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Abstract

Given a regular bounded domain Q C R®*™, we describe the limiting be-
havior of sequences of solutions to the mean field equation of order 2m,
m > 1,

eQmu
-r Jo e2medx
under the Dirichlet boundary condition and the bound 0 < p < C. We
emphasize the relationship to the problem of prescribing the Q-curvature.

(—A)"u in Q,

1 Introduction

Let 2 C R?™ be a bounded domain with smooth boundary. Given a sequence
of numbers p; > 0, we consider solutions to the mean-field equation of higher
order

A e?muk
Ay = pp 1
(=A)"ug = pg T minds (1)
subject to the Dirichlet boundary condition

up = Opup = ... = 8:,"_11% =0 on oN. (2)

As shown in Corollary 8 of [Marl], every uy is smooth. In this paper we
study the limiting behavior of the sequence (ug). We show that concentration-
compactness phenomena together with geometric quantization occur. We par-
ticularly emphasize the interesting relationship with the thriving problem of
prescribing the Q-curvature.

For any ¢ € Q, let G¢(x) denote the Green function of the operator (—A)™
on ) with Dirichlet boundary condition (see e.g. [ACL]), i.e

(7A)mG§ = 55 in Q (3)
Gf = auGg =...= 6;"‘16‘5 =0 on oN.

Also fix any « € [0,1). We then have
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Theorem 1 Let uy be a sequence of solutions to (1), (2) and assume that
0<pr <C.

Then one of the following is true:
(i) Up to a subsequence uj, — ug in C2m~1%(Q) for some ug € C=(Q).

(ii) Up to a subsequence, limg_, o maxq uy = 0o and there is a positive integer

N such that
klglgo pr=NAy, A =(2m-— 1)!|52m|. 4)
Moreover there exists a mnon-empty finite set S = {x(l), . ,x(N)} c Q
such that
N
up = A Y Goo in Con ™ b (Q\S). (5)
i=1

The mean field equation in dimensions 2 and 4 has been object of intensive
study in the recent years. We refer e.g. to [NS], [Wei], [RW] and the references
therein. In particular in [RW] the 4-dimensional analogous of our Theorem 1
was proven, and many of the ideas developed there are used in our treatment.

The geometric constant A1 showing up in (4) and (5) is the total Q-curvature!
of the round 2m-dimensional sphere. It is worth explaining how this relation
with Riemannian geometry arises. It will be shown in Lemma 6 below that one
can blow up the uy’s at suitably chosen concentration points, and get in the
limit a solution ug to the Liouville equation

(—=A)"ug = (2m — 1)le?™%0  in R?*™ (6)

with the bound
/ e2muo dy < oo. (7)
R2m

Geometrically, if ug solves (6)-(7), then the conformal metric 2“0 ggzm on R?™,
where ggzm is the Euclidean metric, has constant Q-curvature equal to (2m—1)!
and finite volume. As shown in [CC], there are many such conformal metrics
on R?™ and the crucial step in Lemma 6 below is to show that

2
uo(x) = no(x) =:log | ———= ). 8
The function 7 has the property that €27 ggam = (771)*gg2m, where ggzm is the
round metric on $?™, and 7 : §?™ — R?™ is the stereographic projection. This
is the basic reason why the constant A; appears in Theorem 1. In particular

/ e2mm dy = |S%™). (9)
R2m

In order to show that (8) holds, we use the classification result of [Marl] and a
technique of [RS], which allows us to rule out all the solutions of (6) which are
“non-spherical”, hence whose total Q-curvature might be different from A;.

IFor the definition of Q-curvature we refer to [Chal, or to the introduction of [Marl] and
the references therein.



We can further exploit the connection with conformal geometry by referring
to Theorem 1 in [Mar2], about the concentration-compactness phenomena for
sequences of conformal metrics on R?™ with prescribed Q-curvature (compare
[BM], [ARS] and [Rob] for 2 and 4-dimensional analogous results). We state a
simplified version of this theorem in the appendix, since we shall use it several
times.

The last crucial ingredient in the proof of Theorem 1 is a Pohozaev-type
inequality which we discuss in the Appendix, and which we use in Lemma 11
and in Lemma 12 below.

One can also state Theorem 1 as an eigenvalue problem, as in [Wei]. In this

case one replaces f_e% by A > 0in (1) to get
Q

(7A)muk = /\k€2muk. (10)

The assumption 0 < p < C gets replaced by
Yy = / Ape2™rdg < O, (11)
Q

and the boundary condition (2) still holds. Then Theorem 1 implies that either

: . 2m—la
(i) up to a subsequence ui — ug in Cj,. " "*(Q), or

(ii) up to a subsequence Xy — NA; and (uy) satisfies (5), with the same
notation of Theorem 1.

Several times we use standard elliptic estimates. For the interior estimates
one can safely rely on [GT] or [GM]. For the estimates up to the boundary, one
can refer to [ADN]. Throughout the paper the letter C' denotes a large universal
constant which does not depend on k and can change from line to line, or even
within the same line.

2 Proof of Theorem 1

The proof will be organized as follows. We shall see in Corollary 3, that if
supg ur < C, then wy is bounded in C?"~1%(Q) and case (i) of Theorem 1
occurs. Then, after Corollary 3 we shall assume that

lim sup ug = o0, (12)
k—oo

and prove that case (ii) of Theorem 1 occurs. Let

1 2m — 1)! [, e2™trdy
Qay ::—1og(( )fﬂ
2m Pk

), Up = U — k. (13)

Lemma 2 Up to selecting a subsequence, we have ay > —C.

Proof. Indeed
(=A)™ iy = (2m — 1)1e?™%  in Q (14)



and

Gy = —ag, Oyl =...=0" ', =0 on Q.

Moreover

2ma Pk
/Qe dx G -1 <C (15)

Using the Green’s representation formula, we infer
ag(z) = (2m — 1)!/ G (y)e?™ W dy — oy, (16)
Q

Then, integrating (16), using (15), the fact that |G| z1(q) < C, with C inde-
pendent of y, and the symmetry of G, i.e. Gz(y) = Gy(z), we get

/Q i + aldz < C. (17)

Now, according to Theorem 13 in the Appendix, we have that one of the fol-
lowing is true:

CQm—l,a

oo (Q) for some function wy.

(i) U — Ug In

(i) 4r — —oo locally uniformly in Q\Qg, for some closed nowhere dense
(possibly empty) set Qg of Hausdorff dimension at most 2m — 1.

In both cases the claim of the lemma easily follows from (17). O

Corollary 3 The following facts are equivalent:
(i) Up to selecting subsequences, u, < C.
(i1) Up to selecting subsequences, iy < C.

(iii) Up to selecting subsequences, up — ug in C*™~5%(Q) for some smooth
function ug.

Proof. (i) = (ii) follows at once from Lemma 2.
(ii) = (iii) follows by elliptic estimates, observing that
(= A)™ug| = [(—A) ™| = |(2m — 1)le?™ ™| < C
and using (2).
(iii)= (i) is obvious. O

Lemma 4 For all { € {1,...,2m — 1} and for p € [1,22), there exists C =
C(¢,p) such that

/ Ve Pde < CR2™, (18)
BR(CE())

for any Bgr(zg) C Q.



Proof. We prove the claim by duality. Let ¢ € C°(Q) and ¢ = 1%. Differenti-

ating (16), using Fubini’s theorem, the relation G;(y) = G4 (z) and the estimate

(see [DAS])

C
¢ < 1
VG (o)l < (19)

we get

/ |V | oda
BR(CE())

IN

cf (196w o) g
BR(CE()) Q

¢/ eQ’”ﬁk(y)( / |:cy|f|sa<z>|dz>dy
Q Br(xo)

1
) dx 3
2may
< CH50||Lq(Q) /Qe kQJ)(/BR(IO) —lx_ylgp) dy

27117@

< CH‘P”Lq(Q) Rv

IN

where in the last inequality we used p < 277", (15), and the simple estimate

/ dz . S/ dz . < CR2m—tp,
Br(zo) 1T =" = Jppw |z —ylP

The lemma follows at once. O

Lemma 5 Let x; € Q) be such that

ug(zk) = Max uy — 00. (20)

otk (zk) dist(xy,,09)
Let py := 2e~"+\"k)_ Then — o — too.

Proof. Suppose that the conclusion of the lemma is false. Then the rescaled
sets
Qk = L(Q — xk)

Hi

converge, up to rotation, to (—oo,tg) x R?*™~! for some tq > 0. Define

uk(z) = ﬁk(l'k + ,LLkSC) + 10g(ﬂk>; r € Q. (21)

By (20) and Corollary 3 we have py, — 0. Fix R > 0 such that Br(0)N9Qy # 0,
and let € Br(0) N Q. Then, for 1 < ¢ < 2m — 1, using (16) and (19), we get

| Viar(x)| < Oug /Q IV Gaptpra ()20 Wy
< CHi(/ %eQmﬂk(y)dy
Q\Bary,, (Tk) |-Tk + prx — yl
+ 1 eQmﬁk(y)dy
Bapry, (zk) |'Tk + Pk — y|f
Hi
_ d
< CRfl/ e?mukdy + C/Li_Qm/ —yg
Q Barp,, (zk) |-Tk + HeT — y|
< C(R),



where we used that for y € Q\ Bary, (zr) and = € Br(0) Ny we have Rug <
|21, + pxx — y| and, for any y € Q we have 2™ ®) < 22m "2 This implies

|@g (z) — 4 (0)] < C(R)|z| for |x| < R.

Choosing x € Br(0) Ny, we get |ug(xr)| = [uk(zk) + ax| < C(R), contradict-
ing (20). d

Remark. In the choice of the scales uj, we are free to some extent. Our particular
choice is made in order to give a cleaner form to the blow-up limit described
in Lemma 6 and to make the connection with the problem of prescribing the
Q-curvature more transparent. °

From now on we shall assume that (12) holds.

Lemma 6 Let @y be defined as in (21). Then, up to selecting a subsequence,
we have

. ~ 2 . 2m—1,a mp2
1 =1 R C (R, 22
kiToo Uk(l') og <1 + |SC|2> M Uloe ( ) ( )

Proof. We give the proof in two steps.

Step 1. We first claim that up to a subsequence, @y — g in CiTil’a(RQm), for
some smooth function @ satisfying

(—A)" g = (2m — 1)le?mio, (23)

Let us first assume m > 1. We apply Theorem 13 on R?™ to the sequence
(i), where it is understood that one has to invade R?™ with bounded sets and
extract a diagonal subsequence in order to get the local convergence on all of
R?™. Since @y < log?2, we have S; = 0, in the notation of Theorem 13. Then
one of the following is true:

Cmel,a

o (R?™) for some function g € C2" 1% (R?™), or

(1) ﬂ’k - ’&’0 in loc

(ii-a) iy — —oo locally uniformly in R?™ (case Sy = @), or

(ii-b) there exists a closed nowhere dense set Sy # () of Hausdorff dimension at
most 2m — 1 and numbers B — oo such that

“_: — ¢ in Com™H* (R¥™\Sp),

where

A™p=0, ¢<0, @#0onR*" ¢=0onS. (24)

Since u(0) = log2, (ii-a) can be ruled out. Assume now that (ii-b) occurs.
From Liouville’s theorem and (24), we get Ay # 0, hence for some R > 0 we
have fBR(O) |Ap|dz > 0 and

lim |Adg|de = klim ﬁk/ |Ap|dz = +o0. (25)

k—oo Br Br (O)



By (18), and using the change of variables y = zy + prz, we get, for 1 < j <
m—1,

[smde = [ sy
Br(0) Bruy, (zx)

< Cpp ¥ (Ruy)*™ % < CRP™%, (26)

which contradicts (25) for j = 1 and any fixed R > 0. Hence (i) occurs. Clearly
U satisfies (23) and our claim is proved.

For the case m = 1, we infer from Theorem 3 in [BM] that either case (i) or
(ii-a) above occur, and case (ii-a) is ruled out as above.

Step 2. We now want to prove that ug = log ﬁ From Fatou’s lemma and
(15) we infer

/ e2miody = lim Xm0 gy < lim liminf/ XMk g
R2m BR(O)

R—o0 Br(0) R—oo k—oo

R—o0o k—oo

lim liminf / e dy < / ™ dy < C.
Bruy, (zx) Q

If m = 1, then our claim follows directly from [CL]. Assume now m > 1. From

Theorem 2 in [Marl] we get that either

2\

Gy = log ————
0 g1+)\2|zfx0|2

(27)

for some A > 0 and zg € R?™, or there exists j € {1,...,m — 1} such that
Aldg(z) — a as |z| — +oo, (28)

for some constant @ < 0. On the other hand, (28) implies that for every R > 0
large enough there is k(R) € N such that

2m

for k > k(R).

o |al R
|A Gy |de > —|Bgr(0)] > ,
/BR(O) 2 c

This contradicts (26) in the limit as R — 0, whence (27) has to hold. Since
1 (0) = maxq, ur = log2, the same facts hold for @g. Therefore g = 0 and
A =1in (27). This proves our second claim, hence the lemma. (I

Lemma 7 There are N > 0 converging sequences Xy ; — 2, 1 <i<N, with
limg_s00 uk(zg,i) = 00 such that, setting

ki (@) o= (i + prit) +108 prs,  prs =20 TR, (29)
we have

(A1) Hmk—»oow—l—ooforlgi;«éj§N7

(Ag) ﬂkﬂ- — Mo mn 01207:7110‘(]:&27”)7 fO’f’ 1 S 7’ S N; wher@ 770(:6) = IOg (1+\2:E\2)'



(Ag) For1<i< N

lim lim XM dg = |§2m|, (30)
—00 k—oo Bruy, ; (ki)

(As) infi<icy |z — 2@ 2me2min(@) < C for every x € Q.

Proof. We proceed inductively.

Step 1. For N = 1, choose 1 such that ug(zk,1) = supg ug. Then Lemma 5
and Lemma 6 imply that (1) satisfies (A2) and (As). Moreover (4;) is empty
and (A4) follows at once from (As) (9). If also (As) is satisfied, we are done.
Otherwise we construct a new sequence, as in the inductive step below.

Step 2. Assume that ¢ sequences {(zy;) — =¥ : 1 < i < ¢}, have been
constructed so that they satisfy (A1), (Az2), (43) and (A4), but not (As). Set

k(o) = 8 P

so that limy_, o supg wr = 00, and choose y, € Q such that wg (yx) = supg wg.
Then y; — y up to a subsequence. Also set

e =2e 0 () = dn(ye + i) + log i (31)
We claim that (A1), (A2), (As) and (A4) hold for the £ + 1 sequences

{(zk,:) — 2D 1<i< i+ 1},

if we set
Tk o+1 = Yk
2D y
Uk, p+1 = Uk
Mk 0+1 = Vk
Since wg (yr) — +o00 we get
| | (yn) ™
lim MZ lim L:qLoo for 1 <i<U¢.
k—oo Yk k—oo
We claim that we also have
|yk - $k1|

lim =+oo forl<i<V/.

k—oo  pk;

Indeed, setting 0y ; := y’“;%, we have
¢y

lyr — -Tk,i|2m e?minyr) = |9k,i|2m exp(2m[ig(wr,; + fik,i0k,i) + 10g firi])-

If our claim were false, then the right-hand side would be bounded thanks to
(As), but then we would have wg(yx) < C, against our assumption. This proves
(A1). Fix now €, R > 0. Since max wy, is attained at yj, and using (31), we have
infi<i<s lyr — op,i[*™
infici<e lyx + e — 2852

eQm’Uk (I) S 22’m (32)



Choose k(e, R) such that |y — zx,| > §’yk for k > k(e,R) and 1 < i < {. Then

Yk — i
|y — T + x| — 1—¢

for x € Br(x), k> k(e,R), 1 <i </,
hence

22m
T (1-g)2m

With this information, we can apply the proofs of Lemma 5 and Lemma 6 to
get (As2) and (As) for i = ¢ + 1. Finally, (A4) follows from (Ags).

2muy (z)

e for x € Br(0), k > k(e, R).

Step 3. The procedure has to stop, i.e. (As) has to be satisfied after a finite
number of inductive steps. Indeed at the ¢-th steps we get

£
: 2miiy, : : 2miy (y)
lim e de > lim lim e dy
k—oo Jq R—o00 k—o0o P BRMk,i (zh.:)

¢
lim lim Z/ eQmﬁ’“’i(y)dy
Br(0)

R—o0 k—o0 4
=1

= e/ M dy = €]5%™),
R2m

which, together with (15), gives an upper bound for . Setting N to be the £ at
which our inductive procedure stops, we conclude. ([

From now on, the N converging sequences
{zk,i 20 1<i< N}
produced with Lemma 7 will be fixed and we shall set
S:={zW:1<i<N}. (33)
Lemma 8 For ¢ c {1,...,2m — 1} there exists C > 0 such that

i — il | Vi < .
122@@ wil | Viag(z) | <C, forz e (34)

Proof. As already noticed, we can use (16), (19) and the symmetry of G to get

e2miix (y)

Viar(z)| < C (35)

——dy.
Q |9U—y|é Y

Let Qi = {zx € Q: dist(z,{zx1,---,T6,N}) = | — 2|}, fix © € Qi ;, and
write

e2mite () e2miy (y) e2mii (y)
/ dy-= /  dy +/ C—dy, (36
Qi [T — Y] eiNBri |2 — Yl Q,i\Br.i T —yl
where By := Bjo-s, i (k). By Property (As) we get

W) < Oy — a7 fory € Qi \ Bry (37)

1
e —y| > 3 |z — xk,:| fory € Qg N By (38)



Then, using (15) and (37), we get

eQmﬂk(y) C
/ iy < | (39)
Qp,iNBy,;

z — vyl @ —pl”

As for the last integral in (36), we write Q; \ Bg; = Q,(Clz) U Q,(CQZ), where

1 2
O = (i \Bri) N Bajoay i (2), Q) = (i\Bioi)\Baja—s, | ().

Then straightforward computations and (38) imply

2mﬂk(y)d d
J ey R T
Q\Bi, [T =Y o) ly — @ea*" @ -yl
c/ dy
o) ly — opi P |w -yl

C / dy N C/ dy
|SC — zk,i|2m 953,3 |SC - y|€ 953,2 |y _ zk7i|2m+l

v
|z — x4 |¢
Summing up with (35), (36) and (39), the proof is complete. O

Lemma 9 Up to a subsequence, we have

lim «ap = +o0.
k—o0

Proof. We argue by contradiction. Suppose limg_. ax = ag € R.

Step 1. We claim that S C 9, where S is as in (33), and there is a function
up € C?™~1(Q) such that
up — ug  in C2"HY(Q\S).

loc

Moreover ug satisfies

(—A)™ug = (2m — 1)le=2maoeZmuo jp () (40)

up = Oyug = ... = 0" Lug =0 in N

Indeed (17) and the assumption that aj — ag imply that
[l 1y < C- (41)

Since 4y, satisfies (14) and (15), we can apply Theorem 13 from the appendix.
This implies that one of the following is true
(i) Up to a subsequence, iy — @ in Co7 ™ (Q).

loc

(ii) Up to a subsequence @iy, — —oo locally uniformly in Q\Qq for a set Qg of
Hausdorff dimension at most 2m — 1.

10



Clearly case (ii) contradicts (41), hence case (i) occurs and S C 9. Using
the boundary condition, Lemma 8, and elliptic estimates, we actually infer that
Up — o in 012(::71’0‘(5\5). Then clearly up, — ug := o + o in 01207:71,&(5\5,)
and ug satisfies (40).

We finally want to prove that ug is continuous in Q, hence smooth. In the
limit as £ — oo, Lemma 8 implies

inf |o— W) |Vug(z)| < C forz e Q\ S.

1<i<
Fix (Y € S and § > 0 such that
|z — 2| |[Vuo(2)| < C for & € QN Bs(z)\ {z}.
Then there is a constant C' > 0 such that
lu(z) —u(y)| < C for z,y € QN Bs(aW)\ {2}, |z —2@| = [y — 20|,

By taking y € 09 and using (2), we obtain that u is bounded near (. Then
(40) and elliptic regularity imply that ug € C°(Q).

Step 2. If S = (), then Step 1 yields up — ug in 01207271’0‘(5), which contradicts

the assumption supg, ur, — +o00. Then let 29 € S C 9Q. Take 6 > 0 such that
SN Bs(xg) = {x0}, and set for 0 <7 < §

B fBQﬁBT(zO)(z —x9) - v(2)| A% ug|?do(x)

 Joans, (s V(@0) - v(@)| AT ug2do(z)

Pk,r (42)

where A% uy, is defined as in (58) below, and v(z) denotes the exterior normal
to 002 at x. Set also
Yk,r == To + pk,TV(-TO)- (43)

Up to taking § even smaller, we may assume that

1 _
3 <v(zg) -v(z) <1 forx e NN By(xg), r <9,
hence |pg,»| < 2r. Applying Lemma 15 to uj on the domain Q' := QN B,(xo),
with

Q= (2m—1le M y=y,,

and by the property (A4), we get

Ay

IN

klim (2m — 1)!/ e2m ik dy;

— 1)
lim (2m —1)!
k—oo 2m

1 m
—o _/ (2 — Yryr) - v AT ug|*do + lim frdo,
k—oo 2 Jaqy ' k—oo Joqr

/ag, (2 — yus) - v ™M do (44)

where fj is definded on 9 by

[

fulz) = i (=1 vg - (AH (@ = gor) - Vur(@)A ™5 un(a)). (45)

=0

11



Notice that (2) implies that Vfu, = 0 on 9Q for 0 < £ < m — 1. Since each
monomial of fi contains a factor of the form 97wy for some multi-index v with

] < m—1, we get
/ fkda =0.
90N B, (z0)
1

_/ (2 — yrr) - v |AZ ug|*do = 0
2 JoanB, (o)

Moreover

by (42) and (43). By (2) and Lemma 2, we also have

2miy

2m — 1)!
‘(27)/ (x — Yr,r) - vore
m 0N B, (o)

All the other terms on the right-hand side of (44), namely the integrals over
QN OB, (o), are bounded by Cr?*™~! for 0 < r < § and k > k(r) large enough,
since by Step 1 we have

<C re”2mer < OpPm,
OQN B, (z0)

lim  sup  |Viur — Viuo| =0, |[Viue| <C, 0<<2m—1.
k=00 9B, (z0)NQ

Therefore, taking the limit as k£ — 0 first and » — 0 then, we infer
Ay < O™

This gives a contradiction as 7 — 0, hence completing the proof. (|

Lemma 10 Up to selecting a subsequence,
g, — —oo locally uniformly on Q\ S, (46)

where S is as in (33). Moreover

N
. . 2m—1,a /A
kll,r_f_loo Uy = ._E - ﬁiGz(i) m Oloc (Q \ S), (47)
with
Gi = (2m — 1)!'lim lim XMk dy, (48)

6—0 k—o0 Bs(z())NQ

and B; > Ay, for 1 <i< N.

Proof. Step 1. We claim that i, — —oo locally uniformly on Q\S. Indeed take
§ > 0 such that Qs := Q\ UY, Bs(x;) is connected and 9Qs N 9 # (). Lemma
8 implies that @y is Lipschitz on 5, and we also have 4 = —ay on 025 N 0L,
hence

|ug| = |tx + ax] < Cs in Q5. (49)

Since oy, — +00, we have @, — —oo uniformly on Qgs, hence the claim is proved.

Step 2. By (2) and Lemma 8, the uy’s are bounded in CP_(©2\ S). Since

(—A)"u = (2m — 1)!6727””"6627”“’6

)

12



where the right-hand side is bounded C{_(Q\S9), by elliptic regularity we have
that, up to a subsequence,

up — 1 in C’2m71’a(ﬁ\S),

loc

2m—1,«
for some 1 € C}]),

(2\ S). Up to taking § > 0 smaller, we may assume that

B;(¢®) N Bs(x()) = ( for i # j. Since i), — —oc uniformly on the compact
s, we have by (16)

klim up(x) = (2m— 1)!k1im G (y)e?™ W) dy
— 00 — 00 9}
N
= (2m—1)! lim j/ G (y)e?™ =Wy, (50)
kﬂm; By (z(9))NQ

Now we want an explicit expression for 1. Fix z € Q\S. We observe that G(z, -)
is smooth away from x; in particular it is continuous on Bs(x()) for all i (up to
decreasing ¢). By (15), up to a subsequence we have

2™k (y)dy — v in Q

weakly in the sense of measures, for some positive Radon measure v. On the
other hand, since (46) implies that the support of v is contained in S, we get

N
V= E ﬂiéx(i)v
1=1

for some constants 3; > 0. Then (50) implies

k—o0

N
lim uk(z) = > BiG,w(x) VoeQ\S,
=1

where [3; is as in (48). Now we fix a point 2 € § and we set pi; and xp; as
in Lemma 6. By (A4)

lim 2@y > lim  lim e2min (@) gy — |52,
k—oo BS(I('L))HQ R— oo k—oo BRI% (Ik,l)

Taking the limit as 6 — 0 we get 3; > A1, as claimed. [l

Lemma 11 For any xg € 022 we have

lim lim e2mie gy = 0. (51)
r—0 k—-4o00 B, (z0)NS

In particular S N OQ = 0.

Proof. Fix xo € 0Q. If zy € S, then (51) follows at once from Lemma 10.
Then we can assume zo = ) € 90N S for some 1 < j < N, and proceed by
contradiction. Take § > 0 such that SN Bs(xg) = {zo}. Let v: 9Q — §?m—1

13



be the outward pointing normal to 0§2. Set pi, and yi, as in (42) and (43).
Take r > 0 so small that

1 —
3 <wv(xg)-v(xz) <1 forx € dNN B,(zo),

so that |pg | < 2r. Applying Lemma 15 to uy on the domain ' := QN B, (o),
with
Q= (2m—1)le™%,  y =y,

we obtain
i 9m — 1)! i
(2m — 1)!/ 2k dy = (mi)/ (T — ypr) - vre*™ " do (52)
o 2m sy
1 m
-3 / (x — Ygr) - var|A2 uk|2d0 + frdo,
o o

where fi(z) is as in (45). Since each monomial of f contains a factor of the
form 07uy with |y] < m — 1, we get

/ fk do = 0.
QN By (x0)

Moreover, since G, = 0, and the derivatives of G are bounded in B, (zg) for
@) #£ 20, (47) implies

lim frdo < Cr2m=1,
k—+co JonoB, (z0)
and )
lim —/ (2 — yrr) - VAT ug|?do < Or*™.
k=00 2 JonaB, (zo)

By the choice of yi , we get again

1 m
—/ (x — Yr.r) ~V|A?uk|2d0:0.
2 JoonB, (x0)

As for the first term on the right-hand side of (52), (2) and Lemma 2 imply
/ (T — Ypr) - voye 2R 2MUR dg < Or?™,
o

Summing up all the contributions, we get (51). O

Lemma 12 In (47) and (48) we have 3; = Ay for all 1 <i < N.
Proof. Since SN 9N = {), there exists § > 0 such that Bs(z(?) c Q, and

SN Bs(z®) = {z®} for all 1 <i < N. Fix i with 1 <i < N and suppose, up
to a translation, that 2(*) = 0. Recall that

B = (2m — 1)! lim lim 2
§—0k—oo Bj;(0)

14



By the Pohozaev identity of Lemma 15, applied to uy on the domain Bs := Bs(0)
with y = 0 and Q = (2m — 1)le ™2™ we get

(2m—1)!/ eQmﬂ’“d:C:I(;(uk)—l—ll(;(uk)+III(;(uk), (53)
Bs
where
6(2m — 1)!
Is(ug) = @m —1) / Mk o
2m 9Bs
1) m
II(;(uk) = ——/ |A7uk|2d0
2 JoBs
m—1 ) 1
III5(u) = (4)’”““/ v (A% (z-Vup) A~ Juk) do
=0 dB;
From Lemma 10 we infer
Jim TTs(ux) = I15(8:Go) = B;115(Go)
klim ITIs(uy) = III5(B;Go) = B2I11I5(Go).

Since the functions €™ — 0 in C°(9Bs), we have
khm I(;(uk) =0.

The Green function Gy can be decomposed in the sum of a fundamental solution
for the operator (—A)™ on R?™ and a so-called regular part R, which is smooth:
Let us write

G0:g+R inﬁ

where

(2) 1 1 1 Ay
r): = —log —, m =
YT Rl T

satisfies (—A)™g = o (see e.g. Proposition 22 in [Marl]), and R := Gy — g €

C*> (). Since
, 4 C
IVIR| < C, |Vg| < 5 on 0Bs, (54)

we get

IIs(R+g) —1I5(g) < C§ C(|A%g|+C)do < C5™.
0Bs

15



For the terms in ITIs(R + g), (54) implies

1Y (g+R) = /
1}

= I (g)+0(5) asd— 0,

where |O(9)] < C§ as § — 0. Summing up all what we proved until now, we
obtain

Bi = B7 lim lim [Is(up) + I1s(ur) + I11s(ui)| = 537 %Ln% [115(g) + 1115(g)].

6—0 k—oo

On the other hand, since I15(g) and I1I5(g) do not depend on 4, it is enough
to compute

Bi =115(g) + I115(g) (55)
for an arbitrary § > 0. Using the formula
2m — 2)!!
mAFg = (=1)F(2k — 2 !!(— —2k
nem A9 = (=1 Mom 2o
we find
2
IIs(g) = _é/ [(2m - 2)”rm] do = —|52m-1] [(2m — 2)!!]2.
2 JoB, Yam 2%3m
Observing that
Ak(z-Vg) = 2kAFg+7r0,AFg =0,
o(x-Vg) = —rt—z.-V(r ') =0,
1
v Vg = rOg=——,
Yom
2m — 2)!
m rAk —_ -1 k+1 2]{3 ” ( —2k—1
Vom0 A% =D M G =3 — o)
we see that IIIéj)(g) =0for1<j<m-—1,and
II5(g) = II10(g) = (-1)’”“/ (z - Vg)d, A" gdo
9B,
e [2m — 212
= |s?mY p .
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From (55) we get

1 [(2m — 2)!1]2 1

— |52m—1| —
B; 22 (2m — 1)Y82m|’

2m
whence §; = Ay. O

Proof of Theorem 1. By Corollary 3, it suffices to prove that, under the assump-
tion (12), case (ii) of the theorem occurs. This follows at once putting together
Lemmas 7, 10, 11 and 12. O

Appendix

A useful theorem
Several times we used the following theorem from [Mar2] (compare also [BM]

and [ARS]).

Theorem 13 Let  be a domain in R>™, m > 1, and let (ug)ren be a sequence
of functions satisfying

(—A)™uy = (2m — 1)le?mur, (56)
Assume that
/ e2mukdy < C, (57)
Q

for all k and define the finite (possibly empty) set

A
Sy = {x €Q: lim lim (2m — 1)le* ™k dy > —1}
r—0+t k—oo B, () 2

Then one of the following is true.

(i) A subsequence converges in CIQOT%’O‘(Q) and S1 = 0.

(i) There exist a subsequence, still denoted by (uy), a closed nowhere dense set
So of Hausdorff dimension at most 2m — 1 such that, letting Q¢ = SoU S,
we have u, — —oo locally uniformly in Q\Qo as k — oo. Moreover there
is a sequence of numbers B — oo such that

U

— —pin Cﬁ:?_l’a(ﬂ\ﬂo),
k

where @ € C*(Q\S1), So = {z € Q: p(x) =0}, and

(A" =0, ¢<0, @#0 1nQ\S.
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Pohozaev’s identity

We now discuss a generalization of the celebrated Pohozaev identity to higher
dimension, Lemma 15 below. A similar identity can be also found in [Xu]. We
shall use the following notation:

ARy — { A"y e R if m = 2n is even (58)

VA"y € R?™  if m =2n + 1 is odd,

and we define AJu - Afy using the inner product of R*™, or the multiplication
by a scalar or the product of R according to whether j and ¢ are integer or
half-integer.

Preliminary to the proof of Pohozaev’s identity, we need the following lemma.

Lemma 14 Let u € C™TY(Q), where Q C R*™ is open, and let y € R*™ be
fixed. We have

Sdiv((@ — AT u?) = AT (e —y) - Vu)- ATy

Proof. By a simple translation we can assume y = 0. Let us first assume m
even. Then

1 m m m m
§div(x|A7u|2) = m|AZul*+ [(z-V)AZu)] A%y
= mATu+(z-V)ATu) AT (59)

Observing that D?z = 0 and use the Leibniz’s rule, we also get

2m
(z-V)ATu+mAZu = (z-V)AZu+m Z 0@ AT 10, 0,1
ij=1
= A% (z-Vu) (60)
Inserting (60) into (59) we conclude. O
Lemma 15 Let u € C™1(Q), Q € R satisfy
(_A)mu — QeQmu
in Q C R*™. Lety € R*™ be fized. Then
2mu 1 2mu 1 =002
Qe "dr = — (x —y) - vQe*™"do — = (x —y) - v|A2u|*do
Q 2m Joq 2 Joo

2m—1—j

+jz:;(—1)m+j+1 /6(21/. (A%((ac—y)-Vu)A 5 u)do.

Proof. The proof is a pretty straightforward application of integration by parts.
We have

/ (x —y) vQe*do = / 2me*™ Qdx + / 2m((x — y) - Vu)e*™ Qdx,
[219] Q

Q
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since both sides are equal to [, div((z — y)e*™")Qdz. Then we use

/(m —y) - Vue*™Qdr = (=™ / (x —y) - VuA"udx
Q Q

= /A%((x—y)-Vu)AmQUd:E—i— fdo,
Q ro)

m
=3 div((z—y)|A2 uf?)

where

[

m—

f@) =Y (1" (A (@ —y) - V() A
0

;u(z)) .z e

Jj=

Moreover

N —
S~

m 1 m
div((z — y)|AZ u?)dx = 3 / (x —y) - v|AZ u|do.

Q [519)

Summing together we conclude. (I
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