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1 Introduction

Given two functionals E : [0, T ] × Z → R and Ψ : Z × Z → [0,+∞) on a Banach space
Z, we consider the following doubly nonlinear evolution equation

∂vΨ(z(t), ż(t)) + ∂E(t, z(t)) 3 0, t ∈ (0, T ). (1.1)

Here, E and Ψ are assumed to be lower semicontinuous, convex in their second arguments
and differentiable in their first arguments, and the symbols ∂v and ∂ both denote the
subdifferential w.r.t. the second variable. In fact, E is the potential energy and Ψ the
dissipation functional associated with a rate-independent process, possibly displaying a
hysteretic behaviour. Roughly speaking, rate-independence means that the process is
insensitive to changes in the time scales. Processes of this kind occur in several branches
of applied mathematics, such as plasticity, phase transformations in elastic solids, dry
friction on surfaces and many others (see e.g., [Mie05] and the references therein). They
may arise as vanishing viscosity limits of systems with strongly separated time scales,
whence their hysteretical behaviour. On the modeling level, rate-independence is achieved
by assuming Ψ to be 1-positively homogeneous w.r.t. its second variable, i.e., Ψ(z, λv) =
λΨ(z, v) for every λ ≥ 0 and (z, v) ∈ Z × Z. Thus, a solution to (1.1) remains a solution
if the time is rescaled.

In the last years, a new energetic approach to the modeling of these problems has
been developed in [MT99, MTL02, MT04]. The latter work concerns a simplified version
of (1.1), obtained by assuming that Ψ does not depend on the state z, i.e., DzΨ(z, v) = 0
for all z, v. This leads to a special case of the doubly nonlinear problems studied in
[CV90, Col92] because of the additional rate independence. It is the purpose of this paper
to generalize the results in [MT04], proving existence, approximation, and uniqueness
for (1.1), which includes the state-dependent dissipation functional Ψ. From the very
beginning, we will assume the map z 7→ E(t, z) to be convex: this is necessary to obtain
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absolutely continuous solutions. In Section 2 we discuss the relations between the doubly
nonlinear formulation (1.1) and the corresponding energetic formulation

E(t, z(t)) ≤ E(t, ẑ) + Ψ(z(t), ẑ−z(t)) ∀ẑ ∈ Z, (SΨ)

E(t, z(t)) +

∫ t

0

Ψ(z(τ), ż(τ))dτ = E(0, z(0)) +

∫ t

0

∂tE(τ, z(τ))dτ. (EΨ)

In fact, we will show (cf. Proposition 2.7 later on) that, under suitable conditions, (1.1)
and (SΨ)-(EΨ) are equivalent.

Following [MT04], we note that (SΨ) is a stability condition: in fact, according to
(SΨ) passing from the state z(t) to the state ẑ involves the release of the potential energy
E(t, z(t)) − E(t, ẑ), smaller than the dissipated energy Ψ(z(t), ẑ−z(t)). On the other
hand, (EΨ) is an energy balance. Note that the formulation (SΨ)-(EΨ) does not involve
the “derivative” of E w.r.t. the variable z, but only the assumedly smooth power of the
external forces ∂tE . Moreover, in (EΨ) one could replace the time derivative of z with
(a form) of its derivative in the sense of measures (see [MT04]), since in non convex and
non smooth problems the solution z might have jumps. In fact, (SΨ)–(EΨ) can even be
formulated without any linear structure in the state space Z, if we replace Ψ(ẑ−z) by a
general dissipation distance D(z, ẑ), see Section 2.3 and [MM05, Mie05].

In Section 3 we show that if z 7→ E(t, z) is uniformly convex and Ψ fulfils a Lip-
schitz continuity condition w.r.t. its first variable, then any solution to (1.1) is Lipschitz
continuous. In particular, the two conditions

E(t, 1
2
(z1+z2)) ≤ 1

2
E(t, z1) + 1

2
E(t, z2)− κ

8
‖z1−z2‖2

|Ψ(z1, v)− Ψ(z2, v)| ≤ ψ∗‖z1−z2‖‖v‖

}
∀ z1, z2, v ∈ Z

lead to the crucial assumption on the state dependence of Ψ, namely

ψ∗ < κ. (1.2)

A simple one-dimensional example shows that, without this condition, the existence of
continuous solutions may be false.

The existence proof for (1.1) is based on approximation with the discrete time incre-
mental problem

{
z0 := z(0),

zk ∈ argmin{ E(tk, z) + Ψ(zk−1, z − zk−1) | z ∈ Z } for k = 1, . . . , N ;

for suitable partitions 0 = t0 < t1 < · · · < tN = T . Actually, we will pass to the
limit in the discrete stability condition and in the energy inequality associated with
the above minimization problem, and thus obtain the equivalent energetic formulation
(SΨ)-(EΨ). Condition (1.2) is used to provide a priori Lipschitz bounds in the form
‖zk−zk−1‖ ≤ C∗|tk−tk−1| for equidistant partitions. We argue by weak compactness and
lower semicontinuity and exploit crucially a compactness result for Young measures in the
framework of the weak topology, recently proved in [RS04], see Appendix B.

Let us stress that, in proving equivalence of formulations and existence and approxi-
mation of solutions, we have developed arguments and techniques quite close to those in
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[MT04]. As a matter of fact, loosely speaking the dependence of Ψ on the state variable
z brings about relevant analytical difficulties only in the uniqueness issue for (1.1), which
we tackle in Section 5. The main difficulty in proving uniqueness for the Cauchy problem
for (1.1) is its quasivariational character, which does not allow us to apply convexity or
monotonicity arguments. The only simple uniqueness proof is achieved in the case that
the stable sets

S(t) = { z ∈ Z | E(t, z) ≤ E(t, ẑ) + Ψ(z, ẑ−z) ∀ ẑ ∈ Z }

are convex and that E has the form E(t, z) = Ê(z) − 〈`(t), z〉, with Ê strictly convex, see
Theorem 6.5 in [MT04]. In fact, these conditions hold if Ê(t, ·) is quadratic and Ψ is state-
independent. Instead, if either Ê is general (cf. [MT04]) or if Ψ is state-dependent, then
uniqueness is much more delicate. We explain now that the second case relates exactly
to the quasivariational inequalities studied in [BKS04].

Indeed, in view of standard convex analysis results (which will be recalled in Section
2 and in Appendix A), we may rephrase (1.1) as

ż(t) ∈ ∂IC(z(t))(−DE(t, z(t))), t ∈ (0, T ), (1.3)

where {C(z)}z∈Z is the family of closed convex subsets of Z ′ related to Ψ by the formula

Ψ(z, v) := sup{ 〈σ, v〉 | σ ∈ C(z) } for all z, v ∈ Z,

and IC(z) is the indicator function of C(z). Indeed, we may refer to (1.3) as the sweeping
process formulation of (1.1), as it may be viewed as a generalization of the classical
sweeping process

ż(t) + ∂IK(t)(z(t)) 3 0, t ∈ (0, T ),

{K(t)}t∈(0,T ) being a family of closed convex subsets of a Hilbert space H. This variational
inequality was first analysed in [Mor73, Mor77]. In the latter paper, existence of solutions
for the related Cauchy problem was obtained via a suitable time-discretization, whereas
uniqueness was proved by a simple variational argument. This variational technique fails
as soon as one turns to so-called quasivariational sweeping processes

ż(t) + ∂IK(t,z(t))(z(t)) 3 0, t ∈ (0, T ),

where K depends on the state z ∈ Z. Such processes occur in a variety of applications,
ranging from non smooth mechanics to mathematical economics and convex optimization,
see e.g., [Mon93]. As a matter of fact, the dependence of K on the state z essentially
destroys the variational structure of the differential inclusion, and rules out the possibility
of exploiting monotonicity arguments. See [KM97, KM98] for existence results in this
context. Uniqueness was obtained only very recently in [BKS04] for (a generalization of)

ż(t) ∈ ∂IK(t,z(t))(`(t)− z(t)), t ∈ (0, T ),

with ` ∈ C1([0, T ];H). The above quasivariational inequality may be translated in a
subdifferential form analogous to (1.1), i.e.,

∂Ψ̃(t, z(t), ż(t)) + DẼ(t, z(t)) 3 0, t ∈ (0, T ),
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by choosing the dissipation potential Ψ̃ and the quadratic energy as follows:

Ψ̃(t, z, v) := sup{ 〈y, v〉 | y ∈ K(t, z) } and Ẽ(t, z) :=
1

2
‖z‖2 − 〈`(t), z〉

for all z, v ∈ H and t ∈ (0, T ). Without entering into details, let us point out that the
complex proof of uniqueness developed in [BKS04] is based on careful Lipschitz estimates
involving quantities suitably related to Ψ. Moreover, this approach relies on the specific
form of the quadratic energy functional.

Our result on uniqueness and continuous dependence for (1.1) combines the ideas of
[BKS04] and [MT04]. Following [BKS04], we use the auxiliary functional

B(z, σ) = sup{ 〈σ, v〉 − 1

2
Ψ(z, v)2 : v ∈ Z }.

Basically, B measures the distance to the yield surface, defined as the set of (z, σ) fulfilling
B(z, σ) = 1/2. Following [MT04] we introduce an energetic distance

%1,2(t) :=
(
〈DE(t, z1(t))−DE(t, z2(t)), z1(t))−z2(t)〉

)1/2
.

Indeed, %1,2(t) allows for a one-sided Lipschitz estimate, which is based on a generalization
of the structure condition proposed in [MT04] and which leads to the final Gronwall-type
estimate

d
dt

(
%1,2(t) +M2|B(z1(t), ς1(t))−B(z2(t), ς2(t))|

)

≤ M3

(
%1,2(t) +M2|B(z1(t), ς1(t))−B(z2(t), ς2(t))|

)
.

In contrast, the stronger assumptions in [BKS04] lead to two-sided Lipschitz estimates
and to a much stronger a priori estimate fo the type

‖ż1(t)−ż2(t)‖+M2
d
dt
|B(z1(t), ς1(t))−B(z2(t), ς2(t))|

)

≤M3

(
‖z1(t)−z2(t)‖+M2|B(z1(t), ς1(t))−B(z2(t), ς2(t))|

)
.
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CT-2002-00284 Smart Systems: New Materials, Adaptive Systems and their Nonlinear-
ities. Modelling, Control and Numerical Simulation. The second author gratefully ac-
knowledges the kind hospitality of the Institut für Analysis, Dynamik und Modellierung,
Universität Stuttgart, where this research was initiated.

2 Problem formulations

2.1 General setup

In the sequel, (Z, ‖ · ‖Z) (we will often write ‖ · ‖ instead of ‖ · ‖Z) will be a separable
Banach space, with dual (Z ′, ‖ · ‖Z′) and duality pairing 〈·, ·〉. We denote by L(Z,Z ′)
the space of all linear bounded operators from Z to Z ′. Let us now state our basic
assumptions on the energy functional E : [0, T ]×Z → R and on the dissipation potential
Ψ : Z × Z → [0,+∞].
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We will suppose that

E(t, ·) : Z → R is convex and l.s.c. for t ∈ [0, T ], (2.1)

and that the function t ∈ [0, T ] 7→ E(t, z) is differentiable for all z ∈ Z, with

∂tE(·, z) : [0, T ]→ R is measurable, and

∃C0 > 0 ∃λ0 ∈ L1(0, T ; [0,∞)) ∀z ∈ Z : |∂tE(t, z)| ≤ λ0(t)(E(t, z) + C0).
(2.2)

Hence, (see also [Mie05, Sect. 3]), E is bounded from below and absolutely continuous in
time, namely ∀t, s ∈ [0, T ] and ∀z ∈ Z we have

E(t, z) ≥ −C0, and E(t, z) + C0 ≤ (E(s, z) + C0) exp(|
∫ t

s

λ0(τ)dτ |). (2.3)

We will denote by ∂E(t, ·) the subdifferential of E (in the sense of convex analysis) w.r.t.
the variable z, i.e.

ξ ∈ ∂E(t, z) if and only if E(t, w)− E(t, z) ≥ 〈ξ, w − z〉 ∀w ∈ Z. (2.4)

For the dissipation potential Ψ, we assume that

Ψ(z, ·) : Z → [0,+∞) is convex, positively homogeneous of degree 1 ∀z ∈ Z, (2.5)

∃CΨ > 0 ∀(z, v) ∈ Z × Z : Ψ(z, v) ≤ CΨ‖v‖. (2.6)

In particular, by (2.6)
D(Ψ(z, ·)) = Z ∀z ∈ Z. (2.7)

Also, given (z, v) ∈ Z × Z, ∂vΨ(z, v) denotes the subdifferential of the convex function
Ψ(z, ·) in the point v.

Let us gain some insight into the geometrical interpretation of the assumptions on Ψ:
indeed, (2.5) yields the triangle inequality

Ψ(z, v + v̂) ≤ Ψ(z, v) + Ψ(z, v̂) for all z, v, v̂ ∈ Z. (2.8)

Actually, (2.8) is a consequence of the fact (equivalent to (2.5) and (2.6)), that for every
z ∈ Z, there exists

a non-empty, closed, and convex set C(z) ⊂ Z ′ with

Ψ(z, v) := sup{ 〈σ, v〉 | σ ∈ C(z) } for all v ∈ Z. (2.9)

Namely, for every z ∈ Z Ψ(z, ·) is the support function of the set C(z): thus, it is easy to
see that (2.6) may be equivalently rephrased (cf. Appendix A), as

C(z) ⊂ B∗CΨ
(0) for all z ∈ Z.

By standard convex analysis (see [Roc70]), we have for all v, z ∈ Z
∂vΨ(z, v) = argmax{ 〈σ, v〉 | σ ∈ C(z) } ⊂ C(z) (2.10)

∂vΨ(z, v) = (∂IC(z))
−1(v). (2.11)

In particular,
∂vΨ(z, 0) = C(z) ∀z ∈ Z. (2.12)

In the sequel (cf. especially Section 5), we will exploit the representation formula (2.9)
by means of some specific convex analysis results, which we recall in Appendix A for the
reader’s convenience, referring to [Kre99, Chap. 2] and [Roc70] for the proofs and further
details.
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2.2 Problem formulations

As in [MT04], [Mie05], we present different formulations of the Cauchy problem for (1.1).
In the sequel, z0 will be a given element of Z.

Problem 2.1 (Subdifferential Formulation). Find z ∈ W 1,1(0, T ;Z) fulfilling the
initial condition z(0) = z0 and

∂vΨ(z(t), ż(t)) + ∂E(t, z(t)) 3 0 for a.e. t ∈ (0, T ). (SF)

The latter differential inclusion means that there exist ω, ξ : (0, T )→ Z ′ such that

ω(t) ∈ ∂vΨ(z(t), ż(t)), ξ(t) ∈ ∂E(t, z(t)) and ω(t) + ξ(t) = 0 for a.e. t ∈ (0, T ). (2.13)

We may also introduce a local formulation of Problem 2.1.

Problem 2.2 (Local Formulation). Find z ∈ W 1,1(0, T ;Z) such that z(0) = z0 and
there exists ξ : (0, T )→ Z ′ such that for a.e. t ∈ (0, T ) we have ξ(t) ∈ ∂E(t, z(t)) and

Ψ(z(t), v) + 〈ξ(t), v〉 ≥ 0 ∀v ∈ Z, (Sloc)

Ψ(z(t), ż(t)) + 〈ξ(t), ż(t)〉 ≤ 0. (Eloc)

The proof of the following equivalence result follows closely the proof of [MT04, Thm. 3.5].

Proposition 2.3. Under the assumptions (2.1)-(2.2) on E and (2.5) on Ψ, the Subdif-
ferential Formulation 2.1 and the Local Formulation 2.2 are equivalent.

Proof. Let z ∈ W 1,1(0, T ;Z) fulfil (SF). Then, there is a selection ξ(t) of ∂E(t, z(t)) ∩
(−∂vΨ(z(t), ż(t))) for a.e. t ∈ (0, T ) fulfilling (2.13), which we test by ż(t), thus obtaining
(Eloc). We conclude (Sloc) by noting that, in view of (2.10) and (2.12), −ξ(t) ∈ C(z(t)) =
∂vΨ(z(t), 0).

Conversely, if a selection ξ(t) ∈ ∂E(t, z(t)) fulfils (Sloc) and (Eloc), we easily obtain the
variational inequality

Ψ(z(t), v)−Ψ(z(t), ż(t)) ≥ 〈 − ξ(t), v − ż(t)〉 ≥ 0 ∀v ∈ Z,

yielding −ξ(t) ∈ ∂vΨ(z(t), ż(t)).

Remark 2.4. Using that ψ(z, 0) = 0 for all z ∈ Z, it is easy to see that for a selection ξ
of ∂E(·, z(·)) we have

ξ(t) satisfies (Sloc) ⇐⇒ ξ(t) ∈ ∂E(t, z(t)) ∩ (−∂vΨ(z(t), 0)). (2.14)

Moreover, the latter condition implies ∂vΨ(z(t), 0) + ∂E(t, z(t)) 3 0.

Finally, we consider an integral formulation of Problems 2.1 and 2.2. Note that this is
not the energetic formulation proposed in [MT99, MT04, MM05], which will be discussed
here in Section 2.3.
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Problem 2.5 (Global Formulation). Find z ∈ W 1,1(0, T ;Z) with z(0) = z0 such that
for all t ∈ [0, T ] the stability condition (SΨ) and the energy balance (EΨ) hold:

E(t, z(t)) ≤ E(t, ẑ) + Ψ(z(t), ẑ − z(t)) ∀ẑ ∈ Z, (SΨ)

E(t, z(t)) +

∫ t

0

Ψ(z(τ), ż(τ))dτ = E(0, z(0)) +

∫ t

0

∂tE(τ, z(τ))dτ. (EΨ)

The following result, which is a version of the chain rule for the subdifferential of convex
functionals on Hilbert spaces proved in, e.g., [Bre73, Lemma 3.3], will play a crucial role in
establishing the links between the Global Formulation 2.5 and the previous formulations
2.1 and 2.2.

Proposition 2.6. Let the functional E : [0, T ]× Z → R comply with (2.1), (2.2) and:

∃λ1 ∈ L1(0, T ) ∀a.e.t ∈ (0, T ) ∀z, ẑ ∈ Z : |∂tE(t, z)−∂tE(t, ẑ)| ≤ λ1(t)‖z−ẑ‖. (2.15)

Furthermore, suppose that z ∈ W 1,1(0, T ;Z) and that there exists a selection g with

g(t) ∈ ∂E(t, z(t)) for a.e. t ∈ (0, T ) and g ∈ L∞(0, T ;Z ′). (2.16)

Then, the map t 7→ E(t, z(t)) is absolutely continuous on (0, T ) and for every measurable
selection ζ(t) ∈ ∂E(t, z(t)) we have the identity

d
dt
E(t, z(t)) = 〈ζ(t), ż(t)〉+ ∂tE(t, z(t)) for a.e. t ∈ (0, T ). (2.17)

Proof. First, we point out that, in view of (2.2) and (2.15), we have

∫ T

0

|∂τE(τ, z(τ))|dτ ≤
∫ T

0

λ1(τ)‖z(0)−z(τ)‖dτ +

∫ T

0

|∂τE(τ, z(0))|dτ

≤
(
‖z‖L∞(0,T ) + ‖z(0)‖

) ∫ T

0

λ1(τ)dτ +

∫ T

0

λ0(τ)dτ(E(0, z(0))+C0) exp(

∫ T

0

λ0(s)ds),

where we have also used (2.2) and (2.3) to obtain

|∂τE(τ, z(0))| ≤ λ0(τ)(E(τ, z(0))+C0) ≤ λ0(τ)(E(0, z(0))+C0) exp(
∫ T

0
λ0(s)ds).

Thus, we know that the map t 7→ ∂tE(t, z(t)) is in L1(0, T ), too.
Second, by (2.16), there exists a negligible set N ⊂ (0, T ) such that for t ∈ (0, T ) \N ,

g(t) ∈ ∂E(t, z(t)). Thus, using (2.16) and (2.15), for s, t ∈ (0, T ) \ N with s ≤ t we have

E(t, z(t))− E(s, z(s)) = E(t, z(t))− E(t, z(s)) + E(t, z(s))− E(s, z(s))

≤(2.16) 〈g(t), z(t)− z(s)〉 +
∫ t
s
∂τE(τ, z(s))dτ

≤(2.15) 〈g(t), z(t)−z(s)〉+
∫ t
s
λ1(τ)‖z(s)−z(τ)‖dτ +

∫ t
s
∂τE(τ, z(τ))dτ,

(2.18)

In the same way, we obtain the lower estimate

E(t, z(t))− E(s, z(s)) = E(t, z(t))− E(s, z(t)) + E(s, z(t))− E(s, z(s))

≥ 〈g(s), z(t)−z(s)〉 −
∫ t
s
λ1(τ)‖z(t)−z(τ)‖dτ +

∫ t
s
∂τE(τ, z(τ))dτ.

(2.19)
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Collecting (2.18) and (2.19) we deduce that for s, t 6∈ N with s ≤ t we have

∣∣∣E(t, z(t))− E(s, z(s))−
∫ t
s
∂τE(τ, z(τ))dτ

∣∣∣
≤ 2‖z‖L∞(0,T ;Z)

∫ t
s
λ1(τ)dτ + ‖g‖L∞(0,T ;Z′)‖z(t)− z(s)‖.

(2.20)

Indeed, by continuity (2.20) holds for all 0 ≤ s ≤ t ≤ T, and the absolute contintuity of
the map t 7→ E(t, z(t)) hence follows.

Finally, let ζ be an arbitrary selection of ∂E(·, z(·)) satisfying the assumptions of
the proposition. Then, the set of points t0 ∈ (0, T ) such that d

dt
E(t, z(t))|t=t0 exists,

ζ(t0) ∈ ∂E(t0, z(t0)), and t0 is a Lebesgue point for λ1 and for the map t 7→ ∂tE(t, z(t))
is of full measure. Now, choose such a t0, consider (2.18) for s := t0−h and t := t0 with
0 < h < t0, divide it by h and take the limit as h↘ 0. Then, we obtain

d
dt
E(t, z(t))|t=t0 = lim suph↘0

E(t0 ,z(t0))−E(t0−h,z(t0−h))
h

≤ lim
h↘0

〈
ζ(t0),

z(t0)−z(t0−h)
h

〉
+ lim

h↘0

(
sup

t0−h≤τ≤t0
‖z(τ)−z(t0 − h)‖

)
1
h

∫ t0
t0−h λ1(τ)dτ

+ limh↘0
1
h

∫ t0
t0−h ∂tE(τ, z(τ))dτ

≤ 〈ζ(t0), ż(t0)〉+ 0 + ∂tE(t0, z(t0)).

(2.21)

In the same way, exploiting (2.19) and choosing s = t0 and t = t0+h this time, we obtain
the reverse inequality d

dt
E(t, z(t))|t=t0 ≥ 〈ζ(t0), ż(t0)〉 + ∂tE(t0, z(t0)). Thus, we conclude

the chain rule formula (2.17) at t = t0.

Now, we are able to formulate the next equivalence result.

Proposition 2.7. Assume (2.1), (2.2), (2.5), (2.6), (2.15), and (2.16).
If z ∈ W 1,1(0, T ;Z) satisfies the Subdifferential Formulation (SF) in the form (2.13) with
a selection ξ ∈ L∞(0, T ;Z ′) of t → ∂E(t, z(t)), then z also fulfils the Global Formulation
(SΨ) and (EΨ).

Conversely, any solution z ∈ W 1,1(0, T ;Z) of (SΨ) and (EΨ) satisfies the Subdifferen-
tial Formulation (SF).

Proof. We will exploit Proposition 2.3 and indeed reduce to proving the equivalence be-
tween the Local Formulation 2.2 and the Global Formulation 2.5.

Hence, let ξ be a selection of ∂E(·, z(·)) in L∞(0, T ;Z ′) fulfilling (Sloc)-(Eloc): then,
(EΨ) is obtained integrating in time (Eloc), and using the chain rule formula (2.17), while
(SΨ) follows by choosing v := ẑ − z(t) in (Sloc) for an arbitrary ẑ ∈ Z, and recalling the
definition of subdifferential (2.4).

For the converse implication, first note that (SΨ) implies (Sloc): indeed, in view of
(2.7) and Lemma A.2 in Appendix A, (SΨ) yields

0 ∈ ∂E(t, z(t)) + ∂vΨ(z(t), 0) for a.e. t ∈ (0, T ),

which can be rephrased as

∀a.e.t ∈ (0, T ) ∃ξ(t) ∈ ∂E(t, z(t)) ⊂ Z ′ ∀v ∈ Z : Ψ(z(t), v) + 〈ξ(t), v〉 ≥ 0. (2.22)

On the other hand, it is straightforward to check that (Sloc) is equivalent to (2.22).
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Second, consider (EΨ) and use that t 7→ Ψ(z(t), ż(t)) is in L1(0, T ) (in view of (2.6)
and of ż ∈ L1(0, T )), and that t 7→ ∂tE(t, z(t)) is in L∞(0, T ). Taking t to be a Lebesgue
point of these two maps as well as of ż, we obtain, for any η ∈ ∂E(t, z(t)), the estimate

1
h
(E(t+h, z(t+h))− E(t, z(t)))

= 1
h
(E(t, z(t+h))− E(t, z(t))) + 1

h
(E(t+h, z(t+h))− E(t, z(t+h)))

≥ 〈η, 1
h
(z(t+h)−z(t))〉+ 1

h

∫ t+h
t

∂sE(s, z(t+h))ds

= 〈η, 1
h
(z(t+h)−z(t))〉 + ∂tE(t, z(t)) + 1

h

∫ t+h
t

(∂sE(s, z(t+h))−∂sE(t, z(t)))ds.

For h ↘ 0, the first term on the right-hand side tends to 〈η, ż(t)〉, while the last term
tends to 0 due to (2.15), and the Lebesgue-point property of t for ∂tE . Since the derivative
of (EΨ) gives: d

dt
(E(t, z(t))) + Ψ(z(t), ż(t)) = ∂tE(t, z(t)), we arrive at

∀η ∈ ∂E(t, z(t)) : 〈η, ż(t)〉+ Ψ(z(t), ż(t)) ≤ 0.

Inserting η := ξ(t), we see that (Eloc) is satisfied as well.

2.3 The Energetic Formulation

For completeness, we also mention the global energetic approach developed in the series
of papers [MT99, MTL02, MT04, MM05]. To this aim, we associate with the dissipation
potential Ψ a global dissipation distance D on Z via

D(z0, z1) := inf
{

DissΨ(ζ, [0, 1]) : ζ ∈ C1([0, 1];Z), ζ(0) = z0, ζ(1) := z1

}
, (2.23)

where the functional DissΨ is defined by

DissΨ(ζ, [s0, s1]) :=

∫ s1

s0

Ψ(ζ(t), ζ̇(t))dt. (2.24)

Furthermore, given a curve z : [0, T ] → Z, and a subinterval [s, t] ⊂ [0, T ], the total
dissipation of z on [s, t] is defined by

DissD(z; [s, t]) := sup

{
N∑

j=1

D(z(tj−1), z(tj))

∣∣∣∣∣ N ∈ N, s = t0 < t1 < . . . < tN = t

}
.

(2.25)
Under suitable assumptions on Ψ, it is possible to show that DissD coincides with DissΨ

along absolutely continuous curves. However, DissD is also defined in more general situ-
ations.

We can now introduce a derivative-free, energetic formulation of Problem 2.1.

Definition 2.8 (Energetic Formulation). A curve z : [0, T ] → Z is called a solution
of the rate-independent Problem 2.1 associated with (E ,D) if for all t ∈ [0, T ] the global
stability (SD) and the energy balance (ED) hold, i.e.

E(t, z(t)) ≤ E(t, ẑ) +D(z(t), ẑ) ∀ẑ ∈ Z, (SD)

E(t, z(t)) + DissD(z; [0, t]) = E(0, z0) +

∫ t

0

∂tE(s, z(s))ds. (ED)

It is easy to see that if z ∈ W 1,1((0, T ), Z) solves (SD) and (ED), then it also solves
(SΨ) and (EΨ).
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3 Temporal regularity via uniform convexity

Throughout this section, we will assume that the energy functional E : [0, T ] × Z → R
complies with (2.1) and (2.2).

Here, the crucial condition will be a suitable strict convexity assumption on E . In fact,
we require z 7→ E(t, z) to be uniformly convex, namely

∃κ > 0 ∀z0, z1 ∈ Z, ∀t ∈ [0, T ], ∀θ ∈ [0, 1] :

E(t, zθ) ≤ (1− θ)E(t, z0) + θE(t, z1)− κ

2
θ(1− θ)‖z0 − z1‖2 (3.1)

where zθ := (1−θ)z0 +θz1. Let us stress that condition (3.1) means that E is κ-uniformly
convex in the z variable, with a modulus of convexity κ independent of t ∈ [0, T ]. Note
that this implies

E(t, ẑ) ≥ E(t, z) + 〈ξ, ẑ−z〉 +
κ

2
‖ẑ−z‖2 ∀z, ẑ ∈ Z ∀ξ ∈ ∂E(t, z). (3.2)

As for Ψ, besides (2.5) and (2.6), we also suppose that there exists ψ∗ > 0 such that

|Ψ(z, v)− Ψ(ẑ, v)| ≤ ψ∗‖v‖‖z − ẑ‖, (3.3)

and ψ∗ < κ. (3.4)

Before stating the main result of this section, we consider a simple example, which
shows that our conditions are sharp.

Example 3.1. We consider the case E(t, z) = κ
2
z2− λtz, with Z = R and fixed κ, λ > 0.

The state-dependent dissipation potential takes the form

Ψ(z, v) = r(z)|v|, with r(z) =





1 + ψ∗ for z ≤ 1,
1 + ψ∗(2−z) for z ∈ [1, 2],

1 for z ≥ 2,

with ψ∗ ≥ 0. For ψ∗ < κ and for the initial value z0 = 0, a solution can be constructed
easily, namely

z(t) :=





0 for t ∈ [0, (1+ψ∗)/λ],
(λt−1−ψ∗)/κ for t ∈ [(1+ψ∗)/λ, (1+ψ∗+κ)/λ],

(λt−1−2ψ∗)/(κ−ψ∗) for t ∈ [(1+ψ∗+κ)/λ, (1+2κ)/λ],
(λt−1)/κ for t ≥ (1+2κ)/λ.

It is easy to see that the solution is unique. The Lipschitz constant of z is given by
λ/(κ−ψ∗), and hence blows up for κ−ψ∗ ↘ 0.

For ψ∗ ≥ κ there does not exist an absolutely continuous solution. Indeed, any
solution must satisfy z(t) ∈ S(t), which is equivalent to |κz(t)−λt| ≤ r(z(t)). Thus,
for large t > (1+2κ)/λ we must have z(t) ∈ S(t) = [(λt−1)/κ, (λt+1)/κ] ⊂ (2,∞).
However, it is impossible for the solution to move through the z-interval (1, 2) in an
absolutely continuous fashion, since the relations 0 ∈ ∂Ψ(z, ż) + κz − λt and ż > 0 imply
r(z) + κz − λt = 0. Hence, using ψ∗ ≥ κ > 0 and differentiating the last expression gives
ż ≤ 0.
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Theorem 3.2. Assume (2.1), (2.2), (2.5), (2.6), (2.15), (2.16), (3.1), (3.3) and (3.4):
then, any solution z ∈ W 1,1(0, T ;Z) to Problem 2.1 satisfies

‖ż(t)‖ ≤ λ1(t)

κ− ψ∗ for a.e. t ∈ [0, T ].

In particular, if λ1 ∈ L∞(0, T ), then z ∈ CLip(0, T ;Z).

Proof. We start by noting that any solution z to Problem 2.1 fulfils a stability condition
stronger than (SΨ), namely

κ

2
‖ẑ − z(s)‖2 + E(s, z(s)) ≤ E(s, ẑ) + Ψ(z(s), ẑ − z(s)) ∀ẑ ∈ Z for a.e. s ∈ (0, T ). (3.5)

Indeed, we fix s, out of a negligible set, at which z fulfils (Sloc). On the other hand, we
consider (3.2) for t = s and add Ψ(z(s), ẑ− z(s)) to both sides of the resulting inequality.
Then, we use that z fulfils (Sloc) at s, with ξ(s) ∈ ∂E(s, z(s)) and v = ẑ − z(s). Hence,
(3.5) follows.

Then, ∀ t ∈ [0, T ] and for a.e. s ≤ t we conclude

κ
2
‖z(t)− z(s)‖2 ≤ E(s, z(t))− E(s, z(s)) + Ψ(z(s), z(t)− z(s))
≤ E(s, z(t))− E(t, z(t)) + E(t, z(t))− E(s, z(s)) +

∫ t
s

Ψ(z(s), ż(τ))dτ

= −
∫ t
s
∂tE(τ, z(t))dτ +

∫ t
s
∂tE(τ, z(τ))dτ −

∫ t
s

Ψ(z(τ), ż(τ))dτ +
∫ t
s

Ψ(z(s), ż(τ))dτ

≤
∫ t
s
λ1(τ)‖z(t)− z(τ)‖dτ + ψ∗

∫ t
s
‖ż(τ)‖‖z(τ)− z(s)‖dτ,

where the first inequality is obtained choosing ẑ := z(t) in (3.5), the second inequality
follows from the convexity of Ψ(z(s), ·), the third one from the energy identity (EΨ)
(fulfilled by z in view of Proposition 2.7), and the last one from (2.15) and (3.3). Note
that this estimate is exactly the assumption of the following Lemma 3.3, which concludes
the proof.

Lemma 3.3. Let z ∈ W 1,1(0, T ;Z) and suppose that there exist positive constants α and
β with β < α and a function γ ∈ L1(0, T ; [0,∞)) such that, ∀ t ∈ [0, T ] and for a.e. s ≤ t,

α

2
‖z(t)− z(s)‖2 ≤

∫ t

s

γ(τ)‖z(t)− z(τ)‖dτ + β

∫ t

s

‖ż(τ)‖‖z(τ)− z(s)‖dτ. (3.6)

Then, we have

‖ż(t)‖ ≤ γ(t)

α− β for a.e. t ∈ (0, T ). (3.7)

Proof. We denote by N the negligible set such that any s ∈ (0, T ) \ N complies with
(3.6), and by L ⊂ (0, T ) \ N the set of t which are Lebesgue points for ż and γ, i.e., for
all a, b ∈ R\{0} with a < b we have, for ε→ 0,

z(t+εb)−z(t+εa)

ε(b− a)
=

1

ε(b−a)

∫ t+εb

t+εa

ż(τ)dτ → ż(t)

and
1

ε(b−a)

∫ t+εb

t+εa

|γ(τ)− γ(t)|dτ → 0.

(3.8)
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The standard theory of Lebesgue measurable functions states that the set (0, T )\L has
measure 0. Hence, it is sufficient to show that (3.7) holds on L.

For arbitrary t0 ∈ L and sufficiently small h > 0, we consider the three terms in (3.6)
for s = t0 and t = t0 + h after division by h2, and take the limit h → 0. We will show
that this leads to the limit estimate:

κ

2
‖ż(t0)‖2 ≤ γ(t0)

2
‖ż(t0)‖+

β

2
‖ż(t0)‖2. (3.9)

Thus, after division by ‖ż(t0)‖/2 the desired estimate follows.
The convergence of the term on the left-hand side of (3.6) follows directly from the

first convergence result in (3.8), namely 1
h
(z(t0 + h)− z(t0))→ ż(t0). On the other hand,

the modulus of difference between the first term on the right-hand side of (3.6) and its
expected limit can be estimated as follows:

∣∣∣∣
1

h2

∫ t0+h

t0

γ(τ)‖z(t0 + h)− z(τ)‖dτ − γ(t0)

2
‖ż(t0)‖

∣∣∣∣

≤
∣∣∣∣
∫ 1

θ=0

γ(t0+θh)(1−θ)‖a(h, θ)‖ − γ(t0)(1−θ)‖ż(t0)‖dθ

∣∣∣∣

≤
∫ 1

0

|γ(t0+θh)−γ(t0)|(1−θ)‖a(h, θ)‖dθ +

∫ 1

0

γ(t0)(1−θ)
∣∣∣‖a(h, θ)‖−‖ż(t0)‖

∣∣∣dθ,

where a(h, θ) =
1

(1−θ)h(z(t0+h)− z(t0+θh)).

(3.10)
Defining wh := 1

h
(z(t0+h)−z(t0)) and ρ(h) := sup{ ‖wτ−ż(t0)‖ | τ ∈ (0, h] }, we find

ρ(h)↘ 0 for h↘ 0, as well as

a(h, θ) =
1

1−θ (wh − θwθh) and ‖a(h, θ)− ż(t0)‖ ≤ 1+θ

1−θρ(h).

Indeed, the latter estimate follows from

∥∥∥∥
1

1−θ (wh − θwθh)− ż(t0)

∥∥∥∥ ≤
1

1−θ‖wh − ż(t0)‖+
θ

1−θ‖wθh − ż(t0)‖ ≤ ρ(h)

1−θ +
θρ(h)

1−θ ,

where we have also used that θ < 1.
Thus, the estimate (3.10) may be continued as follows:

≤
∫ 1

0

|γ(t0+θh)− γ(t0)|(‖ż(t0)‖+ (1+θ)ρ(h))dθ +

∫ 1

0

γ(t0)(1+θ)ρ(h)dθ.

All terms converge to 0: the first one due to the Lebesgue-point property (3.8) for γ, the
second and the third due to ρ(h)↘ 0.

For the second term on the right-hand side of (3.6), we argue in a similar way as for
the first term, but now γ is replaced by ‖ż(·)‖ ∈ L1(0, T ; [0,∞)).

Thus, (3.9) is established.
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Remark 3.4. If E and Ψ(·, v) are sufficently smooth, the desired Lipschitz estimate in
Theorem 3.2 can be obtained from the weakened assumption:

〈D2E(t, z)w,w〉+ DzΨ(z, w)[w] ≥ δ‖w‖2, (3.11)

see (5.12). Note that (3.11) is a consequence of (3.1), (3.3) and (3.4), giving δ = κ−ψ∗.
Indeed, choose any s ∈ (0, T ) which is a Lebesque point of ż. Using (Sloc) and (Eloc)

with ξ(t) = DE(t, z(t)) and v = ż(s), the function α : t 7→ Ψ(z(t), ż(s))+〈DE(t, z(t)), ż(s)〉
satisfies α(t) ≥ 0 and α(s) = 0. Hence, we have

0 = α̇(s) = DzΨ(z(s), ż(s))[ż(s)] + 〈∂sDzE(s, z(s))+D2
zE(s, z(s))ż(s), ż(s)〉.

Now, (3.11) and (2.15) imply

λ1(s)‖ż(s)‖ ≥ |〈∂sDzE(s, z(s)), ż(s)〉| = −〈∂sDzE(s, z(s)), ż(s)〉
= DzΨ(z(s), ż(s))[ż(s)] + 〈D2

zE(s, z(s))ż(s), ż(s)〉 ≥ δ‖ż(s)‖2,

which is the desired result.

4 An existence result

As shown in [MT04], there are essentially two ways to establish existence. In all cases, suit-
able approximate solutions are constructed via regularization or via time discretization.
To obtain solutions, these approximations have to be controlled via a priori estimates.
One class of existence results is based on compactness arguments, usually by using the
weak topology in Banach spaces. It allows us to extract a suitable subsequence which
converges to a solution, but does not provide uniqueness of the solution. Another class
of existence results is based on a more careful control of the distances of the approximate
solutions, in order to show that they form a converging sequence of functions, see e.g.
[HR99, BKS04] and [MT04, Thm. 7.3]. Here we follow the first method, and use com-
pactness methods and fairly general conditions. Uniqueness will be established in the
following section under much stronger assumptions, and exploiting completely different
methods.

4.1 Statement of the assumptions and the result

In this section, we will assume that our ambient Banach space

Z is reflexive. (4.1)

We will establish an existence result (cf. Theorem 4.6 later on) for Problem 2.1 essentially
under weak continuity conditions on Ψ and on E . Note that weak continuity provides
compactness arguments if we obtain additional boundedness conditions, since bounded
sequences have weakly convergent subsequences under the reflexivity assumption (4.1).

Let us now enlist all the assumptions on E and Ψ which will come into play in the
proof of Theorem 4.6, referring to the notation of Section 2.1. Moreover, we denote by
∂E ⊂ [0, T ]× Z × Z ′ the graph of the set-valued map (t, z) 7→ ∂E(t, z).
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Assumptions on the energy functional E. We suppose that E complies with (2.1),
(2.2), (2.16); besides, we strengthen the assumption (2.15) by assuming that λ1 lies in
L∞(0, T ). With Λ1 := ‖λ1‖L∞, we then have

∀z, ẑ ∈ Z; ∀t ∈ [0, T ] : |∂tE(t, z)−∂tE(t, ẑ)| ≤ Λ1‖z−ẑ‖. (4.2)

We also assume the strict convexity (3.1), and

for a.e. t ∈ (0, T ) the map z 7→ ∂tE(t, z) is weakly continuous on Z, (4.3)

∂E ⊂ [0, T ]× Z × Z ′ is closed in the strong-weak-weak topology. (4.4)

The latter condition means that for any sequence (tk, zk, σk)k∈N in ∂E with tk → t, zk ⇀ z
in Z, and σk ⇀ σ in Z ′, we have (t, z, σ) ∈ ∂E .

Assumptions on the dissipation functional Ψ. We impose (2.5), (2.6), (3.3), (3.4),
and the new conditions

Ψ : Z × Z → [0,∞) is sequentially weakly lower semicontinuous, (4.5)

z 7→ C(z) ⊂ Z ′ has a seq. closed graph in the weak-weak topology of Z×Z ′. (4.6)

(4.6) means that

(zk, σk) ⇀ (z, σ) in Z × Z ′ and σk ∈ C(zk) implies σ ∈ C(z). (4.7)

Lemma 4.1. Let Ψ : Z × Z → [0,+∞] fulfil (2.5), (2.6) and (4.5). Then, (4.6) is
equivalent to

∀v ∈ Z : Ψ(·, v) : Z → [0,∞) is sequentially weakly continuous. (4.8)

Proof. First, we prove (4.6) ⇒ (4.8): in view of (4.5), it is sufficient to show that

zk ⇀ z ⇒ lim sup
k↑∞

Ψ(zk, v) ≤ Ψ(z, v) ∀v ∈ Z.

Indeed, recalling the representation formula (2.9), for any k > 0 we have

∀ v ∈ Z ∀ k ∈ N ∃ σk,v ∈ C(zk) : 〈σk, v〉 ≤ Ψ(zk, v) ≤ 〈σk, v〉+
1

k
.

Since the sequence {σk,v}k∈N is bounded in Z ′ by (2.6), we extract subsequences zkj ⇀ z
in Z, σkj ⇀ σ in Z ′, and by (4.7) conclude that σ ∈ C(z), so that for all v ∈ Z we have

lim sup
k↑∞

Ψ(zk, v) ≤ 〈σ, v〉 ≤ Ψ(z, v).

As for the converse implication, we will show that (4.8) ⇒ (4.7): indeed, we fix a
sequence {(zk, σk)} ⊂ Z × Z ′ in the conditions of (4.7), and we recall that σk ∈ C(zk) =
∂vΨ(zk, 0) is equivalent to

〈σk, v〉 ≤ Ψ(zk, v) ∀v ∈ Z.
Hence, we pass to the limit in both sides of the above inequality and obtain σ ∈ C(z).

Remark 4.2. In fact, in the proof of Theorem 4.6 it will be more convenient to use
condition (4.6) rather than (4.8). On the other hand, (4.8) is easier to check in the
applications: indeed, a typical situation in which (4.5) and (4.8) are satisfied occurs when
Z is compactly embedded into another Banach space Y , written as Z b Y , and Ψ has a
continuous extension to all of Y , see the following example.
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4.2 A nontrivial example

Here, we provide an example which is nontrivial and satisfies all the assumptions of the
above theory. This is a typical situation which appears in continuum mechanical models
for materials with internal variables whose evolution is rate-independent, see [MM05,
FM05, Mie05].

We start with the Banach space Z = H1(Ω;Rm) = W 1,2(Ω;Rm) where Ω ⊂ Rd is
bounded and has a Lipschitz boundary. For the energy functional we use

E(t, z) :=

∫

Ω

α1

2
|∇z|2 + F (x, z(x)) dx− 〈`(t), z〉,

where ` ∈ C1([0, T ], Z1) is typically taken in the form

〈`(t), z〉 =

∫

Ω

g(t, x) · z(x) dx +

∫

∂Ω

h(t, x) · z(x) da.

The function F : Ω×Rm → R is assumed to be continuous, convex in z ∈ Rm and satisfies
the bounds

c|z|2 − β(x) ≤ F (x, z) ≤ C|z|ρ + β(x) ∀x ∈ Ω ∀z ∈ Rm,
where C, c > 0, β ∈ L1(Ω) and the exponent ρ ≥ 2 satisfies d

ρ
≥ d−2

2
.

As H1(Ω;Rm) is continuously embedded into Lρ(Ω;Rm), it is easy to see that E :
[0, T ]×Z → R is continuous and convex in z ∈ H1(Ω;Rm), which proves (2.1). Moreover,
we have the coercivity estimate

E(t, z) ≥ 1

2
α2‖z‖2

H1−Cβ with α2 = min{α1

2
, c}, and Cβ =

∫

Ω

|β(x)| dx+
1

2α2

‖`‖2
L∞(0,T ;Z′),

also taking into account the contribution of the term 〈`(t), z〉.
Moreover, ∂tE(t, z) = −〈 ˙̀(t), z〉 and thus (2.2) holds with C0 = α2+Cβ and λ0(t) =

‖ ˙̀(t)‖Z′/α2, while (4.2) follows from ˙̀ ∈ L∞(0, T ;Z ′). If we additionally impose that each
F (x, ·) is α3-uniformly convex, then E(t, ·) is κ-uniformly convex with κ = min{α1, α3}.

The most difficult condition is the strong-weak-weak closedness of the graph of ∂E ⊂
[0, T ]× Z × Z ′. First note that

∂E(t, z) = { −α1∆Neuz + η − `(t) ∈ Z ′ | η(x) ∈ ∂F (x, z(x)) for a.e. x ∈ Ω },

where ∂F (x, z1) denotes the subdifferential of F (x, ·) in the point z1. For a sequence
(tk, zk, wk) ∈ ∂E , with tk → t, zk ⇀ z in Z and wk ⇀ w in Z ′, we conclude `(tk) → `(t)
in Z ′ and, by linearity and boundedness, ∆Neuzk ⇀ ∆Neuz in Z ′. Now, we additionally
assume d

ρ
> d−2

2
, such thatH1(Ω;Rm) is compactly embedded into Lρ(Ω;Rm). Then, zk →

z in Lρ(Ω;Rm) (strongly) and, after choosing a subsequence, we may assume zk(x)→ z(x)
in Rm for a.e. x ∈ Ω. Now, ηk := wk + α1∆neuzk + `(tk) is a selection for ∂F (·, zk(·)).
On the one hand, this implies, via |∂F (x, z)| ≤ C|z|ρ−1 + β(x), that ηk is bounded in
Lρ/(ρ−1)(Ω;Rm). On the other hand ηk ⇀ η := w + α1∆neuz + `(t). Hence, we conclude
ηk ⇀ η in Lρ/(ρ−1)(Ω;Rm). To conclude η(x) ∈ ∂F (x, z(x)) for a.e. x ∈ Ω, we use that
A : z 7→ ∂F (·, z(·)) is a maximal monotone operator from its domain Lρ(Ω;Rm) into its
dual Lρ/(ρ−1)(Ω;Rm). However, ηk ∈ A(zk), ηk ⇀ η and zk → z, then implies η ∈ A(z),
as desired.
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The dissipation potential Ψ is taken in the form

Ψ(z, v) =

∫

Ω

ψ(x, z(x), v(x)) dx,

where the local density ψ : Ω × Rm × Rm → [0,∞) is continuous. Moreover, each
ψ(x, z, ·) : Rm → [0,∞) is assumed 1-homogeneous and convex, whence (2.5). Further,
we suppose that there exist constants c1, ψ

∗
0 ≥ 0 such that

|ψ(x, z1, v)− ψ(x, z2, v)| ≤ ψ∗0 |z1 − z2| |v| and 0 ≤ ψ(x, z, v) ≤ c1|v|,

so that (2.6) and (3.3) hold. Note that the latter condition, together with convexity and
1-homogeneity, implies |ψ(z, v1) − ψ(z, v2)| ≤ c1|v1 − v2|. For ψ∗0 small enough, (3.4) is
also fulfilled.

To establish the weak continuity properties of Ψ, we use that H1(Ω;Rm) is compactly
embedded into Y := L2(Ω;Rm). By its definition, we may extend Ψ to all of Y and obtain
the estimates

|Ψ(z1, v1)− Ψ(z2, v2)| ≤ ψ∗0‖z1−z2‖Y ‖v1‖Y + c1‖v1−v2‖L1(Ω).

With ‖v‖L1 ≤ vol(Ω)1/2‖v‖L2 , we conclude the continuity of Ψ : L2(Ω;Rm)×L2(Ω;Rm)→
[0,∞), which by the above arguments implies conditions (4.5) and (4.8).

4.3 Time incremental problems and approximate solutions

Let us consider a partition

Pτ := {t0τ = 0 < t1τ < . . . < tNτ = T}, τ := max
j=1,...,N

{tjτ − tj−1
τ },

of the interval (0, T ), and let us introduce the following time incremental problem, asso-
ciated with the time-continuous Problem 2.1.

Problem 4.3. Given z0
τ := z0, find z1

τ , . . . , z
N
τ ∈ Z such that

zkτ ∈ argmin{ E(tkτ , z) + Ψ(zk−1
τ , z − zk−1

τ ) | z ∈ Z } for k = 1, . . . , N. (IP)

It is straightforward to check that, under the present convexity assumptions on E and
Ψ, for every k = 1, . . . , N the incremental problem (IP) admits a solution zkτ . Indeed, the
solution zkτ to (IP) is unique, as a consequence of the following

Lemma 4.4. Assume (2.1), (2.5), (3.1), and (4.1). Then, any solution {zkτ }Nk=0 of Prob-
lem 4.3 fulfils, for k = 1, . . . , N , the variational inequality

κ

2
‖zkτ − ẑ‖2 ≤ E(tkτ , ẑ)− E(tkτ , z

k
τ ) + Ψ(zk−1

τ , ẑ − zk−1
τ )−Ψ(zk−1

τ , zkτ − zk−1
τ ) ∀ẑ ∈ Z, (4.9)

where κ is the uniform modulus of convexity of the functional E , cf. (3.1).
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Proof. For every ẑ ∈ Z, let us set ẑθ := (1−θ)zkτ + θẑ, θ ∈ [0, 1]. The uniform convexity of
the map z 7→ E(tkτ , z) and the convexity of z 7→ Ψ(zk−1

τ , z− zk−1
τ ) yield for every θ ∈ (0, 1)

the estimate

κ
2
θ(1−θ)‖zkτ − ẑ‖2 ≤ (1− θ)

(
E(tkτ , z

k
τ ) + Ψ(zk−1

τ , zkτ − zk−1
τ )

)

+θ
(
E(tkτ , ẑ) + Ψ(zk−1

τ , ẑ − zk−1
τ )

)
− E(tkτ , ẑθ)− Ψ(zk−1

τ , ẑθ − zk−1
τ ).

(4.10)

On the other hand, it follows from (IP) that

E(tkτ , z
k
τ ) + Ψ(zk−1

τ , zkτ − zk−1
τ ) ≤ E(tkτ , ẑθ) + Ψ(zk−1

τ , ẑθ − zk−1
τ ).

Plugging the above inequality in (4.10), dividing both sides by θ, and letting θ ↘ 0, we
conclude (4.9).

Corollary 4.5. For every k = 1, . . . , N the incremental problem (IP) has a unique
solution {zkτ }k=0,...,N , and this solution fulfils the stability condition

E(tkτ , z
k
τ ) ≤ E(tkτ , ẑ) + Ψ(zk−1

τ , ẑ − zkτ ) ∀ẑ ∈ Z. (4.11)

Indeed, (4.11) directly follows from (IP), also using the triangle inequality (2.8) for Ψ.

Approximate solutions. We can now introduce the piecewise constant interpolants
Zτ , Zτ : [0, T ] → Z and the piecewise linear interpolant Ẑτ : [0, T ] → Z of the discrete
solutions {zkτ }Nk=0 of Problem 4.3, defined by

Zτ (t) := zkτ for t ∈ (tk−1
τ , tkτ ], Zτ (t) := zk−1

τ for t ∈ [tk−1
τ , tkτ ),

Ẑτ (t) =
t− tk−1

τ

tkτ − tk−1
τ

zkτ +
tkτ − t

tkτ − tk−1
τ

zk−1
τ , t ∈ [tk−1

τ , tkτ ].

Also, let tτ : [0, T ] → [0, T ] be defined by tτ (0) := 0 and tτ (t) := tkτ for t ∈ (tk−1
τ , tkτ ]. Of

course, for every t ∈ [0, T ] we have tτ (t) ↓ t as τ ↘ 0.
By (2.7) and Lemma A.2, the minimization problem (IP) yields the subdifferential

inclusion
∂vΨ(zk−1

τ , zkτ − zk−1
τ ) + ∂E(tkτ , z

k
τ ) 3 0 ∀k = 1, . . . , N.

Using the 1-homogeneity of the functional Ψ(z, ·), we thus obtain

∂vΨ(Zτ (t), Ẑ
′
τ(t)) + ∂E(tτ (t), Zτ (t)) 3 0 ∀t ∈ (tk−1

τ , tkτ ]. (4.12)

We can now state our main existence and approximation result for Problem 2.1. After
some a priori estimates in Section 4.4 the proof will be completed in Section 4.5.

Theorem 4.6. Assume (4.1), that E complies with (2.1), (2.2), (2.16), (4.2), (3.1), (4.3),
(4.4), and that Ψ fulfils (2.5), (2.6), (3.3), (3.4), (4.5), and (4.6).

Then, the Cauchy Problem 2.1 for the Global Formulation (SΨ) and (EΨ), supple-
mented with the stable initial datum z0 (i.e., (Sloc) holds for z0), admits a solution.

Moreover, if {Pτj} is a sequence of uniform time-step partitions of [0, T ] (i.e., tkτj −
tk−1
τj

= tiτj − ti−1
τj

= τj ∀k, i), with fineness τj ↘ 0 as j ↑ ∞ and {Zτj}, {Zτj}, {Ẑτj} are the
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associated interpolants, there exists a subsequence {τjn}n and a solution z ∈ W 1,∞(0, T ;Z)
such that the following convergences hold as n ↑ ∞:

∀t ∈ [0, T ] : Ẑτjn (t) ⇀ z(t) in Z, (4.13)

∀t ∈ [0, T ] : Zτjn (t), Zτjn (t) ⇀ z(t) in Z, (4.14)

Ẑτjn
∗
⇀z in W 1,∞(0, T ;Z), (4.15)

∂tE(·, Zτjn (·))→ ∂tE(·, z(·)) in L1(0, T ), (4.16)

∀t ∈ [0, T ] :





E(t, Zτjn (t))→ E(t, z(t)),
∫ t

0

Ψ(Zτjn (s), Ẑ ′τjn (s))ds→
∫ t

0

Ψ(z(s), ż(s))ds.
(4.17)

4.4 A priori estimates for the approximate solutions

In the sequel, we will denote by C any constant occurring in the estimates, without
detailing the quantities C depends on; instead, we will use other symbols for more specific
constants.

The following result shows that assumption (4.2) makes the incremental solutions
Lipschitz continuous with a uniform bound.

Proposition 4.7 (Lipschitz bounds). Assume (4.1), (2.1), (3.1), (4.2), (2.5), (3.3)
and (3.4). Let us set

δk := ‖zkτ − zk−1
τ ‖ for all k = 1, . . . , N and τ > 0. (4.18)

Then, for any k = 1, . . . , N we have the discrete Lipschitz estimate

δk ≤
Λ1

κ− ψ∗ τ. (4.19)

Note that (4.19) is the discrete analogue of the Lipschitz continuity estimate proved
in Theorem 3.2.

Proof. Let us plug ẑ := zk−1
τ in (4.9), thus obtaining

κ

2
‖zkτ − zk−1

τ ‖2 ≤ E(tkτ , z
k−1
τ )− E(tkτ , z

k
τ )−Ψ(zk−1

τ , zkτ − zk−1
τ ). (4.20)

Let us write (4.9) at the (k−1)-th step: for every w ∈ Z we have

κ

2
‖zk−1
τ − w‖2 ≤ E(tk−1

τ , w)− E(tk−1
τ , zk−1

τ ) + Ψ(zk−2
τ , w − zk−2

τ )− Ψ(zk−2
τ , zk−1

τ − zk−2
τ );

let us now choose w := zkτ . Adding the resulting inequality and (4.20), we get

κ‖zkτ − zk−1
τ ‖2 ≤ E(tkτ , z

k−1
τ )− E(tkτ , z

k
τ ) + E(tk−1

τ , zkτ )− E(tk−1
τ , zk−1

τ )

−Ψ(zk−1
τ , zkτ − zk−1

τ ) + Ψ(zk−2
τ , zkτ − zk−2

τ )−Ψ(zk−2
τ , zk−1

τ − zk−2
τ ) (4.21)

By the triangle inequality (2.8) and by (3.3), we conclude that

Ψ(zk−2
τ , zkτ − zk−2

τ )− Ψ(zk−2
τ , zk−1

τ − zk−2
τ )− Ψ(zk−1

τ , zkτ − zk−1
τ )

≤ Ψ(zk−2
τ , zkτ − zk−1

τ )−Ψ(zk−1
τ , zkτ − zk−1

τ ) ≤ ψ∗‖zk−1
τ − zk−2

τ ‖‖zkτ − zk−1
τ ‖.

(4.22)
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On the other hand, by (4.2)

E(tkτ , z
k−1
τ )− E(tkτ , z

k
τ ) + E(tk−1

τ , zkτ )− E(tk−1
τ , zk−1

τ )

=

∫ tkτ

tk−1
τ

(∂tE(τ, zk−1
τ )−∂tE(τ, zkτ ))dτ ≤ ‖zkτ − zk−1

τ ‖
∫ tkτ

tk−1
τ

λ1(τ)dτ

≤ Λ1(tkτ − tk−1
τ )‖zkτ − zk−1

τ ‖.

(4.23)

Thus, letting δ0 = 0 and collecting (4.21)-(4.23), we obtain the recurrence relation

δk ≤
Λ1

κ
(tkτ − tk−1

τ ) +
ψ∗

κ
δk−1 ∀k = 1, . . . , N, (4.24)

whence

δk ≤
Λ1

κ

k∑

j=1

(
ψ∗

κ

)k−j (
tjτ − tj−1

τ

)
, (4.25)

yielding (4.19) thanks to (3.4).

Proposition 4.8 (A priori estimates). Under the same assumptions of Proposition 4.7,
the energy estimate

∫ t

s

Ψ(Zτ (r), Ẑ
′
τ(r))dr + E(t, Zτ (t)) ≤ E(s, Zτ (s)) +

∫ t

s

∂tE(r, Zτ (s))dr (4.26)

holds for every pair of nodes s, t ∈Pτ , s < t, and for all t ∈ [0, T ] we have

max{E(t, Zτ (t)), E(t, Zτ (t))} ≤ (E(0, z0) + C0) exp(Λ1t)− C0,∫ t

0

Ψ(Zτ (r), Ẑ
′
τ(r))dr ≤ (E(0, z0) + C0) exp(Λ1t).

(4.27)

Further, there exist two constants C and C ′ such that for all τ > 0

‖Zτ‖L∞(0,T ;Z) ≤ C, (4.28)

‖Ẑτ − Zτ‖L∞(0,T ;Z) ≤ ‖Zτ − Zτ‖L∞(0,T ;Z) ≤
Λ1

κ− ψ∗ τ. (4.29)

In particular, if only uniform step-size partitions are considered we have

‖Ẑ ′τ‖L∞(0,T ;Z) ≤
Λ1

κ− ψ∗ for τ ∈ { T/k | k ∈ N }. (4.30)

Proof. It follows from the minimization algorithm (IP) and from the 1-homogeneity of Ψ
w.r.t. the second variable that for every tk−1

τ , tkτ ∈Pτ

E(tkτ , z
k
τ ) + (tkτ − tk−1

τ )Ψ

(
zk−1
τ ,

zkτ − zk−1
τ

tkτ − tk−1
τ

)
≤ E(tkτ , z

k−1
τ )

= E(tk−1
τ , zk−1

τ ) +

∫ tkτ

tk−1
τ

∂tE(r, zk−1
τ )dr,

(4.31)
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whence (4.26) by adding up (4.31) on each subinterval of the partition.
We refer to [Mie05, Cor. 3.3] for the proof of (4.27), obtained through (2.2), (2.3), and

the Gronwall Lemma. Since E is bounded from below (cf. (2.3)), it follows from (4.27)
that

|E(t, Zτ (t))|+ |E(t, Zτ (t))| ≤ C ∀ t ∈ [0, T ],

whence (4.28), in view of the uniform convexity assumption (3.1).
Finally, the first inequality in (4.29) can be found by trivial calculations, while the

second one is a reformulation of (4.19).

4.5 Proof of Theorem 4.6

For the existence proof we restrict ourselves to the approximate solutions Zτ , Zτ , Ẑτ
constructed from partitions with uniform time steps. In this case, (4.30) provides equi-
continuity of the approximate sequences, and we can apply the Ascoli-Arzelà compactness
theorem in the framework of the weak topology on the reflexive space Z. Hence, there
exist a subsequence (Ẑτjn )n∈N, which we denote by (Ẑn)n∈N for simplicity, and a limit
function z ∈ W 1,∞(0, T ;Z) such that (4.13) and, by (4.29), (4.14) hold for every t ∈ [0, T ]
(indeed, the convergences are uniform in t). Standard weak-compactness results further
yield (4.15).

Using also Zn, Zn and tn as short-hands for Zτjn , Zτjn and tτjn , respectively, we see
that (4.12) implies the weaker statement

∂vΨ(Zn(t), 0) + ∂E(tn(t), Zn(t)) 3 0 ∀t ∈ (0, T ],

in view of (2.10) and (2.12). Now, let us keep an arbitrary t ∈ (0, T ] fixed: then, there
exists a sequence ξn with

ξn ∈ (∂E(tn(t), Zn(t))) ∩ (−∂vΨ(Zn(t), 0)) ⊂ B∗CΨ
(0),

where the latter inclusion follows from (2.6). Thus, there exists a weakly convergent
subsequence ξnk ⇀ ξ∗. Using the weak closedness properties (4.4) for ∂E and (4.6) for
∂vΨ(·, 0), as well as the convergences tn(t)→ t, Zn(t)) ⇀ z(t) and Zn(t) ⇀ z(t), we obtain
ξ∗ ∈ ∂E(t, z(t)) and −ξ∗ ∈ ∂vΨ(z(t), 0). But this implies

∂vΨ(z(t), 0) + ∂E(t, z(t)) 3 0,

which is equivalent to (SΨ) by Proposition 2.3, Remark 2.4, and Proposition 2.7.
To prove the energy balance (EΨ), we first establish the one-sided estimate

∫ t

0

Ψ(z(r), ż(r))dr + E(t, z(t)) ≤ E(0, z0) +

∫ t

0

∂tE(r, z(r))dr. (4.32)

For this, we start from the discrete energy inequality (4.26), yielding, for all t ∈ [0, T ],

∫ tn(t)

0

Ψ(Zn(r), Ẑ ′n(r))dr + E(tn(t), Zn(tn(t))) ≤ E(0, z0) +

∫ tn(t)

0

∂tE(r, Zn(r))dr. (4.33)

By (4.3) and (4.14) we have ∂tE(r, Zτ (r)) → ∂tE(r, z(r)) for all r ∈ [0, T ]. Further,
in view of (2.2) and (4.27), the integrands are bounded in L∞(0, T ). Thus, the Lebesgue
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theorem yields (4.16), so that the integral on the right-hand side of (4.33) converges to∫ t
0
∂E(r, z(r))dr.
Moreover, using the lower semicontinuity (2.1) of E(t, ·) and the uniform boundedness

of ∂tE , we obtain

lim inf
n→∞

(E(tτn(t), Zτ (tτn(t))− E(t, z(t)))

≥ lim
n→∞

∫ tτn(t)

t

∂tE(r, Zτ (tτn(t)))dr + lim inf
n→∞

(E(t, Zτ (tτn(t))− E(t, z(t))) ≥ 0.
(4.34)

To pass to the limit in the dissipation integral term in left-hand side of (4.33), we

observe that, by (4.28) and (4.30), the sequence (Zn, Ẑ
′
n)n∈N is bounded in L∞(0, T ;Z×Z).

Thus, applying Theorem B.2 in the space X := Z × Z, a subsequence (Znk , Ẑ
′
nk

)k∈N
generates a limiting Young measure {νt}t∈(0,T ) ∈ Y(0, T ;Z × Z). Recalling that Ψ is a
weakly normal integrand (cf. Section B) on (0, T )× Z × Z, we thus obtain

lim inf
n→∞

∫ tτn (t)

0

Ψ(Zτ (r), Ẑ
′
τ(r))dr ≥

∫ t

0

(∫

Z×Z
Ψ(z, v)dνr(z, v)

)
dr.

On the other hand, in view of (4.13), (4.15), and (B.7), for a.e. t ∈ (0, T ) we have
νt = δz(t) ⊗ σt, with (σt)t∈(0,T ) ∈ Y(0, T ;Z) and

ż(t) =

∫

Z

vdσt(v) for a.e. t ∈ (0, T ).

Therefore, also by the Jensen inequality we conclude

∫ t

0

(∫

Z×Z
Ψ(z, v)dνr(z, v)

)
dr =

∫ t

0

(∫

Z

Ψ(z(r), v)dσr(v)

)
dr ≥

∫ t

0

Ψ(z(r), ż(r))dr,

entailing the following lower semi-continuity result for the dissipation integral:

lim inf
n↑∞

∫ tn(t)

0

Ψ(Zn(r), Ẑ ′n(r))dr ≥
∫ t

0

Ψ(z(r), ż(r))dr. (4.35)

Thus, we have shown the convergence for three terms in (4.33), and the desired estimate
(4.32) follows.

To obtain the opposite inequality, we use the stability condition (2.22) (equivalent to
(Sloc)), for v = ż(t):

Ψ(z(r), ż(r)) + 〈ξ(r), ż(r)〉 ≥ 0 for a.e. r ∈ (0, t),

where ξ(·) is a suitable selection of ∂E(·, z(·)). Combining this with the chain rule formula
(2.17) (cf. Proposition 2.6), we find

d
dt
E(t, z(t)) + Ψ(z(t), ż(t)) ≥ ∂tE(t, z(t)) for a.e. t ∈ (0, T ).

Integration of this inequality yields the opposite estimate in (4.32), and we conclude that
the equality (EΨ) holds.

This concludes the proof of Theorem 4.6. 2
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Remark 4.9. Condition (4.2) was only assumed for convenience: in fact, you can always
rescale the rate-independent problem (1.1), and the following rescaling argument actually
shows that we can dispense with (4.2). Indeed, let us set t̃(t) := t+

∫ t
0
|λ1(τ)|dτ, T̃ := t̃(T ),

and let us introduce the functionals Ẽ(s, z) := E(t̃−1(s), z) for (s, z) ∈ [0, T̃ ] × Z and
λ̃1(s) := λ1(t̃−1(s)), s ∈ (0, T̃ ). Then, the estimate (2.15) gives

|∂sE(s, z)−∂sE(s, ẑ)| ≤ λ̃1(s)

1 + |λ̃1(s)|
‖z−ẑ‖ ∀z, ẑ ∈ Z for a.e. s ∈ (0, T̃ ).

Thus, Theorem 4.6 ensures the existence of a solution z̃ ∈ W 1,∞(0, T̃ ;Z) to Problem
2.1 on the time interval [0, T̃ ], yielding by rescaling a solution z ∈ W 1,1(0, T ;Z) to our
original problem.

The reparametrization can be avoided by taking partions with time steps adjusted to λ1.

Let Λ∗ :=
∫ T

0
λ1(s) ds and choose tkτ such that

∫ tkτ
0
λ1(s) ds = kΛ∗/N . Then, τN → 0 and

(4.19) is replaced by δk ≤ Λ∗/(N(κ−ψ∗)). We lose the uniform Lipschitz continuity (4.30),
but still have a equicontinuity with a modulus of continuity obtained from t 7→

∫ t
0
λ1(s) ds.

Thus, the proof works in this case as well.
It is an open question whether the scheme converges to for any sequence of (non-

uniform) partitions with τ → 0.

5 Uniqueness results

In this section, we combine the uniqueness results obtained in [MT04, Thm. 7.4] and in
[BKS04]. In the first work, the case

∂Ψ(ż(t)) + DE(t, z(t)) 3 0

is treated, where the dissipation potential Ψ is independent of z but otherwise relatively
general. There, the only assumptions on Ψ : Z → [0,∞) are convexity, 1-homogenity
and strong continuity (i.e., the upper bound Ψ(v) ≤ Cψ‖v‖). No smoothness and strict
convexity conditions on Ψ are needed. The lower bound Ψ(v) ≥ cψ‖v‖, which is stated in
[MT04, Eqn. (2.2)], is used only in the existence part, but not for proving the uniqueness
result.

In the second paper, the case

∂Ψ(z(t), ż(t)) + Az(t)− `(t) 3 0

is studied, i.e., the energy is assumed to be quadratic and A : Z → Z ′ is an isomorphism.
Moreover, the dissipation potential Ψ must be such that (z, v) 7→ Ψ(z, v)2 lies in C1,Lip

and that Ψ(z, ·) is strictly convex. In addition, the severe assumption of lower and upper
bounds have to be imposed, namely cψ‖v‖ ≤ Ψ(z, v) ≤ Cψ‖v‖. The lower estimate implies
that the elastic domains C(z) = ∂Ψ(z, 0) have non-empty interior, which is not the case
in many engineering applications.

In combining the two approaches, we will have to compromise such that at the end the
two extreme results will not be covered. However, we believe that our assumptions are
somewhat more general and easier to satisfy in particular applications. Moreover, there
is potential for future generalizations.
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5.1 Statement of the main assumptions

To obtain uniqueness, we have to strengthen some of the assumptions for our existence
result Theorem 4.6 considerably, whereas other conditions can be weakened.

First of all, in the sequel we assume that

Z is a Hilbert space. (5.1)

Nonetheless, as common practice in mechanics, we will distinguish between the space Z
and its dual Z ′, and keep to the duality pairing 〈·, ·〉 between Z ′ and Z, instead of using
the scalar product; sometimes, we will use the notation ‖ · ‖ both for the norm on Z and
for the norm on Z ′.

Assumptions on the energy functional E. We impose that

E ∈ C2([0, T ]× Z;R)

and complies with the energetic estimate (2.2),
(5.2)

and that there exist positive constants CEtz, C
E
zz, C

E
zzz, and CEtzz such that

∀ t ∈ [0, T ] ∀z ∈ Z : ‖∂tDE(t, z)‖ ≤ CEtz. (5.3)

∀ t ∈ [0, T ] ∀z ∈ Z : ‖D2E(t, z)‖ ≤ CEzz, (5.4)

∀ t ∈ [0, T ] ∀ z1, z2 ∈ Z : ‖D2E(t, z1)−D2E(t, z2)‖ ≤ CEzzz‖z1−z2‖, (5.5)

∀ t ∈ [0, T ] ∀ z1, z2 ∈ Z : ‖∂tDE(t, z1)− ∂tDE(t, z2)‖ ≤ CEtzz‖z1−z2‖. (5.6)

(Hence, (2.15) is fulfilled, with λ1 ∈ L∞(0, T )). The main assumption throughout this
section is the uniform convexity (3.1) of E , which may now be formulated in terms of the
second derivative H(t, z) = D2E(t, z) ∈ L(Z,Z ′) as

∃ κ > 0 ∀ t ∈ [0, T ] ∀ z, v ∈ Z : 〈D2E(t, z)v, v〉 ≥ κ‖v‖2. (5.7)

This shows that we have adjusted the space Z to fit with the energy.

Assumptions on Ψ. First of all, we assume the basic convexity and 1-homogeneity
(2.5) on Ψ(z, ·). The further assumptions on the dissipation potential Ψ : Z×Z → [0,∞)
will be more involved. Namely, in order to be able to treat reasonable applications, like
our example in Section 4.2, we introduce an additional Banach space X in which the
Hilbert space Z is continuously embedded. In particular, we will use the embeddings

Z ⊂ X ⊂ X ′′ and X ′ ⊂ Z ′.

The typical situation we have in mind is Z = H1(Ω) and X = L1(Ω), see the example in
Section 4.2. We will use the estimates

∀ v ∈ Z : ‖v‖X ≤ CX‖v‖ and ∀ σ ∈ X ′ : ‖σ‖Z′ ≤ CX‖σ‖X′ . (5.8)

We impose upper and lower bounds on Ψ in terms of both norms ‖ · ‖X and ‖ · ‖, cf. (2.6):

∃CΨ
X ∈ (0,∞] ∃ cΨ

X > 0 ∀ z, v ∈ Z : cΨ
X‖v‖X ≤ Ψ(z, v) ≤ CΨ

X‖v‖X, (5.9)

∃CΨ > 0 ∃ cΨ ≥ 0 ∀ z, v ∈ Z : cΨ‖v‖ ≤ Ψ(z, v) ≤ CΨ‖v‖. (5.10)
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Note that the cases cΨ = 0 and CΨ
X = ∞ are allowed at this stage. Clearly, (5.10) with

cΨ > 0 implies (5.9) with cΨ
X := cΨ/CX , as well as (5.9) with CΨ

X < ∞ implies (5.10)
with CΨ := CΨ

XCX . However, for conceptual reasons it is better to keep the constants
independent.

On the one hand, from the point of view of the applications, it would be desirable
to have ‖ · ‖X strictly weaker than ‖ · ‖, which can only be realized if cΨ = 0. However,
so far, we are unable to establish our uniqueness result without imposing the additional
assumption cΨ > 0, which in fact implies that X and Z are endowed with equivalent
norms. On the other hand, it will turn out that most of the estimates can be obtained in
terms of weaker estimates, involving cΨ

X and CΨ only. We conjecture that the assumption
cΨ > 0, which is only used for the proof of Proposition 5.10, is technical and can be
avoided by a more careful analysis.

A further condition on Ψ involves the smoothness with respect to the variable z. We
assume that for each v ∈ Z the function z 7→ Ψ(z, v) is in C1(Z). Moreover, the Fréchet
derivative is bounded as follows

∃Cψ
F > 0 ∃ σ ∈ (0, 1] ∀ z, v ∈ Z : ‖DzΨ(z, v)‖Z′ ≤ Cψ

F ‖v‖σX‖v‖1−σ. (5.11)

In Sections 3 and 4 we have imposed a condition on Ψ (cf. (3.3) and (3.4)), which
means that the variations of Ψ with respect to z are weak enough such that the uniform
convexity of E is able to compensate for them. The following weakened version of our
previous conditions (3.3) and (3.4) (cf. Remark 3.4) will be central

∃ δ > 0 ∀ t ∈ [0, T ] ∀ z, v ∈ Z : 〈H(t, z)v, v〉+ DzΨ(z, v)[v] ≥ δ‖v‖2. (5.12)

On the other hand, (5.12) implies the convexity assumption (5.7) with κ = δ, as
〈H(t, z)(−v), (−v)〉 = 〈H(t, z)v, v〉 and DzΨ(z, (−v))[−v] = −DzΨ(z, v)[v].

Remark 5.1. Getting further insight into the proof of Theorem 3.2, we see that we can
replace the assumptions therein with the new set of assumptions (5.2)-(5.7) on E , and
(2.5), (5.8)-(5.12) on Ψ. In this setting, Theorem 3.2 still applies, guaranteeing that any
solution to (1.1) is Lipschitz continuous in time, and hence stays inside suitable bounded
sets. Thus, the global assumptions (5.4)-(5.6) on E might easily be replaced by suitable
local estimates. Furthermore, the local versions of (5.4) and (5.6) would then be a mere
consequence of the smoothness of E . Still, we have kept to the global estimates to make
notation simpler and the estimates more explicit.

The following auxiliary functional B : Z × Z ′ → [0,+∞], which was introduced in
[BKS04], plays a central role in the theory:

B(z, σ) := sup{ 〈σ, v〉 − 1

2
Ψ(z, v)2 : v ∈ Z }.

The function B(z, ·) : Z ′ → [0,∞] is convex and coercive, but it is finite only of cΨ > 0.
With (5.9) and (5.10), we obtain

‖σ‖2
Z′

2(CΨ)2
≤ B(z, σ) ≤ ‖σ‖

2
Z′

2(cΨ)2
and

‖σ‖2
X′

2(CΨ
X)2
≤ B(z, σ) ≤ ‖σ‖

2
X′

2(cΨ
X)2

. (5.13)
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Remark 5.2. In view of the convex analysis results of Appendix A, the functionals B(z, ·)
can be related to the convex sets C(z) ⊂ Z ′ defining Ψ (cf. (2.9)). Indeed, by (2.9) and
(A.3), Ψ(z, ·) is the Minkowski functional (cf. (A.1)) of the polar set C(z)∗ of C(z). Hence,
owing to (A.5) we realize that B(z, σ) = BC(z)(σ) for all z ∈ Z and σ ∈ Z ′.

We define the yield surface Y and the admissible domain Y0 via

Y := { (z, σ) ∈ Z × Z ′ : B(z, σ) = 1
2
},

Y0 := { (z, σ) ∈ Z × Z ′ : B(z, σ) ≤ 1
2
}. (5.14)

Also in view of Remark 5.2, note that (z, σ) ∈ Y if and only if σ ∈ ∂C(z), and (z, σ) ∈ Y0

if and only if σ ∈ C(z). Moreover, Y0 is closed and contained in Z × B1/Cψ(0). The
closedness of Y0 is indeed equivalent to the fact that the map z 7→ C(z) has a sequentially
closed graph in the strong topology of Z × Z ′ (cf. assumption (4.6)), and it follows from
from the lower semicontinuity of the map (z, σ) 7→ B(z, σ).

The subdifferential of B(z, ·) with respect to σ defines a maximal monotone operator
(possibly multi-valued) J(z, ·) : Z ′ → 2Z :

J(z, σ) := ∂σB(z, σ) ⊂ Z ∀σ ∈ Z ′.
In the case cΨ = 0, we may also have J(z, σ) = ∅. In that case, it is sometimes convenient
to consider B(z, ·) as a function on X ′, viz., introducing BX(z, ·) := B(z, ·)|X′ . Since BX is
convex and bounded on bounded sets, it is continuous and the associated subdifferential
is nonempty, namely

JX(z, σ) = ∂X
′

σ BX(z, σ) ⊂ X ′′,

where ∂X
′

σ BX(z, σ) = { η ∈ X ′′ : ∀ σ̂ : BX(z, σ̂) ≥ BX(z, σ)+X′〈σ̂−σ, η〉X′′ }. From (5.13),
we obtain the following estimates

∀w ∈ J(z, σ) :
1

(CΨ)2
‖σ‖Z′ ≤ ‖w‖ ≤

1

(cΨ)2
‖σ‖Z′. (5.15)

∀w ∈ JX(z, σ) :
1

(CΨ
X)2
‖σ‖X′ ≤ ‖w‖X′′ ≤

1

(cΨ
X)2
‖σ‖X′. (5.16)

On [0, T ]× Z\{0} × Z ′ we define another, possibly multi-valued function via

V (t, z, σ) :=

{
{ 1
〈H(t,z)w,w〉+DzΨ(z,w)[w]

w | w ∈ J(z, σ) } if 0 6∈ J(z, σ) 6= ∅,
{0} if J(z, σ) = ∅.

Hence, V (t, z, σ) ⊂ Z and, since J(z, ·) is positively 1-homogeneous, the function V (t, z, ·)
is (−1)-homogeneous, i.e., V (z, rσ) = 1

r
V (z, σ). The importance of this construction is

that the elements v in V (t, z, σ) satisfy the a priori bound ‖v‖ ≤ CΨ/δ if (z, σ) ∈ Y, see
Lemma 5.7.

An important and restrictive condition on V is a one-sided Lipschitz continuity, which
generalizes the structure condition introduced in [MT04, Sect. 7.2; App. C] (but be aware
of the different sign convention there):

∃LV > 0 ∀ t ∈ [0, T ] ∀ (z1, σ1), (z2, σ2) ∈ Y ∀ vj ∈ V (t, zj, σj) :

〈σ1 − σ2, v1 − v2〉 ≥ −LV
(
‖σ1 − σ2‖2 + ‖z1 − z2‖2

)
.

(5.17)

The following example shows that the above condition holds in the cases considered
in [MT04] and in [BKS04].
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Example 5.3.
Case 1: In the case that Ψ is state-independent, which was treated in [MT04], it is possible
to allow for Ψ which are not bounded from below, i.e., cΨ = 0 and Ψ2 neither smooth nor
uniformly convex.

Indeed, we let C := ∂Ψ(0) and obtain (z, σ) ∈ Y if and only if σ ∈ ∂C. More-
over, (z, σ) ∈ Y implies J(z, σ) ⊂ NC(σ). However, as NC(σ) is a cone, we also have
V (z, σ) ⊂ NC(σ). Since the characteristic function χC is convex and lower semicon-
tinuous, its subgradient ∂χC = NC is a maximal monotone operator and we conclude
〈v1−v2, σ1−σ2〉 ≥ 0. Hence, the structure condition (5.17) holds with LV = 0.

Case 2: In [BKS04], the following special case was considered. The energy takes the
form E(t, z) = 1

2
‖z‖2 − 〈`(t), z〉 with ` ∈ C1([0, T ], Z ′). Moreover, we have X = Z, i.e.,

cΨ = cΨ
X > 0 and CΨ = CΨ

X < ∞. The conditions on Ψ are the following. (i) The
functional Φ : (z, v) 7→ Ψ(z, v)2 lies in C2(Z × Z), which implies (5.11). (ii) For each
z ∈ Z the functional Φ(z, ·) is uniformly convex, i.e., D2

vΦ ≥ κ01. In this situation, J and
hence V are single-valued maps, which are still C1 and thus Lipschitz. Therefore, (5.17)
follows in the stronger, two-sided version

|〈σ1 − σ2, v1 − v2〉| ≤ LV ‖σ1−σ2‖
(
‖z1 − z2‖+ ‖σ1−σ2‖

)
.

The joint convexity (5.12) reduces to |DvΨ(z, v)[v]| ≤ (1− δ)‖v‖2, since H(t, z) = 1.

Further assumptions on E. Finally, we need two more conditions on the power of
the external forces, which is related to ∂tE(t, z(t)). For this, introduce the sets Sloc(t) of
locally stable states via

Sloc(t) := { z ∈ Z : 0 ∈ ∂vΨ(z, 0) + DE(t, z) }.

The first condition concerns a certain boundedness, namely

∀ t ∈ [0, T ] ∀ z ∈ Sloc(t) ∀w ∈ JX(z,−DE(t, z)) : |X′〈∂tDE(t, z), w〉X′′| ≤ Cmax
γ . (5.18)

The second condition concerns a Lipschitz estimate, namely

∀ t ∈ [0, T ] ∀ z1, z2 ∈ Sloc(t) ∀wj ∈ JX(t, zj,−DE(t, zj)) :
|X′〈∂tDE(t, z1), w1〉X′′ − X′〈∂tDE(t, z2), w2〉X′′ |

≤ CLip
γ

(
‖z1 − z2‖+ |B(z1,−DzE(t, z1))− B(z2,−DzE(t, z2))|

)
.

(5.19)

Since generally the union of all JX(t, z,−DE(t, z)) over z ∈ Sloc(t) is not bounded in
Z, the boundedness (5.18) and the Lipschitz continuity (5.19) are non-trivial. However,
assuming CΨ

X <∞ and using (5.13) and (5.16), we obtain

‖w‖X′′ ≤ ‖σ‖X′/(cΨ
X)2 ≤ CΨ

X/(c
Ψ
X)2 ∀w ∈ JX(z, σ), ∀(z, σ) ∈ Y0. (5.20)

Hence, it suffices to assume that ∂tDE : [0, T ]× Z → X ′ ⊂ Z ′ is bounded and Lipschitz
continuous in z. In the typical situation E(t, z) = U(z) − 〈`(t), z〉, this is true if ` ∈
C1([0, T ], X ′) holds.

Having introduced all the notation and all the needed assumptions, we are able to
formulate following uniqueness and continuous dependence result.
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Theorem 5.4. Assume (5.1)-(5.6), (2.5), (5.9) with CΨ
X <∞, (5.10) with cΨ > 0, (5.11),

(5.12), (5.17), (5.18) and (5.19). Then, the solutions for the subdifferential equation (1.1)
are unique.

Moreover, there exists constants C1, C2 > 0, which are independent of the constants
cΨ and CΨ

X , such that any pair of solutions (z1, z2) satisfies

‖z1(t)− z2(t)‖ + |B1(t)− B2(t)| ≤ C1 exp(C2t)
(
‖z1(0)− z2(0)‖+ |B1(0)− B2(0)|

)
,

where we have set Bj(t) = B(zj(t),−DzE(t, zj(t))) for j = 1, 2.

Note that uniqueness follows without any continuity assumptions on B. However, to
derive continuous dependence on the initial data, we need the continuity of the mapping
b : Sloc(0)→ [0, 1/2], defined by z 7→ B(z,−DzE(0, z)). The following remark shows that
it is sufficient to impose cΨ > 0 in order to obtain Lipschitz continuity of b.

Remark 5.5. Under the assumptions of Theorem 5.4 and the additional condition cΨ > 0,
the function B : Y0 → [0, 1/2] is locally Lipschitz continuous with respect to the norm
topology of Z × Z ′. Indeed, for any (z, σ) ∈ Y0 and w ∈ J(z, σ),

‖DzΨ(z, w)‖Z′ ≤(1) C
ψ
F‖w‖σX‖w‖1−σ ≤(2) C

σ
XC

ψ
F ‖w‖ ≤(3)

CσXC
ψ
F

c2Ψ
‖σ‖Z′ ≤(4)

CσXC
ψ
FCΨ

c2Ψ
.

Here, ≤(1) follows from (5.11), for ≤(2) use (5.8), for ≤(3) use (5.15), and ≤(4) follows from
(5.13). In view of (5.22), we thus obtain that DzB is bounded on Y0. Since, by (5.13) and
(5.15), the elements w of J(z, σ) = ∂σB(z, σ) satisfy ‖w‖ ≤ ‖σ‖/(cΨ)2 ≤ CΨ/(cΨ)2, we
also have Lipschitz continuity in σ on Y0. However, then the Lipschitz norm may depend
on cΨ.

5.2 Preliminary results

Here, we establish some further notation and prove some preliminary results. The proof
of Theorem 5.4 will then be completed in the next subsection.

The classical Legendre-Fenchel theory (see also Appendix A), gives the following equiv-
alences:

w ∈ J(z, σ) = ∂σB(z, σ) ⇐⇒ σ ∈ Ψ(z, w)∂vΨ(z, w), (5.21)

y ∈ ∂zB(z, σ) ⇐⇒ y = −Ψ(z, w)DzΨ(z, w) for w ∈ J(z, σ). (5.22)

Moreover, in view of Proposition A.1, if (z, σ) ∈ Y, then J(z, σ) spans the normal cone
of C(z) = ∂Ψ(z, 0) in the point σ, i.e., NC(z)(σ) = { rw : r ≥ 0, w ∈ J(z, σ) }.

Lemma 5.6. In this setting, we have the equivalences

σ ∈ ∂C(z) ⇔ B(z, σ) = 1
2
⇔ ∀w ∈ J(z, σ) : Ψ(z, w) = 1. (5.23)

Proof. The proof of the second equivalence follows from the fact that Ψ(z, ·) is the
Minkowski functional of C(z)∗ (cf. Remark 5.2), and from formula (A.6) in Proposi-
tion A.1.
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The following a priori estimate on the elements in V (t, z, σ) will be important below.

Lemma 5.7. If (5.10) and (5.12) hold, then we have

∀ (t, z, σ) ∈ [0, T ]× Y : ‖v‖ ≤ CΨ/δ for all v ∈ V (t, z, σ).

Proof. Using (5.23), any w ∈ J(z, σ) with (z, σ) ∈ Y satisfies Ψ(z, w) = 1, and thus
(5.10) implies ‖w‖ ≥ 1/CΨ. However, exploiting (5.12), for v ∈ V (t, z, σ) we have ‖v‖ ≤
‖w‖/(δ‖w‖2) ≤ CΨ/δ.

In the sequel, we assume that the functions z, z1, z2 ∈ C([0, T ], Z) are solutions of our
basic equation 0 ∈ ∂vΨ(z, ż) + DzE(t, z). We first collect a few results which hold for all
solutions. For this, we will use the notation

ς(t) = −DzE(t, z(t)) and ςj(t) = −DzE(t, zj(t)), j = 1, 2,

such that the basic equation reads

ς(t) ∈ ∂vΨ(z(t), ż(t)). (5.24)

For the solutions of (5.24), we have (cf. Theorem 3.2 and the estimate (5.13))

‖ż‖L∞([0,T ],Z) ≤ CLip := CEtz/δ, ‖ς(·)‖L∞([0,T ],X′) ≤ CΨ
X , ‖ς(·)‖L∞([0,T ],Z′) ≤ CΨ. (5.25)

Following the arguments in [BKS04], we observe that any solution z : [0, T ] → Z to
(5.24) satisfies

ż(t) = λ(t)v(t), with v(t) ∈ V (t, z(t), ς(t)) for a.e. t ∈ [0, T ],

for a suitable coefficient λ(t) ≥ 0.
In order to get further insight into this representation formula, we first introduce

another representation for ż(t). Indeed, we let

α̂(t) = Ψ(z(t), ż(t)) and w(t) =
1

α̂(t)
ż(t) for t with α̂(t) > 0.

By construction, Ψ(z(t), w(t)) = 1 if α̂(t) > 0. Under these conditions, we also have by the
1-homogeneity of Ψ(z, ·) that ∂vΨ(z(t), ż(t)) = Ψ(z(t), w(t))∂vΨ(z(t), w(t)). Moreover,
under the assumption ż(t) 6= 0, we conclude by (5.21) that

ς(t) ∈ ∂vΨ(z(t), ż(t)) ⇐⇒ w(t) ∈ J(z(t), ς(t)).

Collecting these facts, we may infer that for a.e. t ∈ (0, T ) with ż(t) 6= 0, there holds

ż(t) = α̂(t)w(t) with

{
α̂(t) = Ψ(z(t), ż(t)),

w(t) ∈ J(z(t), ς(t)).

Note that here w(t) = 1
α̂(t)

ż(t) ∈ Z. For t ∈ [0, T ] in which ż(t) is not defined or ż(t) = 0,

we may still choose w(t) ∈ JX(z(t), ς(t)) ⊂ X ′′, such that w : [0, T ] → X ′′ is measurable
and essentially bounded (see (5.13) and (5.16)), with

‖w‖L∞([0,T ],X′′) ≤ CΨ
X/(c

Ψ
X)2 and

(
ż(t) 6= 0 ⇒ ‖w(t)‖X ≤ 1/cΨ

X

)
, (5.26)
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the second following from (5.9) and (5.23). Similarly, for cΨ > 0 we have

‖w‖L∞([0,T ],Z) ≤ CΨ/(cΨ)2 and
(
ż(t) 6= 0 ⇒ ‖w(t)‖ ≤ 1/cΨ

)
. (5.27)

Since w(t) ∈ J(z(t), ς(t)) is related to v(t) ∈ V (t, z(t), ς(t)) by a scalar, define now the
selection v : [0, T ]→ Z of V via

v(t) =

{ 1
〈H(t)w(t),w(t)〉+DzΨ(z(t),w(t))[w(t)]

w(t) if w(t) ∈ Z,
0 else.

Moreover, we introduce the scalar function α : [0, T ]→ [0,∞] via

α(t) = α̂(t)
(
〈H(t)w(t), w(t)〉+ DzΨ(z(t), w(t))[w(t)]

)

= 〈H(t)w(t), ż(t)〉+ DzΨ(z(t), w(t))[ż(t)],
(5.28)

where we understand the definition such that ż(t) = 0 implies α(t) = 0. Therefore, for
a.e. t ∈ (0, T ) the coefficient λ(t) in our first representation formula coincides with α(t),
thus we conclude this crucial representation formula for ż(t):

ż(t) = α(t)v(t), with v(t) ∈ V (t, z(t), ς(t)) for a.e. t ∈ [0, T ]. (5.29)

Additionally, we let

β(t) = B(z(t), ς(t)) and γ(t) = −〈∂tDzE(t, z(t)), w(t))〉. (5.30)

The remainder of this subsection will be devoted to the proof (see Proposition 5.10
below) of the central formula

d
dt
β(t) = d

dt
B(z(t), ς(t)) = γ(t)− α(t) (5.31)

which was obtained in [BKS04, Lem. 5.1] under suitable smoothness assumptions on B,
and which is at the heart of the theory. In fact, it will be only for the validity of this
identity that we need cΨ > 0.

A chain rule for B. By the definitions of α and γ, the relation (5.31) can be interpre-
tated as a chain rule, which follows from suitable smoothness and convexity properties
of B. However, it should be noted that we only need this formula along the true solu-
tions of (5.24) and, thus, there is some hope that relation (5.31) still holds under weaker
assumption.

As z is a solution to (5.24), the function β takes values in the interval [0, 1/2]. In
order to discuss the identity (5.31), we make some preparations. First, note the obvious
equivalence which holds for a.e. t ∈ [0, T ]:

ς(t) ∈ ∂vΨ(z(t), ż(t)) ⇐⇒
{
〈ς(t), ż(t)〉 = Ψ(z(t), ż(t)),
∀ v ∈ Z : 〈ς(t), v〉 ≤ Ψ(z(t), v).

(5.32)

The next result goes one step further:
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Lemma 5.8. For a.e. t ∈ [0, T ] we have the identity

〈ς̇(t), ż(t)〉 = DzΨ(z(t), ż(t))[ż(t)].

Proof. Observe that the right-hand side in (5.32) implies

〈ς(t)− ς(t− h), ż(t)〉 ≥ Ψ(z(t), ż(t))− Ψ(z(t− h), ż(t)).

Dividing by h > 0 and using that z and ς are Lipschitz, with

ς̇(t) = −∂tDzE(t, z(t))−D2
zE(t, z(t))ż(t) (5.33)

(by the chain rule for the C2 functional E), we find that 〈ς̇(t), ż(t)〉 ≥ DzΨ(z(t), ż(t))[ż(t)].
Taking h < 0 and dividing by (−h) leads to the opposite inequality, and the result
follows.

Now we are able to establish some a priori estimates on the functions α̂, α and ‖ż(t)‖
as follows.

Proposition 5.9. Let the conditions (5.2), (5.7), (5.4), (5.9), (5.10), (5.11), (5.12), and
(5.18) hold. Then, for a.e. t ∈ [0, T ] we have the estimate

α̂(t)‖w(t)‖2 ≤ Cw, (5.34)

or, equivalently, ‖ż(t)‖2 ≤ CwΨ(z(t), ż(t)), where Cw := min{Cmax
γ /κ, (Cψ

F/κ)1/σCLip/c
Ψ
X}.

Moreover,
‖α‖∞ ≤ Cα :=

(
CEzz + Cψ

FC
σ
X

)
Cw. (5.35)

Proof. We show the a priori estimate (5.34): by construction and from our proof below,
it will be then clear that the estimate for α̂(t)‖w(t)‖2 is equivalent to the estimate for
‖ż(t)‖2. Indeed, using the convexity condition (5.7) and the chain rule (5.33) we find, for
α̂(t) > 0, the estimate

κα̂(t)‖w(t)‖2 = κ
α̂(t)
‖ż(t)‖2 ≤ 1

α̂(t)
〈H(t, z(t))ż(t), ż(t)〉 = 〈H(t, z(t))ż(t), w(t)〉

= −〈ς̇(t) + ∂tDzE(t, z(t)), w(t)〉
=(1) −DzΨ(z(t), w(t))[ż(t)]− 〈∂tDzE(t, z(t)), w(t)〉
≤(2) Cψ

F‖w(t)‖σXα̂(t)‖w(t)‖2−σ + Cmax
γ

=(3) Cψ
F (1/cΨ

X)σ
(
α̂‖w‖2

)1−σ‖ż‖σ + Cmax
γ

=(4) Cψ
F (CLip/c

Ψ
X)σ
(
α̂‖w‖2

)1−σ
+ Cmax

γ ,

which implies the desired result (5.34), since ρ ≤ Cρ1−σ + D entails ρ ≤ min{C1/σ, D}.
Note that for =(1) we used Lemma 5.8 and that α̂(t) > 0, for =(2) we used the assumptions
(5.11) and (5.18), for =(3) we used (5.26), and =(4) ensues from (5.25).

The second result follows simply from the definition (5.28) of α in terms of α̂ and w.

Now, we formulate the central chain rule formula (5.31), stating β̇ = γ − α.

30



Proposition 5.10. Let conditions (5.9) and (5.10) hold with CΨ
X < ∞ and cΨ > 0,

and assume (5.2), (5.7), (5.4), (5.11), (5.12), and (5.18). Then, the map β : [0, T ] →
[0, 1/2]; t 7→ B(z(t), ς(t)) is absolutely continuous, and (5.31) holds, i.e., d

dt
β(t) = γ(t)−

α(t) for a.e. t ∈ [0, T ].
Moreover, β is Lipschitz continuous with a Lipschitz constant independent of cΨ,

namely
|β(t)− β(s)| ≤ (Cα + Cmax

γ )|t− s| for all s, t ∈ [0, T ]. (5.36)

In fact, under the above assumptions it should be possible to show that the functional
(z, σ) 3 Z ×X ′ 7→ B(z, σ) satisfies a chain rule along curves (z, σ) ∈ CLip([0, T ], Z ×X ′).
Then, the result would follow from the equivalence X ∼ Z, due to cΨ > 0.

Proof. Under the assumption cΨ > 0, we know that w ∈ L∞([0, T ], Z), see (5.27). The
definition of B and w(t) ∈ ∂σB(z(t), ς(t)) imply

β(t) = B(z(t), ς(t)) = 〈ς(t), w(t))− 1

2
Ψ(z(t), w(t))2 ≥ 〈ς(t), ŵ)− 1

2
Ψ(z(t), ŵ)2

for all ŵ ∈ Z. Thus, we obtain

β(t)− β(t− h) ≤ 〈ς(t)− ς(t−h), w(t)〉 − 1
2

(
Ψ(z(t), w(t))2 − Ψ(z(t−h), w(t))2

)

Dividing by h > 0 and taking the limit h↘ 0, the Lipschitz continuity of z and ς provide
the estimate

lim sup
h↘0

1

h

(
β(t)− β(t− h)

)
≤ 〈ς̇(t), w(t)〉 −Ψ(z(t), w(t))DzΨ(z(t), w(t))[ż(t)]

Denote the right-hand side of the above formula by β̂(t): then, a discussion of the cases
ż(t) = 0 and ż(t) 6= 0 easily shows that β̂ = γ − α as desired. The same argument
leads to lim infh↘0

1
h

(
β(t+h)− β(t)

)
≥ β̂(t). Thus, if β is absolutely continuous, then its

derivative equals β̂ a.e. on [0, T ].
While the above arguments do not use the condition cΨ > 0 in an essential way, we will

need it now. As stressed in Remark 5.5, this latter condition implies that B : Y0 → [0, 1/2]
is (globally) Lipschitz w.r.t. the norm topology of Z×Z ′, with a Lipschitz constant tending
to ∞ for cΨ ↘ 0. Now, inserting the Lipschitz continuous curve Γ : t 7→ (z(t), ς(t)) ∈
Z × Z ′ we immediately conclude that β = B ◦ Γ is Lipschitz continuous, and hence
absolutely continuous.

Finally, (5.36) is a direct consequence of (5.31), (5.18), and Proposition 5.9.

5.3 Proof of the uniqueness result

Let z1 and z2 be two solutions to Problem 2.1, corresponding to the initial data z0
1 and

z0
2 : for a.e. t ∈ (0, T ), we will use the notation

ςi(t) := −DE(t, zi(t)), αi(t), γi(t), Ji(t) := J(zi(t), ςi(t)),

βi(t) := B(zi(t), ςi(t)) Hi(t) := H(t, zi(t))
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for the quantities previously defined and related to the solution zi, i = 1, 2. Moreover,
recalling the representation formula (5.29), we have for i = 1, 2

żi(t) = αi(t)vi(t), with vi(t) ∈ V (t, zi(t), ςi(t)) for a.e. t ∈ [0, T ].

Following [BKS04], our first step will be to show a crucial estimate for the quantities
αi, βi, and γi, i = 1, 2, in Lemma 5.11 below. Indeed, the proof of this lemma, which
we present here for the sake of completeness, is analogous to the argument developed for
[BKS04, Lem. 5.2].

Lemma 5.11. Assume (5.2), (5.7), (5.4), (5.9) with CΨ
X <∞, (5.10) with cΨ > 0, (5.11),

(5.12), and (5.18). Let z1, z2 be two solutions to Problem 2.1. Then,

|α1(t)− α2(t)|+ d
dt
|β1 − β2|(t) ≤ |γ1(t)− γ2(t)| for a.e. t ∈ (0, T ). (5.37)

Proof. Preliminarily, note that that there exists a negligible set N ⊂ (0, T ) such that for
t ∈ (0, T ) \ N the quantities αi, βi, γi, and the derivatives żi, i = 1, 2 are well defined.
From now on, we will always consider t in (0, T ) \ N . Then, we distinguish three cases.

1. Assume ż1(t) = ż2(t) = 0. Then, αi(t) = 0 and, by (5.31), d
dt
βi(t) = γi(t), so that

d
dt
|β1 − β2|(t) ≤ | d

dt
β1(t)− d

dt
β2(t)| = |γ1(t)− γ2(t)|

and (5.37) holds.

2. Let ż1(t), ż2(t) 6= 0. Then, (zi(t), ςi(t)) ∈ Y, whence βi(t) = 1/2 = maxs∈[0,T ] βi(s),
so that d

dt
β1(t) = d

dt
β2(t) = 0 and thus d

dt
|β1−β2|(t) = 0. Moreover, owing to (5.31)

we have αi(t) = γi(t), so that (5.37) holds as well.

3. Assume ż1(t) = 0 and ż2(t) 6= 0. Then, α1(t) = 0, d
dt
β1(t) = γ1(t), while β(t) = 1/2,

d
dt
β2(t) = 0 and α2(t) = γ2(t) > 0. In particular, |α1(t) − α2(t)| = α2(t) and
|β1(t)− β2(t)| = 1/2− β1(t). Whence

|α1(t)− α2(t)|+ d
dt
|β1 − β2|(t) = α2(t)− d

dt
β1(t) = γ2(t)− γ1(t) ≤ |γ2(t)− γ1(t)|.

Again, (5.37) holds.

As the case ż1(t) 6= 0 and ż2(t) = 0 is similar, (5.37) is established in all cases.

Energy estimates. Mimicking the approach to uniqueness developed in [MT04, Sec. 7.2],
for all t ∈ [0, T ] we introduce the energetic quantity

%1,2(t) :=
√
〈DE(t, z1(t))−DE(t, z2(t)), z1(t)− z2(t)〉.

Owing to the κ-uniform convexity and to the smoothness of E(t, ·) we have
√
κ‖z1(t)− z2(t)‖ ≤ %1,2(t) ≤

√
CEzz‖z1(t)− z2(t)‖. (5.38)

Our ultimate aim is to derive a Gronwall-type estimate for %1,2(t) +M2|β1(t)− β2(t)|
(cf. (5.46) below). Our technique will combine (5.37) with suitable energy estimates
(analogous to the ones in [MT04, Sec. 7.2]), obtained by only exploiting the smoothness
assumptions on E and (5.12).

We split the proof of Theorem 5.4 in intermediate steps. In the next two lemmas, we
derive a fundamental one-sided Lipschitz estimate from the structure condition (5.17).
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Lemma 5.12. Assume (5.2), (5.7), (5.4), (5.9) with CΨ
X <∞, (5.10) with cΨ > 0, (5.11),

(5.12), (5.17), and (5.18). Then, for any two solutions z1, z2 to Problem 2.1 there holds,
for a.e. t ∈ (0, T ),

〈ς2(t)−ς1(t), ż1(t)−ż2(t)〉

≤ CαLV
(
(CEzz)

2+1
)
‖z1(t)−z2(t)‖2 +

CΨC
E
zz

δ
|α1(t)−α2(t)|‖z1(t)−z2(t)‖.

(5.39)

Proof. Of course (5.39) is trivially true when ż1(t) = ż2(t) = 0.
Let us then suppose that ż1(t) 6= 0 6= ż2(t), which implies α1(t) > 0 and α2(t) > 0.

Using (5.29), we get

〈ς2(t)−ς1(t), ż1(t)− ż2(t)〉 = 〈ς2(t)−ς1(t), α1(t)v1(t)− α2(t)v2(t)〉
= α1(t)〈ς2(t)−ς1(t), v1(t)− v2(t)〉+ 〈ς2(t)−ς1(t), (α1(t)− α2(t))v2(t)〉.

Let us now estimate the latter two summands separately. For the first summand the
structure condition (5.17) gives

α1(t)〈ς2(t)−ς1(t), v1(t)−v2(t)〉 ≤ α1(t)LV
(
‖ς1(t)−ς2(t)‖2

Z′ + ‖z1(t)−z2(t)‖2
)

≤ CαLV
(
(CEzz)

2 + 1
)
‖z1(t)− z2(t)‖2.

(5.40)

The last estimate follows from (5.4) and the a priori estimate (5.35) for α1. For the second
summand we have

〈ς2(t)−ς1(t), (α1(t)−α2(t))v2(t)〉 ≤ ‖v2(t)‖‖ς2(t)−ς1(t)‖|α1(t)−α2(t)|
≤ (CΨC

E
zz)/δ‖z1(t)−z2(t)‖|α1(t)−α2(t)|, (5.41)

where we have used Lemma 5.7 and (5.4) again. Adding (5.40) and (5.41), (5.39) follows.
In the case ż1(t) 6= 0 and ż2(t) = 0 we have α2(t) = 0, and we estimate as follows:

〈ς2(t)−ς1(t), ż1(t)−ż2(t)〉 = 〈ς2(t)−ς1(t), (α1(t)−α2(t))v1(t)〉
≤ ‖ς2(t)−ς1(t)‖‖v1(t)‖|α1(t)−α2(t)|
≤ (CΨC

E
zz)/δ‖z1(t)−z2(t)‖|α1(t)−α2(t)|.

Thus, the desired estimate (5.39) is established.

Proposition 5.13. Assume (5.2)-(5.6), (5.9) with CΨ
X < ∞, (5.10) with cΨ > 0, (5.11),

(5.12), (5.17), and (5.18). Then, for any two solutions z1, z2 to Problem 2.1, there holds
for a.e. t ∈ (0, T )

d
dt
%1,2(t) ≤ 1

%1,2(t)

(
M1‖z1(t)−z2(t)‖2 +

CΨC
E
zz

δ
|α1(t)−α2(t)|‖z1(t)−z2(t)‖

)
, (5.42)

where M1 = CαLV
(
(CEzz)

2+1
)

+ 1
2
CEtzz + 1

2
CEzzzCLip.

The constant M1 indeed shows that we combine the ideas of [MT04], which deals with
the case LV = 0, and [BKS04], which is restricted to CEzzz = CEtzz = 0.

33



Proof. Elementary computations yield

d
dt
%1,2(t) = 1

2%1,2(t)

(
〈ς2(t)−ς1(t), ż1(t)−ż2(t)〉+ 〈ς̇2(t)−ς̇1(t), z1(t)−z2(t)〉

)

= 1
2%1,2(t)

(
2〈ς2(t)−ς1(t), ż1(t)−ż2(t)〉+ T1 + T2

)
,

(5.43)

where we used the chain rule ς̇j(t) = −∂tDE(t, zj(t))−Hj(t)żj(t), and the abbreviations

T1 = 〈∂tDE(t, z1(t))−∂tDE(t, z2(t)), z1(t)−z2(t)〉
T2 = 〈A1(t), ż1(t)〉 − 〈A2(t), ż2(t)〉, with

Aj(t) = Hj(t)(z3−j(t)−zj(t)) + ς3−j(t)− ςj(t).
The term T1 is easily estimated using (5.6), namely |T1| ≤ CEtzz‖z1(t)−z2(t)‖2. For T2 we
use ‖żj(t)‖ ≤ CLip, the identity

Aj(t) =
∫ 1

0

(
D2E(t, zj)− D2E(t, zj+s(z3−j−zj))

)(
z3−j−zj

)
ds,

and the assumption (5.5) to obtain |T2| ≤ CEzzzCLip‖z1(t)−z2(t)‖2.
Using the estimate from the previous Lemma 5.12 and adding the estimates for T1 and

T2 gives the desired result.

As ‖z1(t)−z2(t)‖ ≤ κ−1/2%1,2(t), we arrive at the estimate

d
dt
%1,2(t) ≤ M1

κ
%1,2(t) +M2|α1(t)−α2(t)| where M2 =

CΨC
E
zz

δ
√
κ
. (5.44)

The importance of the function B lies in the fact that the relation d
dt
β = γ−α leads to to

the estimate (5.37), which allows us to estimate |α1(t)−α2(t)| in terms of |γ1(t)−γ2(t)|.
In fact, multiplying (5.37) by M2 times and adding it to (5.44) leads to a cancellation, so
that we find

d
dt
%1,2(t) +M2

d
dt
|β1−β2|(t) ≤

M1

κ
%1,2(t) +M2|γ1(t)−γ2(t)|. (5.45)

As γj does not depend on the time derivative żj, it behaves much better and allows for a
Lipschitz estimate.

Using (5.30) and (5.19), we infer that for a.e. t ∈ (0, T )

|γ1(t)− γ2(t)| ≤ CLip
γ

(
‖z1(t)− z2(t)‖+ |β1(t)− β2(t)|

)
.

Inserting this into (5.45) yields the Gronwall estimate

d
dt
%1,2(t) +M2

d
dt
|β1−β2|(t) ≤M3

(
%1,2(t) +M2|β1−β2|(t)

)
for a.e. t ∈ (0, T ), (5.46)

where M3 = max{M1

κ
+

M2C
Lip
γ√
κ

,M2C
Lip
γ }.

Since m(t) := %1,2(t)+M2|β1−β2|(t) satisfies the Gronwall estimate d
dt
m(t) ≤M3m(t),

we have m(t) ≤ m(0) exp(M3t) for t ∈ [0, T ]. Using (5.38), we obtain the desired estimate
of our main Theorem 5.4, namely

‖z1(t)− z2(t)‖+ |β1(t)− β2(t)| ≤ C1 exp(C2t)
(
‖z1(0)− z2(0)‖+ |β1(0)− β2(0)|

)

with C1 = max{1/√κ, 1/M2}max{
√
CEzz,M2} and C2 = M3.

Thus, Theorem 5.4 is proved. 2
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A Convex analysis tools

Henceforth, (X , ‖ · ‖X ) will denote a generic separable and reflexive Banach space, with
dual (X ∗, ‖ · ‖∗X ). In the next lines, we collect for completeness some convex analysis
notions and results which can be found in [BKS04] and [Kre99].

Let C ⊂ X be a non-empty, closed, convex set - we denote by ∂C its boundary, and
by IC its indicator function. The polar set C∗ ⊂ X ∗ to C is

C∗ := {y ∈ X ∗ : 〈y, x〉 ≤ 1 ∀x ∈ C}.
Note that, to the reflexivity of X , (C∗)∗ = C. We also define the Minkowski functional
MC : X → [0,+∞] of C by

MC(x) := inf{s > 0 : 1
s
x ∈ C}. (A.1)

Observe that
MC(x) ≤ 1 ⇔ x ∈ C and MC(w) = 1 ⇔ w ∈ ∂C. (A.2)

The following crucial relation between the support function (cf. (2.9)) of C (of C∗, resp.)
and the Minkowski functional of its polar C∗ (of C, resp.) follows by elementary compu-
tations:

MC(x) = sup{〈y, x〉 : y ∈ C∗}, MC∗(y) = sup{〈y, x〉 : x ∈ C} ∀ x ∈ X , y ∈ X ∗.
(A.3)

Finally, let us introduce the convex functional BC : X → [0,+∞] by

BC(x) :=
1

2
M2
C(x), (A.4)

and analogously we define BC∗. In view of (A.2), we have BC(x) = 1
2

if and only if x ∈ ∂C.
It can be proved (see [Kre99, Ex. 2.26]) that BC∗ coincides with the Legendre-Fenchel
transform of BC, and analogously for BC, i.e.

{
BC∗(y) = supx∈X{〈y, x〉 − BC(x)}
BC(x) = supy∈X ∗{〈y, x〉 − BC∗(y)} for all x ∈ X , y ∈ X ∗. (A.5)

We denote by JC the subdifferential of BC: of course JC : X → 2X
∗

is a maximal monotone
operator. The following result subsumes [Kre99, Lemma 2.21 and Prop. 2.25] (note that
it is not needed to assume C to contain/to be contained in any ball).

Proposition A.1. Let C be a non empty, closed, and convex set. Then,

MC∗(y) =MC(x) ∀ x ∈ C, y ∈ JC(x). (A.6)

Moreover,

JC(x) ⊂ ∂IC(x) ∀x ∈ ∂C, (A.7)

∀y ∈ ∂IC(x) \ {0} : 〈y, x〉 =MC∗(y) and y ∈ MC∗(y)JC(x). (A.8)

In the end, we also recall the following Lemma (see eg. [AE84, Chap. 4. Cor. 6]).

Lemma A.2. Let ψ1, ψ2 : X → (−∞,+∞] be two proper, convex and l.s.c. functionals.
If 0 ∈ int(D(ψ1)−D(ψ2)), then D(∂(ψ1 + ψ2)) = D(∂ψ1) ∩D(∂ψ2), and

∂(ψ1 + ψ2)(x) = ∂ψ1(x) + ∂ψ2(x).
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B Young measures and the weak topology

Although all the following definitions could be given in the general framework of a sepa-
rable metric space, we will restrict to the setting of the separable reflexive Banach space
X , since reflexivity plays indeed a crucial role in the proof of Theorem B.2.

Notation. We denote by B(X ) the Borel σ-algebra of X , while L is the σ-algebra of
the Lebesgue measurable subsets of (0, T ), and L ⊗ B(X ) is the product σ-algebra on
(0, T ) × X . A L ⊗B(X )-measurable function h : (0, T ) × X → (−∞,+∞] is a normal
integrand if

v 7→ ht(v) := h(t, v) is l.s.c. on X for a.e. t ∈ (0, T ). (B.1)

We say that a L ⊗B(X )-measurable functional h : (0, T )× X → (−∞,+∞] is a weakly
normal integrand if

v 7→ ht(v) = h(t, v) is sequentially weakly l.s.c. for a.e. t ∈ (0, T ). (B.2)

Definition B.1 ((Time dependent) parametrized measures). A parametrized mea-
sure in X is a family ν := {νt}t∈(0,T ) of Borel probability measures on X such that

t ∈ (0, T ) 7→ νt(B) is L-measurable ∀B ∈ B(X ). (B.3)

We denote by Y(0, T ;X ) the set of all parametrized measures.

The following compactness result for Young measures is proved in [RS04, Thm. 3.2], in
the case in which X is a Hilbert space. Actually, its proof could be straighforwadly adapted
to the Banach space case, and it is a direct consequence of the so-called fundamental
compactness result for Young measures, [Bal84, Thm.1].

Theorem B.2 (The fundamental theorem for weak topologies). Let {vn}n∈N be
a bounded sequence in Lp(0, T ;X ), for some p > 1. Then there exists a subsequence
k 7→ vnk and a parametrized measure ν = {νt}t∈(0,T ) ∈ Y(0, T ;X ) such that for a.e.
t ∈ (0, T )

νt is concentrated on the set L(t) :=
⋂∞
p=1

{
vnk(t) : k ≥ p

}w
(B.4)

of the weak limit points of {vnk(t)}, and

lim inf
k→∞

∫ T

0

h(t, vnk(t))dt ≥
∫ T

0

(∫

X
h(t, ξ) dνt(ξ)

)
dt (B.5)

for every weakly normal integrand h such that {h−(·, vnk(·))} is uniformly integrable. In
particular, ∫ T

0

(∫

X
|ξ|p dνt(ξ)

)
dt ≤ lim inf

k→∞

∫ T

0

|vnk(t)|pdt < +∞, (B.6)

and, setting v(t) :=
∫
X ξdνt(ξ), we have

vnk ⇀ v in Lp(0, T ;X ) if p <∞, vnk
∗
⇀v in L∞(0, T ;X ). (B.7)

Finally, if νt = δv(t) for a.e. t ∈ (0, T ), then

〈vnk , w〉 → 〈v, w〉 in L1(0, T ) ∀w ∈ Lq(0, T ;X ∗), 1

q
+

1

p
= 1. (B.8)
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