Rp) is the extension of u. Notice that

E1/p(uk) + ‖Ext(uk)‖p
Lp(Cn+1) → E1/p(u) + ‖Ext(u)‖p

Lp(Cn+1)

provided that uk → u strongly in W 1/p. In Example 5.9 below, we shall describe the geometric construction
of the minimal connection. Moreover, we shall also consider the case of maps with prescribed boundary data,
Proposition 5.7.

In Sec. 6, we shall then solve the same problem for more general target manifolds Y (the nontrivial case
being the one of dimension dim(Y) ≥ p− 1). Making use of some techniques from Pakzad-Rivière [40], we
shall see, Theorem 6.1, that the homological singularities of every map u in R∞1/p(X ,Y) can be closed by
an i.m. rectifiable (n− p + 1)-current L in X with mass satisfying a bound as in (1.8).

Finally, in dimension n = p, or n ≥ p = 2, we are able to extend Theorem 6.1 to the whole class of
functions u ∈ W 1/p(X ,Y), see Proposition 6.4. As we shall explain in Remark 5.4 below, it is a nontrivial
matter to extend Theorem 6.1 to functions u ∈ W 1/p(X ,Y), for general target manifolds Y, in the case
n ≥ p + 1, when p ≥ 3. However, in a forthcoming paper we will show that Theorem 6.1, in conjunction
with a strong density result, yields the boundedness of the relaxed energy of maps in W 1/p(X ,Y).

2 Graphs of maps with finite W1/p-energy

In this section we define the current Gu carried by the graph of a function u ∈ W 1/p(X ,Y). We let p ≥ 2
and denote p := [p]. Moreover, we shall assume n := dim(X ) ≥ p− 1.

If U ∈ W 1,p(Cn+1,RN ), and Hk is the k-dimensional Hausdorff measure in Cn+1, we denote by

Dp(U) :=
1

pp/2

∫

Cn+1
|DU(z)|p dHn+1(z) , z = (x, t)
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the p-energy of u. For maps u ∈ W 1/p(X ,RN ) and U ∈ W 1,p(Cn+1,RN ), we write T(U) = u if U = u on
X × {0}. Also, for u ∈ W 1/p(X ,RN )∩L∞, we shall denote by Ext(u) a function in W 1,p(Cn+1,RN )∩L∞

that minimizes the p-energy Dp(U) among all Sobolev maps U ∈ W 1,p(Cn+1,RN )∩L∞ such that T(U) = u.
Notice that W 1/p(X ,Y) ⊂ W 1/p(X ,RN ) ∩ L∞, as Y ⊂ RN is compact.

Dk,r-currents. Recall that n = dimX and set M := dim(Y). Every compactly supported smooth
differential k-form ω ∈ Dk(X ×Y), where k ≤ n, splits as a sum ω =

∑k
j=0 ω(j), k := min(k,M), where the

ω(j)’s are the k-forms that contain exactly j differentials in the vertical Y variables. For fixed r = 1, . . . , k
we denote by Dk,r(X × Y) the subspace of Dk(X × Y) of k-forms of the type ω =

∑r
j=0 ω(j), and by

Dk,r(X × Y) the dual space of Dk,r(X × Y). Of course we have Dk,k = Dk, the space of all k-currents.
Moreover, a sequence {Tk} ⊂ Dk,r(X ×Y) is said to converges weakly in Dk,r, say Tk ⇀ T , if Tk(ω) → T (ω)
for every ω ∈ Dk,r(X ×Y). The class Dk,r(X ×Y) is closed under the weak convergence in Dk,r. A similar
notation holds by replacing X and Y with Cn+1 and RN , respectively.

Example 2.1 If U ∈ W 1,p(Cn+1,RN ), then GU is a well-defined (n + 1, p)-current in Dn+1,p(Cn+1 ×RN )
and, in an approximate sense, GU := (Id ./ U)#[[ Cn+1 ]], where (Id ./ U)(z) := (z, U(z)), compare [20]. If
e.g. ω = γ∧η ∈ Dn+1(Cn+1×RN ), where γ ∈ Dn+1−h(Cn+1), η ∈ Dh(RN ), and 0 ≤ h ≤ min{n+1,M, p},
we have

GU (γ ∧ η) = [[ Cn+1 ]]((Id ./ U)#(γ ∧ η)) = [[ Cn+1 ]](γ ∧ U#η) =
∫

Cn+1
γ ∧ U#η .

Setting moreover

‖GU‖ := sup{GU (ω) | ω ∈ Dn+1,p(Cn+1 × RN ), ‖ω‖ ≤ 1} ,

where ‖ω‖ is the comass norm of ω, by the parallelogram inequality we infer that

‖GU‖ ≤ C (Hn(X ) + Dp(U))

for some absolute constant C = C(n, p,X ) > 0, not depending on U .

Boundaries. The exterior differential of forms in X ×Y splits into a horizontal and a vertical differential,
d = dx + dy. Of course ∂xT (ω) := T (dxω) defines a horizontal boundary operator ∂x : Dk,r(X × Y) →
Dk−1,r(X×Y). However, the vertical differential dyω of any form ω ∈ Dk−1,r(X×Y) belongs to Dk,r(X×Y)
if and only if dyω(r) = 0. Therefore, for every T ∈ Dk,r(X ×Y) the vertical boundary operator ∂yT makes
sense only as an element of the dual space of Zk−1,r(X × Y), where

Zk,r(X × Y) := {ω ∈ Dk,r(X × Y) | dyω(r) = 0} .

For future use, we also set

Bk,r(X × Y) := {ω ∈ Dk,r(X × Y) | ∃ η ∈ Dk−1,r−1(X × Y) : ω(r) = dyη}
and

Hk,r(X × Y) :=
Zk,r(X × Y)
Bk,r(X × Y)

,

and recall, see e.g. [24, Prop. 4.23], that

Hk,r(X × Y) ' Dk−r(X )⊗Hr
dR(Y) , (2.1)

where Hr
dR(Y) is the r-th de Rham cohomology group.

Graphs of W 1/p-maps. Recall that p := [p] ≥ 2.

Definition 2.2 To any map u ∈ W 1/p(X ,RN )∩L∞ we associate an (n, p−1)-current Gu in Dn,p−1(X ×
RN ) by setting

Gu := (−1)n−1∂GU ((X × {0})× RN ) on Dn,p−1(X × RN ) , (2.2)

where U := Ext(u) ∈ W 1,p(Cn+1,RN ), see Example 2.1.
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In particular, if u ∈ W 1/p(X ,Y), by Federer’s support theorem [16], we infer that the current Gu in
Definition 2.2 belongs to Dn,p−1(X × Y).

In order to write more explicitly the formula (2.2), we first observe that by Stokes theorem, since U =
Ext(u) is ”smooth” in the interior of Cn+1, we have

∂GU int(Cn+1)× RN = 0 . (2.3)

Remark 2.3 Definition 2.2 does not depend on the choice of the Sobolev function U ∈ W 1,p(Cn+1,RN )
such that T(U) = u, provided that (2.3) holds true.

Let η : [0, 1] → [0, 1] be a given smooth decreasing map such that η(t) = 1 for t ∈ [0, 1/4] and η(t) = 0
for t ∈ [3/4, 1]. To every k-form ϕ ∈ Dk(X ) we will associate the smooth k-form ϕ̃ in Cn+1 defined by

ϕ̃ := ϕ ∧ η .

Therefore, if k + h = n and h ≤ p− 1, by (2.3) and Example 2.1 we infer that for every ω̂ ∈ Dh(RN )

(−1)n−1Gu(ϕ ∧ ω̂) = ∂GU (ϕ̃ ∧ ω̂) (2.4)

whereas (2.4) does not depend on the choice of the cut-off function η.
In particular, if u ∈ W 1/p(X ,Y), since Gu belongs to Dn,p−1(X × Y), denoting by i : Y ↪→ RN the

injection map, for every ϕ ∈ Dk(X ) and ω ∈ Dh(Y), with k and h as above, we have that

Gu(ϕ ∧ ω) = (−1)n−1∂GU (ϕ̃ ∧ ω̂) , (2.5)

where ω̂ is any h-form in Dh(RN ) such that i#ω̂ = ω.

Remark 2.4 In the case p = 2, Definition 2.2 is equivalent to the one from [21], that makes use of the
theory of distributions, see also [23]. If p ≥ 3, it is not clear if it may be given a definition of Gu in terms of
distributions, i.e., that does not depend on the use of the extension map Ext(u). However, if u ∈ W 1/p(X ,Y)
is smooth, then Gu agrees with the usual definition of current carried by the graph of u, i.e.,

Gu(ω) =
∫

X
(Id ./ u)#ω ∀ω ∈ Dn,p−1(X × Y) ,

where (Id ./ u)(x) := (x, u(x)). We also remark that in general Gu is not an i.m. rectifiable current in
X × Y, even for p = 2 and n = 1.

Finally, we observe that if {uk} ⊂ W 1/p(X ,Y) is a sequence that converges to u strongly in W 1/p, then
Uk := Ext(uk) converges to U := Ext(u) strongly in W 1,p(Cn+1,RN ). This yields that GUk

converges to
GU weakly in Dn+1,p(Cn+1 × RN ) and Guk

converges to Gu weakly in Dn,p−1(X × Y), by (2.2).

3 The homological singularities of W1/p-maps

In this section we define the current P(u) that describes the homological singularities of a map u in
W 1/p(X ,Y). We shall assume that n ≥ p := [p] ≥ 2.

The boundary of the graph of W 1/p-maps. Since the (p − 1)th homology group Hp−1(Y)
is torsion-free, we may and will denote by [γ1], . . . , [γs] a family of generators of Hp−1(Y). More precisely,
the γs’s are integral cycles (with finite mass) in Zp−1(Y), such that

Hp−1(Y) =
{ s∑

s=1

ns [γs] | ns ∈ Z
}

.

By using the de Rham duality between the (p − 1)th real homology group and the (p − 1)th cohomology
group Hp−1

dR (Y), we denote by [σ1], . . . , [σs] a dual basis in Hp−1
dR (Y), so that γs(σr) = δsr.

The following proposition collects the main properties of the current ∂Gu.
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Proposition 3.1 Let u ∈ W 1/p(X ,Y). Then for every form α ∈ Dn−1,p−2(X × Y) we have ∂Gu(α) = 0,
and ∂y∂Gu(α̃) = 0 for every form α̃ ∈ Dn−2,p−2(X × Y).

Proof: If U := Ext(u), by a standard density argument we infer that ∂GU = 0 on forms in Dn,p−1(Cn+1×
RN ), i.e., with at most p − 1 vertical differentials. Therefore, if α = ϕ ∧ ω, with ϕ ∈ Dk(X ), ω ∈ Dh(Y),
k + h = n− 1, and h ≤ p− 2, by (2.5) we have

∂Gu(α) = Gu(dϕ ∧ ω) + (−1)kGu(ϕ ∧ dω)
= (−1)n−1∂GU (dϕ ∧ η ∧ ω̂) + (−1)n−1+k∂GU (ϕ ∧ η ∧ dω̂) = 0 .

Moreover, if α̃ = ϕ ∧ ω as above, where this time k + h = n− 2 and h ≤ p− 2,

∂y∂Gu(α̃) = (−1)k∂Gu(ϕ ∧ dω) = (−1)kGu(dϕ ∧ dω)
= (−1)n−1+k∂GU (dϕ ∧ η ∧ dω̂) = 0 .

The assertion follows by linearity and density of forms ϕ ∧ ω. ¤

Similarly to [20, Vol. II, Sec. 5.4.2], see also [24, Sec. 4.2], by Proposition 3.1 we infer that ∂Gu = 0 on
Bn−1,p−1(X × Y), whence ∂Gu(ω) depends only on the cohomology class of ω ∈ Zn−1,p−1(X × Y). As a
consequence ∂Gu induces a functional (∂Gu)∗ on Hn−1,p−1(X × Y) given by

(∂Gu)∗(ω + Bn−1,p−1) := ∂Gu(ω + Bn−1,p−1) = ∂Gu(ω) , ω ∈ Zn−1,p−1 ,

and by (2.1) the homology map (∂Gu)∗ is uniquely represented as an element of Dn−p(X ;Hp−1(Y;R)). More
explicitly, let π : X ×RN → X and π̂ : X ×RN → RN denote the orthogonal projections onto the first and
second factor, respectively. If φ ∈ Dn−p(X ), we have [(∂Gu)∗(φ)] ∈ Hp−1(Y;R) and for s = 1, . . . , s

〈(∂Gu)∗(φ), [σs]〉 = ∂Gu(π#φ ∧ π̂#σs) ,

〈, 〉 denoting the de Rham duality between Hp−1(Y;R) and Hp−1
dR (Y). Notice that in general (∂Gu)∗ is

non-trivial.

The current P(u) of the homological singularities. Similarly to [23], we set

P(u) := (∂Gu)∗ ∈ Dn−p(X ;Hp−1(Y;R)) . (3.1)

For each σ ∈ [σ] ∈ Hp−1
dR (Y) we also define the current P(u;σ) ∈ Dn−p(X ) by

P(u;σ) := (−1)p (−1)(n−p)(p−1)π#((∂Gu) π̂#σ) ,

so that for any φ ∈ Dn−p(X )

P(u; σ)(φ) = (−1)p (−1)(n−p)(p−1)∂Gu(π̂#σ ∧ π#φ)
= (−1)p∂Gu(π#φ ∧ π̂#σ) .

(3.2)

Also, for every closed (p− 1)-form σ ∈ Zp−1(Y) we define the current D(u; σ) ∈ Dn−p+1(X ) by

D(u;σ) := (−1)p(n−p+1) π#(GU π̂#dσ̂) , U := Ext(u) ,

where σ̂ ∈ Dp−1(RN ) satisfies i#σ̂ = σ, so that for any γ ∈ Dn−p+1(X )

D(u;σ)(γ) = (−1)p(n−p+1) GU (π̂#dσ̂ ∧ π#γ̃) = GU (π#γ̃ ∧ π̂#dσ̂) . (3.3)

Proposition 3.2 For every u ∈ W 1/p(X ,Y) the following properties hold:

(i) for s = 1, . . . , s

P(u;σs)(φ) = (−1)p〈P(u)(φ), [σs]〉 ,
i.e., P(u; σs) does not depend on the representative in the cohomology class [σs];
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(ii) ∂ P(u) int(X ) = 0 and P(u) = (−1)p

s∑
s=1

P(u; σs) ⊗ [γs], hence it does not depend on the choice of

γs in [γs];

(iii) for each representative σ ∈ Zp−1(Y) in [σ] we have

∂ D(u; σ) = P(u; σ) on Dn−p(X ) . (3.4)

Proof: Properties (i) and (ii) are easily checked, compare e.g. [23]. Moreover, we observe that for every
σ ∈ Zp−1(Y) and φ ∈ Dn−p(X ), since dφ̃ is compactly supported in X × [0, 3/4], by (2.2), (2.3), and (2.5)
we have

∂GU (π#dφ̃ ∧ π̂#σ̂) = (−1)n−1Gu(π#(dxφ̃ + dtφ̃)|t=0 ∧ π̂#σ)
= (−1)n−1Gu(π#dφ ∧ π̂#σ) .

On account of (3.2) and (3.3), and since dπ̂#σ = π̂#dσ = 0, we then compute

P(u;σ)(φ) = (−1)pGu(dπ#φ ∧ π̂#σ) = (−1)pGu(π#dφ ∧ π̂#σ)
= (−1)n−p+1∂GU (π#dφ̃ ∧ π̂#σ̂) = GU (π#dφ̃ ∧ dπ̂#σ̂)
= GU (π#dφ̃ ∧ π̂#dσ̂) = D(u; σ)(dφ) = ∂ D(u; σ)(φ) ,

that yields (3.4). ¤

As a consequence of Proposition 3.2, we set

Ds(u) := D(u; σs) , Ps(u) := P(u; σs) (3.5)

for every s = 1, . . . , s, so that by (3.4) we have

Ps(u) = ∂ Ds(u) on Dn−p(X ) ∀ s . (3.6)

We finally notice that Ds(u) is a current of finite mass in Dn−p+1(X ), as U = Ext(u) is a W 1,p-function
and dσ̂s ∈ Dp(RN ), with p = [p], see Example 2.1.

The model case. Assume that Y = Sp−1, and let ωSp−1 denote the normalized volume (p− 1)-form

ωSp−1 :=
1
αp

p∑

j=1

(−1)j−1yj dy1 ∧ · · · ∧ dyj−1 ∧ dyj+1 ∧ · · · ∧ dyp , (3.7)

where αp := Hp−1(Sp−1), so that [[Sp−1 ]](ωSp−1) =
∫
Sp−1 ωSp−1 = 1.

Therefore, by (3.2), for every u ∈ W 1/p(X , Sp−1) the currents Ps(u) simply reduce to the current
P(u) ∈ Dn−p(X ) given by

P(u)(φ) := (−1)p ∂Gu(π#φ ∧ π̂#ωSp−1) , φ ∈ Dn−p(X ) ,

and Ds(u), by (3.3), to the current D(u) ∈ Dn−p+1(X ) given by

D(u)(γ) := GU (π#γ̃ ∧ π̂#dω̂Sp−1) , γ ∈ Dn−p+1(X ) , (3.8)

where U := Ext(u) ∈ W 1,p(Cn+1,Rp) takes values into B
p
.

We may and do choose ω̂Sp−1 ∈ Dp−1(Rp) in such a way that it agrees with the right-hand side of (3.7)
on the closure B

p
of the unit ball. Since αp = p |Bp|, this yields that

U# dω̂Sp−1 = U#ωBp , ωBp :=
1
|Bp| dy1 ∧ · · · ∧ dyp . (3.9)

As a consequence, since by (3.4) we have P(u)(φ) = D(u)(dφ), on account of (3.8) and of Example 2.1
we obtain that

P(u)(φ) =
1
|Bp|

∫

Cn+1
dφ̃ ∧ U#(dy1 ∧ · · · ∧ dyp) ∀φ ∈ Dn−p(X ) .

Therefore, if X = Ω for some open set Ω ⊂ Rn we conclude that for every u ∈ W 1/p(X , Sp−1) the current
P(u) agrees with the current Ju in (1.2) introduced by Hang-Lin [25].
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Remark 3.3 For general target manifolds Y, we similarly obtain that for every u ∈ W 1/p(X ,Y)

Ps(u)(φ) = Ds(u)(dφ) = GU (π#dφ̃ ∧ π̂#dσ̂s) =
∫

Cn+1
dφ̃ ∧ U#(dσ̂s)

for every φ ∈ Dn−p(X ) and s = 1, . . . , s.

Spherical cycles. We finally observe, Proposition 3.6, that the current P(u) carrying the singularities
of maps u ∈ R∞1/p(X ,Y) is an integral flat chain, and that it actually only depends on the spherical subgroup

Hsph
p−1(Y) of Hp−1(Y).

Definition 3.4 We say that an integral (p−1)-cycle C ∈ Zp−1(Y) is of spherical type if its homology class
contains a Lipschitz image of the (p − 1)-sphere Sp−1, i.e., if there exist a (p − 1)-cycle Z ∈ Zp−1(Y), an
i.m. rectifiable p-current R ∈ Rp(Y), and a Lipschitz function φ : Sp−1 → Y, such that

C − Z = ∂R and Z = φ#[[Sp−1 ]] .

Denoting then

Hsph
p−1(Y) := {[γ] ∈ Hp−1(Y) | ∃ φ ∈ Lip(Sp−1,Y) | φ#[[Sp−1 ]] ∈ [γ]} , (3.10)

since the quotient Hp−1(Y)/Hsph
p−1(Y) is assumed to be torsion-free, we may and do choose the γs’s in such

a way that [γ1], . . . , [γes] generate the spherical homology classes in Hsph
p−1(Y) for some s̃ ≤ s. Therefore,

the dual basis of spherical (p− 1)-forms in Hp−1
sph (Y) is given by [σ1], . . . , [σes].

Remark 3.5 In the case p = 2, clearly every integral 1-cycle in Z1(Y) is of S1-type.

Proposition 3.6 If n ≥ p := [p] and u ∈ R∞1/p(X ,Y) we have:

i) P(u; σ) is an (n − p)-dimensional i.m. rectifiable current for each σ ∈ [σ] ∈ Hp−1
sph (Y); moreover,

P(u; σ) = 0 if [σ] does not belong to Hp−1
sph (Y).

ii) P(u) is an i.m. rectifiable (n−p)-current in X with values in the subgroup Hsph
p−1(Y), i.e., P(u) belongs

to Rn−p(X ;Hsph
p−1(Y)), and

P(u) = (−1)p
es∑

s=1

Ps(u)⊗ [γs] , Ps(u) := P(u; σs) ∈ Rn−p(X ) .

iii) if n = p, then P(u) is a finite combination, with integer coefficients di,s ∈ Z, of Dirac measures at
points ai ∈ X ,

P(u) =
es∑

s=1

Is∑

i=1

di,sδai ⊗ [γs] .

Proof: On account of (3.2) and (3.4), the proof is obtained by an adaptation, with minor modifications, of
the one of [24, Thm. 4.32], see also [20, Vol. II, Sec. 5.4.2]. For this reason, we omit any further detail. ¤

4 Removing homologically trivial singularities

In this section we analyze the subclass of maps u ∈ W 1/p(X ,Y), for p ≥ 2, which have no homological
singularities, i.e., such that P(u) = 0. We first show, Theorem 4.2, that any W 1/p-map satisfying P(u) = 0
can be strongly approximated by maps uk ∈ R0

1/p(X ,Y) satisfying the same condition P(uk) = 0.
Under suitable hypotheses on the topology of X and Y, we then show, Theorem 4.3, that any W 1/p-map

satisfying P(u) = 0 can be strongly approximated by smooth maps in W 1/p(X ,Y). Moreover, we shall see
that the additional topological assumption turns out to be optimal, see Example 4.4.
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Cartesian maps. On account of the definitions from the previous sections, see also Proposition 3.1, it
is readily checked that a map u ∈ W 1/p(X ,Y) has zero homological singularities, i.e., satisfies P(u) = 0, if
and only if the current Gu associated to its graph has no inner boundary, i.e.,

∂Gu = 0 on Zn−1,p−1(X × Y) , p := [p] ≥ 2 . (4.1)

For this reason, we give the following

Definition 4.1 Let p ≥ 2. A map u : X → Y is said to be a Cartesian map in the class cart1/p(X ,Y) if
u belongs to W 1/p(X ,Y) and satisfies the null-boundary condition (4.1).

Trivially, condition P(u) = 0 holds true if u is smooth, say Lipschitz. Moreover, if Y has dimension
lower than p−1, we have Hp−1(Y) = 0 and hence trivially P(u) = 0, whence W 1/p(X ,Y) = cart1/p (X ,Y).
Therefore, in the sequel we shall tacitly assume that dim(Y) ≥ p−1 and that the homology group Hp−1(Y)
is non-trivial, so that in general P(u) 6= 0, i.e., the strict inclusion cart1/p (X ,Y) (W 1/p(X ,Y) holds.

Moreover, since the null-boundary condition (4.1) is preserved by the weak convergence in Dn,p−1, and
the strong convergence uk → u in W 1/p(X ,Y) yields the weak convergence Guk

⇀ Gu in Dn,p−1, see
Remark 2.4, according to (1.4) we immediately obtain that

H
1/p
S (X ,Y) ⊂ cart1/p (X ,Y) . (4.2)

The case of exponents p < 2. If 1 < p < 2, of course the definitions from Secs. 2 and 3 continue
to hold. However, for p := [p] = 1, the manifold Y being connected (the model case Y = Sp−1 cannot be
considered), we infer that H0(Y) ' Z and H0

dR(Y) ' Z. As a consequence, compare [24, Prop. 4.23], for
k = 0, . . . , n we have

Zk,0(X ,Y) = Dk(X ) , Bk,0(X ,Y) = {0}
and hence, by (2.1),

Hk,0(X × Y) ' Dk(X )⊗ Z .

In particular, according to (3.1) and (3.2), the homological singularities of a map u ∈ W 1/p(X ,Y) are
described by the current P(u) ∈ Dn−1(X ) given by

P(u)(ϕ) := −∂Gu(π#ϕ) , ϕ ∈ Dn−1(X ) .

Therefore, according to Definition 4.1, a map u ∈ W 1/p(X ,Y) belongs to the class cart1/p (X ,Y) if the
current Gu ∈ Dn,0(X × Y) satisfies

∂Gu(π#ϕ) = 0 ∀ϕ ∈ Dn−1(X ) .

However, by (2.3) and (2.5) we infer that

∂Gu(ϕ) = Gu(dϕ) = (−1)n−1∂GU (dϕ ∧ η) = 0 .

This yields that for every 1 < p < 2 the class W 1/p(X ,Y) agrees with the class of Cartesian maps
cart1/p (X ,Y), that is, every map u ∈ W 1/p(X ,Y) has no homological singularities :

∀u ∈ W 1/p(X ,Y) , 1 < p < 2 , we have P(u) = 0 .

Of course, this last property can be seen as a consequence of Corollary 1.7, on account of (4.2).

Density results in cart1/p. Assume now that p ≥ 2. Using arguments taken from the proof of
Theorem 1.1 from [38], we shall first prove the following

Theorem 4.2 For every Cartesian map u ∈ cart1/p (X ,Y) there exists a sequence of maps {uk} ⊂
R0

1/p(X ,Y) ∩ cart1/p (X ,Y) such that uk → u strongly in W 1/p.

We shall then prove that under suitable hypotheses on X and Y every map in cart1/p (X ,Y) can be
approximated by sequences of smooth maps in W 1/p. On account of (1.5), we shall assume n ≥ p ≥ 2.
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Theorem 4.3 Let p ≥ 2 and n ≥ p := [p]. In the case p ≥ 3, assume that for any base point y0 ∈ Y the
Hurewicz homomorphism from the (p − 1)th homotopy group πp−1(Y; y0) onto the (p − 1)th real homology
group Hp−1(Y;R) is injective. Alternatively, in the case p = 2, assume that the first homotopy group π1(Y)
is commutative. Moreover, if n ≥ p + 1, assume that X satisfies the (p− 1)-extension property with respect
to Y. Then

cart1/p (X ,Y) = H
1/p
S (X ,Y) .

Similarly to [23], we now see that even in the case X = Bn, and n = p, the injectivity hypothesis of the
Hurewicz maps, in the case p ≥ 3, or the commutativity hypothesis of the first homotopy group, in the case
p = 2, cannot be dropped from the statement of Theorem 4.3.

Example 4.4 Assume that the target manifold Y does not satisfy the injectivity hypothesis on the Hurewicz
maps (or that π1(Y) is not commutative, for p = 2). We claim that there exist functions u in cart1/p(Bp,Y),
where p := [p] ≥ 2, which cannot be approximated strongly in W 1/p by smooth maps uk : Bp → Y, i.e.,
such that u /∈ H

1/p
S (Bp,Y), whence the strict inclusion holds in (1.7).

In fact, for any such target manifold Y there exists a Lipschitz function ϕ̃ : Sp−1 → Y such that ϕ̃ is
not homotopic to a constant map in Y, but such that ϕ̃ is homologically trivial. Arguing as e.g. in the
proof of [24, Thm. 5.3.6], we then find a Lipschitz function ϕ : Sp−1 → Y that is homotopic to ϕ̃ in Y, but
such that the image current ϕ#[[Sp−1 ]] = 0.

Consider the map u := ϕ(x/|x|). Clearly u belongs to W 1/p(Bp,Y), as p < p + 1. Since moreover,
compare [20, Vol. I, Sec. 3.2.2],

(∂Gu) Bp × Y = −δ0 × ϕ#[[Sp−1 ]] ,

where δ0 is the unit Dirac mass at the origin, condition ϕ#[[Sp−1 ]] = 0 yields that ∂Gu = 0 in Bp×Y, i.e.,
P(u) = 0, whence u ∈ cart1/p(Bp,Y). Now, if u were approximable by smooth maps from Bp into Y strongly
in W 1/p, whence strongly in W 1/p, since the strong W 1/p-convergence preserves the (p− 1)-homotopy type,
see [4, Lemma 1], we would obtain that ϕ is homotopically trivial, a contradiction. ¤

Proof of Theorem 4.2: We follow the lines of the proof taken from [38, Sec. 2] of Theorem 1.1
above, where we denoted d := [p], to which we refer for the notation and for further details.

For this reason, we denote Qn :=]0, 1[n and let u be a map in cart1/p(Qn,Y). We can improve the
slicing argument at the beginning of the proof of [38, Thm. 1], choosing for every m ∈ N+ the grid of size
1/m in such a way that the following properties are satisfied:

i) the restriction uF to each k-face F of the k-skeleton C
(k)
m of the grid belongs to cart1/p, i.e.,

∂GuF
= 0 on Zk,p−1(F × Y) ,

for k = p− 1, . . . , n;

ii) if F1, F2 are (p− 1)-faces of C
(p−1)
m that intersect in a (p− 2)-face I, then

∂GuF1
I × Y = −∂GuF2

I × Y on Dp−2(X × Y) .

We first consider the case n = p.
The case n = p. We recall that Y ⊂ RN , and set

Yε := Uε(Y) , (4.3)

where Uε(A) := {y ∈ RN | dist(y, A) < ε} is the ε-neighborhood of A ⊂ RN . Since Y is smooth and
compact, there exists ε0 > 0 such that for 0 < ε ≤ ε0 the nearest point projection Πε of Yε onto Y is a
well defined Lipschitz map with Lipschitz constant Lip(Πε) ≤ (1 + c ε) → 1+ as ε → 0+. In particular, for
0 < ε ≤ ε0, the ε-neighborhood Yε is equivalent to Y in the sense of the algebraic topology.

It is readily checked that the assertion follows if we show that we can find a sequence {hj} ↘ 0 such that
the traces T(W (m)

hj
) of the approximating maps W

(m)
hj

from [38, Thm. 1] are functions in cart1/p(Qn
m,Yε0).
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We recall that {Cl}(m−1)n

l=1 is a list of the (n + 1)-cubes in Fm, and we denote by Fl the n-cube given
by the intersection of Cl with Qn × {0}. The approximating map W

(m)
h has been defined on Cl by

W
(m)
h (z) := V

(m)
h

[
f−1

l

( fl(z)
2m‖fl(z)‖n+1

)]
,

where fl is a suitable bilipschitz homeomorphism between Cl and the (n + 1)-cube [−1/(2m), 1/(2m)]n+1,
and V

(m)
h is given by [38, Prop. 3] in correspondence of a grid satisfying i) and ii). As a consequence, setting

v
(m)
h := T(V (m)

h ), in order to show that the trace T(W (m)
h ) belongs to cart1/p(Qn

m,Yε0), and conclude the
proof of Theorem 4.2 in the case n = p, it suffices to prove Proposition 4.5. We are not able to find of a
more direct argument, see Remark 4.7 below.

Proposition 4.5 There exists a sequence {hj} ↘ 0 such that every l and j the (n − 1)-cycle v
(m)
hj #[[ ∂Fl ]]

is homologically trivial in Yε0 .

Proof: Since Yε0 is equivalent to Y in the sense of the algebraic topology, for every s there exists a
closed (p− 1)-form σ̃s in Yε0 that agrees with σs on Y and such that {σ̃s}ess=1 is a basis of the subgroup
Hp−1

sph (Yε0) of spherical (p− 1)-forms in Hp−1
dR (Yε0), see Definition 3.4. Therefore, since n = p, the assertion

follows if we show that
v
(m)
hj #[[ ∂Fl ]](σ̃s) = 0 ∀ s = 1, . . . , s̃ .

Looking at the proof of [38, Prop. 2], we observe that Σ(P0, h) intersects the (n−1)-skeleton Σ(n−1)
m ×{0}

if P0 ∈ Σ(n−1)
m ×]− h/2, h/2[. Therefore, the same argument used in the above mentioned proof yields that

the approximating sequence {U (m)
h }h actually satisfies U

(m)
h (x, t) ∈ Yε0 for every (x, t) ∈ ∂Fl×]−h/2, h/2[

and for every l, provided that h < hε.
As a consequence, we readily infer that the approximating sequence {V (m)

h }h given by [38, Prop. 3]
satisfies that same condition, i.e., V

(m)
h (∂Fl×]− h/2, h/2[) ⊂ Yε0 for every l, if h < hε.

Setting now V l
h := V

(m)
h |∂Fl×]0,h/2[

, since the differential dσ̃s = 0 and the map V l
h is smooth, we have

∂V l
h #([[ ∂Fl ]]× [[ (0, h/2) ]])(σ̃s) = V l

h#([[ ∂Fl ]]× [[ (0, h/2) ]])(dσ̃s) = 0 .

Therefore, if φ
(m)
h (x) := V

(m)
h (x, δ) for some suitable 0 < δ < h/2 to be chosen, by a standard homotopy

argument we infer that
v
(m)
h # [[ ∂Fl ]](σ̃s) = φ

(m)
h # [[ ∂Fl ]](σ̃s) . (4.4)

Now, let σ̂s be an (n−1)-form in Dn−1(RN ) such that i#σ̂s = σs and j#σ̂s = σ̃s, where j : Yε0 → RN

is the injection map. Since u ∈ cart1/p(Qn,Y), by (4.1) for every test function ϕ ∈ C∞c (Qn) we have

Gu(dϕ ∧ σs) = ∂Gu(ϕ ∧ σs) = 0 .

Taking the cut-off function η : [0, 1] → [0, 1] in (2.5) in such a way that η′(t) < 0 for t ∈]0, hε[, this
yields that

GU (dϕ ∧ d(η ∧ σ̂s)) = −∂GU (dϕ ∧ η ∧ σ̂s) = 0 , U := Ext(u) .

Therefore, choosing a suitable sequence of test functions {ϕk} ⊂ C∞c (Qn) that strongly converges in L1

to the characteristic function of Fl, since by Example 2.1

GU (dϕk ∧ d(η ∧ σ̂s)) =
∫

Qn×[0,1]

dϕk ∧
(
dη ∧ U#σ̂s + η ∧ U#dσ̂s

)
,

by a standard argument we obtain that

GUl
(d(η ∧ σ̂s)) = 0 , where Ul := U|∂Fl×[0,1] .

By the strong convergence of V
(m)
h |∂Fl×[0,1]

to Ul as h → 0, on account of properties i) and ii) above,

this gives that for every sequence {h̃j} ↘ 0 and for every l we can find a subsequence {h(l)
j } ↘ 0 such that

GV l
h
(d(η ∧ σ̂s)) = 0 for h = h

(l)
j , ∀ j , ∀ s .
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Moreover, since V l
h(∂Fl×]0, h/2[) ⊂ Yε0 and j#σ̂s = σ̃s, with dσ̃s = 0, this gives

GV l
h
(dη ∧ σ̃s) = GV l

h
(d(η ∧ σ̃s)) = GV l

h
(d(η ∧ σ̂s)) = 0 .

Therefore, setting φl
j(x) := V

(m)

h
(l)
j

(x, δ
(l)
j ) for a suitable 0 < δ

(l)
j < h

(l)
j /2, by a slicing argument we find that

φl
j #[[ ∂Fl ]](σ̃s) = 0 .

Finally, a diagonal argument on l = 1, . . . , (m− 1)n yields the assertion, by (4.4). ¤

The case n ≥ p + 1. The proof is an adaptation of the one of [38, Thm. 1], using the same argument
as above. In fact, when extending W

(m)
h to the (p + 1)-cubes of the grid, we argue as in the case n = p.

Moreover, when extending W
(m)
h to the (k + 1)-cubes of the grid, for k = p + 1, . . . , n, we see that actually

no boundary is ”produced”. This is essentially due to the following lemma, that concludes the proof.

Lemma 4.6 Let k = p + 1, . . . , n integer and u : Bk → Y be given by u(x) := v(x/|x|) for some
v ∈ W 1/p(∂Bk,Y). Then u ∈ cart1/p(Bk,Y).

Proof: Since k > p, trivially u ∈ W 1/p(Bk,Y). Moreover, if w : Bk → RN is a smooth W 1,p-map such
that w|∂Bk = u, and R ∈ Rk(RN ) is the i.m. rectifiable current R := w#[[ Bk ]], we have

∂Gu Bk × Y = −δ0 × ∂R . (4.5)

Since the integral flat cycle ∂R has dimension k − 1 ≥ p, the property (4.5) gives automatically that
∂Gu(ω) = 0 for every ω ∈ Zk−1,p−1(Bk ×Y), i.e., the null-boundary condition (4.1), whence Lemma 4.6 is
proved, as required. ¤

Remark 4.7 Lemma 4.6 is false in dimension k = p, even if u(x) = v(x/|x|) for some map v : Ω → Y
in cart1/p(Ω,Y), where Bp ⊂⊂ Ω ⊂ Rp, see Definition 4.1. Actually, if v is smooth, then (4.5) holds
with R := v#[[ Bp ]], an i.m. rectifiable current in Rp(Y). Therefore, the integral flat (p − 1)-cycle ∂R is
homologically trivial, i.e., ∂R(σ) = R(dσ) = 0 for every closed form σ ∈ Zp−1(Y), whence by (4.5)

∂Gu = 0 on Zp−1,p−1(Bp × Y) , (4.6)

i.e., u ∈ cart1/p(Bp,Y). However, this argument fails to hold if v is a generic map in cart1/p(Ω,Y), since in
general we cannot conclude that v#[[ Bp ]] is an i.m. rectifiable current in Rp(Y), even in the case p = p = 2.

Proof of Theorem 4.3: By Theorem 4.2, it suffices to show that every map u ∈ R0
1/p(X ,Y)∩cart1/p

is the strong W 1/p-limit of a sequence of smooth functions in W 1/p(X ,Y)∩C∞. We distinguish two cases.

The case n = p. Every map u ∈ R0
1/p(X ,Y) ∩ cart1/p is continuous outside a discrete set, see (1.6).

Since we use a local argument, we may assume that u ∈ cart1/p(Bp,Y) and u is continuous outside the
origin. In order to remove the singularity of u, using the same argument given for the case p = p = 2 in
[23, Prop. 5.1], it suffices to show that for r > 0 small the set

{w ∈ W 1/p(Bp
r ,Y) ∩ C0(B

p

r ,Y) | w|∂Bp
r

= u|∂Bp
r
}

is non-empty. By the assumption on the Hurewicz maps, this holds true if we have

du|∂Bp
r

#σs = 0 ∀ s = 1, . . . , s .

As in [23, Prop. 5.1], this follows from the null-boundary condition (4.1), i.e., from (4.6), that is equivalent
to the property Ps(u) = 0 for every s, see (3.5). A standard convolution and projection argument as e.g.
in [4] yields the assertion.

The case n ≥ p + 1. Let u ∈ R0
1/p(X ,Y) ∩ cart1/p and let X be a cubeulation of X . Without

loss of generality, by using a slicing argument, we assume that X is in dual position with respect to u,
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compare [38]. More precisely, we may and do assume that the (p − 1)-skeleton Xp−1 is disjoint from the
(n− p)-dimensional singular set Σ(u) of u, see (1.6), and that the properties i) and ii) at the beginning of
the proof of Theorem 4.2 are satisfied. Arguing as in the case n = p, the above properties, in conjunction
with the injectivity on the Hurewicz maps πp−1(Y; y0) → Hp−1(Y;R), for p ≥ 3, or with the commutativity
of π1(Y), for p = 2, yields that the restriction u|Xp−1 has a continuous extension g : Xp → Y.

Therefore, by the (p − 1)-extension property, the restriction u|Xp−1 can be extended to a continuous
map from X into Y. By applying [38, Thm. 3] we then obtain that u is the strong W 1/p-limit of a smooth
sequence in W 1/p(X ,Y) ∩ C∞, as required. ¤

5 Minimal connections of maps in W1/p

In this section we discuss the minimal integral connection of the homological singularities P(u) of a W 1/p-
map u from an n-dimensional manifold X into the sphere Sp−1, giving also an explicit example. The next
section will be dedicated to the case of more general target manifolds. First, we collect the notion of real
and integral mass, and prove some general properties of the current P(u).

Real and integral mass. We let n ≥ p := [p] ≥ 2 and Ω ⊂ X be an open set. Recall:

Definition 5.1 For every Γ ∈ Dn−p(Ω) we denote by

mr,Ω(Γ) := inf{M(D) | D ∈ Dn−p+1(Ω) , (∂D) Ω = Γ}
mi,Ω(Γ) := inf{M(L) | L ∈ Rn−p+1(Ω) , (∂L) Ω = Γ}

the real mass and integral mass of Γ relative to Ω, respectively. In case mi,Ω(Γ) < ∞, an i.m. rectifiable
current L ∈ Rn−p+1(Ω) is an integral minimal connection for the mass of Γ allowing connections to the
boundary of Ω if (∂L) Ω = Γ and M(L) = mi,Ω(Γ).

We first show that P(u) is an (n− p)-dimensional real flat chain.

Proposition 5.2 For every u ∈ W 1/p(X ,Y) the current P(u) is the real flat limit of the currents P(uk)
in Rn−p(X ;Hsph

p−1(Y)), where {uk} ⊂ R∞1/p(X ,Y) is a sequence that strongly converges in W 1/p to u, and

P(u)(φ) = (−1)p
es∑

s=1

Ps(u)(φ) [γs] ∈ Hsph
p−1(Y;R) ∀φ ∈ Dn−p(X ) .

In particular, Ps(u) = 0 for s = s̃ + 1, . . . , s.

Proof: Using Theorem 1.1 and Proposition 3.6, the proof is obtained as e.g. in [20, Vol. II, Sec. 4.5.2]. ¤

In dimension n = p, moreover, we obtain that P(u) is an integral flat chain.

Proposition 5.3 Let n = p. Let u ∈ W 1/p(X ,Y) and {uk} be a sequence of maps in R∞1/p(X ,Y) that
strongly converges in W 1/p to u. Then we have:

(i) M(Ds(uk)− Ds(u)) → 0 as k →∞ for each s = 1, . . . , s̃ ;

(ii) there exists a current L ∈ R1(X ;Hsph
p−1(Y)), with M(L) < ∞, such that P(u) = (∂L) int(X ); in

particular, P(u) is an integral flat chain;

(iii) if Ls
uk,u denotes an i.m. rectifiable current in R1(X ) of least mass such that

(∂Ls
uk,u) int(X ) = Ps(u)− Ps(uk) , s = 1, . . . , s̃ , (5.1)

then M(Ls
uk,u) → 0 as k →∞;
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(iv) if ∂X = ∅, or u = ϕ on ∂X for some smooth W 1/p-map ϕ : X → Y, then for each s = 1, . . . , s̃ there
exist points ai, bi ∈ X such that

Ps(u) =
∞∑

i=1

(δai − δbi
) ,

∞∑

i=1

distX (ai, bi) < ∞ ,

where distX is the geodesic distance in X .

Proof: Using (3.3), the proof of property (i) is similar to the one in [23, Prop. 1.4], and holds true even in
higher dimension n ≥ p + 1. As to the rest of the theorem, we observe that Ps(uk) is a (n− p)-dimensional
i.m. rectifiable current in Rn−p(X ). By Federer’s theorem [17], for n = p we then have that

mi,int(X )(Ps(uk)) = mr,int(X )(Ps(uk)) ∀ s = 1, . . . , s̃ , (5.2)

see Definition 5.1. Therefore, (i) and (3.6) give mi,int(X )(Ps(uk)− Ps(u)) → 0, and the claims follow. ¤

Remark 5.4 The above argument fails to hold in higher dimension n ≥ p + 1, for any integer p ≥ 3. In
this case, in fact, we do not know whether (5.2) holds true, compare [37, 43], or even if

mi,int(X )(Ps(uk)) ≤ c ·mr,int(X )(Ps(uk))

for some absolute constant c > 0, not depending on uk, a weaker condition that would give the assertion
of Proposition 5.3. We recall that in the case p = 2, Hardt-Pitts’ theorem [28] yields (5.2) and hence
Proposition 5.3, for any n ≥ 2, see [23].

Integral connections. Assume now that Y = Sp−1 and that X has no boundary. We show that
the current P(u) carrying the singularities of any map u ∈ W 1/p(X , Sp−1) is an integral flat chain.

Proposition 5.5 Let n ≥ p ≥ 2. For every u ∈ W 1/p(X , Sp−1) there exists an i.m. rectifiable current
L ∈ Rn−p+1(X ) such that

∂L = P(u) and M(L) ≤ C
(E1/p(u) + ‖Ext(u)‖p

Lp(Cn+1)

)
,

where Ext(u) ∈ W 1,p(Cn+1,RN ) is the extension of u and C > 0 is an absolute constant, not depending
on u.

Remark 5.6 This property (and its local version) was proved by Hang-Lin [25] for p ≥ 2 integer and for
X = Rn, using the coarea formula and the degree theory developed by Brezis-Nirenberg [14]. In the sequel we
shall give a similar proof based on arguments from Sec. 2. It turns out that the extra term ‖Ext(u)‖p

Lp(Cn+1)

in the above formula can be removed if we require that the integral connection L belongs to Rn−p+1(Cn+1),
as in [25].

If the boundary ∂X is nonempty, for every smooth function ϕ : X → Sp−1 we denote

W 1/p
ϕ (X ,Sp−1) := {u ∈ W 1/p(X , Sp−1) | u = ϕ on ∂X} .

Similarly to Proposition 5.5, we also obtain:

Proposition 5.7 Let n ≥ p ≥ 2. For every u ∈ W
1/p
ϕ (X , Sp−1) there exists an i.m. rectifiable current

L ∈ Rn−p+1(X ) such that ∂L = P(u) and

M(L) ≤ C
(E1/p(u) + ‖Ext(u)‖p

Lp(Cn+1) + E1/p(ϕ) + ‖Ext(ϕ)‖p
Lp(Cn+1)

)
,

where C > 0 is an absolute constant, not depending on u and ϕ.

We may similarly prove a local version of Proposition 5.5, concerning the integral mass of the singularity
P(u) relative to any open set Ω ⊂ X , see Definition 5.1. This means that we look for an integral minimal
connection for the mass of the restriction P(u) Ω, allowing connections to the boundary of Ω. We readily
obtain:
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Corollary 5.8 For every u ∈ W 1/p(X ,Sp−1) and every open set Ω ⊂ X we have

mi,Ω(P(u)) ≤ C ‖Ext(u)‖p
W 1,p(Ω×[0,1]) .

An example. We now give an explicit example that may clarify the statement of Proposition 5.5. We
follow an idea that goes back to Bethuel [4, 3.1].

Example 5.9 Consider the (n + 1)-dimensional open cylinder C̃n+1 := Bp × Bn−p+1, where n ≥ p ≥ 2,
and let X be the boundary n-manifold X := ∂C̃n+1. We shall denote by 0d and | · |d the origin and the
Euclidean norm on Rd, respectively.

Let u : X → Sp−1 be given by

u(z) :=
x

|x|p , z = (x, x̃) ∈ Rp × Rn−p+1 ' Rn+1 .

It turns out that u ∈ R∞1/p(X ,Sp−1), with singular set Σ(u) = {0p} × Sn−p, see (1.6), and homological
singularities given by the i.m. rectifiable current

P(u) = [[ {0p} × Sn−p ]] ∈ Rn−p(X ) .

We have to show that u is the trace on ∂C̃n+1 of a smooth function U : C̃n+1 → Bp that belongs to
the Sobolev space W 1,p(C̃n+1,Rp), the other properties being readily checked.

To this purpose, consider the map V : Bp × [0, 1] → Bp given by

V (x, ρ) :=





Π̃
(

(x, ρ− 1)
|(x, ρ− 1)|p+1

)
if |(x, ρ− 1)|p+1 < 1

x otherwise ,

where ρ ∈ [0, 1] and Π̃ : Rp × R → Rp is the orthogonal projection onto the first p coordinates. Clearly
V is smooth outside the point (0p, 1), and V belongs to W 1,q(Bp × [0, 1[,Rp) for every 1 ≤ q < p + 1, in
particular for q = p, as p = [p]. Moreover, the trace of V satisfies

V (x, ρ) =
x

|x|p on (∂Bp × [0, 1[) ∪ (Bp × {1}) .

It then clearly suffices to define U by means of a rotation on the x-variables, i.e.,

U(x, x̃) := V (x, |x̃|n−p+1) .

We now observe that
U−1(0Rp) = {0Rp} ×Bn−p+1 .

In general, for every y ∈ Bp the pull-back U−1(y) is an (n − p + 1)-surface given by the rotation on the
x-variables (reflection, for n = p) of the 1-dimensional subset V −1(y) of Bp × [0, 1[, and we have

V −1(y) = Iy
1 ∪ Iy

2 ,

where Iy
i is the line segment connecting the points P y

0 with P y
i , for i = 1, 2, and

P y
0 :=

(
y, 1−

√
1− |y|2p

)
, P y

1 := (0p, 1) , P y
2 := (y, 0) .

In particular, for every y the boundary of U−1(y) agrees with the (n− p)-sphere {0Rp} × Sn−p, i.e., with
the singular set Σ(u) of u.

Let LU
y denote the i.m. rectifiable current in Rn−p+1(C̃n+1) given by the integration of forms in

Dn−p+1(C̃n+1) over the naturally oriented (n− p + 1)-surface U−1(y), see (5.5) below. It turns out that

∂LU
y = P(u) .
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Finally, choosing y so that |y|p > 1/2, and denoting by Π̂ : C̃n+1 \ {0n+1} → ∂C̃n+1 = X the projection

Π̂(z) :=
z

max{|x|p, |x̃|n−p+1} , z = (x, x̃) ,

since Π̂#P(u) = P(u) we conclude that the current Π̂#LU
y ∈ Rn−p+1(X ) satisfies all the requirements of

Proposition 5.5.

Proofs. We now give the proof of Propositions 5.5 and 5.7.

Proof of Proposition 5.5: Let U(x, t) := Ext(u)(x, t) · η(t) ∈ W 1,p(Cn+1,Rp), where η : [0, 1] → [0, 1] is
a smooth decreasing function such that η(t) = 1 for t ∈ [0, 1/4], η(t) = 0 for t ∈ [3/4, 1] and ‖η′‖∞ ≤ 4.
Notice that we have

Dp(U) ≤ c1(p,X )Dp(U) ≤ c2(p,X )
(
Dp(Ext(u)) + ‖Ext(u)‖p

Lp(Cn+1)

)

for some absolute constants ci(p,X ) > 0, not depending on Ext(u), and recall that E1/p(u) := Dp(Ext(u)).
By a projection argument we may assume that the image of U is contained in the closure B

p
of the unit

p-ball. Moreover, by definition U is smooth on X×]0, 1], and U(x, 0) = u(x), U(x, 1) ≡ 0Rp .
Denote by Jp(U) the p-dimensional Jacobian of U , so that

1
pp/2

|DU(z)|p ≥ Jp(U)(z) ∀ z ∈ X×]0, 1] .

By the coarea formula, as in [2] we have

Dp(U) ≥
∫

Cn+1
Jp(U) dHn+1 =

∫

Bp

Hn−p+1(U−1(y)) dLp(y) .

Therefore, we find a regular value y ∈ Bp \ {0Rp} of U such that

Hn−p+1(U−1(y)) ≤ 2
|Bp| Dp(U) .

Define the current D(U) ∈ Dn−p+1(X ) by

D(U)(γ) =
∫

Cn+1
γ̃ ∧ U#ωBp , γ ∈ Dn−p+1(X ) ,

where γ̃ := γ ∧ η ∈ Dn−p+1(Cn+1) and ωBp is given by (3.9). Arguing as in (3.6) for (3.8), we have

P(u) = ∂ D(U) on Dn−p(X ) . (5.3)

Similarly to [20, Vol. II, Sec. 5.2.1], we now define the smooth (n− p + 1)-vector field D(U) as the dual
to U#ωBp , i.e., in local coordinates,

〈η, D(U)(z)〉 dz := η ∧ U#ωBp(z) ∀ η ∈ Λn−p+1(Rn+1) .

More precisely, D(U) may be identified with ?U#ωBp , where ? is the Hodge operator. We thus have

D(U)(γ) =
∫

Cn+1
〈γ̃, D(U)〉 dHn+1(z) ∀ γ ∈ Dn−p+1(X ) . (5.4)

Also, if U(z) = y the (n−p+1)-vector D(U)(z) is tangent to the naturally oriented level (n−p+1)-surface

U−1(y) := {z ∈ Cn+1 | U(z) = y} .

As a consequence, the (n− p + 1)-current

LU
y := τ

(
U−1(y), 1,

D(U)
|D(U)|

)
(5.5)
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turns out to be an i.m. rectifiable current LU
y ∈ Rn−p+1(Cn+1) with mass

M(LU
y ) = Hn−p+1(U−1(y)) .

Moreover, since U(x, 1) ≡ 0Rp , and y 6= 0Rp , by (5.3) and (5.4) we infer that

(∂LU
y ) X × [0, 1] = P(u) .

Setting L := Π#LU
y , where Π : X × [0, 1] → X is the projection map Π(x, t) := x, the assertion readily

follows. ¤

Proof of Proposition 5.7: Let Φ(x, t) := Ext(ϕ)(x, t) ·η(t) ∈ W 1,p(Cn+1,RN ) and LΦ
y ∈ Rn−p+1(Cn+1)

be given by

LΦ
y := τ

(
Φ−1(y), 1,

D(Φ)
|D(Φ)|

)
,

so that M(LΦ
y ) = Hn−p+1(Φ−1(y)). Since u = ϕ on ∂X and P(ϕ) = 0, this time we have

∂(LU
y − LΦ

y ) = P(u) .

Similarly to Proposition 5.5, we readily prove the assertion. ¤

6 The case of general target manifolds

In this section we extend Propositions 5.5 and 5.7 to more general target manifolds Y as in Sec. 4. More
precisely, in the case p = 2 we shall assume that π1(Y) is commutative, whereas in the case p ≥ 3, we
shall assume that π1(Y) = 0 and that the Hurewicz homomorphism from the (p− 1)th free homotopy group
πp−1(Y) onto the (p− 1)th real homology group Hp−1(Y;R) is injective.

If the boundary ∂X is nonempty, for every smooth function ϕ : X → Y we shall denote as above

R∞1/p,ϕ(X ,Y) := {u ∈ R∞1/p(X ,Y) | u = ϕ on ∂X} .

Theorem 6.1 Let n ≥ p := [p] ≥ 2. Let ϕ : X → Y be a smooth function and let u ∈ R∞1/p,ϕ(X ,Y). Then
for every s = 1, . . . , s̃ there exists an i.m. rectifiable current Ls ∈ Rn−p+1(X ) such that ∂Ls = Ps(u) and
the mass

M(Ls) ≤ C
(E1/p(u) + ‖Ext(u)‖p

Lp(Cn+1) + E1/p(ϕ) + ‖Ext(ϕ)‖p
Lp(Cn+1)) ,

where C > 0 is an absolute constant, not depending on u and ϕ. Moreover, if ∂X = ∅ and u ∈ R∞1/p(X ,Y),
we have

M(Ls) ≤ C
(E1/p(u) + ‖Ext(u)‖p

Lp(Cn+1)) .

Remark 6.2 As in Remark 5.6, from the proof of Theorem 6.1 we infer that in the above estimates for
the mass of Ls we can remove the extra terms C (‖Ext(u)‖p

Lp(Cn+1) + ‖Ext(ϕ)‖p
Lp(Cn+1)) provided that we

require that the integral connections Ls belong to Rn−p+1(Cn+1). Moreover, since Y is compact, if the
boundary datum ϕ is constant we have E1/p(ϕ) = 0 and ‖Ext(ϕ)‖p

Lp(Cn+1,RN )
≤ C.

Let Ω ⊂ X be an open set. According to Definition 5.1, we may look for an integral minimal connection
for the mass of Ps(u) Ω allowing connections to the boundary of Ω. We thus readily extend Corollary 5.8
as follows:

Corollary 6.3 For every u ∈ R∞1/p(X ,Y) and every open set Ω ⊂ X we have

mi,Ω(Ps(u)) ≤ C ‖Ext(u)‖p
W 1,p(Ω×[0,1]) ∀ s = 1, . . . s̃ .

In the case n = p, or n ≥ p = 2, we finally obtain:
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Proposition 6.4 If n = p or p = 2, Theorem 6.1 and Corollary 6.3 hold true for the whole classes of maps
in W

1/p
ϕ (X ,Y) or in W 1/p(X ,Y).

Proof: Assume u ∈ W
1/p
ϕ (X ,Y), and let {uk} ⊂ R∞1/p,ϕ(X ,Y) converge strongly in W 1/p to u, see

Remark 6.6. For s = 1, . . . , s̃, as in Proposition 5.3, we have that M(Ds(uk) − Ds(u)) → 0 as k → ∞;
whence, if n = p, there exists Ls

uk,u ∈ R1(X ) such that (5.1) holds and M(Ls
uk,u) → 0 as k → ∞. By

applying Theorem 6.1 to each uk we find Lk
s ∈ Rn−p+1(X ) such that ∂Lk

s = Ps(uk) and

M(Lk
s) ≤ C

(E1/p(uk) + ‖Ext(uk)‖p
Lp(Cn+1) + E1/p(ϕ) + ‖Ext(ϕ)‖p

Lp(Cn+1)) .

Since E1/p(uk) → E1/p(u) and ‖Ext(uk)‖p
Lp(Cn+1) → ‖Ext(u)‖p

Lp(Cn+1) as k → ∞, the assertion follows
by taking Ls := Ls

uk,u + Lk
s for k large. Moreover, if p = 2, Hardt-Pitts’ theorem [28] yields (5.2),

whence Proposition 5.3 holds in any dimension n ≥ 2, and we proceed as above. Finally, the extension of
Corollary 6.3 is proved in a similar way. ¤

Proof of Theorem 6.1. The rest of this section is dedicated to the proof of Theorem 6.1. We shall
make use of arguments by Pakzad-Rivière [40], to which we refer for further details.

We first observe that by the hypotheses, all the homotopy groups πp−1(Y; y0) are canonically isomorphic,
and that there exists an isomorphism ρp between Hp−1(Y) and πp−1(Y). Since [γ1], . . . , [γes] generate the
spherical subgroup Hsph

p−1(Y), we infer that the equivalence classes Γs := ρp[γs] ∈ πp−1(Y), for s = 1, . . . , s̃,
generate the subgroup ρp(Hsph

p−1(Y)) of πp−1(Y).
According to Proposition 3.6, and following the notation from [40, Def. 2.7], for any given map u ∈

R∞1/p(X ,Y), if Σ(u) ⊂ B = ∪µ
i=1σi, where this time the σi’s are (n − p)-dimensional (and curvilinear)

non-overlapping polyhedra, we have

(−1)p P(u) =
es∑

s=1

Ps(u)⊗ [γs] , Ps(u) =
µ∑

i=1

mi,s [[ σi ]] ∈ Rn−p(X ) ,

for some integers mi,s ∈ Z. Moreover, we have

c(n, p) · ρp

( es∑
s=1

mi,s [γs]
)

= [u, σi] := [u|Σa,δ
]πp−1(Y) ,

for some given constant sign c(n, p) = ±1, only depending on n and p.
We also recall from [40, Def. 2.8] that the current Su ∈ Rn−p(X ; πp−1(Y)) given by

Su :=
µ∑

i=1

[[σi ]]⊗ [u, σi] (6.1)

describes the topological singularity of u. Notice that the induced homomorphism ρp∗ : R(X ;Hp−1(Y)) →
R(X ;πp−1(Y)) satisfies

ρp∗((−1)p P(u)) :=
es∑

s=1

Ps(u)⊗ ρp[γs]

and we thus have

Su =
es∑

s=1

Ts(u)⊗ Γs , Ts(u) := c(n, p) Ps(u) . (6.2)

Remark 6.5 In the model case Y = Sp−1, for u ∈ R∞1/p(X , Sp−1), we have

P(u) =
µ∑

i=1

mi [[σi ]] ∈ Rn−p(X ) ,

20



with mi ∈ Z, whereas the topological singularity is simply defined by

Su :=
µ∑

i=1

c(n, p) ·mi [[σi ]] , c(n, p) ·mi = [u|Σa,δ
]πp−1(Sp−1) ∈ Z . (6.3)

We divide the rest of the proof in eight steps.

Step 1: For p ≤ l ≤ M + 1, where M := dim(Y), let Y l−1 denote the (l − 1)-skeleton of some
finite (curvilinear) triangulation of Y, so that YM = Y. For X = C∞, W 1/p, R∞1/p, or R∞1/p,ϕ, where
ϕ : X → Y l−1 is a smooth W 1/p-function, we shall denote

X(X ,Y l−1) := {u ∈ X(X ,Y) | u(x) ∈ Y l−1 for Hn-a.e. x ∈ X} .

Remark 6.6 If ∂X = ∅, in this proof we shall identify R∞1/p = R∞1/p,ϕ for some constant map ϕ : X → Y.
Similarly to Theorem 1.1, it is not difficult to show that for every p ≤ l ≤ M + 1 the class R∞1/p,ϕ(X ,Y l−1)

is dense in W
1/p
ϕ (X ,Y l−1) with respect to the strong W 1/p-topology.

Let il : Y l−1 ↪→ Y l denote the injection map from Y l−1 into Y l. Since the homomorphism il∗ :
πp−1(Y l−1) → πp−1(Y l) induced by il is onto, we infer that πp−1(Y l−1) is finitely generated.

As a consequence, we may and do define the topological singularity of a map v = ul−1 ∈ R∞1/p(X ,Y l−1)
as the current Sl−1

v ∈ Rn−p(X ; πp−1(Y l−1))

Sl−1
v :=

µ∑

i=1

[[σi ]]⊗ [v, σi] , [v, σi] := [v|Σa,δ
]πp−1(Yl−1) .

Of course, Sl−1
u agrees with Su from (6.1) in the case l = M + 1, i.e., for maps u in R∞1/p(X ,Y).

Finally, we shall denote by χ̃l
∗ : Rn−p(X ;πp−1(Y l−1)) → Rn−p(X ;πp−1(Y l)) the corresponding homo-

morphism induced by il, so that

χ̃l
∗(S

l−1
v ) =

µ∑

i=1

[[σi ]]⊗ il∗[v, σi] , il∗[v, σi] ∈ πp−1(Y l) .

Step 2: As in (4.3), for p ≤ l ≤ M we denote by

Y l
ε := Uε(Y l)

the ε-neighborhood of Y l in RN . Since the triangulation is finite, we can find εl > 0 and a Lipschitz
projection Πl of Y l

εl
onto Y l satisfying the following properties:

i) HN (Π−1
l (w)) = 0 for every w ∈ Y l \ Y l−1;

ii) if y, y0 ∈ Y l
εl
\ Y l, with y 6= y0, satisfy

y − y0

|y − y0| =
y −Πl(y)

dl(y)
, dl(y) := |Πl(y)− y| , (6.4)

then Πl(y) = Πl(y0) ∈ Y l;

iii) setting for every y0 ∈ Y l
εl
\ Y l

∆l(y0) := max{dl(y) | y ∈ Y l
εl
\ Y l satisfies (6.4)} ,

the function ∆l : Y l
εl
\Y l → R+ is Lipschitz continuous, with Lipschitz constant Lip(∆l) ≤ c Lip(Πl),

and ∆l(y0) = dl(y0) if y0 ∈ ∂Y l
εl

.
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Step 3: For p ≤ l ≤ M , let
U l := {(x, y) ∈ Bl ×Bl | x 6= y}

and pl : U l×U l → ∂Bl be such that pl(x, y) is the unique point on the boundary ∂Bl which is on the ray
from x to y, see [40, Def. 2.9]. We recall that for every 0 < δ < 1 we have

∫

Bl(0,1−δ)

|Dypl(x, y0)|p dx ≤ C(l, p, δ) < ∞ ∀ y0 ∈ Bl , (6.5)

where the constant C(l, p, δ) does not depend on y0.
As in [40, Sec. 4], write Y l =

⋃sl

i=1 N l
i , where ξl

i : Bl → N l
i := ξl

i(B
l) are diffeomorphisms and

each two different N l
i ’s either are pairwise disjoint or intersect on a lower dimensional face in Y l−1. For

w := (w1, . . . , wsl
), where wi ∈ N l

i \ Y l−1 for every i = 1, . . . , sl, let pl
w : Y l \ {w1, . . . , wsl

} → Y l−1 be the
map

pl
w(y) :=

{
ξl
i

(
pl(ξl

i
−1(wi), ξl

i
−1(y))

)
if y ∈ N l

i \ Y l−1 , i = 1, . . . , sl ,
y otherwise .

Similarly to [40, Lemma 4.1], we obtain:

i) pl
w is well defined and locally Lipschitz;

ii) for every (p− 1)-cycle C in Y l, with support sptC ⊂ Y l \ {w1, . . . , wsl
}, we have

il∗([p
l
w(C)]πp−1(Yl−1)) = [C]πp−1(Yl) ; (6.6)

iii) setting N l
i,ε := ξl

i(B
l(0, 1− ε)) and N l

ε := N l
1,ε× · · · ×N l

sl,ε
, for every 0 < ε < 1 and y ∈ Y l we have

∫

N l
ε

|Dpl
w(y)|p dHlsl(w) ≤ C(p, l, ε) < ∞ . (6.7)

Step 4: For p ≤ l ≤ M , using the projection map Πl from Step 2, we extend pl
w to the map

P l
w : Y l

εl
\

sl⋃

i=1

Π−1
l (wi) → RN

defined for every y ∈ dom(P l
w) \ Y l by

P l
w(y) :=

dl(y)
∆l(y)

y +
(

1− dl(y)
∆l(y)

)
pl

w(Πl(y)) .

Since |D[pl
w(Πl(y)]| ≤ C (LipΠl)|Dpl

w(Πl(y))| and |Ddl(y)| ≤ C (LipΠl), whereas ∆l is Lipschitz contin-
uous, it turns out that P l

w is locally Lipschitz, too. Moreover, since P l
w(y) = y for y ∈ ∂Y l

εl
, we may and

do extend P l
w to a locally Lipschitz map equal to the identity on RN \ int(Y l

εl
).

By using (6.7), we similarly obtain that for every y ∈ RN and for ε > 0 small
∫

N l
ε

|DP l
w(y)|p dHlsl(w) ≤ 1

3
C(p, ε, εl,Y) < ∞ , (6.8)

where the constant C(p, ε, εl,Y) > 0 does not depend on y ∈ RN .
In fact, as in [40, Lemma 3.1], if y ∈ Π−1

l (N l
ε/2) we infer that (6.8) follows from the smoothness of P l

w,
the definition of pl

w, and (6.5). If y ∈ RN \Π−1
l (N l

ε/2), then (6.8) follows from the fact that |DP l
w(y)| ≤ K

for every w ∈ N l
ε, where K > 0 is an absolute constant.

Now, for every v ∈ W 1/p(X ,Y l), where l ≥ p, we denote by V the extension V := Ext(v) ∈
W 1,p(Cn+1,RN ), where Cn+1 := X × [0, 1]. By (6.8) and Fubini’s theorem we have

∫

N l
ε

∫

Cn+1

|D(P l
w(V (z)))|p dHn+1(z) dHlsl(w) ≤ 1

3
C(p, ε, εl,Y)

∫

Cn+1

|DV |p dHn+1.
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Since by the definition T(P l
w ◦ V ) = pl

w ◦ v, this yields that P l
w ◦ V belongs to W 1,p(Cn+1,RN ), whence

pl
w ◦ v belongs to W 1/p(X ,Y l−1) for Hlsl -a.e. w ∈ N l

ε. Moreover, we find a positive Hlsl -measurable set
W ⊂ N l

ε, with positive measure

Hlsl(W ) ≥ 2
3
Hlsl(N l

ε) , (6.9)

such that for every w ∈ W

E1/p(pl
w ◦ v) ≤ Dp(P l

w ◦ V ) ≤ C(p, ε, εl,Y)
Hlsl(N l

ε)
Dp(V ) , (6.10)

where E1/p(v) := Dp(V ).
Finally, by the definition of P l

w, and by the compactness of Y, for any such w we also have

|P l
w ◦ V (z)| ≤ C · |V (z)| for Hn+1-a.e. z ∈ Cn+1 , (6.11)

where C = C(l,Y) > 0 is an absolute constant.
Step 5: Let p ≤ l ≤ M + 1, and recall, Theorem 1.1 and Remark 6.6, that the class R∞1/p,ϕ(X ,Y l−1) is

dense in W
1/p
ϕ (X ,Y l−1), for every smooth W 1/p-function ϕ : X → Y l−1. Similarly to [40, Sec. 2.2], we now

show that a suitable subclass of radial maps in R∞1/p,ϕ is dense in W
1/p
ϕ .

To this purpose, since we use a local argument, and X is compact, taking a local coordinate chart we may
and do assume that X = Qn := [0, 1]n, and v ∈ R∞1/p,ϕ(Qn,Y l−1). We then find a compact set B ⊂ int(Qn)
of the type B = ∪µ

i=1σi, where the σi’s are non-overlapping (n − p)-dimensional polyhedra, such that the
singular set Σ(v) ⊂ B, see (1.6), and any two different faces of B intersect only on their boundaries. We set
V δ, σδ

i , πi : σδ
i → σi, and π : V δ0 → B as in [40, Sec. 2.2], and we define vδ : Qn → Y l−1 by

vδ(x) :=
{

v(hδ(x)) if x ∈ V δ

v(x) otherwise , (6.12)

where hδ(x) ∈ ∂V δ is the unique point on the ray from π(x) to x. Notice that the δ-neighborhood V δ is
contained in int(Qn), provided that δ > 0 is sufficiently small. Also, for X = Qn, we let

R∞1/p,ϕ(X ,Y l−1) := {vδ | v ∈ R∞1/p,ϕ(X ,Y l−1)}
denote the subclass of radial maps in R∞1/p,ϕ. Similarly as for [40, eq. (2.3)], we observe that for δ1 > 0
sufficiently small, there is some constant K, depending only on B, for which

∫

∂V δ×I

|D(Ext v)|p dHn ≤ K

δ1

∫

V δ1×I

|D(Ext v)|p dHn+1,
∫

V δ×I

|D(Ext vδ)|p dHn+1 ≤ δ K

∫

∂V δ×I

|D(Ext v)|p dHn
(6.13)

for δ ∈ I0, a positive measure subset of [0, δ1].
Since X is compact, repeating the argument for a finite cover of local charts of X , we obtain that (6.13)

holds true for every v ∈ R∞1/p,ϕ(X ,Y l−1), where this time V δ is a suitable ”δ-neighborhood” of a compact
set B ⊂ int(X ) that contains the singular set Σ(v) of v and is given by a finite union of non-overlapping
(n − p)-dimensional curvilinear polyhedra. By using Theorem 1.1 and Remark 6.6, property (6.13) yields
that also R∞1/p,ϕ(X ,Y l−1) is dense in W

1/p
ϕ (X ,Y l−1).

Step 6: Similarly to [40, Lemma 4.2], to which we refer for further details, we now prove:

Lemma 6.7 Let p ≤ l ≤ M and ul ∈ R∞1/p,ϕl(X ,Y l) for some smooth W 1/p-map ϕl : X → Y l. Then there
exists a map ul−1 : X → Y l−1, a smooth W 1/p-map ϕl−1 : X → Y l−1, and a constant C > 0, independent
of ul and ϕl, such that:

(a) ul−1 ∈ R∞1/p,ϕl−1(X ,Y l−1);

(b) E1/p(vl−1) ≤ C · E1/p(vl) for both v = u and v = ϕ;
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(c) ‖Ext(vl−1)‖Lp(Cn+1,RN ) ≤ C · ‖Ext(vl)‖Lp(Cn+1,RN ) for both v = u and v = ϕ;

(d) according to Step 1, we have χ̃l
∗(S

l−1
ul−1) = Sl

ul .

Proof: Let U l := Ext(ul) ∈ W 1,p(Cn+1,RN ). Using (6.10) and (6.13), with v := ul, as in [40, eq. (4.7)]
we fix ε1, ε2, ε3 > 0 and 0 < δ < δ1 such that

C(p, ε, εl,Y)
Hlsl(N l

ε)

(
K2

∫

V δ1×I

|DU l|p dHn+1 + δKε2 + ε1

)
+ ε3 ≤

∫

Cn+1

|DU l|p dHn+1. (6.14)

Moreover, since ul ∈ R∞1/p(X ,Y l), for Hlsl-a.e. w = (w1, . . . , wsl
) ∈ W , where W = W (u) ⊂ N l

ε is the

positive measure subset constructed in Step 4, see (6.9), we obtain that ul−1(wi) ∩ (X \ V δ) is a finite
mass smooth submanifold of X \ V δ of dimension n− l, with smooth boundary contained in ∂V δ, for every
i = 1, . . . , sl. For any such w, and for ε′ > 0, we then find a Lipschitz diffeomorphism fε′ of X such that fε′

is the identity outside a small neighborhood of
⋃sl

i=1 ul−1(wi), and we have:

i) fε′(V δ) = V δ, fε′(∂V δ) = ∂V δ;

ii) (ul ◦ fε′)−1(wi) ∩ (X \ V δ) is a polyhedral (n− l)-chain of X \ V δ;

iii) (ul ◦ fε′)−1(wi) ∩ (∂V δ) is a polyhedral (n− l − 1)-chain of ∂V δ;

iv)
∫

Cn+1
|D(

U l ◦ (fε′ ./ IdI)
)−DU l|p dHn+1 < ε′;

v)
∫

∂V δ×I

|D(
U l ◦ (fε′ ./ IdI)

)−DU l|p dHn < ε′.

Setting ε′ := min{ε1, ε2} and vl := (ul ◦ fε′)δ, see (6.12), we infer that vl has the same topological
singularity as ul on components of B. Moreover, setting V l := Ext(vl), by iv) and v) above, and by (6.13),
as in [40, eq. (4.9)] we obtain

∫

Cn+1

|DV l|p dHn+1 ≤
∫

Cn+1

|DU l|p dHn+1 +
(

K2

∫

V δ1×I

|DU l|p dHn+1 + δKε2 + ε1

)
(6.15)

whereas by (6.10) we have
∫

Cn+1
|D(P l

w ◦ V l)|p dHn+1 ≤ C(p, ε, εl,Y)
Hlsl(N l

ε)

∫

Cn+1
|DV l|p dHn+1 . (6.16)

Since T(P l
w ◦V l) = pl

w ◦ vl, from the above we infer that vl−1 := pl
w ◦ vl belongs to W 1/p(X ,Y l−1), and

is locally Lipschitz away from

Σ(vl−1) :=
sl⋃

i=1

(ul ◦ fε′)−1
δ (wi) ∪B .

We now essentially repeat the previous construction with ϕl instead of ul. By using (6.9), with W =
W (v) ⊂ N l

ε corresponding to both v = ul and v = ϕl, we may and do choose

w ∈ W (ul) ∩W (ϕl) ,

so that actually vl−1 belongs to W
1/p

ϕl−1(X ,Y l−1), where ϕl−1 : X → Y l−1 is smooth.
Also, by the construction we may and do find a map ul−1 ∈ R∞1/p,ϕl−1(X ,Y l−1) that has the same

topological singularity as vl−1, i.e., Sl−1
ul−1 = Sl−1

vl−1 , and a Sobolev function U l−1 ∈ W 1,p(Cn+1,RN ) such
that T(U l−1) = ul−1 and ∫

Cn+1
|DU l−1 −D(P l

w ◦ V l)|p dHn+1 ≤ ε3 .
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Using (6.14), (6.15), and (6.16), we finally get:

E1/p(ul−1) ≤ Dp(U l−1) ≤
(

C(p, ε, εl,Y)
Hlsl(N l

ε)
+ 1

)
Dp(U l) ,

where Dp(U l) =: E1/p(ul), and we similarly obtain that

E1/p(ϕl−1) ≤ C E1/p(ϕl) .

The above yields the proof of (a) and (b), whereas property (c) follows from (6.11) and from the compact-
ness of X . Finally, property (d) is a direct consequence of (6.6) and of the construction of ul−1, compare
Steps 1 and 2. ¤

Step 7: Since πp−1(Yp−1) is finitely generated, we let {gs}β
s=1 be a set of its generators. As in [40,

Lemma 4.3], but this time using Propositions 5.5 and 5.7, we now prove:

Lemma 6.8 Let ψ : X → Yp−1 be a smooth W 1/p-map and v ∈ R∞1/p,ψ(X ,Yp−1). Then there exists a

current L̃ ∈ Rn−p+1(X ; πp−1(Yp−1)), say L =
∑β

s=1 L̃s⊗gs, where L̃s ∈ Rn−p−1(X ), such that ∂L̃ = Sp−1
v

and for every s

M(L̃s) ≤ C (E1/p(v) + ‖Ext(v)‖p
Lp(Cn+1,RN )

+ E1/p(ψ) + ‖Ext(ψ)‖p
Lp(Cn+1,RN )

) ,

where the absolute constant C > 0 does not depend on v and ψ. Moreover, if ∂X = ∅ and v ∈ R∞1/p(X ,Yp−1)
we have

M(L̃s) ≤ C (E1/p(v) + ‖Ext(v)‖p
Lp(Cn+1,RN )

) .

Proof: For s = 1, . . . , β, let αs : πp−1(Yp−1) → Z be such that for every homotopy class a ∈ πp−1(Yp−1)
we have a =

∑β
s=1 αs(a) gs . Moreover, for every s we can find a smooth map ps : Yp−1 → Sp−1 such that

for any (p− 1)-cycle C in Yp−1

[ps(C)]πp−1(Sp−1) = αs([C]πp−1(Yp−1)) . (6.17)

Now, ps ◦ v belongs to R∞1/p,ψs
(X , Sp−1) for every v ∈ R∞1/p,ψ(X ,Yp−1), where ψs := ps ◦ψ : X → Sp−1

is a smooth W 1/p-map. Moreover, the one-to-one group homomorphisms ks : Z→ πp−1(Yp−1) defined by
ks(n) := n gs satisfy

β∑
s=1

ks(αs(a)) = a ∀ a ∈ πp−1(Yp−1) .

By (6.17), this gives that
β∑

s=1

ks
∗(Sps◦v) = Sp−1

v ,

where for any map u ∈ R∞1/p(X ,Sp−1) satisfying (6.3) we have set

ks
∗(Su) :=

µ∑

i=1

[[σi ]]⊗ ks(c(n, p) ·mi) = c(n, p)
µ∑

i=1

mi[[σi ]]⊗ gs .

By applying Proposition 5.7 to ps ◦ v, for every s we find Ls ∈ Rn−p+1(X ) such that ∂Ls = P(ps ◦ v)
and

M(Ls) ≤ C
(E1/p(ps ◦ v) + ‖Ext(ps ◦ v)‖p

Lp(Cn+1) + E1/p(ψs) + ‖Ext(ψs)‖p
Lp(Cn+1)

)
.

Since Sps◦v = c(n, p)P(ps ◦ v), see Remark 6.5, setting L̃s := c(n, p)Ls , the current

L̃ :=
es∑

s=1

ks
∗(L̃s) =

es∑
s=1

L̃s ⊗ gs ∈ Rn−p+1(X ; πp−1(Yp−1))
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satisfies

∂L̃ =
es∑

s=1

ks
∗(∂L̃s) =

es∑
s=1

ks
∗(Sps◦v) = Sp−1

v .

The last assertion is similarly obtained by using Proposition 5.5. ¤

Step 8: We finally prove the assertion.
As in [40, Prop. 4.1], using Lemma 6.7 iteratively, with l = p, . . . , M := dim(Y), we find a map up−1 ∈

R∞1/p,ϕp−1(X ,Yp−1) and a smooth W 1/p-function ϕp−1 : X → Yp−1 such that for both v = u and v = ϕ
we have

E1/p(vp−1) ≤ C1 E1/p(v) and ‖Ext(vp−1)‖Lp(Cn+1,RN ) ≤ C1 ‖Ext(v)‖Lp(Cn+1,RN ) , (6.18)

where C1 > 0 is an absolute constant. Also, property (d) in Lemma 6.7 yields

χ̃∗(S
p−1
up−1) = Su ,

where χ̃∗ : Rn−p(X ;πp−1(Yp−1)) →Rn−p(X ; πp−1(Y)) denotes the homomorphism induced by the injection
map ĩ : Yp−1 ↪→ Y.

Applying Lemma 6.8 to v = up−1, with ψ = ϕp−1, we find a current L̃ =
∑β

r=1 L̃r ⊗ gr, where
L̃r ∈ Rn−p−1(X ), i.e., L̃ ∈ Rn−p+1(X ; πp−1(Yp−1)), such that ∂L̃ = Sp−1

up−1 . Setting L := χ̃∗(L̃) ∈
Rn−p+1(X ; πp−1(Y), we have

L =
β∑

r=1

L̃r ⊗ ĩ∗gr , ∂L = χ̃∗(∂L̃) = χ̃∗(S
p−1
up−1) = Su .

Moreover, it turns out that each ĩ∗gr belongs to ρp(Hsph
p−1(Y)). We thus can find some integers {λr

s}ess=1 ⊂ Z
such that

ĩ∗gr =
es∑

s=1

λr
s Γs ∀ r = 1, . . . , β ,

whence

L =
es∑

s=1

L̂s ⊗ Γs , L̂s :=
β∑

r=1

λr
s L̃r .

On account of the notation from (6.2), property ∂L = Su means that

∂L̂s = Ts(u) ∀ s = 1, . . . , s̃ .

Therefore, the currents Ls := c(n, p) L̂s satisfy the assertion, as the mass estimates follow from Lemma 6.8
and from (6.18). ¤
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I-43100 Parma, E-mail: domenico.mucci@unipr.it

28


