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Abstract

Given a family of vector fields we introduce a notion of convexity and
of semiconvexity of a function along the trajectories of the fields and give
infinitesimal characterizations in terms of inequalities in viscosity sense
for the matrix of second derivatives with respect to the fields. We also
prove that such functions are Lipschitz continuous with respect to the
Carnot-Carathéodory distance associated to the family of fields and have
a bounded gradient in the directions of the fields. This extends to Carnot-
Carathéodory metric spaces several results for the Heisenberg group and
Carnot groups obtained by a number of authors.

1 Introduction.

Consider a smooth vector field X in Rn and its trajectories, i.e., the solutions
of ẋ(t) = X(x(t)). It is natural to say that a function u : Ω → R, Ω ⊆ Rn

open, is convex along the vector field X if its restriction to each trajectory of
X is convex, that is, t 7→ u(x(t)) is convex for all x(·). When u is smooth, one
observes that d2

dt2u(x(t)) = X2u(x(t)) and then such a function is convex along
X if and only if X2u ≥ 0. If u is not smooth a natural question is whether its
convexity can be characterized by some weak version of the inequality X2u ≥ 0.
One of the results of this paper is that

u ∈ USC(Ω) is convex along X ⇐⇒ −X2u ≤ 0 in viscosity sense.

Moreover, we prove that this property implies a local gradient estimate in the
direction of X

|Xu| ≤ C(K)‖u‖∞ ∀K ⊂⊂ Ω.

More generally, we consider a family of m vector fields X = {X1, . . . , Xm}
of class C2 and say that u is convex along them if t 7→ u(x(t)) is convex on all
trajectories of Span(X ), i.e., for all x(·) solving

ẋ(t) =
m∑

i=1

αiXi(x(t))

1



for some α = (α1, . . . , αm) ∈ Rm. For u smooth a computation gives

d2

dt2
u(x(t)) = αTD2

Xu(x(t))α,

where
D2
Xu(x) :=

(
Xi(Xju(x))

)
i,j

is the m×m Hessian matrix of u with respect to the vector fields, so the positive
semi-definiteness of this matrix is equivalent to the convexity of u along X . Our
main result is that

u ∈ USC(Ω) is convex along X1, . . . , Xm ⇐⇒ −D2
Xu ≤ 0 in viscosity sense,

which means that

D2
Xφ(x) ≥ 0 for all smooth φ and x ∈ arg max(u− φ). (1)

We also define the weaker notion of semi-convexity with respect to the vector
fields, in the trajectory and in the viscosity sense, prove their equivalence, and
show that this property implies the local boundedness of the gradient of u with
respect to the vector fields DXu := (X1u, . . . ,Xmu).

The problem we study is related to the search of a notion of convexity in
Carnot groups with useful properties. This issue received considerable attention
recently in the sub-elliptic and sub-Riemannian communities. Monti and Rickly
[27] proved that all geodetically convex functions in the Heisenberg group are
constants, so this notions appears useless outside Riemannian geometry. A
notion of horizontal convexity in the Heisenberg group, that seems to have been
first conceived by Caffarelli, was introduced and studied independently by Lu,
Manfredi, and Stroffolini [24] and by Danielli, Garofalo, and Nhieu [16] (in
more general Carnot groups and with the name of weak H-convexity). It uses
convex combinations built by the group operation and dilations, and does not
need any a priori regularity or boundedness of the function. Lu, Manfredi, and
Stroffolini introduced also the notion of convexity in viscosity sense. It requires a
stratification of the Lie algebra associated to the Carnot group and the choice of
a basis of the first layer, that is the horizontal subspace, formed by left-invariant
vector fields X = {X1, . . . , Xm}. Then u ∈ USC(Ω) is called v-convex if the
horizontal Hessian D2

Xu is positive semi-definite in the viscosity sense, i.e., (1)
holds [24, 23]. They proved in the Heisenberg group the Lipschitz continuity
of a v-convex function with respect to the Carnot-Carathéodory distance, a
bound on the horizontal gradient DXu, and the v-convexity of any horizontally
convex function. The full equivalence of the two notions turned out to be harder
and was settled by Wang [33], Magnani [25], and Juutinen, Lu, Manfredi, and
Stroffolini [23] with different proofs. The Lipschitz continuity was also studied
under different assumptions in [7], [16], [28], [25], [31]. A nice survey of these
results is in the book [11]. Further properties of convex functions in Carnot
groups, including the existence of second derivatives a.e. and the horizontal
Monge-Ampère operator, were studied by [21], [22], [16], [17], [20], [25], [13].
See also [32] for a study of Hessian measures associated to Hörmander vector
fields with step 2. The present paper seems to be the first to introduce the
notion of semiconvexity in this setting.
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We believe our results could be the first step of a theory of convex functions
and sets in general metric spaces of Carnot-Carathéodory type, without the
algebraic structure of Carnot groups. We recall that a Carnot-Carathéodory
(briefly C-C) space is a manifold M endowed with a distribution X , and the
C-C distance d(x, y) between two point x, y ∈ M is the minimum time taken
by a trajectory of the control system associated to X1, . . . , Xm to join x and
y (see Definition (20)). If d(x, y) < +∞ everywhere, then (M,d) is a metric
space. We refer to [9] and [26] for a general presentation of the subject. If
M = Rn it looks natural to say that a function u : M → R is convex if
it is convex along the vector fields X . Then our results give an infinitesimal
characterization of this property in terms of the second order sub-jet [14] and
a bound on the X -components of the (viscosity) sub-differential [3]. We also
prove that X -semiconvex functions are Lipschitz continuous with respect to the
C-C distance d. We refer to [12] for semi-convexity in the Euclidean setting and
its many applications. We believe that this notion can play a similar important
role for functions in metric spaces.

We remark that our proofs of the main results are completely different from
those in Carnot groups of the cited papers, that exploit the deep algebraic and
geometric properties of that setting. We use instead methods of the theory of
viscosity solutions, in particular an idea of straightening the trajectories and
reducing inequalities in Rn to inequalities along curves that is inspired by the
proof in [15, 3] that u is nondecreasing along the trajectories of X if and only
if Xu ≥ 0 in viscosity sense.

A second motivation of the present paper comes from subelliptic partial
differential equations of Monge-Ampère type, i.e., of the form

−det
(
D2
Xu) +H(x, u,DXu) = 0, in Ω.

In fact, these equations are degenerate elliptic exactly on v -convex functions,
and the well-posedness of their Dirchlet problem was studied among such func-
tions in Carnot groups by the first-named author and Mannucci [4, 5, 6]. The
gradient bound for v -convex functions is particularly useful in that context. We
give an example of Comparison Principle for Monge-Ampère type equations that
extends a result in [5] from Carnot groups to general vector fields.

The paper is organized as follows. In Section 2 we introduce the definitions
of X -convexity and v -convexity with some comments and simple examples. Sec-
tion 3 contains the proof of the main result about the equivalence of the two
notions. Section 4 recalls some basic facts about Carnot-Carathéodory met-
ric spaces, Carnot groups, and the Heisenberg group, including the notion of
horizontal convexity, and gives several examples of X -convex functions. Sec-
tion 5 introduces X -semiconvexity along with some simple properties and ex-
amples. Section 6 is about the gradient bounds and d-Lipschitz continuity of
X -semiconvex functions. Finally, Section 7 gives an application to PDEs of
Monge-Ampère type.

Acknowledgements. We are grateful to Roberto Monti for many discussions
and insightful comments. We also thank the unknown referee for a very careful
reading of the first draft of this paper and for some very useful suggestions for
its improvement.

The first author was partially supported by the Italian M.I.U.R. project
”Viscosity, metric, and control theoretic methods for nonlinear partial differen-
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tial equations”. The second author would like to thank the University of Padua
where most of this work was done while she was holding a post-doc position
there.

2 Notions of convexity.

Throughout the paper X = {X1(x), . . . , Xm(x)} is a family of C2-vector fields
in Rn and Ω ⊂ Rn is open and connected.

Definition 2.1. We call X -line any absolutely continuous curve, satisfying

ẋ(t) =
m∑

i=1

αiXi(x(t)) = σ(x(t))α, t ∈ [T1, T2], (2)

for some α = (α1, . . . , αm) ∈ Rm, where σ(x) is the n ×m-matrix having the
vectors X1(x), . . . , Xm(x) as columns.

Remark 2.1. Note that, up to a simple reparametrization, we can always
assume |α|2 =

∑m
i=1 α

2
i = 1.

Using the X -lines, we can introduce the following definition.

Definition 2.2. We say that u : Ω → R is convex along the vector fields
X1(x), . . . , Xm(x), briefly X -convex, if for every curve x : [T1, T2] → Ω sat-
isfying (2), the composition t 7→ u(x(t)) is a real-valued convex function on
[T1, T2].

We say that u is X -concave if −u is X -convex.

Remark 2.2. If Y = {Y1(x), . . . , Ym(x)} is another family of C2-vector fields
such that any X -line is also a Y-line and viceversa, then u is X -convex if and
only if it is Y-convex. This is the case, for instance, if we make a change of basis
of spanX independent of x, i.e., Yj(x) is the j−th column of σ(x)A for some
m×m matrix A with detA 6= 0.

Remark 2.3. The preceding remark suggests that we can also think of X -con-
vexity as the usual convexity on a family of curves with suitable properties. The
Euclidean convexity in Rn is recovered by taking for X the canonical basis, so
the X−lines are the usual straight lines. Incidentally, in (Rn, | · |) the straight
lines are the geodesics, so X−convexity coincides with geodetic convexity. But
this is not the case in general, for instance in the Heisenberg group, by a result
of Monti and Rickly [27].

For the second definition we introduce the matrix of the second-order deriva-
tives w.r.t. the family of vector fields X , that we call intrinsic Hessian, or
X -Hessian.

We always indicate by A = (ai j)i j the matrix having ai j as element of
position (i, j) and as vk the kth-component of a vector v, but we denote the
points in Rn by the usual notation x = (x1, . . . , xn). The intrinsic Hessian (or
X -Hessian) of a C2 function u is the m×m-matrix.

D2
Xu(x) :=

(
Xi(Xju(x))

)
i j

= σT (x)D2u(x)σ(x) + (∇Xi
Xj(x) ·Du(x))i j

= σT (x)D2u(x)σ(x) +

(
n∑

k=1

∇Xi
Xk

j (x) uxk
(x)

)
i j

,

(3)
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for i, j = 1, . . . ,m, where · indicates the standard inner product in Rn and
∇Xi

Xj the derivative of the vector field Xj along the vector field Xi. More pre-
cisely,∇Xi

Xj is the vector in Rn whose k-component is∇Xi
Xk

j (x) = Xi(Xk
j (x)),

where Xk
j (x) is the k-component of the vector field Xj(x).

In other words, ∇Xi
Xj = DXjXi where DXj is the Jacobian-matrix of the

map x 7→ Xj(x).
Note that, if n = m and X is the canonical basis in Rn, then (3) is the usual

Hessian, while for X1(x), . . . , Xm(x) satisfying the Hörmander condition (3) is
the so-called horizontal Hessian, and its trace is the horizontal Laplacian(called
also sub-Laplacian).

Proposition 2.1. If u ∈ C2(Ω) and x(·) is the X -line corresponding to α ∈ Rm

(i.e., it satisfies (2)) then

d2

dt2
u(x(t)) = αTD2

Xu(x(t))α . (4)

Therefore u is X -convex if and only if D2
Xu ≥ 0 in Ω.

Remark 2.4. By D2
Xu ≥ 0 we mean (D2

Xu)
∗ ≥ 0, where

(D2
Xu)

∗(x) := σT (x)D2u(x)σ(x) +
(∇Xi

Xj(x) +∇Xj
Xi(x)

2
·Du(x)

)
i j

is the symmetrized matrix of the intrinsic Hessian. In fact, aTD2
Xu(x)a =

aT (D2
Xu)

∗(x)a. In this paper we often prefer to use the non-symmetrized in-
trinsic Hessian to simplify the calculations.

Proof. We compute

d2

dt2
u(x(t)) =

d

dt

[
Du · ẋ(t)

]
=

d

dt

[
Du · σ(x(t))α

]
= D2u ẋ(t) · σ(x(t))α+ αT

(
d

dt
σT (x(t))

)
Du.

The first term on the right-hand side can be written as αTσT (x(t))D2u σ(x(t))α.
Next we calculate the second term:∑

i

αi
d

dt
σi j(x(t))uxj =

∑
i,k

αiuxjσi jxk
ẋk(t) =

∑
i,h,l

αiuxj

(
DXi

)
j k
αlσk l

=
∑
i,l

αi αluxj

(
DXiXl

)
j

=
∑
i,l

αiDXiXl ·Du αl = αT
(
DXiXj ·Du

)
i j
α

Therefore

d2

dt2
u(x(t)) = αT

(
σT (x(t))D2u σ(x(t)) +

(
DXiXj ·Du

)
i j

)
α = αTD2

Xu α .

This result motivates the following definition for non-smooth functions.
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Definition 2.3. We say that u ∈ USC(Ω) is convex in the viscosity sense with
respect to the fields X , briefly v -convex, if

−D2
Xu ≤ 0 in Ω (5)

in the viscosity sense, i.e., for any ϕ ∈ C2 and x ∈ Ω such that u − ϕ has a
local maximum at x, we have that aTD2

Xϕ(x) a ≥ 0, for all a ∈ Rm.

Remark 2.5. It is easy to see, as in [24], that the definition of v -convexity is
equivalent to each of the following statements:
i) u is a viscosity subsolution of the linear PDE

−trace
(
A(D2

Xu)
∗) = 0, in Ω,

for every (constant) m×m symmetric and positive definite matrix A;
ii) u is a viscosity subsolution of the fully nonlinear PDE

F
(
x, u,Du, (D2

Xu)
∗) = 0, in Ω,

for every continuous F with F (x, z, p, 0) = 0, non-decreasing in the second entry,
and degenerate elliptic, i.e., non-increasing in the last entry with respect to the
usual partial order of symmetric matrices.

Remark 2.6. The v -convexity of u can also be characterized by a single scalar
inequality, that is,

−λmin

(
(D2

Xu)
∗) ≤ 0

in viscosity sense, where λmin(M) denotes the minimal eigenvalue of the sym-
metric matrix M . Note that this can also be written as the Hamilton-Jacobi-
Bellman inequality

max
{
−trace

(
A(D2

Xu)
∗) |Aij = aiaj , |a| = 1

}
≤ 0.

Example 2.1 (Canonical vector fields). Let 1 ≤ m ≤ n and X = {e1, ..., em},
where ei is ith-unit-vector of the canonical Euclidean basis. In this particular
case, the equivalence between Definition 2.2 and Definition 2.3 tells that u is
convex in the first m components if and only if the Hessian matrix of u with
respect to the first m variables x1, . . . , xm is positive semidefinite in the viscosity
sense. This result is known, at least for m = n [1].

Example 2.2 (n = 1). Consider in dimension n = 1 the vector field X(x) =
σ(x) = bx, for some constant b. Then a C2 function u is X-convex if and only
if x2u′′ + xu′ ≥ 0. Then

1. u(x) = eαx with α > 0 is X-convex only in the half-lines [0,+∞) and
(−∞,−1/α], so Euclidean convexity does not imply X-convexity;

2. u′′ ≥ 0, u′ ≥ 0 for x > 0, u′ ≤ 0 for x < 0 imply X-convexity;

3. u(x) = |x|α/α is X-convex for all α > 0 although it is not Euclidean
convex for α < 1.

Example 2.3 (Convexity on circles). In R2 consider the vector field X =
y ∂x − x ∂y. Then
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1. any (non-constant) linear function is X-convex on a half-plane and X-
concave on the complement;

2. a quadratic form is X-convex in R2 if and on only if it is of the form
u(x, y) = a(x2 + y2) for some a ∈ R,

which is consistent with the fact that the X-lines run infinitely many times on
circles centered at the origin. In Remark 6.3 we show that in fact any X-convex
function is constant on every such circle.

Example 2.4 (Convexity on hyperbola). In R2 take the vector field X = y ∂x +
x ∂y, whose trajectories are hyperbola. Then

1. any (non-constant) linear function is X-convex on a half-plane and X-
concave on the complement;

2. a quadratic form u(x, y) = ax2/2 + by2/2 + kxy is X-convex in R2 if and
on only if a+ b ≥ 2|k|.

Note that any (Euclidean) convex quadratic form is X-convex because ab ≥ k2

implies the previous inequality. On the other hand, an X-convex quadratic form
might be strictly concave in either x or y.

In Section 4, we present our main motivating examples, i.e. Carnot-Cara-
théodory metric spaces and Carnot groups.

3 Viscosity characterization of convexity along
vector fields

In this section we will show the equivalence between Definition 2.2 and Definition
2.3, in the general case of upper semicontinuous functions. As in Carnot groups,
the necessity of v -convexity is much easier to prove.

Proposition 3.1. Convexity along vector fields implies v-convexity.

Proof. We assume that, for any curve x(t) as in Definition 2.2, u(x(t)) is convex
in [T1, T2]. Without loss of generality, we can assume that 0 ∈ (T1, T2). To prove
that Definition 2.3 holds, we have to show that D2

Xϕ(x0) ≥ 0 for any smooth
ϕ such that u − ϕ has a local maximum at x0 = x(0) ∈ Ω. We can assume
that such a maximum is equal to 0. Then we look at the second-order Taylor
expansion of the real function ϕ ◦ x centered at 0 and evaluated, respectively,
at t and −t (for sufficient small t), which are

ϕ(x(±t)) = ϕ(x0)± d

dt
ϕ(x(t))

∣∣
t=0

t+
1
2
d2

dt2
ϕ(x(t))

∣∣
t=0

t2 + o(t2).

We recall that u(x0) = ϕ(x0) and u(x) ≤ ϕ(x) for x near x0.
By Proposition 2.1

u(x(t)) + u(x(−t))
2

≤ ϕ(x(t)) + ϕ(x(−t))
2

= u(x0)+
1
2
d2

dt2
ϕ(x(t))

∣∣
t=0

t2+o(t2)

= u(x0) +
1
2
αTD2

Xϕ(x0)αt2 + o(t2). (6)
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By Definition 2.2 u ◦ x is convex in [T1, T2], so that

u(x(t)) + u(x(−t))
2

≥ u(x(0)) = u(x0).

Then (6) gives

u(x0) ≤ u(x0) +
1
2
αTD2

Xϕ(x0)αt2 + o(t2).

Dividing by t2 and letting t→ 0 we conclude

αTD2
Xϕ(x0)α ≥ 0 ∀ α ∈ Rm.

The other implication is more difficult. We use the idea of straightening the
X -lines, then reducing inequalities on Rn to inequalities on Euclidean lines. This
is inspired by the proof in [15, 3] that u is nondecreasing along the trajectories
of X if and only if X ·Du ≥ 0 in viscosity sense.

We start with the (Euclidean) case n = 1.

Proposition 3.2. Let u ∈ USC
(
[T1, T2]

)
. If −u′′ ≤ 0 in (T1, T2), in the

viscosity sense, then u is convex in [T1, T2].

Proof. We prove the result by contradiction. Let us suppose that there exist
T1 ≤ t1 < t3 ≤ T2 and λ ∈ (0, 1) such that

u(t2) > λu(t1) + (1− λ)u(t3),

with t2 = λt1 + (1 − λ)t3. Note that it is possible to find ϕ ∈ C2 with ϕ′′ < 0
in (t1, t3) such that

ϕ(t1) = u(t1),
ϕ(t3) = u(t3),
ϕ(t2) < u(t2).

Therefore there exists a t ∈ (t1, t3) which is (local) maximum point for u − ϕ.
Since by hypotesis −u′′ ≤ 0 in the viscosity sense, then −ϕ′′(t) ≤ 0 but this
contradicts the fact that ϕ is a strictly concave function in (t1, t3).

The following proposition makes clear the one dimensional reduction.

Proposition 3.3. Let Ω ⊂ Rn open and connected and u ∈ USC(Ω). Let
x = (x1, z) with z ∈ Rn−1 and uz the real function defined on Ωz = {x1 ∈
R | (x1, z) = Ω} as uz(x1) := u(x1, z). Then the following properties are equiv-
alent:

1. −(uz)′′(x1) ≤ 0 in Ωz, in the viscosity sense, for any z ∈ Rn−1,

2. −ux1 x1(x) ≤ 0 in Ω, in the viscosity sense.
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Proof. The proof uses the same argument as Lemma II.5.17 of [3]. The fact
that the second statement follows from the first one is trivial: we have just to
remark that, given a test function ϕ such that u − ϕ has a local maximum at
x0 = (x0

1, z
0) ∈ Ω, then η(x1) := ϕ(x1, z

0) is such that uz0
(x1) − η(x1) has a

local maximum at x0
1 ∈ Ωz0 and moreover η′′(x0

1) = ϕx1 x1(x
0).

To show the reverse implication, we take η ∈ C2(Ωz0) such that uz0
(x1) −

η(x1) has a local maximum at x0
1, where z0 ∈ Rn−1 is fixed, and we can assume

the maximum is strict in some interval I = [x0
1 − R, x0

1 + R]. Moreover, by
adding a constant, we may also assume that η ≥ 1 on I. Then, we set Rn 3
x = (x1, . . . , xn) = (x1, z) ∈ R× Rn−1 and for any ε > 0 we define

ϕε(x) := η(x1)
(

1 +
|z − z0|2

ε

)
.

Let xε = (xε
1, z

ε) be a maximum point for u− ϕε in B := BR(x0). Then

u(xε)− ϕε(xε) ≥ u(x0)− ϕε(x0) = uz0
(x0

1)− η(x0
1) (7)

From η ≥ 1 and xε ∈ B one can deduce that there exists a constant C > 0
independent of ε > 0 such that

|zε − z0|2

ε
≤ u(xε)− η(xε

1)− uz0
(x0

1) + η(x0
1) ≤ C (8)

fo all ε > 0. Hence zε → z0.
Next we take a subsequence such that xε

1 → x̄1. By (7)

u(x̄1, z
0)− η(x̄1) ≥ uz0

(x0
1)− η(x0

1),

so x̄1 = x0
1 because x0

1 is a point of strict maximum for uz0−η in I. Now letting
ε→ 0 in (8) we get |zε − z0|2/ε→ 0.

To conclude, it is sufficient to remark that

∂2ϕε

∂x2
1

(xε) = η′′(xε
1)
(

1 +
|zε − z0|2

ε

)
→ η′′(x0

1), as ε→ 0+,

so −ϕε
x1x1

(xε) ≤ 0 implies −η′′(x0
1) ≤ 0, as desired.

Remark 3.1. Note that if Ω is convex then Ωz is a real interval. For general
connected domains in Rn, the real set Ωz can be written as disjoint union of
intervals. We say that a real function is convex in a disjoint union of intervals
if it is convex in each interval.

Now we tackle the general n-dimensional case. We fix α ∈ Rm and consider
the ODE for the corresponding X -line, starting at t = 0 from x0 ∈ Ω, i.e.,{

ẋ(t) = σ(x(t))α, t ∈ R,
x(0) = x0.

(9)

We set f(x) := σ(x)α and assume first that f(x0) 6= 0 (as we will see later, the
other case is trivial). Then it is known that there exists a C2-diffeomorphism
Φ : U → V ⊂ Rn defined on a neighbourhood U of x0 such that, in the
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corresponding new coordinates, the vector field f(x) can be locally rewritten as
e1, the first vector of the canonical basis of Rn (see, e.g., [2]). This means that,
in the new coordinates ξ := Φ(x), the ODE (9) can be rewritten (for small t) in
the canonical form: {

ξ̇(t) = e1, t near 0,

ξ(0) = ξ0 := Φ(x0).
(10)

Of course, the local diffeomorphism Φ depends on the parameters α and x0 but
we will not write explicitly this dependence.

Proposition 3.4. Let Ω ⊂ Rn open, u ∈ USC(Ω) and α ∈ Rm and let Φ be the
local diffeomorphism introduced above in a neighborhood U of x0. If we define
v(ξ) := u ◦ Φ−1(ξ), then

−αTD2
Xu(x)α ≤ 0 in U, in the viscosity sense (11)

if and only if

−v
ξ1ξ1

(ξ) ≤ 0 in Φ(U), in the viscosity sense. (12)

Proof. Let us first recall that the first derivatives of a diffeomorphism Φ =
(Φ1, . . . ,Φn) can be expressed by the n× n-Jacobian-matrix, which is

DΦ = DxΦ =

Φ1
x1

. . . Φ1
xn

. . . . . . . . .
Φn

x1
. . . Φn

xn

 .

Let x(t) be a curve satisfying (9) for our choice of α ∈ Rm and with initial datum
x(0) = x, then for x near x0, we consider the local deffeomorphism Φ, and we
know that ξ(t) := Φ(x(t)) satisfies (10) with initial datum ξ(0) = ξ = Φ(x) for
any t close enough to 0 (and with ξ near to ξ0 := Φ(x0)). In particular the ODE
holds for t = 0, which implies

e1 = ξ̇(0) =
d

dt
[Φ(x(t))]

∣∣∣∣
t=0

=
[
DΦ(x(t))ẋ(t)

]∣∣
t=0

= DΦ(x) σ(x)α.

Since α is fixed, for sake of semplicity, we may set Y (x) := σ(x)α; therefore the
previous identity can be written as e1 = DΦ(x)Y (x) or, equivalently,

Y (x) =
(
DΦ(x)

)−1 e1. (13)

By definition of Y (x), we have that Y u =
∑m

i=1 αiXiu, therefore

Y 2u = Y
(
Y u
)

= Y

(
m∑

i=1

αiXiu

)
=

m∑
i,j=1

αiαjXi(Xju) = αTD2
Xu α. (14)

We first show the result in the regular case, i.e. for u ∈ C2(Ω).
Let us consider v(ξ) = u ◦ Φ−1(ξ), then

Dv(ξ) = (DΦ−1(ξ))TDu(Φ−1(ξ)) =
[(

(DΦ)−1
)T
Du
]
◦ Φ−1(ξ). (15)
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Moreover

v
ξ1

(ξ) =
∂

∂ξ1

v(ξ) =
〈
Dv, e1

〉
(ξ) =

〈(
(DΦ)−1

)T
Du, e1

〉
(Φ−1(ξ)) =

=
〈
Du, (DΦ)−1e1

〉
◦ Φ−1(ξ) =

〈
Du, Y

〉
◦ Φ−1(ξ) = (Y u) ◦ Φ−1(ξ). (16)

The same formula holds for any w ∈ C1 and ζ = w ◦ Φ−1, i.e.

∂

∂ξ1

ζ(ξ) = (Y w) ◦ Φ−1(ξ).

Let us choose w = Y u and ζ = v
ξ1

, then (16) gives

v
ξ1ξ1

(ξ) = ζξ1(ξ) = (Y w) ◦ Φ−1(ξ) =
(
Y (Y u)

)
◦ Φ−1(ξ) = αTD2

Xu (Φ−1(ξ)) α.
(17)

where we have used (14).
The identity (17) concludes the proof in the smooth case (i.e. under the as-
sumptions u ∈ C2(Ω)).

The general case of u ∈ USC(Ω) is treated by taking a smooth test function
ψ such that v − ψ has a local maximum at ξ0 and defining ϕ(x) = ψ(Φ(x)).
Then u−ϕ has a local maximum at x0 = Φ−1(ξ0) and the preceding calculation
with u and v replaced by ϕ and φ, respectively, gives the conclusion.

Remark 3.2. An alternative way to prove the previous result, in particular the
identity

v
ξ1ξ1

(ξ) = αTD2
Xu(Φ

−1(ξ)) α. (18)

is by direct computations. The outline is the following. First one shows that

D2v(ξ) = (DΦ−1(ξ))TD2u(Φ−1(ξ))DΦ−1(ξ) +
(
Φ−1

ξl ξk
(ξ) ·Du(Φ−1(ξ))

)
lk
,

which implies

D2u = DΦTD2v DΦ +DΦT
[(

(DΦ)−1
)T ([

(DΦ)−1Φxl xk

]
·Du

)
lk

(DΦ)−1
]
DΦ

= DΦTD2v DΦ +
([

(DΦ)−1Φxl xk

]
·
[
DΦTDv

])
lk
,

where both the sides are calculated at the point x = Φ−1(ξ). An explicit but
nontrivial computation shows that:

αT D2
Xu α =

= eT
1 D

2v e1 + αTσT (Φxlxk
·Dv)lk σα+ αT

([
DΦ ∇Xl

Xk

]
·Dv

)
lk
α

= eT
1 D

2ve1 + αT

Xl ·
[(

Φk
xi xj

)
ij
σα
]
+

m∑
j=1

αj

(
DΦ∇Xl

Xj

)k
lk

Dv.

(19)

By differentiating the identity (13) along the vector fields X1, . . . , Xm, it is
possible to show that, for any l = 1, . . . ,m,

0 = ∇Xl
e1 = Xl ·

[(
Φk

xixj
(x)
)

ij
σ(x)α

]
+

m∑
j=1

αj

(
DΦ(x) ∇Xl

Xj(x)
)k
.

Plugging this identity in (19), we find exactly (18).
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Using Proposition 3.4, we can give the main result of the paper.

Theorem 3.1. Let Ω ⊂ Rn be open and connected and X = {X1, . . . , Xm} be a
family of C2 vector fields on Rn. Then a function u ∈ USC(Ω) is convex along
the vector fields (Definition 2.2) if and only if u is v-convex (Definition 2.3).

Proof. We have already shown that Definition 2.2 implies Definition 2.3 (see
Proposition 3.1). We need just to prove the opposite implication. So we assume
that

−D2
Xu(x) ≤ 0 in Ω, in the viscosity sense,

and let x(t) be a curve satisfying the ODE (9). First we consider the case
f(x0) = 0. Since x0 is an equilibrium point for (9), the trajectory-solution is
constant (i.e. x(t) = x0, for any t ∈ R). So u(x(t)) = u(x0) is constant and
therefore trivially convex.

On the other hand, when f(x0) 6= 0 we can build a diffeomorphism Φ such
that the ODE (9) can be rewritten as the ODE (10). For sake of simplicity
we assume that Φ is globally defined on Ω (if it is not we have just to write
the following proof in a neighborhood U of x0). Proposition 3.4 tells that
v(ξ) := u(Φ−1(ξ)) satisfies

−v
ξ1ξ1

≤ 0, in ΩΦ =: Ω′, in the viscosity sense.

By Proposition 3.3, for any z ∈ Rn−1, vz(s) := v(s, z) satisfies −(vz)′′(s) ≤ 0
in Ω′

z = {s ∈ R | (s, z) ∈ Ω}, in the viscosity sense. Applying the 1-dimensional
result (Proposition 3.2) to the real function vz, we get that it is convex in Ω′

z

(which means convex in any interval contained in Ω′
z).

Let us now consider a curve x(t) and the corresponding interval [T1, T2] as
in Definition 2.2. Without loss of generality, we can assume that 0 ∈ (T1, T2) so
that x(0) = x0 ∈ Ω. Let z = (ξ02 , . . . , ξ

0
n) =

(
Φ(x0)2, . . . ,Φ(x0)n

)
, so that

vz(s) = v(s, ξ02 , . . . , ξ
0
n) = v(ξ(t)) = u(x(t)),

with t = s− ξ01 . Then u ◦ x is convex in Ω′
z + ξ01 := {t ∈ R | t− ξ01 ∈ Ω′

z}.
To conclude the proof, we need just to check that the interval (T1, T2) ⊂

Ω′
z + ξ0. In fact, we know that, for any t ∈ (T1, T2), x(t) ∈ Ω that means

ξ(t) ∈ Ω′. Since ξ(t) = (t + ξ01 , ξ
0
2 , . . . , ξ

0
n), we get s = t + ξ01 ∈ Ω′

x, and so
t ∈ Ω′

z + ξ0.

Remark 3.3. Proposition 3.4 can be stated in a more general form because the
proof does not depend on the fact that we choose the particular local diffeomor-
phism Φ given by the Rectification Theorem. Suppose we have two families of
vector fields X 1,X 2, with corresponding matrices σ1, σ2, and for a fixed α ∈ Rm

consider Y1(x) = σ1(x)α and Y2(ξ) = σ2(ξ)α. For a given point x0 ∈ Rn con-
sider a local C2-diffeomorphism ξ = F (x) on a neighborhood of x0, which brings
the solutions of the ODE

ẋ(t) = Y1(x(t)), x(0) = x0,

into the solutions of the ODE

ξ̇(t) = Y2(ξ(t)), ξ(0) = ξ0.
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Then identity (14) still holds, i.e., v := u ◦ F−1 satisfies

αTD2
X 1 u

(
F−1(ξ)

)
α = αTD2

X 2 v(ξ) α.

in the viscosity sense.
This allows to give a definition of convexity of a function u from a n-

dimensional manifold M with respect to a family of vector fields X defined
on M independent of the choice of the charts. In fact, by means of local charts,
we can always associate to the vector fields X1, . . . , Xm a family of vectors
fields on Rn, X̃1, . . . , X̃m, and then apply Definition 2.2 to such a family. Then
the definition of convexity along X -lines is charts-invariant because a (smooth)
change of charts leads to a local diffeomorphism F with the properties above.

4 Carnot-Carathéodory metric spaces

We mentioned in the Introduction that our main motivation comes from the
theory of Carnot-Carathéodory metric spaces. Let us recall that the Carnot-
Carathéodory (briefly, C-C), or sub-Riemannian distance d on Rn associated to
a familiy of vector fields X is

d(x, y) := inf {T ≥ 0 | ∃ γ admissible in [0, T ] with γ(0) = x, γ(T ) = y} , (20)

with the convention inf ∅ = +∞, where a curve γ is admissible if it is absolutely
continuous in [0, T ] and there exist measurable functions αi(t), i = 1, . . . ,m,
such that |α(t)|2 =

∑m
i=1 α

2
i (t) = 1 and

γ̇(t) =
m∑

i=1

αi(t)Xi(γ(t)), a.e. t ∈ [0, T ]. (21)

The pair (Rn, d) is a Carnot-Carathéodory metric spaces, or sub-Riemannian
geometry, if d(x, y) < +∞ for all x, y ∈ Rn, and the vector fields X are its
generators.

In Section 6 we will use the assumption

the identity map Id : (Rn, d) → (Rn, | · |) is a homeomorphism. (22)

A classical sufficient condition for it to hold is that the vector fields X =
{X1(x), . . . , Xm(x)} are smooth and satisfy the Hörmander condition, i.e, the
Lie algebra they generate has full rank at any point.

In a C-C space a function u is called d-Lipschitz continuous in Ω if there is
L ≥ 0 such that

|u(x)− u(y)| ≤ Ld(x, y), ∀x, y ∈ Ω. (23)

See, e.g., [26] and [9] for a general presentation of C-C spaces and [18, 19] for
the properties of d-Lipschitz functions.

Important examples of such spaces are the Carnot groups, where v -convexity
was first introduced [24, 23].

Example 4.1 (Carnot groups). A Carnot group (G, ∗) is a Lie group, nilpotent
and simply connected, whose Lie algebra admits a stratification g = ⊕k

i=1Vi.
Any such group is isomorphic to a homogeneous Carnot group on Rn, that is,
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a triple (Rn, ∗, δλ) where Rn = Rn1 × · · · × Rnk , ∗ is a group operation whose
identity is 0 and such that (x, y) 7→ y−1 ∗ x is smooth, the dilation δλ : Rn → Rn

δλ(x) = δλ(x(1), . . . , x(r)) := (λx(1), λ2x(2), . . . , λrx(r)), x(i) ∈ Rni

is an automorphism of the group (Rn, ∗) for all λ > 0, and there are m =
n1 smooth vector fields X1, . . . , Xm on Rn invariant with respect to the left
translations τβ(x) := β ∗ x for all β ∈ Rn and such that the Lie algebra they
generate has rank n at every point x ∈ Rn. The fields X = {X1, . . . , Xm} are
called the generators of the Carnot group and can be written in the form

Xj =
∂

∂xj
+

n∑
i=m+1

σij(x)
∂

∂xi
, j = 1, . . . ,m, (24)

with σij(x) = σij(x1, . . . , xi−1) homogeneous polynomials of a degree ≤ n−m.
For the proofs and more information on these geometries we refer to [9, 26, 11].

It is easy to check that any function depending only on x1, . . . , xm and convex
in Rm is X -convex (see also Example 4.4).

Example 4.2 (Heisenberg group). The most known Carnot group is the Heisen-
berg group. The (n-dimensional) Heisenberg group Hn is a Carnot group of step
2 (i.e., k = 2 in the stratification), defined on R2n+1. If n = 1, the stratification
is V1 ⊕ V2 where V1 ≡ R2 and V2 ≡ R. The group operation is

x ∗ y :=
(
x1 + y1, x2 + y2, x3 + y3 +

x1y2 − x2y1
2

)
and the generators are the two vector fields:

X1(x) =

 1
0
x2
2

 , X2(x) =

 0
1
−x1

2

 . (25)

It was proved in [16] that the homogeneus norm

‖x‖0 :=
(
(x2

1 + x2
2)

2 + 16x2
3

) 1
4

is horizontally convex (see the definition below), so it is v -convex by a result
of [24] or by Proposition 3.1 and Lemma 4.1 below. The homogenous norm
gives a distance equivalent to the Carnot-Carathéodory one, but their convexity
properties are very different, as we show next.

The Carnot-Carathéodory distance form the origin u(x) = d(x, 0) is not v -
convex near the center of the Heisenberg group, that is, the x3-axis. In fact, it
was recently proved in [10] that u is not a viscosity subsolution for the horizontal
infinite Laplace equation −∆X ,∞u = 0 at any point (0, 0, z) ∈ R3 with z 6= 0.
Since this PDE is degenerate elliptic and homogeneous in the Hessian matrix
entry, a result of [24] says that all v -convex functions must be subsolutions, see
Remark 2.5 above. Therefore u is not v -convex in any set containing points
of the center of the group, and neither X -convex nor horizontally convex (by
Lemma 4.1 below). It could be interesting to understand if some power of u is
horizontally convex in the whole space.
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Our final remark is that in the Heisenberg group Euclidean convexity implies
convexity along the vector fields (but of course the converse does not hold, as
the homogeneous norm shows). In fact ∇Xi

Xj + ∇Xj
Xi = 0, for i, j = 1, 2.

Therefore
D2
Xu(x) = σT (x)D2u(x)σ(x),

which is positive semi-definite whenever the Eulidean Hessian D2u(x) is so. The
same property can be proved in any Carnot group with step 2 (once they are
written in their canonical form, via exponential coordinates).

In Carnot groups the following notion of convexity was introduced in [24],
[23] and [16], see also [11].

Definition 4.1. Let (G, ∗) be a Carnot group and Ω ⊂ G open and connected.
We indicate as V the horizontal space defined by V1 at the origin. A function
u : Ω → R is called horizontally convex (briefly, h-convex) if, for any p ∈ Ω
and h ∈ V such that p ∗ δt(h) ∈ Ω for all t ∈ (−1, 1), the function

t 7→ u
(
p ∗ δt(h)

)
is convex for −1 < t < 1.

In the homogeneous Carnot group on Rn isomorphic to G we can write

V = span {X1(0), . . . , Xm(0)},

where X1, . . . , Xm are the generators of the group. In the Heisenberg group

V = H0 := {h = (h1, h2, 0) ∈ R3 } and h−1 = (−h1,−h2,−h3).

The next Lemma states the equivalence of X -convexity and h-convexity.
It is a mere restatement of Proposition 8.3.17 in [11], because the notion (2)
introduced there coincides with Definition 2.2 above, up to a reparametrization
of the X -lines.

Lemma 4.1. Let (G, ∗) be a Carnot group on Rn, Ω ⊂ Rn open and connected,
and u : Ω → R upper semicontinuous. Then u is convex along the generators X
of G (Definition 2.2) if and only if u is horizontally convex (Definition 4.1).

By putting together this Lemma and Theorem 3.1 we get the following result
related to the work of several authors [24, 7, 33, 25, 23].

Corollary 4.1. In Carnot groups v-convexity, horizontal convexity, and con-
vexity along the generators X of the group are equivalent.

Next we consider sub-Riemannian geometries which are not Carnot groups.

Example 4.3 (Grušin plane). Consider the sub-Riemannian structure induced
on R2 by the vector fields

X1(x, y) =
(

1
0

)
and X2(x, y) =

(
0
x

)
.

The symmetrized intrinsic Hessian is(
D2
Xu
)∗ =

(
uxx xuxy + uy

2
xuxy + uy

2 x2uyy

)
.
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The contribution of the first-oder part is in general strong enough to make non-
convex along the vector fields many functions which are convex in the Euclidean
sense.

Consider first u(x, y) = f(x) + g(y). Then (D2
Xu
)∗ ≥ 0 if and only if f ′′ ≥ 0

and

det
(
D2
Xu)

∗ = x2f ′′g′′ −
(
g′
)2

4
≥ 0,

so that f ′′, g′′ > 0 is not a sufficient condition. For instance, u(x, y) = x2 + y2,
is X -convex only in the set {(x, y) | 2x− y > 0, 2x+ y > 0} ∪ {(x, y) | 2x− y <
0, 2x+ y < 0} while it is (strictly) X -concave in the complement.

By analogy with the Heisenberg case consider next the homogenous norm

u(x, y) = |(x, y)|0 =
(
x4 + cy2)

1
4 ,

for c > 0. Then uxx = 3cx2y2(x4 + cy2)−
7
4 > 0 (for xy 6= 0), while

det
(
D2
Xu)

∗ = − c
2

16
y2
(
x4 + cy2)−

3
2 < 0,

for any c > 0 and y 6= 0. This means that for any choice of c > 0 the homo-
geneous norm is nowhere X -convex, different from the Heisenberg case (where
the homogenous norm is X -convex for c = 16, as we recalled before).

Example 4.4 (Vector fields of Carnot type). Consider vector fields of the form

Xj =
∂

∂xj
+

n∑
i=m+1

aij(x)
∂

∂xi
, j = 1, . . . ,m. (26)

They have in common with the generators of Carnot groups the special struc-
ture of the matrix σ, whose first m lines are the identity matrix. Take a function
u(x) = v(x1, . . . , xm) depending only on the first m variables. An easy calcula-
tion shows that

D2
Xu = D2v.

Therefore u is X -convex if and only if v is (Euclidean) convex in Rm.

5 Semiconvexity along vector fields

In this section we extend to the geometry associated with a family of vector
fields the notions of semiconvexity and semiconcavity. They are classical in the
Euclidean setting and very useful for PDE as well as optimal control problems,
see the survey in [12] and the references therein.

Definition 5.1. A function u : Ω → R is X -semiconvex if there exists C ≥ 0
such that, for every curve x(t) ∈ Ω satisfying equation (2), u ◦x is a real-valued
semiconvex function with constant C in [T1, T2], i.e., for any t, t + s, t − s ∈
[T1, T2],

2u(x(t))− u(x(t+ s))− u(x(t− s)) ≤ Cs2. (27)

A function is X -semiconcave if −u is X -semiconvex.
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Example 5.1. If Xi(x) = ei, i = 1, . . . ,m, then a function is X -semiconvex if
it is semiconvex w.r.t. the first m variables x1, . . . , xm.

Example 5.2. If u(x) = v(x) + w(x) with v X -convex in Ω and w ∈ C2(Ω)
with ‖D2u‖∞ ≤ C, then u is X -semiconvex with constant C. This sufficient
condition is also necessary for the class of vector fields of Carnot type of Example
4.4, see Proposition 5.2.

Example 5.3 (Marginal functions). It is easy to see from the Definition 5.1
that the supremum of X -semiconvex functions with the same constant C is
X -semiconvex with constant C. In particular, the marginal function

u(x) = sup
β
vβ(x),

with vβ twice differentiable with respect to the fields and XiXjvβ uniformly
bounded in Ω, is X -semiconvex in Ω.

As in the case of convexity (i.e., C = 0) we can give an infinitesimal version
of the semiconvexity property.

Definition 5.2. A function u ∈ USC(Ω) is v -semiconvex if there exists a
constant C ≥ 0 such that

−D2
Xu ≤ CI, in the viscosity sense in Ω, (28)

where I denotes the identity m×m matrix.

Remark 5.1. This matrix condition can also be expressed by the scalar partial
differential inequality

−λmin((D2
Xu)

∗) ≤ C

in the usual viscosity sense.

Proposition 5.1. A function u ∈ USC(Ω) is X -semiconvex if and only if it is
v-semiconvex.

Proof. The strategy is the same used in the convex case (i.e., for C = 0). We
need to show only the analogue of Proposition 3.2, that is, the Euclidean 1-
dimensional case, because all the other steps hold without modifications.

We assume −u′′ ≤ C in the viscosity sense and rescale the time so that t = 0
in (27). Then ũ(s) := u(s) + C

2 s
2 satisfies −ũ′′ ≤ 0 in the viscosity sense, so it

is convex in [T1, T2] by Proposition 3.2. This gives

ũ(0) ≤ ũ(s) + ũ(−s)
2

.

By the definition of ũ(s) we get

u(s) +
C

2
s2 + u(−s) +

C

2
s2 − 2u(0) ≤ 0,

that proves the Euclidean 1-dimensional case.
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Proposition 5.2. Assume the vector fields are of Carnot type, i.e., they have
the form

Xj =
∂

∂xj
+

n∑
i=m+1

aij(x)
∂

∂xi
, j = 1, . . . ,m.

Then u ∈ USC(Ω) is X -semiconvex with constant C if and only if

u(x) +
C

2

m∑
i=1

x2
i is X -convex.

Proof. An easy calculation as in Example 4.4 gives

D2
X

(
u(x) +

C

2

m∑
i=1

x2
i

)
= D2

Xu(x) + CI,

where I is the m × m identity matrix, and the conclusion follows from the
definitions.

In the particular case of a Carnot group a notion of semiconvexity can be
also introduced as follows.

Definition 5.3. Let (G, ∗) be a Carnot group and V be the horizontal space as
in Definition 4.1. A function u : G → R is called h-semiconvex if there exists
C ≥ 0 such that, for any p ∈ G and h ∈ V,

2u(p)− u(p ∗ h)− u(p ∗ h−1) ≤ C|h|2,

where h−1 is the inverse element of h w.r.t. to the operation ∗ and | · | is the
Euclidean norm in Rm.

By the same argument of Lemma 4.1 we get the following.

Lemma 5.1. If X1, . . . , Xm are the generators of a Carnot group on Rn, then
u ∈ USC(Ω) is X -semiconvex if and only if it is h-semiconvex.

6 Bounds on the gradient and d-Lipschitz con-
tinuity

In the Euclidean setting it is known that if a function is semiconvex or semi-
concave then it is locally Lipschitz continuous and there is a bound on its (gen-
eralized) gradient, see, e.g., [3, 12]. This property has many applications. In
this section we first show the corresponding gradient estimate for X -semiconvex
functions, and then deduce from it the Lipschitz continuity with respect to
the C-C distance d. We recall that σ(x) is the matrix whose columns are the
coefficients of the vector fields, see Definition 2.1.

Proposition 6.1. Let u ∈ USC(Ω) be X -semiconvex (or X -semiconcave) and
bounded, with Ω ⊂ Rn open and bounded. Then, for any open Ω1 ⊂⊂ Ω,

|DXu(x)| := |σT (x)Du(x)| ≤ L in the viscosity sense in Ω1, (29)

for some L = L(‖u‖∞ , δ, C) < +∞, where C is the constant of X -semiconvexity
(or X -semiconcavity) of u and

δ = d(Ω1, ∂Ω) := inf{d(x, y) |x ∈ Ω1, y ∈ ∂Ω}.

18



Remark 6.1. If Ω is unbounded, we need first to fix Ω′ ⊂ Ω bounded and then
Ω1 ⊂⊂ Ω′. In such a case L = L(supΩ′ |u|, δ′, C), where δ′ = d(Ω1, ∂Ω′).

Proof. Let us fix x0 ∈ Ω1, α ∈ Rm with |α| = 1, and a X -line xα(t) as in
(2) such that xα(0) = x0 ∈ Ω1. Now fix R > 0 such that xα(t) ∈ Ω for all
t ∈ [−R,R]. Since u ◦ xα is semiconvex in this interval, the standard Lipschitz
estimate for Euclidean semiconvex functions [12] gives

sup
t,s∈[−R,R]

|u(xα(t))− u(xα(s))|
|t− s|

≤ 2
R

sup
[−R,R]

|u ◦ xα|+ 2RC.

Let us note that we can assume R ≥ δ for all x0 ∈ Ω1 and α with |α| = 1, because
xα is also a trajectory of (21) and therefore it cannot reach ∂Ω in a time less than
δ. Moreover, since the vector fields are locally bounded, d(x, y) ≥ C(K)|x− y|
in any compact set K ⊂ Rn. That implies δ > 0 because Ω1 ⊂⊂ Ω.

So if δ < +∞ we take R = δ, while if δ = +∞ we can choose any R ∈ R,
e.g., R = 1. In both cases we find L < +∞ and R > 0, depending just on ‖u‖∞,
C and δ, such that

u(x0)− u(x(t)) ≤ Lt, for all 0 ≤ t ≤ R.

Now fix a test function φ such that u − φ has a max at x0. Then the last
inequality holds with u replaced by φ, and we can divide by t and let t→ 0 to
get

−Dφ(x0) · (σ(x0)α) ≤ L.

Next we take the maximum over α, |α| = 1, and find

|σT (x0)Dφ(x0)| ≤ L.

Since x0 ∈ Ω1 is arbitrary, we get the conclusion.

Remark 6.2. If δ < +∞, then

L =
2 ‖u‖∞

δ
+ 2δC,

which is the same as the known Lipschitz estimate in the Euclidean case, with
the usual distance replaced by d in the definition of δ. If, instead, δ = +∞ and
u is X -convex (C = 0) then we can take L = 0.

Remark 6.3. If u is X -convex (or X -concave) in Ω and Ω1 ⊂⊂ Ω is invariant
for the X -lines (i.e., they never leave Ω1 if they start in Ω1), then u is constant
on each X -line in Ω1. In fact, we can let R → +∞ in the previous proof and
get L = 0, so that u has null directional derivative along all vector fields Xi. In
particular, this shows that in the Example 2.3 any X-convex function in a disc
of radius r centered at the origin is constant on all circles of radius less than r
centered at the origin.

A similar argument can be used, for u X -convex, if x is a stationary point
of the ODE for some α (i.e. σ(x)α = 0, with |α| = 1). If u is continuous at x
then u is constant in the whole domain of attraction of x, i.e., on all points x0

such that, for some α, the X -line xα(t) with xα(0) = x0 tends to x at t tends
either to +∞ or to −∞.
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Next we prove that the horizontal gradient estimate of the last Proposition
implies the d-Lipschitz continuity of a X -semiconvex function u. The d-Lipschitz
continuity of convex functions in Heisenberg and Carnot groups was studied in
various ways by several authors [24, 7, 16, 28, 25, 31]. Our proof for general
C-C metric spaces is completely different.

Theorem 6.1. Let d be the C-C distance defined by (20) and u ∈ USC(Ω) be
X -semiconvex and locally bounded. Then, for any open Ω1 ⊂⊂ Ω,

(i) u is d-Lipschitz continuous in Ω1;
(ii) if, moreover, X1(x), . . . , Xm(x) are the generators of a C-C metric space

with the property (22), then the distributional derivatives Xju exist a.e. and
Xju ∈ L∞(Ω1).

Remark 6.4. The statement (ii) can also be written as

|DXu(x)| ≤ L, a.e. in Ω1,

where L = L(supΩ′ |u|,Ω′,Ω1, C) (C is the X -semiconvexity constant), for some
bounded Ω′ ⊂ Ω such that Ω1 ⊂⊂ Ω′, and the horizontal gradient DXu :=
(X1u, . . . ,Xmu) is meant in the sense of distributions.

Remark 6.5. If the property (22) holds d is continuous, so the statement (i)
implies that a X -semiconvex function is continuous. In particular, if the vector
fields X satisfy the Hörmander condition, then there are α ∈]0, 1] and C ′ ≥ 0
such that d(x, y) ≤ C ′|x− y|α for all x, y ∈ Ω1. In this case any X -semiconvex
u ∈ USC(Ω) is Hölder continuous in each Ω1 ⊂⊂ Ω.

The proof of Theorem 6.1 borrows from a recent paper by Soravia [30] the
use of a suboptimality principle for a Hamilton-Jacobi-Bellman inequality, that
we state next.

Lemma 6.1. If O ⊆ Rn is open and bounded, u ∈ USC(O) is a viscosity
subsolution of

|σT (x)Du(x)| ≤ l(x) in O, (30)

l ∈ C(Ō), then

u(x) ≤
∫ t

0

l(γ(s)) ds+ u(γ(t)) (31)

for any x ∈ O, t > 0, and γ(·) trajectory of the control system

γ̇(t) = σ(γ(t))α(t), α(·) measurable , |α(t)| = 1, (32)

such that γ(0) = x and γ(s) ∈ O for all s < t.

Proof. The proof is based on rewriting (30) as the H-J-B inequality

max
α∈Rm, |α|=1

{−(σ(x)α) ·Du− l(x)} ≤ 0, in O

associated with the control system (32) and the integral cost functional on
trajectories whose running cost is l. With this formulation the statement is
contained in Theorem II.5.21 of [3] if u ∈ C(O). For u merely u.s.c. it is a
special case of Theorem 3.2 of Soravia [29], that has a different and less direct
proof. For the reader’s convenience we outline the proof of [3] and show it
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extends easily to u ∈ USC(O). In fact, it uses the same tools we employed in
Section 3.

Step 1. For an open interval I ⊆ R and w ∈ USC(I), v is nondecreasing if
and only if −w′ ≤ 0 in I, in viscosity sense. The proof is Exercise V.1.9 of [3].

Step 2. With the notations of Proposition 3.3

−(uz)′(x1) ≤ l(x1, z) in Oz, in viscosity sense, ∀ z,

is equivalent to −ux1(x) ≤ l(x) in O in viscosity sense. The proof is the same
of Proposition 3.3.

Step 3. For a fixed α ∈ Rm, |α| = 1, the partial differential inequality

−(σ(x)α) ·Du(x) ≤ l(x) in O, in viscosity sense, (33)

implies the inequality (31) for the trajectory of (32) corresponding to the con-
stant control α(t) ≡ α. This is proved, as in Proposition II.5.18 of [3] and similar
to Proposition 3.4 and Theorem 3.1, by fixing x0 and taking a diffeomorphism
ξ = Φ(x) that trasform the ODE into the canonical form ξ̇(t) = e1. In the new
coordinates (33) becomes

−vξ1(ξ) ≤ l(Φ−1(ξ)), v(ξ) := u(Φ−1(ξ)).

Then Step 2 and Step 1 applied to w(t) := u(Φ−1(ξ(t))) +
∫ t

0
l(Φ−1(ξ(s))) ds,

with ξ(s) = Φ(x0) + (s, 0, . . . , 0), gives w(0) ≤ w(t) and therefore (31) holds for
this trajectory.

Step 4. A repeated application of Step 3 gives the inequality (31) for all
trajectories corresponding to piecewise constant controls α(·). A measurable
control α(·) can be approximated by piecewise constant controls αn such that
the corresponding trajectories γn converge uniformly to γ on bounded intervals,
see, e.g., Lemma II.5.20 of [3]. Then

u(γ(t)) ≥ lim sup
n

u(γn(t)) ≥ u(x) +
∫ t

0

l(γ(s)) ds,

which completes the proof.

Proof of Theorem 6.1. To prove (i) we choose Ω1 ⊂⊂ Ω2 ⊂⊂ Ω and apply
Lemma 6.1 in Ω2 to get the inequality

u(x) ≤ Lt+ u(γ(t)) (34)

for any x ∈ Ω2, t > 0, and γ(·) trajectory of (21) such that γ(0) = x and
γ(s) ∈ Ω2 for all s < t. Next we fix x, y ∈ Ω1. If d(x, y) < +∞, for each ε > 0
there is a trajectory γ of (21) such that γ(0) = x, γ(t) = y and t = d(x, y) + ε.
We claim that γ(s) ∈ Ω2 for all 0 < s < t if d(x, y) is smaller than a constant t
independent of the choice of x, y ∈ Ω1. Then (34) gives

u(x) ≤ L(d(x, y) + ε) + u(y),

and by reversing the roles of x and y and letting ε→ 0 we get

|u(x)− u(y)| ≤ Ld(x, y) (35)
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for all x, y ∈ Ω1 with d(x, y) ≤ t. On the other hand, if d(x, y) ≥ t the inequality
(35) holds with L replaced by supΩ1

|u|/t, so we reach the desired conclusion.
To prove the claim we set

δ := dist(Ω1, ∂Ω2), S := sup
Ω2

|σ|,

where dist denotes the Euclidean distance. Since γ starts and ends in Ω1, if it
ever reaches ∂Ω2 then

length(γ ∩ Ω2) > 2δ.

On the other hand, by integrating in time the equation for γ (21), we get

length(γ ∩ Ω2) ≤ tS sup
[0,t]

|α| ≤ (d(x, y) + ε)S.

This gives a contradiction if d(x, y)+ε ≤ 2δ/S, so the claim is proved by taking
any t such that

t <
2δ
S
.

This completes the proof of (i).
The statement (ii) follows from (i) by a result of [18] and [19].

We end this section with a Liouville-type property of X -convex functions.

Corollary 6.1. Assume d(x, y) < +∞ for all x, y ∈ Rn. Then any u ∈
USC(Rn) bounded and X -convex must be constant.

Proof. By Remark 6.2 we can take L = 0 in the preceding proof and get u(x) ≤
u(γ(t)) for all x ∈ Rn, t > 0, and γ(·) trajectory of (21) such that γ(0) = x.
Given y ∈ Rn, the assumption on d ensures the existence of such a trajectory
that reaches y at some time t. Then u(x) ≤ u(y) and we reach the conclusion
by the arbitrariness of x and y,

7 Application to PDEs of Monge-Ampère type

This section gives an application of Proposition 6.1 to fully nonlinear partial
differential equations of Monge-Ampère type of the form

−det
(
D2
Xu
)

+H(x, u,DXu) = 0, in Ω, (36)

with Ω ⊂ Rn open and bounded. These are classical PDEs in the Euclidean
setting (X = the canonical basis of Rn), they were studied in Carnot groups by
[16] and [21] and for more general vector fields by [4, 5, 6]. They are elliptic if one
restricts to convex functions, in the Euclidean case, and to v -convex functions
in the current generality. That is one of the main reasons of our interest in the
equivalence between v -convexity and X -convexity.

The following result is a comparison principle for this equation under mild
assumptions on the Hamiltonian H. It implies that the Dirichlet problem for
(36) has at most one viscosity solution. In the case of vector fields X generators
of a Carnot group the result was proved in [5]. Proposition 6.1 allows to extend
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it to general vector fields. The recent paper [6] exploits the same proposition to
prove other comparison principles for equations of the form (36), in particular
for problems lacking the strict monotonicity assumption (37) below, such as the
equation of prescribed horizontal Gauss curvature.

We recall from [4, 5] that a function u is called uniformly v -convex or X -
convex if for some γ > 0 it satisfies the inequality

−D2
Xu+ γ I ≤ 0

in the viscosity sense, and that a viscosity supersolution of (36) is required to
satisfy the usual inequality only for C2 test functions φ with D2

Xφ > 0.

Corollary 7.1. Suppose the Hamiltonian H : Ω × R × Rm → (0,+∞) is con-
tinuous, u ∈ USC(Ω) is a bounded, uniformly X -convex viscosity subsolution
of (36), and v ∈ LSC(Ω) is a bounded viscosity supersolution of (36). Assume
also that H satisfies for some λ > 0

H(x, r, q)−H(x, s, q) ≥ λ(r − s), ∀x ∈ Ω, q ∈ Rm, r, s ∈ [−M,M ], (37)

where M = max{‖u‖∞ , ‖v‖∞}. Then

sup
Ω

(u− v) ≤ max
∂Ω

(u− v)+.

Proof. The proof is exactly the same as that of Theorem 3.1 in [5], but for
one step that we now explain. Since the subsolution u is assumed X -convex, it
satisfies the local bound (29) on the X -gradient by Proposition 6.1. This fact
was known so far only for the horizontal gradient in Carnot groups from the
results of [25], [28], and [23]. For this reason Theorem 3.1 in [5] assumed that
the vector fields X were generators of a Carnot group. Now this assumption can
be removed and the comparison principle holds for any family X of C2 vector
fields.
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