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Abstract

We study monotonicity properties for minimizers of trandgoblems.
In the one-dimensional case, we present an algorithm tdrmsninimiz-
ing monotone transport plans by “monotonizing” a given mmizing trans-
port plan. This method applies in particular to the case®f taWasserstein
metric where we prove the existence of monotone minimizersarbitrary
marginals. We find that monotone transport plans are in aioesénse close
to monotone transport maps.

Keywords: Transport problems, covariance, Wasserstein distanckcalymono-
tonicity.

1 Introduction

The classical transport problem, introduced by Monge, f&ntha mapy: R" —
R" (n € N given) minimizing the functional

o) = [ Ix-u(9im9dx @

such that

fw o Go(x) dx = fB Gu(y) dy

for all Borel setsB c R", wheregy, g; are integrable functions oR". This
corresponds to an optimal transport of a pile of matter dlesdrby the function

Jo into a hole described byg;. This problem has been subsequently relaxed and
generalized to the form we are studying in this article:
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2 1 INTRODUCTION

Definition 1.1 (Transport problem)Letu, v € P(R") and letc R"xR" — R be a
lower semicontinuous function (tkeest function. Thetransport problensonsists
then of finding a probability measuredP(R" x R") which minimizes

om = [ [ axndTixy). @
RI’] RI’]
such that the marginals of T are given pyandv, i.e.,
7T1T =M, 7T2T =Y,

wherern, is the projection on the first n coordinates anglthe projection on the
second n coordinates, i.e.

mT ::f dT(.,y), mT ::f dT(x,-).
RN RN

(We remark that this definition and our subsequent resutisbeanaturally ex-
tended to arbitrary positive Radon measure of fixed totalsuen)
It is well known that the above transport problem admits aitsmh, see, e.g.,
[1]. In particular the case wherx,y) := |[x — y|P with p > 1 has been studied
extensively. It leads to the definition of tN¥asserstein distance

1p
Wo(u, v) = (inf {f f IX=yPAT(xy); T € PR"R"), mT = p, 7T = V})
RI’\ RI’\

which has important applications in various fields of mathges, compare [1].
In this article we want to take a closer look on certain prépsrof the optimal
transport pla of a transport problem given by Definition 1.1. This is motad
by two applications. One of them stems from asset pricingypare [4, 3] where,
e.g., the covariance of two probability measures has to hien@ed. It follows
from the results in this article that for arbitrary given patility measures (also
if they are not absolutely continuous) the conjoint probigbjwhich can be con-
sidered as a transport plan) is monotone in the sense of dinitizs 2.1, below.
This turns out to be useful for the explicit computation ofio@l assets. The
second motivation stems from a model for damage in soliddsodgthich had been
introduced in [6]. The mathematical analysis of this mo@gjuires a good un-
derstanding of gradient flows induced by theWasserstein metric. In [7], we
consider a time discretized problem that naturally leadghéminimization of
the L1-Wasserstein metric. At this point it is necessary to knoat thonotone
transport plans exist. We refer the reader to [7] for detailshis application.



This article generalizes some of the classical results bygGa and McCann [2]
on transport plans.

In the following section we will first give a precise definti@f what we call a
monotone transport plan and will demonstrate that thisomotiaturally extends
the notion of monotonicity for functions iR. We will then prove the existence
of such monotone transport plans in a constructive way #rabe used for direct
numerical computations.

In Section 3 we give general results on the monotonicityarigport plans which
solve certain transport problems and apply them to the egupdins we have sketched
above.

In the final Section 4 we generalize our results to higher dsias and connect
them to the theory of cyclically monotone functions.

2 Monotone transport plans —
definition and existence

In this section we define what we understand by the “monotiyiiaf a transport
plan and compare it with the notion of “cyclical montonicity

Definition 2.1 (Monotonicity of transport plans)et T € P(R,R) be a transport
plan with marginalsu,v € P(R). Then T is callednonotone increasing the
following condition holds:

For all Borel sets AB c R with u(A) > 0, u(B) > 0 andinf{x € B} > sudx € A}
we define

A = suppra(Tlaxe), B’ i= suppra(Tlexe)-

Theninf{x € B’} > supgx € A’}.
T is calledmonotone decreasinfjwe have insteathf{x € A’} > sudx € B'}.

The definition of monotonicity is a natural extension of trsual notion in the
following sense:

Proposition 2.2.If T can be expressed as a transport map rather than a trarispor
plan, then its monotonicity corresponds to the monotoyitthe transport map

in the usual sense of a functionta More precisely, if there exists a Borel map
T: suppu — R such that T= (Id x T)su, then T is monotongfiT is u-a.e.
monotone.

We remark that it is necessary to alléwto be non-monotone on a sktwith
u(N) = 0, sinceT can be defined arbitrarily on such sets.
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Proof. Let T be monotone increasing. Choose subge® c suppu c R with
p(A) > 0,u(B) > 0 and infx € B} < sudx € A} and defineT := (Id x T)uu. Then
(T laxe) = (T4)(A). Therefore suppa(T|axz) C T(A) (and analogously foB).
SinceT is monotone increasing, we havefirfe T(B)} < supx € T(A)} and the
monotonicity of T follows immediately.

On the other hand Ief be monotone increasing and of the foim= (Id x
T)su. Supposel is not monotone increasing on a set of positiveneasure,
then there are set&, B € R with u(A),u(B) > 0, sugx € A} < sudx € B}
and supy € T(A)} > infly € T(B)}. HenceA' := suppra(Tlacz) = T(A) and
B := suppr2(Tlexz) = T(B) do not satisfy the monotonicity condition and there-
foreT fails to be monotone. ]
In the following we need to compare monotonicity with thessliaal notion of
cyclical monotonicity. We denote b, -) the scalar product iR".

Definition 2.3. Let T € P(R" x R”) be a transport plan with support S. The set

.....

have
(Y1, X2 = X1) + (Yo, X3 — Xo) + -+ + (Y, X1 — Xy < 0.

In this case we call Tyclically monotone

Every cyclical monotone transport plan is also monotoneSeation 4 we will
see that this extends naturally to higher dimensions.

It is at first glance not obvious that for any marginals a monettransport plan
exists, but its existence has been proved in [5, Theoremr@hécase of cyclical
monotonicity in arbitrary dimensions.

In the one-dimensional case, one can also construct a moadtansport plan
explicitly. The following result gives an approximatiorr fthe one-dimensional
case that can be used for numerical computations of monatangport plans.

Theorem 2.4. Letu,v € P(R) then there exists an explicit approximation for a
monotone increasing (or decreasing) transport plan withrgimaals u andv.

Proof. Lete > 0. We first choose bounded interv@ls= (dy, d,), E = (e1,&) C R

such thau(D) = v(E) > 1-gandu((—oo, d;)) = v((—o0, €)). Then we decompose

D x E c RxR into squares. For simplicity we assume tdat e; = 0. We define
=[(i-1)2ki2¥ for1 <i < N :=[1+max(d,, &) - 2¢] and

m .= 2kfll|D, n = 2|(fV|E~
1k X



Denote the midpoints of the intervalsby Z. We define sequences of measures

ux andyy by N .
Uy = [Z m52:<] ,  Vk.= (Z ni54<).
i=1

i=1
We choose: = 1/k and construct a monotone transport plarior ux andvy: De-
fine T := ¥y a}fjé@,zjk) where the constans; are determined by the following
algorithm:
Seti=j=1,L=m.
Whilei <Norj<N:
{
If L > n;thenL = L —n;, & =n;.
If L <n;thenL =0,a¢ = L.
If L=0theni =i+ 1,L =m;,otherwisej = j + 1.
}
The algorithm terminates singgl; m = u(D) = v(E) = YL, n;. The resulting
transport play = Zi'f'jzl a}fjd%k is monotone increasing by construction.
Finally we letk — oo. The resulting monotone increasing transport plagps
converge weakly to a limit T € (R x R), which is still monotone increasing.
The same argument can be used to construct a monotone degréassport
plan. O
We conclude this section with a look at the uniqueness of rom@transport
plans. A uniqueness result (for cyclical monotonicity) ls®ady been found
in [5, Corollary 14] (under the additional condition thateoof the marginal mea-
sures has no concentrations).

Proposition 2.5. Let T;, T, € P(R x R) be monotone increasing transport plans
with marginalsu andv. Then T = T».

Proof. We discretizel; andT, similarly as before: De1‘ine1!‘j = fhkxljk dT.(xy),
b¥ = f|ikx|jde2(X’y) and Tk := 3K a1!‘j6(%k,zjk) and Tk := 3K b}j.&(%k,zjk) analo-
gously, wherd* andz are defined as in the proof of Theorem 2.4.

Then fork — co we have agaifTk . Y and T X T,. Suppose that; # To.
Then fork suficiently large, there ar@, jo such thata;;, < bj,j,. Then since
i &j, = 2ibij, (T1 andT, have the same marginals), there exists @ iy such
thata;,;, < by,j,- Let us assume without loss of generality that io. Since
2j &, = 2 b, there exists g, # jo such thaty;, j, > by,j,. By monotonicity we
must hence havg < jo. Since};; aj, = X; bj,, there exists & # i; such that
a,j, < bi,j;, and by monotonicity we must have < i,. Iterating this argument,
we get an infinite sequence Rfwith ix,; < ix. Sinceiy are indices from a finite
index set, this is a contradiction. O
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3 Optimality of monotone transport plans

3.1 General results

The aim of this section is to find conditions under whictnansport problenhas

a monotone transport plan as minimizer. We generalize thesidal results on
cyclical monotone transport plans by Gangbo and McCann][#&) Bvo ways:
First, we prove that minimizers are monotone even if we alliogrmarginals to
have concentrations. Second, we prove that the existermemdtone minimizers
can be generalized to a larger class of admissible fundidhat encompasses,
in particular, theL!-Wasserstein metric. For the latter result we need to intro-
duce some novel “monotonizing” method that transforms artrary minimizing
transport plan into a monotone transport plan of the sameggne

Theorem 3.1. Let ¢ be a continuous function satisfying for ajl X, y1,¥>. € R
with x; < X, and y < y»

C(X1, Y1) + C(X2, Y2) < C(X1, Y2) + C(X2, Y1), 3)

then the transport problem of Definition 1.1 with cost fuoctc admits a unique
minimizer, and this minimizer is monotone increasing.

Proof. The existence of a minimizer is, as has already been poinigdwel
established. Suppose a minimiZeis not monotone increasing. Then there are
setsA, B c R with u(A), u(B) > 0 and infx € B} > sudx € A} such that for

A = suppra(Tlaxe), B i= suppra(Tlexe)

we have infx € B’} < sugx € A’}. Therefore there are sels E € R x R such
thatT(D), T(E) > 0 and such that for allx, y;) € D and &, Y.) € E we have

X1 £ X2 andyl > Yo.

We choose compact subs&s- D andS c E such that mifir (R), T(S)} =: K >

0. Then we can choose a nonnegative Radon meastre with suppr = RU S
andr(R) = 7(S) = K. We will demonstrate (by use of an approximation argument)
that there exists a measure# 7 such thafl’ := T — 7+ 17’ is a transport plan with
marginalsu andy satisfyingC(T’) < C(T).

First, we notice that sincR andS are compact, the continuous function

&(X1, Y1, X2, ¥2) = —C(X1, Y1) — C(X2, Y2) + C(X1, Y2) + C(X2, Y1)

admits a minimizery on (X1,Y¥1) € R, (X,¥2) € S. Since by assumptioa is
positive on this set, this minimizer must be positive as yaeid we have, > 0.
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Now we approximate|r andr|s by sums of Dirac measures, such that, S (yIN) €
Rand (',yy') € S, we have

iz IPM=

Z23

K *
Nfs(xilN,y‘lN) = TlR,

~
ZW0n

K.«
Nd(xlzN’yzN) - T|5,

asN — oo. (Such an approximation is possible, compare [5, Lemma 7].)
We definery := 7 + 7. For a fixedN, we constructy}, as follows:

N K

. N 6(Xi1N’yi2N) + 6(X|2N,Y1N)) .
i=1

It is easy to see that| has the same marginals $. DefineTy (=T -7+ 1y

andT] := T — 7+ 7. By constructionTy X T.The sequencel() is obviously
tight, hence it converges (up to a subsequence) to aTimid P(R x R). Using
the weakx convergence and the continuity ofwe haveC(Ty) — C(T) and
C(Ty) — C(T") for N — oo. By (3), we have

C(Ty) — C(Tw)

C(ry) — C(rn)

Nk

= _Zﬁe(XIN’yll ’X2 ’y|2
i=1

< —Kep.

This estimate is uniform imN. Hence we can take the limN — oo to obtain
C(T’) < C(T). Since the marginals also converge, we have found a transian
T’ with marginalsu andv but lower cost. Henc& cannot be a minimizer of the
transport problem. Unigueness follows then from Proposil.5. O

If we study the important class of cost functions of the farfr y) = k(|x — y|)
wherek is a convex function we are lead to the following theorem:

Theorem 3.2. Let ¢ be a cost function of the form{xcy) = k(|x — y|) with
k: R.o — R strictly convex and monotone increasing, then the trangpablem
of Definition 1.1 admits a minimizer which is unique and monetincreasing.

Proof. Let Xq, X2, Y1, Y2 € R with X; < X, andy; < y,. We want to show that
C(X1, Y1) + C(X2, Y2) < C(X1, Y2) + C(X2, Y1), (4)

since we can then simply apply Theorem 3.1.
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We need to distinguish three cases. (Other situationswWdbyp the symmetry of
the problem.)

CasEl: Xy <X <Y1 <VY»

We use the following auxiliary statement:®if< y and O< ¢ < (X +y)/2 we have
k(x) + k(y) > k(x + &) + k(y — €). To prove this statement we estimate (using the
strict convexity ofk)

k(X + &) + k(y — &)

X+& Y

k() + f K(@)dé + K(y) - f K(©)deé
X y-&

k(X) + K(x+ &)+ k(y) - K(y—¢)

K(X) + K(y).

Now we apply this statement with:= y; — X, ¥ := Y» — X; ande ;= y, — y; to
derive

A

IA

k(X1 = yal) + k(Ix2 = Yal) < k(Ix1 = Yal) + k(|x2 — y1l).
CASEZ2: X1 <Y1 £ X2 < V2
We havek(ly, — xa|) > K(lyz — Xa|) + fy Z“WZ_XZ) k'(¢) d¢. Sincek is strictly convex,
we can estimate

Y1+(Y2—X2) Y2~ X2
[ @ [ k@de= k-
Y1 0

Taking both together we get the desired estimate.

Case 3. X3 < ¥y1 < Y2 < X Here the inequality follows from the fact thhktis
monotone and hend€ly, — x;[) > k(ly1 — x1[) andk([xz — y1) > k(Ix2 —y2l). O

Remark 3.3. This proves in particular the well-known result that transppmaps
(as far as they exist) offeWaserstein distances with>p1 are (u-a.e.) monotone.

3.2 *“Monotonizing” non-monotone transport plans

In the following we want to generalize our existence reddtiwever, the classical
“book shifting example” shows that we cannot expect all mizers of transport
problems to be monotone:

Letc(x,y) ;= |[X—yl andu = xp.11dX, v = x[o515dX Then the transport map

] x+1, if x<05,
V=1 x  ifx>05

can be easily shown to be a minimizer of the associated toahgmblem. How-
ever,y is not monotone.

Nevertheless, we will prove that in this (and various otherasions) at least an
alternativeminimizer exists which is monotone:
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Theorem 3.4.Let ¢ be a continuous cost function satisfying for allxs, y1, Y, €
Rwith x < X, and y < y»

C(X1, Y1) + (X2, Y2) < C(X1,Y2) + C(X2, Y1), (5)

then the transport problem of Definition 1.1 admits a monetimrcreasing mini-
mizer (and possibly other minimizers which do not need to @eatone).

Proof. Let T be some minimizer of the transport problem. We approxiriaby
a sequence of measures which are finite sums of Dirac massegit To be
more precise we define farj = —4%, ..., 4the squares

Qf =1[i27% (i + D2 x[j27, (j + 1)21).

We denote the midpoint of the squa@{é} by Mh Then we can defin@ by

4k
= > 2T@Q)ow- (6)

i, j=—ak

As above Ty X T fork — co. Now we can “monotonizeT,, i.e. we can perform
a finite number of manipulations di which lead to a modified transport plag
which is monotone increasing and satisf&3,) < C(Ty). This is equivalent to
convert the matriva given by

gj .= T(Qh‘)
(where we omit for simplicity the indek) iteratively into a matrixg ; where for
alliy <izandj; > jo eithera ; =0ora ; = 0whereby not changlng the sums

over rows or columns, onIy aIIowmg for nonnegative entaasl not increasing
the corresponding co§X(T,) of the transport plaii, defined by

4k
’ e K~/
To= D) 24 6w -
i,j=—4K
This can be achieved by the following iteration, illustcite Example 3.6: In each
step we transform a given matral® = (afm)) e R2;? (with associated transport
planT{™) with
(m  5(m (m)

aly a ... gy

(m _

a1 i . .
(m  5(m (m)
al aly ... apg
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into a new matrixa™™% being of “row” or “column form”, i.e. either

(m+1) (m+1) (m+1) (m+1)
(,1 , (O ) .. (O ) a; a(l,2 5 ... a(l,q y
m+ m+ m+ m+ m+
.. 0 a, a,
(m+1) _ %1 %2 aZ,q (m+1) ,2 .q
aI] - . : : or a'l - : : :
(n%+1) (n%+1) (n%+1) i (rr.Hl) (rr.Hl)
ay; ay, .. Qg 0 a5, ... Apg

such that the sums over rows and columns are preserved aasdheated trans-
port planT™™" has no higher cost thaf{™, i.e.,C(T{™") < C(T™). In this way,
we have reduced the problem to a pure algebraic statememigivices, its proof
is given below, see Lemma 3.5.

We can now apply the same lemma in the next iteration stepdoepd from
(m+1) to (m+ 2) where we apply it only for all but the first row af™? (if a(™?1)

is of row form) or all but the first column (&™?% is of column form).

Starting witha©® := a, the iteration stops after finitely many steps when the
remaining matrix has been reduced to a vector (since in esteqy the matrix
gets reduced by either a row or a column). The reaultf this iteration is of
the desired form: It satisfies by construction the condittaat for alli; < i, and
jr> joeithera ; =0ora ; =0, and hence its associated transport dlais
monotone increasing. Moreover, since in every iteratiep she sums over rows
and columns o&™ are preserved, the transport plphas the same marginals as
Tk, and finallyC(T}) < C(T).

We now take the limik — co. There exists &’ such that (at least for a subse-
quence)T, X T’. Since T, is tight and||T;|| — 1, we obtainT’ € P(R x R).
Sincem; T —m T, = mT —m T — 0 whenk — oo, and the same holds fap, we
have constructed a transport plahwith marginalsu andy. Due to the wealk
convergence we also ha@¢T)-C(T") = limy_.. C(Tx)-C(T};) > 0. Thereforerl”

is a minimizing transport plan. It remains to show tfiats monotone increasing.
Suppose that it is not, then there must be Bets c R x R with T'(D), T'(E) > 0
and such that for albg, y;) € D and o, y») € E we havex; < x, andy; > y,. We
can assume th& andE are such that we can choose squ&gsSk in { ikj} with

Sp ¢ D andSg c E andT’(Sp), T'(Sg) > 0, but this leads to a contradiction: By
the weakx convergence we would have that al§¢§Sp), T,(Sg) > 0 for k large
enough. This would be a contradiction to the monotonicityfpfHenceT’ is a
monotone increasing minimizer. |
We conclude with the algebraic lemma used in the above proof:

Lemma 3.5. Let A = (a;) € R™™ be a matrix with nonnegative entries. Let
c:{1,...,n}x{1,...m} — R be a function satisfying the inequality (5). Define

=YY ol Das

i=1 j=1
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Then there exists a matrix B (b; j) € R™™ with the following properties:
(i) byj > O0foralli, j,
(i) Xilibij =2l g forall jand XL, bij = X1 & ; for all i,
(i) C(B) < C(A),

(iv) eitherh, =0foralli =2,...,n
orby;=0forallj=2,...,m.

Proof. The proof is constructive, in fact we give a simple algorittat computes

B for a given matrixA. Since property (iv) is (as we have seen in the proof of
Theorem 3.4) directly connected to the monotonicity of aesponding transport
plan, we say that this algorithm “monotonizes” a given nxa#i

A key feature in the monotonization will be the following atruction (which
has essentially been already applied in the proof of The@&@&which we call a
switchof (i, j1) and {2, j»):

Takeiy, i, € {1,....,nfand j, j» € {1,...,m} with i; < iy, j» < j;. Define

B = min{a, j,, a,,} and

bil,jl = Qi - B,
biz,iz = apj, — B,
bil,iz = aij, + 5,
biz,jl = 8,5 + B,
bi; = &,; forallother pairsi j).

A small calculation shows that the matix = (b; ;) satisfies the properties (i)-(iii)
in the statement of this lemma and that moreover eithgr = 0O orb;, j, = 0 (or
both).
Now we just need to find a sequence of switches that transférmt a matrix
B satisfying property (iv) and we have proved the lemma. This loe achieved
with the help of the following algorithm:

Seti=nandj =m.

Whilei > 1 andj > 1:

{
Switch ¢, 1) and (1 j). (The result will again be called.)
If a;; = 0thenj =j-1.
If 8, =0theni =i-1.

}

SetB = (a,)).
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The properties which the switch is satisfying ensure thagilgorithm terminates
and that its resulB satisfies the properties (i)-(iii). A closer look at the aigfum
reveals furthermore that in each processing of the while kithera; ; or a  is
set to zero. From this it follows in particular thAatalso satisfies (iv). This proves
the lemma. O

Example 3.6. To demonstrate the above algorithm let us consider the matri

12 3
7 8 9.

4 5 6

A=

We will show that A can be monotonized (in the sense above) to
6 0 O
Amon:i=| 6 15 3 |.
0 0 15
Proof. We apply the algorithm of Lemma 3.5. Set 3 andj = 3 and switch

(3,1) and (13) to get
4 20
7 8 9],

1509

A =

where we underlined the “switched” entries. Sirage = 0, we reduce by one.
In the next step we accordingly switch (9 and (1 3) leading to

410
A=l78 9]
06 9

This timea, 3 = 0, hencej gets reduced t¢ = 2. We then switch (21) and (12)

and arrive at
6 00
B=|6 9 9].

0 6 9

This matrix satisfies the condition (iv). (It is of “row form)” We can check the
sums over the columns and rows and we see that they are stilanged.
In the next step in the monotonization process, we look ategh®ining matrix

6 9 9
0 6 9)°
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Incidentally, this matrix is already of column form and wean@g on by applying
Lemma 3.5 to the matrix

9 9

6 9/

The same procedure as above yields
15 3
0 15/
Taking everything together, we have found the monotonizattimAnon. |

3.3 Useful properties and applications

To conclude this section, we collect some useful propettias can be derived
quite easily for monotone transport plans. First, we shoat @very monotone
transport plan can be (mostly) described by a set-valuedandghat this map in
a certain sense corresponds to a transport map:

Proposition 3.7. Let T be a monotone increasing transport plan. Then the set-
valued functiony(x) := (suppT) N ({X} x R) is itself monotone increasing when
we definas(x;) > y(xo) iff for all a € y(x1), b € ¥(x;) we have a b.

Moreover there is a sequence of monotone increasing trabpfans T, induced

by transport mapg, with T, AT suppT is compact, the transport mags
converge tay.

Remark 3.8. The fact that we can approximate a transport plan by transpor
maps is actually not a property only sfonotondransport plans. Indeed, one can
approximateanytransport plan by transport maps using a similar constrantas

in the proof of Theorem 3.4.

ProoF or ProposiTION 3.7:
The first statement follows directly from the definition. Téggproximating trans-
port plansT, can be chosen as

T.(Xy) == T(X+eYy,y).

Supposing thall, cannot be represented by a transport map would imply that
the mapy.(x) = (suppT,) N ({X} x R) were indeed set-valued, i.e. that there
exists somex € R with card{.(X)) > 1. Takeyy, VY, € y.(X) with y; > y, then

X1 i= X—gYy1 > X = X — gy, and hence the pointg4, y;) and (., y,) violate the
monotonicity condition. |
Finally we prove a very natural property about the behavianaps induced by
transport plans:
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Proposition 3.9.Let T be a transport plan with marginglsandv. Let T;: P(R) —
P(R) be a map with
Tu(r) 1= m2(T|a),

where T is a transport plan and & suppT with 71(T|a) > 7 (i.e. for every
measurable set X R we haver;(T|a)(X) > 7(X)).

Take some x R. Lety € P(R) andt := plx). If T is @ monotone increasing
transport plan withry (T) = u then

inf suppT(r) > sup supfu(u — 7).

Proof. Suppose the opposite. Then therearesuppT.(r) andb € suppTx(u—1)
such thatn < b. Therefore supp N([x, o) x{a}) # @ and also supp N((—oo, X)) X
{b}) # 0. Hence we can choosg := a andy, := b and have found point{, y1)
and ., y>) in suppTl violating the monotonicity condition, sinog < Yy, and
X1 > X> Xp. ]

Remark 3.10. While T is in general not uniquely determined, in the specific case
of r chosen as above, it is unique.

All results of this and the last section carry over directiythe L*-Wasserstein
distance. We have seen in the “book shifting example” thahis case, i.e., if
c(xy) := |x —yl], we cannot expect a minimizer of the transport problem to be
monotone. Theorem 3.4, however, shows that there existast bne monotone
increasing minimizer:

Corollary 3.11. The transport problem associated to the\Wasserstein distance
in R admits a monotone increasing minimizer.

This, together with Proposition 3.9 can be directly apptaethe above mentioned
model for damage, compare [7].

4 Higher dimensional problems

In this section we generalize the definition of monotoniaitgl some of our results
from the previous sections to higher dimensional problems.

Definition 4.1. Let T € P(R"xR") be a transport plan. Then we callfionotone
increasingf the set S:= suppT satisfies the following condition:
For all X, X, € S, we havéx, — Xg, ¥, — Y1) = 0.

It can be easily shown that in the case 1, this coincides with Definition 2.1.
The next (simple) lemma draws a connection from this definito the classical
notion of cyclical monotonicity If a transport plan has a cyclically monotone
support, then it is montone increasing.
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Lemma 4.2. Let T € P(R" x R") be a transport plan with cyclically monotone
support S. Then T is monotone increasing.

We can now generalize Theorem 3.1 to the higher dimensi@sal.c

Theorem 4.3. Let ¢ be a Borel function satisfying for alk %, y1,y> € R" with
(Xo = X1,¥2—Yy1) >0

C(X1, Y1) + C(X2, Y2) < C(X1, Y2) + C(X2, Y1), (7)

then the transport problem of Definition 1.1 with cost fuostc admits a mini-
mizer which is monotone increasing.

Proof. The proof follows the same outline as the proof of Theorem 3.1 O

Remark 4.4. Uniqueness for the case thatE) = 0 whenever#"1(E) = 0 and
thatsuppT is cyclically monotone has been proved in [5, Corollary.14]

The additional condition op which is needed to prove uniqueness in Theorem 4.3
cannot be removed as the following classical example detraias:

Example 4.5.Let n= 2. Defineu := 3610) + 36(10) aNdV = 36(0-1) + 36(0.1)-
Then (X, Y) = 36¢10,0-1) + 36@0y01 and TA(X.Y) = 361001 + 30L0.0-1)
are both monotone increasing transport plans. Moreoverafty cost function of
the form €x,y) = k(X — V|), they are both minimizers of the transport problem of
Definition 1.1.

It is easy to generalize Theorem 3.4 to higher dimensiontsdsénse that a trans-
port plan exists which is monotone increasing along a gives | However, it
seems to be dlicult to prove existence of a transport plan which is monotone
increasing in the sense of Definition 4.1.
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