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1. Introduction

In several models coming from very different applications, one needs to
describe physical phenomena where the state function may present some
regions of discontinuity. We may think for instance to problems arising in
fracture mechanics, where the function which describes the displacement
of the body has a jump along the fracture, phase transitions, or also to
problems of image reconstruction, where the function which describes a pic-
ture (the intensity of black, for instance, in white and black pictures) has
naturally some discontinuities along the profiles of the objects.

The analysis in Sobolev spaces is then no longer appropriate for this kind
of problems, since Sobolev functions cannot have jump discontinuities along
hypersurfaces, as on the contrary is required by the models above. For a
rigorous presentation of variational problems involving functions with dis-
continuities, the essential tool is the space BV of functions with bounded
variation. The first ideas about this space have been developed by De Giorgi
in the fifties, in order to provide a variational framework to study the prob-
lems of minimal surfaces, and several monographs are nowadays available
on the subject. We quote for instance the classical volumes of Evans and
Gariepy [8], Federer [9], Giusti [13], Massari and Miranda [14], Ziemer [16],
and the recent book by Ambrosio, Fusco and Pallara [2], where a systematic
presentation is given, also in view of the applications mentioned above.
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2. The space BV

Consider a generic open subset Ω of RN , that for simplicity we take
bounded and with a Lipschitz boundary. In the following we denote by
LN (E) or simply by |E| the Lebesgue measure of E in RN , while Hk de-
notes the k-dimensional Hausdorff measure.

Definition 2.1. We say that a function u ∈ L1(Ω) is afunction of bounded
variation in Ω if its distributional gradient Du is a RN -valued finite Borel
measure on Ω. In other words, we have

∫

Ω
uDiφ dx = −

∫

Ω
φ dDiu ∀φ ∈ C∞c (Ω), ∀i = 1, . . . , N (2.1)

where Diu are finite Borel measures. The space of all functions of bounded
variation in Ω is denoted by BV (Ω).

The space BV (Ω) is clearly a vector space and, with the norm

‖u‖BV (Ω) = ‖u‖L1(Ω) + |Du|(Ω) (2.2)

it becomes a Banach space. The total variation |Du|(Ω) appearing above is
intended as

|Du|(Ω) = sup
{ N∑

i=1

∫

Ω
φi dDiu : φ ∈ C∞c (Ω;RN ), |φ| ≤ 1

}

= sup
{
−
∫

Ω
u div φ dx : φ ∈ C∞c (Ω;RN ), |φ| ≤ 1

}

and is sometimes indicated by
∫

Ω |Du|. The space BVloc(Ω) is defined in a
similar way, requiring that u ∈ BV (Ω′) for every Ω′ ⊂⊂ Ω.

From the functional analysis point of view, the space BV (Ω) does not
verify the nice properties of Sobolev spaces. In particular:

• the Banach space BV (Ω) is not separable;

• the Banach space BV (Ω) is not reflexive;

• the class of smooth functions is not dense in BV (Ω) for the norm (2.2).

The issues above motivate why the norm (2.2) is not very helpful in the
study of variational problems involving the space BV (Ω). On the contrary,
the weak* convergence defined below is much more suitable to treat mini-
mization problems for integral functionals.

Definition 2.2. We say that a sequence (un) weakly* converges in BV (Ω)
to a function u ∈ BV (Ω) if un → u strongly in L1(Ω) and Dun → Du in
the weak* convergence of measures.

The weak* convergence on BV (Ω) satisfies the following properties:

• (compactness) every bounded sequence in BV (Ω) for the norm (2.2)
admits a weakly* convergent subsequence;
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• (lower semicontinuity) the norm (2.2) is sequentially lower semicontin-
uous with respect to the weak* convergence;

• (density) every function u ∈ BV (Ω) can be approximated, in the weak*
convergence, by a sequence (un) of smooth functions.

The density property above can be actually made stronger: in fact, the
approximation of (un) to u holds in the sense that





un → u strongly in L1(Ω)
Dun → Du weakly* as measures
|Dun|(Ω)→ |Du|(Ω).

Further properties of the space BV (Ω) concern the embeddings into Le-
besgue spaces, traces, and Poincaré-type inequalities. More precisely we
have:

• (embeddings) the spaceBV (Ω) is embedded continuously into LN/(N−1)(Ω)
and compactly into Lp(Ω) for every p < N/(N − 1);

• (traces) every function u ∈ BV (Ω) has a boundary trace which be-
longs to L1(∂Ω), and the trace operator from BV (Ω) into L1(∂Ω) is
continuous;

• (Poincaré inequalities) there exist suitable constants c1 and c2 such
that for every u ∈ BV (Ω)
∫

Ω
|u| dx ≤ c1

[
|Du|(Ω) +

∫

∂Ω
|u| dHN−1

]

∫

Ω
|u− uΩ| dx ≤ c2|Du|(Ω) (where uΩ =

1

|Ω|

∫

Ω
u dx).

3. Sets of finite perimeter

An important class of functions with bounded variation are those that can
be written as 1E , the characteristic function of a set E, taking the value 1
on E and 0 elsewhere. This is the natural class where many phase-transition
problems with sharp interfaces may be framed.

Definition 3.1. For a measurable set E ⊂ RN the perimeter of E in Ω is
defined as

Per(E,Ω) = |D1E |(Ω).

The equality above is intended as Per(E,Ω) = +∞ whenever 1E /∈ BV (Ω).
If Per(E,Ω) < +∞ then the set E is called a set of finite perimeter in Ω.

Note that by the compactness property above for BV functions, a family
of characteristic functions of sets with finite perimeter in a bounded open
set Ω with equibounded perimeter is weakly∗-precompact, and its limit is of
the same form.

For a set E of finite perimeter in Ω we may define the inner normal versor
and the reduced boundary as follows.
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Definition 3.2. Let E be a set of finite perimeter in Ω. We call reduced
boundary ∂∗E the set of all points x ∈ Ω ∩ spt |D1E | such that the limit

νE(x) = lim
r→0

D1E
(
Br(x)

)

|D1E |
(
Br(x)

)

exists and satisfies |νE(x)| = 1. The vector νE(x) is called the generalized
inner normal versor to E.

In order to link the measure-theoretical objects introduced above with
some structure property of sets of finite perimeter, we introduce, for every
t ∈ [0, 1] and every measurable set E ⊂ RN , the set Et defined by

Et =
{
x ∈ RN : lim

r→0

|E ∩Br(x)|
|Br(x)| = t

}
. (3.1)

For instance, if E is a smooth domain of RN , E1 is the interior part of E,
E0 is its exterior part, while E1/2 is the boundary ∂E.

The main properties of the reduced boundary and of the generalized inner
normal versor are stated in the following result.

Theorem 3.3. Let E be a set of finite perimeter in Ω. Then its reduced
boundary ∂∗E coincides HN−1-a.e. with the set E1/2 introduced in Defini-
tion 3.1, and we have the equality

Per(E,Ω) = HN−1(Ω ∩ ∂∗E) = HN−1(Ω ∩ E1/2).

Moreover, the generalized inner normal versor νE(x) exists for HN−1-a.e.
x ∈ ∂∗E, and we have

D1E = νE(x)HN−1 ∂∗E .

Note that the lower semicontinuity of |D1E |(Ω) entails the lower semi-
continuity of E 7→ HN−1(Ω ∩ ∂∗E) with respect to the weak∗-convergence
of 1E . As a consequence we may apply the direct methods of the calculus
of variations to obtain for example existence of minimizers of

min
{

Per(E,RN )−
∫

E
g dx

}
,

that are sets with prescribed mean curvature g. This lower semicontinu-
ity property can be further generalized, e.g. as in the following result for
anisotropic perimeters.

Theorem 3.4. Let ϕ : SN−1 → R be a Borel function. The energy
∫

Ω∩∂∗E
ϕ(νE) dHN−1

is lower semicontinuous with respect to the weak∗-convergence of 1E in BV (Ω)
if and only if the positively one-homogeneous extension of ϕ from SN−1 to
RN is convex.
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This result immediately implies the existence of solutions of isovolumetric
problems of the form

min
{∫

∂∗E
ϕ(νE) dHN−1 : |E| = c

}
,

whose solutions are obtained by suitably scaling the Wulff shape of ϕ.

4. The structure of BV functions

The simplest situation occurs when N = 1 and so Ω is an interval of
the real line. In this case, decomposing the derivative u′ into positive and
negative parts, and taking their primitives, we obtain that u ∈ BV (Ω) if and
only if u is the sum of two bounded monotone functions (one increasing and
one decreasing). Therefore, in the one-dimensional case, the BV functions
share all the properties of monotone functions.

The situation is more delicate when N > 1, for which we need the notion
of approximate limit.

Definition 4.1. Let u ∈ BV (Ω). We say that u has the approximate limit
z at x if

lim
r→0

1

|Br(x)|

∫

Br(x)
|u(y)− z| dy = 0 .

The set where no approximate limit exists is called the approximate discon-
tinuity set, and is denoted by Su. In a similar way, when x ∈ Su we may
define the approximate values z+ and z−, by requiring that

lim
r→0

1

|B+
r (x, ν)|

∫

B+
r (x,ν)

|u(y)− z+| dy = 0

lim
r→0

1

|B−r (x, ν)|

∫

B−r (x,ν)
|u(y)− z−| dy = 0

where
B+
r (x, ν) =

{
y ∈ Br(x) : (y − x) · ν > 0

}

B−r (x, ν) =
{
y ∈ Br(x) : (y − x) · ν < 0

}

Analogous definitions can be given in the vector valued case, when u ∈
BV (Ω;Rm).

The triplet (z+, z−, ν) in Definition 4.1 is unique up to interchanging z+

with z− and changing sign to ν, and is denoted by
(
u+(x), u−(x), νu(x)

)
.

We are now in a position to describe the structure of the measure Du when
u ∈ BV (Ω), or more generally u ∈ BV (Ω;Rm). We first apply the Radon-
Nikodym theorem to Du and we decompose it into absolutely continuous
and singular parts: Du = (Du)a + (Du)s. We denote by ∇u the density of
the absolutely continuous part, so that we have

Du = ∇u · LN + (Du)s.

The singular part (Du)s can be further decomposed into a (N − 1) dimen-
sional part, concentrated on the approximate discontinuity set Su, and the
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remaining part, which vanishes on all sets with finite HN−1 measure. More
precisely, if u ∈ BV (Ω;Rm) we have

Du = ∇u · LN +
(
u+(x)− u−(x)

)
⊗ νu(x) · HN−1 Su + (Du)c ; (4.1)

the three terms on the right hand side are mutually singular and are respec-
tively called the absolutely continuous part, the jump part, and the Cantor
part of the gradient measure Du.

In the vector valued case Du is a m×N matrix of finite Borel measures,
∇u is a m×N matrix of functions in L1(Ω), and the jump term in (4.1) is
a N − 1 dimensional measure of rank one. The structure of the Cantor part
(Du)c is described by the Alberti’s rank one theorem (see [1]).

Theorem 4.2. For every u ∈ BV (Ω;Rm) the Cantor part (Du)c is a mea-
sure with values in the m×N matrices of rank one.

5. Convex functionals on BV

Many problems of the calculus of variations deal with the minimization
of energies of the form

F (u) =

∫

Ω
f(x, u,Du) dx ; (5.1)

the direct methods require, to obtain the existence of at least a minimizer,
some coercivity hypotheses on F , as well as its lower semicontinuity. This
last issue, already rather delicate when working in Sobolev spaces (see for
instance the books [4] and [5]), presents additional difficulties when the
unknown function u varies in the space BV (Ω), due to the fact that Du is a
measure, and the precise meaning of the integral in (5.1) has to be clarified.

In this section we limit ourselves to consider the simpler situation of con-
vex functionals, and we also assume that the integrand f(x, u,Du) depends
only on x and Du. It is then convenient to study the problem in the frame-
work of functionals defined on the space of finite Borel vector measures
M(Ω;Rk). Let f : RN × Rk → [0,+∞] be a Borel function such that

• f is lower semicontinuous;

• f(x, ·) is convex for every x ∈ RN .

We denote by f∞(x, z) the recession function associated to f , given by

f∞(x, z) = lim
t→+∞

f(x, z0 + tz)

t

where z0 is any point in Rk such that f(x, z0) < +∞ (in fact, the defini-
tion above is independent of the choice of z0). Then we may consider the
functional

F (λ) =

∫

Ω
f
(
x, λa(x)

)
dx+

∫

Ω
f∞
(
x,

dλs

d|λs|
)
d|λs| (5.2)

where λ = λa · dx + λs is the Lebesgue-Nikodym decomposition of λ into
absolutely continuous and singular parts, and the notation dλs/d|λs| stands
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for the density of λs with respect to its total variation |λs|. For simplicity,
the last term in the right hand side of (5.2) is often denoted by

∫
Ω f
∞(x, λs).

For the functional F the following lower semicontinuity result holds (see
for instance [4]).

Theorem 5.1. Under the assumptions above the functional (5.2) is sequen-
tially lower semicontinuous for the weak* convergence on M(Ω;Rk). More-
over, if

f(x, z) ≥ c0|z| − a(x) with c0 > 0 and a ∈ L1(Ω), (5.3)

then the functional F turns out to be coercive for the same topology.

From Theorem 5.1 we deduce immediately a lower semicontinuity result
for functionals defined on BV (Ω;Rm).

Corollary 5.2. Under the assumptions above on the integrand f (with k =
mN) the functional defined on BV (Ω;Rm) by

F (u) =

∫

Ω
f
(
x, (Du)a

)
dx+

∫

Ω
f∞
(
x,
d(Du)s

d|Du|s
)
d|Du|s (5.4)

is sequentially lower semicontinuous for the weak* convergence. Moreover,
under the assumption (5.3) the functional F is coercive with respect to the
same topology.

For some extensions of the result above to the case when f(x, ·) is quasi-
convex (in the vector valued situation m > 1) we refer the interested reader
to [10] and to references therein.

Fixing boundary data is another difference between variational problems
on Sobolev spaces and on BV spaces. Due to the fact that the class {u ∈
BV (Ω) : u = u0 on ∂Ω} is not weakly* closed, to set in a correct way a
minimum problem of Dirichlet type on BV (Ω) with datum u0 ∈ BV (RN ) it
is convenient to consider a larger domain Ω′ ⊃⊃ Ω and for every u ∈ BV (Ω)
the extended function

ũ =

{
u on Ω
u0 on Ω′ \ Ω

whose distributional gradient is

Dũ = Du Ω +Du0 Ω′ \ Ω + (u0 − u)νΩHN−1 ∂Ω

being νΩ the exterior normal versor to Ω. We have then the functional on
BV (Ω′)

F̃ (ũ) =

∫

Ω′
f
(
x, (Dũ)a

)
dx+

∫

Ω′
f∞
(
x, (Dũ)s

)

=

∫

Ω
f
(
x, (Du)a

)
dx+

∫

Ω′\Ω
f
(
x, (Du0)a

)
dx+

∫

Ω
f∞
(
x, (Du)s

)

+

∫

Ω′\Ω
f∞
(
x, (Du0)s

)
+

∫

∂Ω
f∞
(
x, (u0 − u)νΩ

)
dHN−1.
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If we drop the constant term
∫

Ω′\Ω f
(
x, (Du0)a

)
dx +

∫
Ω′\Ω f

∞(x, (Du0)s
)
,

irrelevant for the minimization, we end up with the functional

Fu0(u) = F (u) +

∫

∂Ω
f∞
(
x, (u0 − u)νΩ

)
dHN−1

where F is as in (5.4). The Dirichlet problem we consider is then

min
{
F (u) +

∫

∂Ω
f∞
(
x, (u0 − u)νΩ

)
dHN−1 : u ∈ BV (Ω)

}
. (5.5)

For instance, if f(z) = |z|, problem (5.5) becomes

min
{∫

Ω
|Du|+

∫

∂Ω
|u− u0| dHN−1 : u ∈ BV (Ω)

}
.

Under the assumptions considered, the problem above admits a solution
u ∈ BV (Ω), but in general we do not have u = u0 on ∂Ω in the sense of BV
traces.

6. Nonconvex functionals on BV

In order to introduce the class of nonconvex functionals on BV (Ω) let us
denote v = Du so that every functional Φ(v) provides an energy F (u). If we
work in the setting of Sobolev spaces, we have u ∈ W 1,p(Ω) (p ≥ 1) which
implies v ∈ Lp(Ω;RN ); now, it happens that in this case all “interesting”
functionals Φ are convex. More precisely, it can be proved that a functional
Φ : Lp(Ω;RN )→ [0,+∞] which is

• sequentially lower semicontinuous for the weak convergence of Lp(Ω;RN ),
• local on Lp(Ω;RN ) in the sense that Φ(v+w) = Φ(v)+Φ(w) whenever
v · w ≡ 0 in Ω,

has to be necessarily convex, and of the form

Φ(v) =

∫

Ω
φ
(
x, v(x)

)
dx

for a suitable integrand φ such that φ(x, ·) is convex. Then the energies
F (u) defined on Sobolev spaces and obtained by a functional Φ(v) through
the identification v = Du are necessarily convex. This is no longer true if
Φ is defined on the space M(Ω;RN ) of measures, and hence F is defined
on BV (Ω). The first example of a nonconvex functional Φ on M(Ω;RN ) in
the literature comes from the so called Mumford-Shah model for computer
vision (see below) and is given by

Φ(λ) =

∫

Ω
|λa(x)|2 dx+ #(Aλ)

where λa is the absolutely continuous part of λ, Aλ is the set of atoms of
λ, and # is the counting measure. The functional Φ is set equal to +∞
on all measures λ whose singular part λs is nonatomic. A general repre-
sentation result (see [3] and references therein) establishes that a functional
Φ :M(Ω;RN )→ [0,+∞] which is
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• sequentially lower semicontinuous for the weak* convergence ofM(Ω;RN ),
• local onM(Ω;RN ) in the sense that Φ(λ+ν) = Φ(λ)+Φ(ν) whenever
λ and ν are mutually singular in Ω,

has to be of the form

Φ(λ) =

∫

Ω
φ(x, λa) dµ+

∫

Ω
φ∞(x, λc) +

∫

Ω
ψ
(
x, λ#(x)

)
d#

where µ is a nonnegative measure, λ = λa · dx+ λc + λ# is the decomposi-
tion of λ into absolutely continuous, Cantor and atomic parts, φ(x, v) is an
integrand convex in v and φ∞ is its recession function. The novelty is now
represented by the integrand ψ(x, v) which has to be subadditive in v and
satisfying the compatibility condition

lim
t→+∞

φ(x, tv)

t
= lim

t→0+

ψ(x, tv)

t
.

When φ has a superlinear growth the condition above gives that the slope of
ψ(x, ·) at the origin has to be infinite. For instance, in the Mumford-Shah
case we have

φ(x, v) = |v|2 ψ(x, v) =

{
1 if v 6= 0
0 if v = 0.

(6.1)

Coming back to the case u ∈ BV (Ω), we have the decomposition (4.1)

Du = ∇u · LN + (Du)c + [u]νu(x) · HN−1 Su

where we considered for simplicity only the scalar case m = 1 and denoted
by [u] the jump u+ − u−. We have then the functional

F (u) =

∫

Ω
φ
(
x,∇u

)
dx+

∫

Ω
φ∞
(
x, (Du)c

)
+

∫

Su

ψ
(
x, [u]νu

)
dHN−1.

For instance, in the homogeneous-isotropic case, when φ(x, v) and ψ(x, v)
are independent of x and only depend on |v|, the formula above reduces to

F (u) =

∫

Ω
φ
(
|∇u|

)
dx+ β|Du|c(Ω) +

∫

Su

ψ
(
|[u]|

)
dHN−1, (6.2)

where β, φ, ψ satisfy the compatibility condition

β = φ∞(1) = lim
t→0+

ψ(t)

t
. (6.3)

In the original Mumford-Shah model for computer vision, Ω is a rectangle
of the plane, u0 : Ω → [0, 1] represents the grey level of a picture, c1 and
c2 are positive scale and contrast parameters, and the variational problem
under consideration is

min
{∫

Ω
|∇u|2 dx+ c1

∫

Ω
|u− u0|2 dx+ c2HN−1(Su) : (Du)c ≡ 0

}
. (6.4)

The solution u then represents the reconstructed image, whose contours are
given by the jump set Su. We refer to [7] and to the book [15] for further
details about this model.
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Analogously, in the case of the study of fractures of an elastic membrane,
a problem similar to (6.4) provides the vertical displacement u of the mem-
brane, together with its fracture set Su. We refer to some recent papers (see
[6], [12] and references therein) for a more detailed description of fracture
mechanics problems, even in the more delicate vectorial setting of elasticity.

Using the functional F in (6.2) we have the generalized Mumford-Shah
problem

min
{
F (u) + c1

∫

Ω
|u− u0|2 dx : u ∈ BV (Ω)

}

where φ is convex, ψ is subadditive, and the compatibility condition (6.3) is
fulfilled.

If we set K = Su and assume it is closed, the Mumford-Shah problem can
be rewritten as

min
{∫

Ω\K
|∇u|2 dx+ c1

∫

Ω\K
|u− u0|2 dx+ c2HN−1(K ∩ Ω) :

K ⊂ Ω closed, u ∈ H1(Ω \K)
}
.

and this justifies the name of “free discontinuity problems” that is often used
in this setting.

The regularity properties of optimal pairs (u,K) are far from being fully
understood; some partial results are available but the Mumford-Shah con-
jecture:

• in the case N = 2 for an optimal pair (u,K) the set K is locally the
finite union of C1,1 arcs

remains still open. We refer to [2] for a list of the regularity results on the
problem above that are known until now.

References

[1] G. ALBERTI: Rank one properties for derivatives of functions with bounded variation.
Proc. Roy. Soc. Edinburgh, A-123 (1993), 239–274.

[2] L. AMBROSIO, N. FUSCO, D. PALLARA: Functions of bounded variation and free
discontinuity problems. Oxford Mathematical Monographs, Clarendon Press, Oxford
(2000).

[3] G. BOUCHITTE, G. BUTTAZZO: Integral representation of nonconvex functionals
defined on measures. Ann. Inst. H. Poincaré Anal. Non Linéaire, 9 (1992), 101–117.
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