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Abstract
We study monotonicity properties for minimizers of transport problems.

In the one-dimensional case, we present an algorithm to construct minimiz-
ing monotone transport plans by “monotonizing” a given minimizing trans-
port plan. This method applies in particular to the case of theL1-Wasserstein
metric where we prove the existence of monotone minimizers for arbitrary
marginals. We find that monotone transport plans are in a certain sense close
to monotone transport maps.

Keywords: Transport problems, covariance, Wasserstein distance, cyclical mono-
tonicity.

1 Introduction

The classical transport problem, introduced by Monge, is tofind a mapψ : Rn →

R
n (n ∈ N given) minimizing the functional

C(ψ) :=
∫

Rn

|x− ψ(x)|g0(x) dx, (1)

such that
∫

ψ−1(B)
g0(x) dx=

∫

B
g1(y) dy

for all Borel setsB ⊂ Rn, whereg0, g1 are integrable functions onRn. This
corresponds to an optimal transport of a pile of matter described by the function
g0 into a hole described byg1. This problem has been subsequently relaxed and
generalized to the form we are studying in this article:
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2 1 INTRODUCTION

Definition 1.1 (Transport problem). Letµ, ν ∈ P(Rn) and let c: Rn×Rn→ R be a
lower semicontinuous function (thecost function). Thetransport problemconsists
then of finding a probability measure T∈ P(Rn × Rn) which minimizes

C(T) :=
∫

Rn

∫

Rn
c(x, y)dT(x, y), (2)

such that the marginals of T are given byµ andν, i.e.,

π1T = µ, π2T = ν,

whereπ1 is the projection on the first n coordinates andπ2 the projection on the
second n coordinates, i.e.

π1T :=
∫

Rn
dT(·, y), π2T :=

∫

Rn
dT(x, ·).

(We remark that this definition and our subsequent results can be naturally ex-
tended to arbitrary positive Radon measure of fixed total measure.)
It is well known that the above transport problem admits a solution, see, e.g.,
[1]. In particular the case wherec(x, y) := |x − y|p with p ≥ 1 has been studied
extensively. It leads to the definition of theWasserstein distance

Wp(µ, ν) :=

(

inf

{∫

Rn

∫

Rn

|x− y|pdT(x, y); T ∈ P(Rn,Rn), π1T = µ, π2T = ν

})1/p

which has important applications in various fields of mathematics, compare [1].
In this article we want to take a closer look on certain properties of the optimal
transport planT of a transport problem given by Definition 1.1. This is motivated
by two applications. One of them stems from asset pricing, compare [4, 3] where,
e.g., the covariance of two probability measures has to be optimized. It follows
from the results in this article that for arbitrary given probability measures (also
if they are not absolutely continuous) the conjoint probability (which can be con-
sidered as a transport plan) is monotone in the sense of our Definition 2.1, below.
This turns out to be useful for the explicit computation of optimal assets. The
second motivation stems from a model for damage in solid bodies which had been
introduced in [6]. The mathematical analysis of this model requires a good un-
derstanding of gradient flows induced by theL1-Wasserstein metric. In [7], we
consider a time discretized problem that naturally leads tothe minimization of
the L1-Wasserstein metric. At this point it is necessary to know that monotone
transport plans exist. We refer the reader to [7] for detailson this application.
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This article generalizes some of the classical results by Gangbo and McCann [2]
on transport plans.
In the following section we will first give a precise definition of what we call a
monotone transport plan and will demonstrate that this notion naturally extends
the notion of monotonicity for functions inR. We will then prove the existence
of such monotone transport plans in a constructive way that can be used for direct
numerical computations.
In Section 3 we give general results on the monotonicity of transport plans which
solve certain transport problems and apply them to the applications we have sketched
above.
In the final Section 4 we generalize our results to higher dimensions and connect
them to the theory of cyclically monotone functions.

2 Monotone transport plans –
definition and existence

In this section we define what we understand by the “monotonicity” of a transport
plan and compare it with the notion of “cyclical montonicity”.

Definition 2.1 (Monotonicity of transport plans). Let T ∈ P(R,R) be a transport
plan with marginalsµ, ν ∈ P(R). Then T is calledmonotone increasingif the
following condition holds:
For all Borel sets A, B ⊂ R with µ(A) > 0, µ(B) > 0 and inf{x ∈ B} > sup{x ∈ A}
we define

A′ := suppπ2(T |A×R), B′ := suppπ2(T |B×R).

Theninf {x ∈ B′} ≥ sup{x ∈ A′}.
T is calledmonotone decreasingif we have insteadinf{x ∈ A′} ≥ sup{x ∈ B′}.

The definition of monotonicity is a natural extension of the usual notion in the
following sense:

Proposition 2.2. If T can be expressed as a transport map rather than a transport
plan, then its monotonicity corresponds to the monotonicity of the transport map
in the usual sense of a function inR. More precisely, if there exists a Borel map
T̃ : suppµ → R such that T= (Id × T̃)#µ, then T is monotone iff T̃ is µ-a.e.
monotone.

We remark that it is necessary to allow̃T to be non-monotone on a setN with
µ(N) = 0, sinceT̃ can be defined arbitrarily on such sets.
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Proof. Let T̃ be monotone increasing. Choose subsetsA, B ⊂ suppµ ⊂ R with
µ(A) > 0, µ(B) > 0 and inf{x ∈ B} < sup{x ∈ A} and defineT := (Id × T̃)#µ. Then
π2(T |A×R) = (T̃#µ)(A). Therefore suppπ2(T |A×R) ⊂ T̃(A) (and analogously forB).
SinceT̃ is monotone increasing, we have inf{x ∈ T̃(B)} ≤ sup{x ∈ T̃(A)} and the
monotonicity ofT follows immediately.
On the other hand letT be monotone increasing and of the formT = (Id ×
T̃)#µ. SupposeT̃ is not monotone increasing on a set of positiveµ-measure,
then there are setsA, B ∈ R with µ(A), µ(B) > 0, sup{x ∈ A} < sup{x ∈ B}
and sup{y ∈ T̃(A)} > inf {y ∈ T̃(B)}. HenceA′ := suppπ2(T |A×R) = T̃(A) and
B′ := suppπ2(T |B×R) = T̃(B) do not satisfy the monotonicity condition and there-
foreT fails to be monotone. �

In the following we need to compare monotonicity with the classical notion of
cyclical monotonicity. We denote by〈·, ·〉 the scalar product inRn.

Definition 2.3. Let T ∈ P(Rn × Rn) be a transport plan with support S . The set
S is calledcyclically monotoneif for any finite set of points(xi , yi)i=1,...,k ⊂ S we
have

〈y1, x2 − x1〉 + 〈y2, x3 − x2〉 + · · · + 〈yk, x1 − xk〉 ≤ 0.

In this case we call Tcyclically monotone.

Every cyclical monotone transport plan is also monotone. InSection 4 we will
see that this extends naturally to higher dimensions.
It is at first glance not obvious that for any marginals a monotone transport plan
exists, but its existence has been proved in [5, Theorem 6] for the case of cyclical
monotonicity in arbitrary dimensions.
In the one-dimensional case, one can also construct a monotone transport plan
explicitly. The following result gives an approximation for the one-dimensional
case that can be used for numerical computations of monotonetransport plans.

Theorem 2.4. Let µ, ν ∈ P(R) then there exists an explicit approximation for a
monotone increasing (or decreasing) transport plan with marginalsµ andν.

Proof. Letε > 0. We first choose bounded intervalsD = (d1, d2), E = (e1, e2) ⊂ R
such thatµ(D) = ν(E) ≥ 1−ε andµ((−∞, d1)) = ν((−∞, e1)). Then we decompose
D×E ⊂ R×R into squares. For simplicity we assume thatd1 = e1 = 0. We define
I k
i := [(i − 1)2−k, i2−k) for 1 ≤ i ≤ N := [1 +max(d2, e2) · 2k] and

mi := 2k

∫

Ik
i

µ|D, ni := 2k

∫

Ik
i

ν|E.
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Denote the midpoints of the intervalsI k
i by zk

i . We define sequences of measures
µk andνk by

µk :=















N
∑

i=1

miδzk
i















, νk :=















N
∑

i=1

niδzk
i















.

We chooseε = 1/k and construct a monotone transport planTk for µk andνk: De-
fineTk :=

∑N
i, j=1 ak

i, jδ(zk
i ,z

k
j )

where the constantsak
i, j are determined by the following

algorithm:
Seti = j = 1, L = m1.
While i ≤ N or j ≤ N:
{

If L > n j thenL = L − n j, ak
i, j = n j.

If L ≤ n j thenL = 0, ak
i, j = L.

If L = 0 theni = i + 1, L = mi, otherwisej = j + 1.
}

The algorithm terminates since
∑N

i=1 mi = µ(D) = ν(E) =
∑N

j=1 n j. The resulting
transport planTk =

∑N
i, j=1 ak

i, jδzk
i

is monotone increasing by construction.
Finally we let k → ∞. The resulting monotone increasing transport plansTk

converge weakly-? to a limit T ∈ P(R × R), which is still monotone increasing.
The same argument can be used to construct a monotone decreasing transport
plan. �

We conclude this section with a look at the uniqueness of monotone transport
plans. A uniqueness result (for cyclical monotonicity) hasalready been found
in [5, Corollary 14] (under the additional condition that one of the marginal mea-
sures has no concentrations).

Proposition 2.5. Let T1,T2 ∈ P(R × R) be monotone increasing transport plans
with marginalsµ andν. Then T1 = T2.

Proof. We discretizeT1 andT2 similarly as before: Defineak
i j :=

∫

Ik
i ×Ik

j
dT1(x, y),

bk
i j :=

∫

Ik
i ×Ik

j
dT2(x, y) andTk

1 :=
∑k

i, j=1 ak
i jδ(zk

i ,z
k
j )

andTk
2 :=

∑k
i, j=1 bk

i jδ(zk
i ,z

k
j )

analo-

gously, whereI k
i andzk

i are defined as in the proof of Theorem 2.4.

Then fork → ∞ we have againTk
1

?
⇀ T1 andTk

2

?
⇀ T2. Suppose thatT1 , T2.

Then fork sufficiently large, there arei0, j0 such thatai0 j0 < bi0 j0. Then since
∑

i ai j0 =
∑

i bi j0 (T1 andT2 have the same marginals), there exists ai1 , i0 such
that ai1 j0 < bi1 j0. Let us assume without loss of generality thati1 < i0. Since
∑

j ai1 j =
∑

j bi1 j, there exists aj1 , j0 such thatai1 j1 > bi1 j1. By monotonicity we
must hence havej1 < j0. Since

∑

i ai j1 =
∑

i bi j1, there exists ai2 , i1 such that
ai2 j1 < bi2 j1, and by monotonicity we must havei2 < i1. Iterating this argument,
we get an infinite sequence ofik with ik+1 < ik. Sinceik are indices from a finite
index set, this is a contradiction. �
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3 Optimality of monotone transport plans

3.1 General results

The aim of this section is to find conditions under which atransport problemhas
a monotone transport plan as minimizer. We generalize the classical results on
cyclical monotone transport plans by Gangbo and McCann [2, 5] in two ways:
First, we prove that minimizers are monotone even if we allowthe marginals to
have concentrations. Second, we prove that the existence ofmonotone minimizers
can be generalized to a larger class of admissible functionals that encompasses,
in particular, theL1-Wasserstein metric. For the latter result we need to intro-
duce some novel “monotonizing” method that transforms an arbitrary minimizing
transport plan into a monotone transport plan of the same energy.

Theorem 3.1. Let c be a continuous function satisfying for all x1, x2, y1, y2 ∈ R

with x1 < x2 and y1 < y2

c(x1, y1) + c(x2, y2) < c(x1, y2) + c(x2, y1), (3)

then the transport problem of Definition 1.1 with cost function c admits a unique
minimizer, and this minimizer is monotone increasing.

Proof. The existence of a minimizer is, as has already been pointed out, well
established. Suppose a minimizerT is not monotone increasing. Then there are
setsA, B ⊂ R with µ(A), µ(B) > 0 and inf{x ∈ B} > sup{x ∈ A} such that for

A′ := suppπ2(T |A×R), B′ := suppπ2(T |B×R)

we have inf{x ∈ B′} < sup{x ∈ A′}. Therefore there are setsD,E ∈ R × R such
that T(D),T(E) > 0 and such that for all (x1, y1) ∈ D and (x2, y2) ∈ E we have
x1 ≤ x2 andy1 > y2.
We choose compact subsetsR ⊂ D andS ⊂ E such that min{T(R),T(S)} =: K >

0. Then we can choose a nonnegative Radon measureτ ≤ T with suppτ = R∪ S
andτ(R) = τ(S) = K. We will demonstrate (by use of an approximation argument)
that there exists a measureτ′ , τ such thatT′ := T −τ+τ′ is a transport plan with
marginalsµ andν satisfyingC(T′) < C(T).
First, we notice that sinceRandS are compact, the continuous function

e(x1, y1, x2, y2) := −c(x1, y1) − c(x2, y2) + c(x1, y2) + c(x2, y1)

admits a minimizere0 on (x1, y1) ∈ R, (x2, y2) ∈ S. Since by assumptione is
positive on this set, this minimizer must be positive as well, and we havee0 > 0.
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Now we approximateτ|R andτ|S by sums of Dirac measures, such that, for (xiN
1 , y

iN
1 ) ∈

R and (xiN
2 , y

iN
2 ) ∈ S, we have

τR
N :=

N
∑

i=1

K
N
δ(xiN

1 ,yiN
1 )

?
⇀ τ|R,

τS
N :=

N
∑

i=1

K
N
δ(xiN

2 ,yiN
2 )

?
⇀ τ|S,

asN →∞. (Such an approximation is possible, compare [5, Lemma 7].)
We defineτN := τR

N + τ
S
N. For a fixedN, we constructτ′N as follows:

τ′N :=
N

∑

i=1

K
N

(

δ(xiN
1 ,yiN

2 ) + δ(xiN
2 ,yiN

1 )

)

.

It is easy to see thatτ′N has the same marginals asτN. DefineTN := T − τ + τN

andT′N := T − τ + τ′N. By construction,TN
?
⇀ T. The sequence (T′N) is obviously

tight, hence it converges (up to a subsequence) to a limitT′ ∈ P(R × R). Using
the weak-? convergence and the continuity ofc we haveC(TN) → C(T) and
C(T′N)→ C(T′) for N → ∞. By (3), we have

C(T′N) −C(TN) = C(τ′N) −C(τN)

= −

N
∑

i=1

K
N

e(xiN
1 , y

iN
1 , x

iN
2 , y

iN
2 )

≤ −Ke0.

This estimate is uniform inN. Hence we can take the limitN → ∞ to obtain
C(T′) < C(T). Since the marginals also converge, we have found a transport plan
T′ with marginalsµ andν but lower cost. HenceT cannot be a minimizer of the
transport problem. Uniqueness follows then from Proposition 2.5. �

If we study the important class of cost functions of the formc(x, y) = k(|x − y|)
wherek is a convex function we are lead to the following theorem:

Theorem 3.2. Let c be a cost function of the form c(x, y) = k(|x − y|) with
k: R≥0 → R strictly convex and monotone increasing, then the transport problem
of Definition 1.1 admits a minimizer which is unique and monotone increasing.

Proof. Let x1, x2, y1, y2 ∈ R with x1 < x2 andy1 < y2. We want to show that

c(x1, y1) + c(x2, y2) < c(x1, y2) + c(x2, y1), (4)

since we can then simply apply Theorem 3.1.
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We need to distinguish three cases. (Other situations follow by the symmetry of
the problem.)
C 1: x1 < x2 ≤ y1 < y2

We use the following auxiliary statement: Ifx < y and 0< ε ≤ (x+ y)/2 we have
k(x) + k(y) > k(x + ε) + k(y − ε). To prove this statement we estimate (using the
strict convexity ofk)

k(x+ ε) + k(y− ε) = k(x) +
∫ x+ε

x
k′(ξ)dξ + k(y) −

∫ y

y−ε
k′(ξ)dξ

< k(x) + k′(x+ ε) + k(y) − k′(y− ε)

≤ k(x) + k(y).

Now we apply this statement withx := y1 − x2, y := y2 − x1 andε := y2 − y1 to
derive

k(|x1 − y1|) + k(|x2 − y2|) < k(|x1 − y2|) + k(|x2 − y1|).

C 2: x1 < y1 ≤ x2 < y2

We havek(|y2 − x1|) ≥ k(|y1 − x1|) +
∫ y1+(y2−x2)

y1
k′(ξ) dξ. Sincek is strictly convex,

we can estimate
∫ y1+(y2−x2)

y1

k′(ξ) dξ >
∫ y2−x2

0
k′(ξ) dξ = k(|y2 − x2|).

Taking both together we get the desired estimate.
C 3: x1 ≤ y1 < y2 ≤ x2 Here the inequality follows from the fact thatk is
monotone and hencek(|y2 − x1|) > k(|y1 − x1|) andk(|x2 − y1|) > k(|x2 − y2|). �

Remark 3.3. This proves in particular the well-known result that transport maps
(as far as they exist) of Lp-Waserstein distances with p> 1 are (µ-a.e.) monotone.

3.2 “Monotonizing” non-monotone transport plans

In the following we want to generalize our existence result.However, the classical
“book shifting example” shows that we cannot expect all minimizers of transport
problems to be monotone:
Let c(x, y) := |x− y| andµ := χ[0,1]dx, ν = χ[0.5,1.5]dx. Then the transport map

ψ :=

{

x+ 1, if x ≤ 0.5,
x, if x > 0.5

can be easily shown to be a minimizer of the associated transport problem. How-
ever,ψ is not monotone.
Nevertheless, we will prove that in this (and various other situations) at least an
alternativeminimizer exists which is monotone:
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Theorem 3.4.Let c be a continuous cost function satisfying for all x1, x2, y1, y2 ∈

R with x1 < x2 and y1 < y2

c(x1, y1) + c(x2, y2) ≤ c(x1, y2) + c(x2, y1), (5)

then the transport problem of Definition 1.1 admits a monotone increasing mini-
mizer (and possibly other minimizers which do not need to be monotone).

Proof. Let T be some minimizer of the transport problem. We approximateT by
a sequence of measures which are finite sums of Dirac masses ona grid. To be
more precise we define fori, j = −4k, . . . , 4k the squares

Qk
i j := [i2−k, (i + 1)2−k) × [ j2−k, ( j + 1)2−k).

We denote the midpoint of the squareQk
i j by Mk

i j . Then we can defineTk by

Tk :=
4k
∑

i, j=−4k

2kT(Qk
i j )δMk

i j
. (6)

As above,Tk
?
⇀ T for k→ ∞. Now we can “monotonize”Tk, i.e. we can perform

a finite number of manipulations onTk which lead to a modified transport planT′k
which is monotone increasing and satisfiesC(T′k) ≤ C(Tk). This is equivalent to
convert the matrixa given by

ai, j := T(Qk
i j )

(where we omit for simplicity the indexk) iteratively into a matrixa′i, j where for
all i1 < i2 and j1 > j2 eithera′i1, j1 = 0 or a′i2, j1 = 0 whereby not changing the sums
over rows or columns, only allowing for nonnegative entriesand not increasing
the corresponding costC(T′k) of the transport planT′k defined by

T′k :=
4k
∑

i, j=−4k

2ka′i, jδMk
i j
.

This can be achieved by the following iteration, illustrated in Example 3.6: In each
step we transform a given matrixam = (a(m)

i, j ) ∈ Rp×q
≥0 (with associated transport

planT(m)
k ) with

a(m)
i, j =



























a(m)
1,1 a(m)

1,2 . . . a(m)
1,q

...
...

a(m)
p,1 a(m)

p,2 . . . a(m)
p,q
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into a new matrixa(m+1) being of “row” or “column form”, i.e. either

a(m+1)
i, j =









































a(m+1)
1,1 0 . . . 0

a(m+1)
2,1 a(m+1)

2,2 . . . a(m+1)
2,q

...
...

...

a(m+1)
p,1 a(m+1)

p,2 . . . a(m+1)
p,q









































or a(m+1)
i, j =









































a(m+1)
1,1 a(m+1)

1,2 . . . a(m+1)
1,q

0 a(m+1)
2,2 . . . a(m+1)

2,q
...

...
...

0 a(m+1)
p,2 . . . a(m+1)

p,q









































,

such that the sums over rows and columns are preserved and theassociated trans-
port planT(m+1)

k has no higher cost thanT(m)
k , i.e.,C(T(m+1)

k ) ≤ C(T(m)
k ). In this way,

we have reduced the problem to a pure algebraic statement formatrices, its proof
is given below, see Lemma 3.5.
We can now apply the same lemma in the next iteration step to proceed from
(m+1) to (m+2) where we apply it only for all but the first row ofa(m+1) (if a(m+1)

is of row form) or all but the first column (ifa(m+1) is of column form).
Starting witha(0) := ai, j, the iteration stops after finitely many steps when the
remaining matrix has been reduced to a vector (since in everystep the matrix
gets reduced by either a row or a column). The resulta′ of this iteration is of
the desired form: It satisfies by construction the conditionthat for all i1 < i2 and
j1 > j2 eithera′i1, j1 = 0 or a′i2, j1 = 0, and hence its associated transport planT′k is
monotone increasing. Moreover, since in every iteration step the sums over rows
and columns ofa(m) are preserved, the transport planT′k has the same marginals as
Tk, and finallyC(T′k) ≤ C(Tk).
We now take the limitk → ∞. There exists aT′ such that (at least for a subse-

quence)T′k
?
⇀ T′. Since (T′k) is tight and||T′k|| → 1, we obtainT′ ∈ P(R × R).

Sinceπ1T − π1T′k = π1T − π1Tk → 0 whenk→ ∞, and the same holds forπ2, we
have constructed a transport planT′ with marginalsµ andν. Due to the weak-?
convergence we also haveC(T)−C(T′) = limk→∞C(Tk)−C(T′k) ≥ 0. ThereforeT′

is a minimizing transport plan. It remains to show thatT′ is monotone increasing.
Suppose that it is not, then there must be setsD,E ⊂ R×R with T′(D),T′(E) > 0
and such that for all (x1, y1) ∈ D and (x2, y2) ∈ E we havex1 < x2 andy1 > y2. We
can assume thatD andE are such that we can choose squaresSD,SE in {Qk

i j } with
SD ⊂ D andSE ⊂ E andT′(SD),T′(SE) > 0, but this leads to a contradiction: By
the weak-? convergence we would have that alsoT′k(SD),T′k(SE) > 0 for k large
enough. This would be a contradiction to the monotonicity ofT′k. HenceT′ is a
monotone increasing minimizer. �

We conclude with the algebraic lemma used in the above proof:

Lemma 3.5. Let A = (ai, j) ∈ Rn×m be a matrix with nonnegative entries. Let
c: {1, . . . , n} × {1, . . .m} → R be a function satisfying the inequality (5). Define

C(A) :=
n

∑

i=1

m
∑

j=1

c(i, j)ai, j.
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Then there exists a matrix B= (bi, j) ∈ Rn×m with the following properties:

(i) bi, j ≥ 0 for all i , j,

(ii)
∑n

i=1 bi, j =
∑n

i=1 ai, j for all j and
∑m

j=1 bi, j =
∑m

j=1 ai, j for all i,

(iii) C (B) ≤ C(A),

(iv) either bi,1 = 0 for all i = 2, . . . , n
or b1, j = 0 for all j = 2, . . . ,m.

Proof. The proof is constructive, in fact we give a simple algorithmthat computes
B for a given matrixA. Since property (iv) is (as we have seen in the proof of
Theorem 3.4) directly connected to the monotonicity of a corresponding transport
plan, we say that this algorithm “monotonizes” a given matrix A.
A key feature in the monotonization will be the following construction (which
has essentially been already applied in the proof of Theorem3.1) which we call a
switchof (i1, j1) and (i2, j2):
Take i1, i2 ∈ {1, . . . , n} and j1, j2 ∈ {1, . . . ,m} with i1 < i2, j2 < j1. Define
β := min{ai1, j1, ai2, j2} and

bi1, j1 := ai1, j1 − β,

bi2, j2 := ai2, j2 − β,

bi1, j2 := ai1, j2 + β,

bi2, j1 := ai2, j1 + β,

bi, j := ai, j for all other pairs (i, j).

A small calculation shows that the matrixB := (bi, j) satisfies the properties (i)-(iii)
in the statement of this lemma and that moreover eitherbi1, j1 = 0 or bi2, j2 = 0 (or
both).
Now we just need to find a sequence of switches that transformsA into a matrix
B satisfying property (iv) and we have proved the lemma. This can be achieved
with the help of the following algorithm:

Seti = n and j = m.
While i > 1 and j > 1:
{

Switch (i, 1) and (1, j). (The result will again be calledA.)
If a1, j = 0 then j = j − 1.
If ai,1 = 0 theni = i − 1.

}

SetB = (ai, j).
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The properties which the switch is satisfying ensure that the algorithm terminates
and that its resultB satisfies the properties (i)-(iii). A closer look at the algorithm
reveals furthermore that in each processing of the while loop eitherai,1 or a1, j is
set to zero. From this it follows in particular thatB also satisfies (iv). This proves
the lemma. �

Example 3.6.To demonstrate the above algorithm let us consider the matrix

A :=





















1 2 3
7 8 9
4 5 6





















.

We will show that A can be monotonized (in the sense above) to

Amon :=





















6 0 0
6 15 3
0 0 15





















.

Proof. We apply the algorithm of Lemma 3.5. Seti = 3 and j = 3 and switch
(3, 1) and (1, 3) to get

A′ =





















4 2 0
7 8 9
1 5 9





















,

where we underlined the “switched” entries. Sincea3,1 = 0, we reducei by one.
In the next step we accordingly switch (2, 1) and (1, 3) leading to

A′′ =





















4 1 0
7 8 9
0 6 9





















.

This timea1,3 = 0, hencej gets reduced toj = 2. We then switch (2, 1) and (1, 2)
and arrive at

B =





















6 0 0
6 9 9
0 6 9





















.

This matrix satisfies the condition (iv). (It is of “row form”.) We can check the
sums over the columns and rows and we see that they are still unchanged.
In the next step in the monotonization process, we look at theremaining matrix

(

6 9 9
0 6 9

)

.
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Incidentally, this matrix is already of column form and we can go on by applying
Lemma 3.5 to the matrix

(

9 9
6 9

)

.

The same procedure as above yields
(

15 3
0 15

)

.

Taking everything together, we have found the monotonized matrix Amon. �

3.3 Useful properties and applications

To conclude this section, we collect some useful propertiesthat can be derived
quite easily for monotone transport plans. First, we show that every monotone
transport plan can be (mostly) described by a set-valued mapand that this map in
a certain sense corresponds to a transport map:

Proposition 3.7. Let T be a monotone increasing transport plan. Then the set-
valued functionψ(x) := (suppT) ∩ ({x} × R) is itself monotone increasing when
we defineψ(x1) ≥ ψ(x2) iff for all a ∈ ψ(x1), b ∈ ψ(x2) we have a≥ b.
Moreover there is a sequence of monotone increasing transport plans Tε induced

by transport mapsψε with Tε
?
⇀ T. If suppT is compact, the transport mapsψε

converge toψ.

Remark 3.8. The fact that we can approximate a transport plan by transport
maps is actually not a property only ofmonotonetransport plans. Indeed, one can
approximateanytransport plan by transport maps using a similar construction as
in the proof of Theorem 3.4.

P  P 3.7:
The first statement follows directly from the definition. Theapproximating trans-
port plansTε can be chosen as

Tε(x, y) := T(x+ εy, y).

Supposing thatTε cannot be represented by a transport map would imply that
the mapψε(x) := (suppTε) ∩ ({x} × R) were indeed set-valued, i.e. that there
exists somex ∈ R with card(ψε(x)) > 1. Takey1, y2 ∈ ψε(x) with y1 > y2 then
x1 := x− εy1 > x2 := x− εy2 and hence the points (x1, y1) and (x2, y2) violate the
monotonicity condition. �

Finally we prove a very natural property about the behavior of maps induced by
transport plans:
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Proposition 3.9.Let T be a transport plan with marginalsµ andν. Let T# : P(R)→
P(R) be a map with

T#(τ) := π2(T |A),

where T is a transport plan and A⊂ suppT with π1(T |A) ≥ τ (i.e. for every
measurable set X⊂ R we haveπ1(T |A)(X) ≥ τ(X)).
Take some x∈ R. Let µ ∈ P(R) andτ := µ|[x,∞). If T is a monotone increasing
transport plan withπ1(T) = µ then

inf suppT#(τ) ≥ sup suppT#(µ − τ).

Proof. Suppose the opposite. Then there area ∈ suppT#(τ) andb ∈ suppT#(µ−τ)
such thata < b. Therefore suppT∩([x,∞)×{a}) , ∅ and also suppT∩((−∞, x))×
{b}) , ∅. Hence we can choosey1 := a andy2 := b and have found points (x1, y1)
and (x2, y2) in suppT violating the monotonicity condition, sincey1 < y2 and
x1 ≥ x > x2. �

Remark 3.10.While T# is in general not uniquely determined, in the specific case
of τ chosen as above, it is unique.

All results of this and the last section carry over directly to theL1-Wasserstein
distance. We have seen in the “book shifting example” that inthis case, i.e., if
c(x, y) := |x − y|, we cannot expect a minimizer of the transport problem to be
monotone. Theorem 3.4, however, shows that there exists at least one monotone
increasing minimizer:

Corollary 3.11. The transport problem associated to the L1-Wasserstein distance
in R1 admits a monotone increasing minimizer.

This, together with Proposition 3.9 can be directly appliedto the above mentioned
model for damage, compare [7].

4 Higher dimensional problems

In this section we generalize the definition of monotonicityand some of our results
from the previous sections to higher dimensional problems.

Definition 4.1. Let T ∈ P(Rn×Rn) be a transport plan. Then we call Tmonotone
increasingif the set S:= suppT satisfies the following condition:
For all x1, x2 ∈ S , we have〈x2 − x1, y2 − y1〉 ≥ 0.

It can be easily shown that in the casen = 1, this coincides with Definition 2.1.
The next (simple) lemma draws a connection from this definition to the classical
notion of cyclical monotonicity: If a transport plan has a cyclically monotone
support, then it is montone increasing.
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Lemma 4.2. Let T ∈ P(Rn × Rn) be a transport plan with cyclically monotone
support S . Then T is monotone increasing.

We can now generalize Theorem 3.1 to the higher dimensional case.

Theorem 4.3. Let c be a Borel function satisfying for all x1, x2, y1, y2 ∈ R
n with

〈x2 − x1, y2 − y1〉 > 0

c(x1, y1) + c(x2, y2) < c(x1, y2) + c(x2, y1), (7)

then the transport problem of Definition 1.1 with cost function c admits a mini-
mizer which is monotone increasing.

Proof. The proof follows the same outline as the proof of Theorem 3.1. �

Remark 4.4. Uniqueness for the case thatµ(E) = 0 wheneverH n−1(E) = 0 and
thatsuppT is cyclically monotone has been proved in [5, Corollary 14].

The additional condition onµwhich is needed to prove uniqueness in Theorem 4.3
cannot be removed as the following classical example demonstrates:

Example 4.5. Let n= 2. Defineµ := 1
2δ(−1,0) +

1
2δ(1,0) andν := 1

2δ(0,−1) +
1
2δ(0,1).

Then T1(x, y) = 1
2δ(−1,0),(0,−1) +

1
2δ(1,0),(0,1) and T2(x, y) = 1

2δ(−1,0),(0,1) +
1
2δ(1,0),(0,−1)

are both monotone increasing transport plans. Moreover, for any cost function of
the form c(x, y) = k(|x− y|), they are both minimizers of the transport problem of
Definition 1.1.

It is easy to generalize Theorem 3.4 to higher dimensions in the sense that a trans-
port plan exists which is monotone increasing along a given line. However, it
seems to be difficult to prove existence of a transport plan which is monotone
increasing in the sense of Definition 4.1.
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