ON A DISTANCE REPRESENTATION OF KANTOROVICH POTENTIALS
LUCA GRANIERI

ABSTRACT. We address the question to represent Kantorovich potentials in mass transportation (or
Monge-Kantorovich) problem as a signed distance function from a closed set. We discuss geometric
conditions on the supports of the measure f* and f~ in the Monge-Kantorovich problem which
ensure such representation. Finally, as a by-product, we obtain the continuously differentiability of
the potential on the transport set.
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The Monge-Kantorovich problem. Assume that we are given a pile of soil and an excavation
that we want to fill up with the soil. In 1781 Monge posed the question to find an optimal way to do
this. We can model the pile of soil and the excavation by two probability measures f*, f~ € P(Q)
over a given open and bounded set 2 C RY. We denote by | - | the euclidean norm on RY.

We consider a measurable map ¢ : Q — Q as a transport between ft and f~ if the amount of
mass of f~ on a region B of € is the same coming from f* through the map ¢. Hence, if we consider
a Borel set B C Q we require that f~(B) = f7(t%(B)). In other words we have that f~ is the
image measure of f* through the map ¢. We use the notation t;f* = f~ (push-forward of measures)
whenever the previous condition holds. If |x — y| is the cost to move the particle in x to the position
y, Monge problem can be written as follows:

wt { [ o~ o)l 17" =1}, (1)

where the unknown is the transport map ¢.

Observe that the Monge problem is not always well posed. In fact if we consider for example
the measures f* = 0, and f~ = %(511 + ¢,), the Monge transport problem has no solutions simply
because there is no map ¢ such that ¢, f* = f~. Moreover, because of the non-linearity of the cost
with respect to t, existence of minimizers in (1) is a difficult matter and the first rigorous existence
theorems are relatively recent, see ([1, 5, 8, 11]), despite the long history of the problem. In order
to avoid these difficulties the problem can be reformulated in its Kantorovich relaxed form. If mq, w9
are the projections of 2 x  on his factors and |z — y| is the cost to move the particle in x to the
position y, the Monge-Kantorovich problem amounts to

min {/Q . |z =yl dy(z,y) | v € PQX Q) (m)yy = fT, (m2)yy = f} : (2)

The admissible measures 7 for problem (2) are called transport plans. Observe that if ¢ is admissible
for the Monge problem then the measure v = (id x t)y f* is a transport plan for (2). Furthermore,
the class of transport plans is never empty as it always contains f* ® f~. Note that the Kantorovich
problem (2) is now linear and existence is quite easy to obtain.

An important step to treat Monge problem is a dual formulation due to Kantorovich.

Theorem 1. For every f*, f~ € P(Q) the minimum value of the Monge-Kantorovich problem (2)
15 equal to

max{/ﬂu d(ff—f7) | ueLipl(Q)},
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where Lip,(§2) denotes the set of Lipschitz functions with Lipschitz constant not greater than 1.

The Lipschitz functions u for which the maximum in Theorem 1 is attained are called Kantorovich
potentials. The existence of Kantorovich potentials w is important since, roughly speaking, they
determine the directions, given by Du, and then the segments (transport rays) for moving the masses
(see the next section for more details). The notion of transport ray was introduced by Evans and
Gangbo in [8]. In particular, in their PDE approach to the transportation, Evans and Gangbo derived
the system of equations

{ —div(ocDu) = fT — f~ (3)

|Dul =1 o — a.e.

where u € Lip, () is a Kantorovich potential, while o is a measure called transport density. Actually,
roughly speaking, the measure o establishes the amount of mass to move along a transport ray whose
direction is given by Du. The equations in (3) are important in many different contexts, such as
shape optimization and granular matter theory. For theory and applications we refer to [3, 4, 7].
Denoting by = f*— f~, if u > 0, then the equations (3) model a quite different problem arising in
the study of equilibrium solutions for growing sandpiles as treated for example in [6, 10]. In particular
in [6, 10] it is shown that the system of equations

—div(cDu) =y in Q

|Dul=1 o —a.e. (4)
u=0 on 0
admits a unique solution (o,u) with u(z) = dist(x, ), where for every A, B C RY we denote

dist(A,B) = inf{|lx —y| | x € A,y € B}. Moreover, they provide a representation formula for o
in terms of the distance function dist(-, 9€2). Therefore, these results can be regarded as regularity
results for the equations (4).

Description of the results. The aim of this paper is to investigate if, also in the general case of
the transport problem, one can have a Kantorovich potential given by a distance function. Actually,
there are several regularity results for the transport density o which appears in (3), see for example
[7]. However, since in general the transport density o is merely a measure, some regularity on wu is
necessary to give meaning to the pairing o Du. In this paper we address the question to represent a
Kantorovich potential u by a signed distance on the transport set, i.e. u(z) = £d(z,I'), where T' is
a suitable closed set. Actually, this representation holds if it is possible to prescribe the change of
sign of the potential u on the supports M of f* and N of f~ (see Lemma 9). In fact, by well known
properties of the Kantorovich potentials u, it follows that u behaves locally as a signed distance
function from each level set of u. On the other hand, it is clear that in general u cannot behave
globally as a signed distance simply because M and N could have mutual position which prevent a 1-
Lipschitz function from having the correct sign. In Theorem 7 we states the representation by a signed
distance of Kantorovich potentials whenever the supports M, N are sufficiently far. If this condition
does not hold, we provide a counterexample in which none of the potentials can be represented by a
signed distance function. In particular, this phenomenon occurs also if the supports M and N are
separated by a positive distance (see Example 8). The hypothesis of separated supports has been
already used several times, see for instance [8, 9], to obtain additional properties of the Kantorovich
potentials. However, to recover the distance representation of the potentials one need some more
assumptions, as the smallness of the diameters of the supports with respect to the separation of the
supports themselves (see Corollary 9). Finally, as a by-product, we use these results to obtain the
continuously differentiability of the Kantorovich potentials on the transport set (see Corollary 10).
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Geometry of transport rays. Kantorovich potentials are an important tool in all the existence
proofs for the Monge problem that are available at the moment.

In the rest of the paper we take {2 a convex, open and bounded set of R". A key lemma to find
optimal transport map for problem (1) is the following (Lemma 6 in [5]).

Lemma 2. Let v € Lip,(Q2), and t : Q@ — Q be a Borel map such that tyf* = f~. Then, u is a
Kantorovich potential and t is an optimal transport map for problem (1) if and only if

u(z) —u(t(z)) = |z —t(z)| for fT —a.e z €. (5)
Condition (5) contains a useful geometric meaning. In fact, let x,y € Q such that
u(z) —uly) =z —yl. (6)
If z € [z, y], since u € Lip,(£2) we have

ly =zl = le =yl = |z — 2] = u(@) —uly) — |z — 2 < ulr) —u(y) + u(z) —u(z) =

= u(z) = u(y) + |z —yl.
Therefore, the function u is decreasing with the maximum possible rate along the segment [z, y].

Furthermore, by the triangular inequality we find that for every 2y, z5 € [z, 9] it also results u(z1) —
u(z2) = |21 — 22|. Indeed

u(z1) = u(z) = ulz1) = uly) +uly) —u(z) = [21 = y| = [22 = y| = £|z1 — 2.

For reader’s convenience we state the following important well known property (see for instance [12])
of Kantorovich potentials.

Lemma 3. Let u be a Kantorovich potential. Then the following condition holds

Vy € N :u(y) = u(y) := max{u(z) — |z —y| | x € M}, (7)
Vo e M :u(z) =vu*(z) := min{u(y) + |z —y| | y € N},

where M, N are the supports of [, [~ respectively.

Proof. Observe that the function u*, u, € Lip,(Q) and u, < u < u*. Moreover u,, u* are respectively
the smallest and the largest 1-Lipschitz extension of u outside M, N since it is immediate to check
that u = u, in M and v = w* in N. Suppose now by contradiction that u(x) < u*(z) for some
x € M. By continuity there exists a small radius r > 0 such that v < u* in B(x,r). Since z € M we
deduce f*(B(z,r)) > 0 and this implies [,, u df " < [,, u* df". Therefore we get

/Qud(er—f):/Mudf*—/Nudf</Mu*df+—/Nu*df=/Qu*d(f+—f)

and this contradicts the maximality of u. The other equality u = u, in N follows in a similar way. [

If u is a Kantorovich potential, any transport map moves the mass along the segments determined
by the condition (6) with x € M and y € N. We will call these segments transport rays. The precise
definition is the following.

Definition 4 (Transport rays). A transport ray R, is a segment joining x and y such that
rxeM,ye Nax#y,

2) u(z) —uly) = |z —yl,

3) Mazimality: set ay = x +t(y — x). Then for any t < 0 such that a; € M we have |u(a;) — u(y)| <
la; — y|, and for any t > 1 such that a; € N we have |u(a;) — u(x)| < |ay — x|.
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We call the points z,y the upper and lower ends of R, , respectively. Hence, condition (5) asserts
that any transport map moves the mass along the transport rays. We remark that by the relations
(7) we have that every point on M, N belongs to some transport ray. Furthermore, the data f*, f~
are supported on the transport rays. We denote by T' (transport set) the union of all transport rays.
Another basic observation is that transport rays do not cross, according to the following (Lemma 10

in [5])

Lemma 5. Let Ry # Ry be two transport rays. If Ry N Ry = {c} then c is either the upper end of
both rays or the lower end of both rays. In particular, an interior point of a transport ray does not
lie in any other transport ray.

Distance representation of Kantorovich potentials. In this section we address the question
whether or not it is possible to represent a Kantorovich potential by a signed distance function. The
crucial condition is the the change of sign of the Kantorovich potential on the supports M, N.

Lemma 6. Let u be a Kantorovich potential such that uw > 0 on M and v < 0 on N. Setting
Yo={2€Q|u(x)=0}, T ={zeT|ulx)>0}, T ={zxeT|ulx) <0}, i results

| dist(-,X0) on TT U, (8)
YT\ —dist(+,20) on T~ U,

Proof. The potential u satisfies the following inequalities:
Ve e TT U : dist(x, %) <ulz), Yy € T- U : dist(y, o) < —u(y).

Indeed, for every z € T+ N Xy, if u(z) = 0 then dist(x,¥) = 0. In the case u(z) > 0, consider a
transport ray R, such that z € R,;. Hence u(z) = u(b) + [ — b|. If u(b) = 0, then dist(z, %) <
|z — b] = u(z). Otherwise, by continuity of u along the transport ray, there exists z € R, such that
u(z) = 0. Then again dist(z,%y) < |x — z| = u(z). The other inequality follows in a similar way.
On the other hand, for every y € ¥ it results |u(2)| < |z — y| and this implies |u(2)| < dist(z, Xo).
Therefore u(x) = dist(z, %) on T U Xy and u(y) = —dist(y,>o) on T~ U Xy. O

We will say that a potential u is representable by a signed distance function whenever condition
(8) holds. The rest of this section is devoted to discuss some geometric conditions in order to
have the distance representation (8) for Kantorovich potentials. We remark that since f*, f~ are
both probability measures, the Kantorovich potentials are determined up to addition of a constant.
Therefore, given a Kantorovich potential u, by adding a constant one can always assume the sign of
u prescribed on spt(ft) = M. The difficulty is then to control the sign of u on the other support
spt(f~) = N. An assumption which ensures the condition (8) is given by considering supports M, N
sufficiently far. We denote by diam(A) = sup{|z — y| | =,y € A} the diameter of A C R".

Theorem 7. Let u be a Kantorovich potential. If
dist(M, N) > min (diam(M ), diam(N)), (9)
then, up to addition of a constant, u is representable by a signed distance function.

Proof. Suppose that dist(M,N) > diam(M) and let m = mingep u(z). Adding a constant to u we
can assume that m = 0, so that u > 0 on M. Fix 2o € M such that u(xy) = 0. Hence, for every
x € M we have u(xz) = u(x) —u(zg) < |xr — x| < diam(M). By (7) and (9), for every y € N we have

u(y) = géé}é{{u(x) — |z —y|} < diam(M) — dist(M, N) < 0.

We obtain the same conclusion arguing in a similar way if dist(M, N) > diam(N). Then the result
follows by Lemma 6. 0
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The condition (9) is not a necessary condition. Indeed, consider the following measures supported
on the real line

1 1 1 1
f+ - 5(51 + 553, fﬁ == 550 + 5(52
Therefore we have
dist(M, N) < min(diam(M), diam(N)).

FiGUurE 1. Two different Kantorovich potentials.

The Kantorovich potentials are uniquely determined, up to addition of a constant, on transport
rays, where they increase with maximum rate. For the measures above considered, the transport rays
correspond to the segments connecting the Dirac deltas of f~ with those of f. In Figure 1 we have
two different Kantorovich potentials uy, us. It turns out that u; —u;(1), i = 1,2, is representable by a
signed distance. However, the situation is more involved since there are also distributions of masses
for which none of the potentials can be represented by a signed distance function.

T2
O > B e e
T Y1

FI1GURE 2. The arrows represent the transport rays and their directions.

Example 8. Consider the following measures supported on the plane

1 1 1 _ 1
f+:§5x1+1512+15x37 f :§6y1+§6y2)
where we set x; = (0,0),22 = (0,1), 23 = (0,7),y1 = (1,0),y2 = (8,7). It results that the optimal
transport map t is given by t(x1) = y1, t(z2) = ys, t(z3) = yo. Let u be a Kantorovich potential.
Since |1 — 1| =1 = |z — 21|, |x3— 22| =06, |x3—y2| =38, we have

1

u(zs) = u(ye) + |r3 — 2| = u(w2) — |22 — 12| + |23 — 92| < ulyr) + w2 — Y| — |22 — Y| + |23 — P2l.
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Therefore, if we suppose that u(y;) < 0 then we would have u(x3) < 0. Hence the representation (8)
by a signed distance does not hold for w.

Example 8 shows that the representation of potentials by a signed distance does not hold also if
the supports are separated by a positive distance. Actually, in order to recover the representation
property (8) one need some more assumptions, as the smallness of the diameters of the supports with
respect to the separation of the supports themselves.

Corollary 9. Let u be a Kantorovich potential. Suppose that there exists X\ € RV, X\ # 0, € R such
that the following separation property holds

Vee M\Vye N: -z <a<\-y. (10)
If the supports M, N satisfy the condition

diam(M ) S;réijrwlﬁ(a—)\-x) , diam(N) giréi]{[lﬁ()\-y—a) (11)
then, up to addition of a constant, u is representable by a signed distance.
Proof. Let x € M,y € N. By Cauchy-Schwarz inequality and conditions (10) and (11) we have
1
Y
Taking the infimum with respect to z,y we get
dist(M, N) > min(diam (M), diam(N)).

Hence, the result follows by Theorem 7. U

|z —y| > (y — x) (y-A—a+a—zx-N)>diam(M) + diam(N).

Differentiability on the transport set. By Rademacher theorem every Kantorovich potential is
differentiable almost everywhere. It is not hard to see that if we denote by Ty the union of all points
which lie in the interior of some transport ray, then a Kantorovich potential u is in fact differentiable
on Ty (Lemma 4.1 in [8]). Actually, since the potential u studied in [8] is obtained by a p-Laplacian
approximation, it turns out that u satisfy some semiconvexity properties and then it is continuously
differentiable in T\ (M UN). Here we use the results of the previous section to obtain the continuously
differentiability of any potential on Tj. Observe that semiconvexity properties follow by standard
property of the distance function. For a proof which relies on Lagrangian dynamic see [2].

Corollary 10. If there exists € > 0 such that the supports M and N verify the following condition
dist(M,N) > € 4 min (diam (M), diam(N)) , (12)
then any Kantorovich potential u is continuously differentiable in T.

Proof. Following the construction made in the proof of Theorem 7, adding a constant to u (namely
taking mingen u(x) = £/2) we may assume that v > /2 in M and v < ¢/2 in N. Therefore,
u is representable by a signed distance function from the closed set ¥y, which is the 0-level set of
u. Moreover, if we denote by T, the set of endpoints of all transport rays we get dist(z,T,) > /2
for every z € Ty N Xy. Let x € Ty \ 3o and suppose for instance that u(x) > 0. By standard
properties of the distance function, it is enough to prove that there exist a unique zy € ¥y such that
u(z) = |x — 29| = dist(x,3) in order to check the continuously differentiability of u at the point x.
If R, is the transport ray passing through x, which is unique by Lemma 5, since the Kantorovich
potentials increase at rate one on the transport rays, we have that there exist a unique zy € ¥o N R,
such that u(z) = |x — 29| = dist(x, Xy). Suppose now by contradiction that there exist another point
z € Yo such that |x — z| = dist(x,3) = u(x). Since z does not lie on R,, denoting by a the upper
end of R,, by triangular inequality we have

la —z| <|a—2z|+ |z — 2| =|a— x|+ |z — 20| = |a — 2] (13)
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On the other hand, since a € T it results
la — 20| = u(a) = dist(a,>) < |a — 2|

which contradicts (13). By standard properties of the distance function (see for example [10]) it
follows that u is continuously differentiable on Ty \ 3. Moreover it turns out that Du(z) = e where
e = \Z:ZI is the ray direction of R,. It remains to check what happens on points zy € ¥¢ NTy. By
the arguments performed up to now, it immediately follows that u is also differentiable at z5. In
particular we have Du(zy) = ey with ey the ray direction of the transport ray passing through zg. If
x € Tp, then there exists a unique z € ¥y N R,. Moreover we know that dist(z,T,) > /2. Therefore
we can use Lemma 16 in [5] which states that ray directions vary Lipschitz continuously on the level

sets of u. Observing that |z — z| = |u(z)| < |x — 2|, by Lemma 16 in [5] we have
|Du(z9) — Du(z)| = |Du(z0) — Du(z)| < Klzo — 2| < K|z — 20| + K|z — 2] < 2K |z — 2.
The above inequality completes the proof.
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