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Abstract. We study the spatially uniform case of the problem of quasistatic evolution in
small strain nonassociative elastoplasticity (Cam-Clay model). Through the introdution
of a viscous approximation, the problem reduces to determine the limit behavior of the
solutions of a singularly perturbed system of ODE’s in a finite dimensional Banach space.
Depending on the sign of two explicit scalar indicators, we see that the limit dynamics
presents, under quite generic assumptions, the alternation of three possible regimes: the
elastic regime, when the limit equation is just the equation of linearized elasticity, the
slow dynamics, when the strain evolves smoothly on the yield surface and plastic flow is
produced, and the fast dynamics, which may happen only in the softening regime, where
viscous solutions exhibit a jump across a heteroclinic orbit of an auxiliary system.
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1. Introduction

The modified Cam-Clay model has been introduced in the engineering literature on soil
mechanics as a conceptual tool to understand the irreversible deformations experienced by
fine grained soils (clays); one of the interesting features of this model is that, depending
on the loading conditions, the stress-strain response may exhibit a hardening or a softening
behavior. Furthermore, it is an important example of nonassociative plasticity.

A general approach to the instabilities due to the softening regime has been developed
in [3] using a vanishing viscosity approximation. The goal of the present paper is the study
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of the spatially homogeneous case in dimension N , with no volume forces. The system is
driven by a time-dependent affine boundary condition w(t, x), whose symmetrized spatial
gradient Ew(t, x) is independent of the space variable x and is denoted by ξ(t). In this
situation, the displacement u(t, x) coincides with w(t, x) and the unknowns are the elastic
part e(t) and the plastic part p(t) appearing in the additive decomposition of the strain
Eu(t, x) = e(t) + p(t), as well as a scalar internal variable z(t), which describes the time
evolving yield surface. The stress σ(t) is determined by the elastic part of the strain through
the usual relation σ(t) = Ce(t), where C is the tensor of elastic moduli.

One ingredient of the model is a closed convex cone K ⊂MN×N
sym ×[0,+∞), where MN×N

sym

is the space of symmetric N×N matrices. It is assumed that K contains the half-line
{0}×[0, +∞). The stress is constrained by the inclusion σ(t) ∈ K(z(t)), where for every
z ∈ [0, +∞) we define K(z) := {σ ∈ MN×N

sym : (σ, z) ∈ K} . The interior of K(z) is the
elastic domain corresponding to the value z of the internal variable, while its boundary
∂K(z) is the yield surface. In the typical applications, ∂K(z) is a suitable ellipsoid in
the space MN×N

sym . Due to mathematical reasons, we shall impose some restrictions on
K(z) (see (2.14)-(2.17)), even if most of the results can be proved without these additional
assumptions.

The other ingredients of the model are the evolution laws for p(t) and z(t), resulting in
the system 




e(t) + p(t) = ξ(t) , σ(t) = Ce(t) ∈ K(z(t)) ,

ṗ(t) ∈ NK(z(t))(σ(t)) ,

ż(t) = tr(σ(t)) tr(ṗ(t)) ,

(1.1)

where NK(z)(σ) denotes the normal cone to K(z) at σ , in the sense of convex analysis.
The nonassociative nature of the problem is due to the fact that the second equation in
(1.1) does not depend on K . In view of the hypotheses on K , we have the monotonicity
condition z1 < z2 ⇒ K(z1) ⊂ K(z2). Therefore if ż(t) > 0 the set K(z(t)) expands leading
to a hardening response. On the contrary, if ż(t) < 0 the set K(z(t)) shrinks leading to
a softening response. We shall assume that tr(σ) ≤ 0 for every σ ∈ K(z), which reflects
the compressive conditions typical of soil mechanics. Therefore, by the second equation in
(1.1), the hardening or softening behavour is determined only by the sign of tr(ṗ).

To deal with the instabilities of the softening regime, we propose a viscosity approximation
to (1.1), in agreement with [3]. Denoting the minimal distance projection of σ onto K(z)
by πK(z)(σ), for every ε > 0 we consider the unconstrained system





eε(t) + pε(t) = ξ(t) , σε(t) = Ceε(t) ,

ṗε(t) = Nε
K(zε(t))(σε(t)) ,

żε(t) = tr(σε(t)) tr(ṗε(t)) ,

(1.2)

where Nε
K(z)(σ) := 1

ε (σ − πK(z)(σ)) is the usual approximation of the normal to K(z). A
viscosity solution (e(t), p(t), σ(t), z(t)) to (1.1) is defined as a left continuous map which, for
almost every time t , is the pointwise limit of a sequence (eε(t), pε(t), σε(t), zε(t)) of solutions
of (1.2). Notice that system (1.2) is slightly different from the one considered in [2], where a
particular case has been studied; here indeed, in the equation for the internal variable, the
term tr(πK(zε(t))(σε(t))) is replaced by simply tr(σε(t)), in agreement with [3].

In this paper we study in detail the limit behavior as ε goes to 0 of the solutions of (1.2).
We will see that the limit dynamics presents, for a generic choice of the initial data – some
degenerate cases have indeed to be excluded – the alternation of three possible regimes:

a) Elastic regime. This situation occurs when in a time interval [t1, t2] , the plastic
part, and thus the internal variable, do not evolve, while the stress is completely
determined by the prescribed boundary displacement through the relation σ(t) =
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C(ξ(t)−ξ(t1)), for every t ∈ [t1, t2] ; a necessary condition for this behavior to occur
is clearly (C(ξ(t)− ξ(t1)), z(t1)) ∈ K for every t ∈ [t1, t2] .

b) Slow dynamics. In this situation the strain evolves smoothly on the yield surface
and the limit equation (3.1), called the equation of the slow dynamics, takes into
account the production of plastic flow. The evolution can be studied using the
standard time t ; during this regime both hardening and softening behavior can
occur.

c) Fast dynamics. This is the situation where, in the softening regime, singular
behavior occurs; this requires the use of a fast time s := 1

ε t . The corresponding
limit equation (4.1) is called the equation of the fast dynamics. We will see that, at a
jump time t , the right limit (σ(t+), z(t+)) of the solution is given by the asymptotic
value for s → +∞ of the heteroclinic solution of the equation of the fast dynamics
(4.1) issuing from the point (σ(t−), z(t−)) at s = −∞ .

As in the associative case, studied in [7], the alternation of these three regimes is deter-
mined by the sign of two scalar indicators; the first one, depending explicitly on time and on
the state of the system, will be called the elastic-inelastic indicator. Its explicit expression
is given by

Φ(t, σ, z) := nK(z)(σ) · Cξ̇(t) for every (t, σ, z) ∈ [0,+∞]× ∂K;

here nK(z)(σ) denotes the outward unit normal to K(z) at σ . The second one, only
depending on the state of the system, will be called the slow-fast indicator; its explicit
expression will be given by

Ψ(σ, z) := −nK(z)(σ) · CnK(z)(σ)− tr(σ) tr(nK(z)(σ))

z [σ · nK(z)(σ)] for every (σ, z) ∈ ∂K.

For mathematical reasons, both the indicators will be suitably extended to the whole space,
but what only matters are their values on the yield surface.

We now briefly describe how the two indicators determine the limit dynamics. We take an
initial condition (σ0, z0) ∈ intK ; then initially the solution is following the elastic regime,
till it reaches the yield surface, at a time t1 , at a certain point (σ1, z1). Here the elastic-
inelastic indicator must be nonnegative. In a generic situation it will be strictly positive, and
this determines the appearance of a plastic behavior after the time t1 . The choice between
the slow and the fast dynamics depends on the sign of the slow-fast indicator.

a) If Ψ(σ1, z1) < 0 the solution has no singularity and is obtained by solving the system
of the slow dynamics

{
σ̇sl(t) = Φ(t,σsl(t),zsl(t))

Ψ(σsl(t),zsl(t))
CnK(zsl(t))(σsl(t)) + Cξ̇(t),

żsl(t) = −Φ(t,σsl(t),zsl(t))
Ψ(σsl(t),zsl(t))

tr(σsl(t)) tr(nK(zsl(t))(σsl(t))),
(1.3)

defined on ∂K , with Cauchy data (σ1, z1) at time t1 ; this situation is studied in
Section 3. This behavior persists as long as one of the two indicators does not vanish
along the motion.

If at a time t̄ , we have that Φ(t̄, σsl(t̄), zsl(t̄)) = 0 while Ψ remains strictly
negative, elastic behavior may reappear, starting from the point (σsl(t̄), zsl(t̄)), in
presence of some suitable higher order conditions, implying a change of sign of Φ
along the motion; this situation is discussed in Section 3.3.

If Φ remains stricly positive, the solution follows the equation of the slow dy-
namics for all its maximal interval of existence, that is to say as long as Ψ does not
vanish.
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b) If Ψ(σ1, z1) > 0 the solution is discontinuous at time t1 and jumps to the asymptotic
value as s → +∞ of the solution of the problem




σ̇f (s) = C(πK(zf (s))(σf (s))− σf (s))
żf (s) = tr(σf (s)) tr(σf (s)− πK(zf (s))(σf (s)))
lim

s→−∞
(σf (s), zf (s)) = (σ1, z1)

(1.4)

which is formally obtained by rescaling time in (1.2) according to s = t
ε , and

neglecting all terms of order ε . This situation is studied in Section 4. We will see
that the internal variable is decreasing along the solution of (1.4), thus we are in
the softening regime in this case. At the end of the jump the slow-fast indicator
is nonpositive (in some cases, see for instance Example 4.4, we can prove that it is
always strictly negative); excluding the degenerate case when it vanishes, this means
that, in a right neighborhood of t1 the evolution is continuous and may follow the
elastic regime or the slow dynamics equation, depending on the sign of the elastic-
inelastic indicator. Moreover, if we are in the inelastic regime, we prove that, still,
softening behavior occurs at the end of the jump.

c) If during a continuous evolution the indicator Ψ vanishes at a time t2 in a point
(σ2, z2) on the yield surface (we will see that this situation can never occur as long
as we are in the hardening regime), the following higher order condition must be
satisfied

∇Ψ(σ2, z2) · ( −CnK(z2)(σ2)

tr(σ2) tr(nK(z2)(σ2))
, 1) ≤ 0; (1.5)

if strict inequality holds, this implies a transition from the slow dynamics to the fast
dynamics regime; also this case will be discussed in Section 4. Then, the viscous
solution is discontinuous at time t2 and jumps to the asymptotic value as s → +∞
of the solution of the problem (1.4), with (σ2, z2) in place of (σ1, z1). At the end
of the jump, exactly as in case b), the evolution is continuous and may follow the
elastic regime or the slow dynamics equation, with softening behavior, depending
on the sign of the elastic-inelastic indicator.

By iterating these arguments at each critical time, we can completely describe the solution,
except for some degenerate cases. The precise statement is given in Theorem 5.2.

2. Formulation of the problem and preliminary results

Let MN×N
sym be the vector space of all symmetric N×N matrices with real entries, endowed

with the scalar product σ · ξ :=
∑

ij σijξij ; the norm of σ ∈MN×N
sym will be denoted by |σ| .

Let K be a closed convex cone in MN×N
sym ×[0, +∞). For every z ∈ [0, +∞) we define

K(z) := {σ ∈MN×N
sym : (σ, z) ∈ K} .

Each set K(z) is closed and convex, and we have

K(z) = z K(1) for every z ∈ (0, +∞) . (2.1)

Throughout the paper, we shall assume that K(1) is a bounded domain of class C2 and
that 0 ∈ ∂K(1), hence

0 ∈ ∂K(z) for every z ∈ [0, +∞) , (2.2)

and
|σ| ≤ MKz for every (σ, z) ∈ K (2.3)

for a suitable constant MK < +∞ . For every z > 0, we obviuosly have

σ ∈ ∂K(z) ⇐⇒ (σ, z) ∈ ∂K. (2.4)

For every σ ∈ ∂K(z), we will denote the outward unit normal to K(z) at σ by nK(z)(σ),
while nK(σ, z) will denote the outward unit normal to K at (σ, z).
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We shall also assume that

tr(σ) ≤ 0 for every σ ∈ K(1); (2.5)

this reflects the compressive conditions typical of soil mechanics.
For every closed convex set C ⊂ MN×N

sym let πC : MN×N
sym → C be the minimal distance

projection onto C . It follows from (2.1) that

πK(z)(σ) = zπK(1)( 1
z σ) (2.6)

for every z > 0 and every σ ∈MN×N
sym . We also define, for every (σ, z) ∈MN×N

sym × (0, +∞),
the function

%(σ, z) = |σ − πK(z)(σ)|; (2.7)

it is a Lipschitz function, moreover it is C1 for every (σ, z) ∈ [MN×N
sym × (0, +∞)] \K . An

elementary consequence of (2.6) is the following relation:

%(σ, z) = z %(σ
z , 1) for every (σ, z) ∈MN×N

sym × (0,+∞). (2.8)

The next proposition collects some elementary properties which will be useful in what follows.

Proposition 2.1. Let K be a closed convex cone in MN×N
sym ×[0,+∞) , and let K(z) be as

in (2.1). Assume that K(1) is bounded and of class C2 and that 0 ∈ ∂K(1) . Then, for
every z > 0 and every σ ∈MN×N

sym \ intK(z) , we have

nK(z)(πK(z)(σ)) = nK(1)(πK(1)( 1
z σ)). (2.9)

Moreover, for every (σ, z) ∈ ∂K

nK(σ, z) = 1√
z2+|σ·nK(z)(σ))|2 (z nK(z)(σ),−σ · nK(z)(σ)). (2.10)

For every (σ, z) ∈ [MN×N
sym × (0,+∞)] \K , we have

∇%(σ, z) = 1
z (z nK(z)(πK(z)(σ)), −πK(z)(σ) · nK(z)(πK(z)(σ))). (2.11)

Proof. To prove (2.9) it suffices to consider the case when σ /∈ K(z), which is equivalent to
say that σ

z /∈ K(1). We then have, applying (2.6) and (2.8), that

nK(z)(σ) =
σ − πK(z)(σ)

%(σ, z)

=
z(σ

z − πK(1)(σ
z ))

z %(σ
z , 1)

= nK(1)(πK(1)( 1
z σ)),

which proves (2.9).
For what concerns (2.11), it is well known that, for every (σ, z) ∈ [MN×N

sym × (0, +∞)]\K ,
∇σ %(σ, z) = nK(z)(πK(z)(σ)) so only the last component of the gradient has to be calculated.
Together with (2.8) this implies that

∂
∂z %(σ, z) = ∂

∂z [z %(σ
z , 1)] = 1

z (%(σ, z)− σ · nK(1)(πK(1)(σ
z ))),

hence we get (2.11) by (2.9) and the equality

%(σ, z)− σ · nK(z)(πK(z)(σ)) = −πK(z)(σ) · nK(z)(πK(z)(σ)).

This also implies (2.10); indeed, by the C2 regularity of the boundary, for every fixed
(σ̄, z̄) ∈ ∂K we may locally define an oriented distance function r form ∂K , which is a C1 -
extension of % to the interior of K . Then, locally we have that K = {(σ, z)| r(σ, z) ≤ 0} .
It follows that the outward unit normal to K at (σ̄, z̄) must be parallel to ∇r(σ̄, z̄), which
by continuity is obtained by extending the right-hand side of (2.11) to ∂K , and this proves
(2.10). ¤
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Another useful property, which will be used in what follows, comes directly from the
characterization of the minimal distance projection and from the fact that 0 ∈ K(z) for
every z ; we have indeed that, for every (σ, z) ∈ [MN×N

sym × (0,+∞)] \K

πK(z)(σ) · nK(z)(πK(z)(σ))) ≥ 0. (2.12)

We shall often decompose σ ∈ MN×N
sym in its spherical and deviatoric part through the

relation
σ = x I√

N
+ y (2.13)

where x ∈ R and y ∈ MN×N
D are uniquely determined; here as usual MN×N

D denotes the
space of trace-free symmetric matrices of order N . Notice that

√
Nx = tr(σ); in particular,

for every σ ∈ K(1), we shall have x ≤ 0. Similarly, η(t) and γ(t) will denote the spherical
and the deviatoric part, respectively, of the function ξ(t) mentioned in the introduction.

For mathematical reasons, we shall make some additional hypotheses on the set K(1),
even if most of the results we are going to prove do not need them. Precisely, we shall
suppose that there exist a constant a > 0 and two not identically zero functions g and
h , defined on a bounded convex domain D of class C2 , satifying g = h = 0 on ∂D and
g, h ∈ C2(D) ∩ C(D̄) such that, decomposing σ ∈MN×N

sym as in (2.13), we have

K(1) = {σ ∈MN×N
sym |g(y) ≤ x + a ≤ h(y)} (2.14)

Convexity of the domain K(1) is then easily equivalent to the fact that g is convex and
h is concave; as they do not identically vanish on D and they are zero on the boundary,
this implies that

g(y) < 0 and h(y) > 0 for every y ∈ D.

Regularity of ∂K(1) implies, that, for every ω ∈ ∂D

lim
y→ω, y∈D

|∇g(y)| = lim
y→ω, y∈D

|∇h(y)| = +∞. (2.15)

Moreover, both (2.2) and (2.5) are satisfied, provided we have

max
x∈D

h = h(0) = a. (2.16)

We shall also suppose that
g2, h2 are concave . (2.17)

An example of set satisfying all these assumptions is, for instance, any ellipsoid of the form

(x
a + 1)2 +

m∑

i=1

y2
i

b2i
= 1,

where m = N(N+1)
2 − 1 and yi are the components of y with respect to an orthonormal

basis of MN×N
D . We then have the following Proposition.

Proposition 2.2. Assume that (2.14)-(2.17) are satisfied. Then, there exists a constant
F > 0 such that, for every σ ∈ ∂K(1)

|tr(nK(1)(σ))| ≤ F |x + a|, (2.18)

where x is defined as in (2.13). Moreover

tr(nK(1)(σ)) = 0 ⇐⇒ x = −a. (2.19)

The proof of this proposition relies on the following Lemma.

Lemma 2.3. Let m ≥ 1 and let Ω an open bounded convex subset of Rm with C2 boundary.
Let f ∈ C2(Ω) ∩ C(Ω̄) a concave function satifying

f(y) > 0 for every y ∈ Ω and f ≡ 0 on ∂Ω. (2.20)
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Then, for every ω ∈ ∂Ω ,
lim inf

y→ω, y∈Ω
|∇f(y)| > 0.

Proof. Define Ωδ := {y ∈ Ω|dist(y, ∂Ω) < δ} ; for δ > 0 suitably small due to the regularity
assumption on Ω we may assume that a minimal distance projection P on ∂Ω is defined in
Ωδ . We then define the map v : y 7→ −∂ν(Py)f(y), where ν(Py) denotes the outward unit
normal to ∂Ω at Py . Clearly, for every y ∈ Ω, we have |∇f(y)| ≥ v(y), thus it suffices to
prove

lim inf
y→ω, y∈Ω

v(y) > 0 (2.21)

For every ω ∈ ∂Ω, we put v(ω) := lim suph→0+ v(ω − hν(ω)); indeed, this limsup is a
limit and coincides with suph∈(0,δ) v(ω − hν(ω)). To prove this, we fix ω ∈ ∂Ω and we
consider the function Vω(h) = v(ω − hν(ω)); this is a nonincreasing function, as, for every
h̄ ∈ (0, δ), by a direct computation and exploiting the concavity of f , we have

d
dhVω(h̄) = ν(ω)T ∇2f(ω − h̄ν(ω)) ν(P (ω − h̄ν(ω))

= ν(ω)T ∇2f(ω − h̄ν(ω)) ν(ω) ≤ 0;

this proves the claim.
We now show that the function v is lower semicontinuous in Ω̄δ ; it is trivially continuous

in Ω̄δ ∩ Ω, so it suffices to check what happens on ∂Ω. Fix then ω ∈ ∂Ω and α ∈ R such
that v(ω) > α . We may fix h1 > 0 such that v(ω − h1ν(ω)) > α , then, by continuity of n
in Ω̄δ ∩Ω, there exists ε > 0 such that v(y) > α for every y ∈ B(ω− h1ν(ω), ε), where the
latter set is the open ball of radius ε centered at ω − h1ν(ω). We then fix 0 < η < ε

2 such
that, for every y ∈ B(ω, η) ∩ Ω̄ , one has |ν(Py)− ν(ω)| < ε

2h1
.

With this choice, whenever y ∈ B(ω, η)∩Ω̄ we have that y−h1ν(Py) ∈ B(ω−h1ν(ω), ε),
thus v(y − h1ν(Py)) > α ; but proceeding as before it is easy to show that v(y) ≥ v(y −
h1ν(Py)), then lower semicontinuity of v is proven.

Finally, we have that v(ω) > 0 for every ω ∈ ∂Ω; indeed, if v(ω) ≤ 0, as seen before we
shall have that, for every h ∈ (0, δ), v(ω−hν(ω)) ≤ 0, which is to say ∂ν(ω)f(ω−hν(ω)) ≥ 0.
This easily implies that 0 = f(ω) ≥ f(ω − δ ν(ω)), contradicting (2.20).

By lower semicontinuity we then have that, for every ω ∈ ∂Ω,

lim inf
y→ω, y∈Ω

v(y) ≥ v(ω) > 0,

which proves (2.21), as required. ¤

We now prove Proposition 2.2.

Proof. Let σ̄ ∈ ∂K(1) and let x̄ ∈ R , ȳ ∈ MN×N
D as in (2.13). First, we suppose that

ȳ ∈ D , which is equivalent to x̄ 6= −a . Then only one of the two is possible: x̄+a = g(ȳ) or
x̄+a = h(ȳ). Suppose the first is true, then locally K(1) = {(x, y) ∈ R×MN×N

D |g(y)−x−a ≤
0} ; recalling that tr(nK(1)(σ)) is obtained multiplying by

√
N the first component of the

outward unit normal to K(1) at σ̄ , we obtain

tr(nK(1)(σ̄)) = −√N√
1+|∇g(ȳ)|2 = −(x̄+a)

√
N

g(ȳ)
√

1+|∇g(ȳ)|2 < 0; (2.22)

in the other case we have with similar reasonings that

tr(nK(1)(σ̄)) =
√

N√
1+|∇h(ȳ)|2 = (x̄+a)

√
N

h(ȳ)
√

1+|∇h(ȳ)|2 > 0. (2.23)

in both the equations, the latter equalities are justified since g, h never vanish in D .
This in particular proves that tr(nK(1)(σ̄)) 6= 0 when x̄ 6= −a . Conversely, suppose that

x̄ = −a , which is equivalent to saying that ȳ ∈ ∂D . Then take a sequence (yn)n∈N ⊂ D
converging to ȳ and put

σn := [g(yn)− a] I√
N

+ yn;
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easily we have that σn ∈ ∂K(1) for every n and that σn converges to σ̄ . Then (2.15), and
(2.22), applied to σn , immediately imply that tr(nK(1)(σ̄)) = 0. This concludes the proof
of (2.19).

By (2.19), we see that, to prove (2.18), we may suppose that, given σ̄ ∈ ∂K(1) and
x̄ ∈ R , ȳ ∈ MN×N

D in correspondance, one has ȳ ∈ D . By this fact, (2.22), and (2.23), it
clearly suffices to show that

inf
y∈D

|g(y)
√

1 + |∇g(y)|2| > 0 and inf
y∈D

|h(y)
√

1 + |∇h(y)|2| > 0.

We only prove the first of the two, the other being completely analogous. As g never vanishes
in D it suffices to show that, for every ω ∈ ∂D one has

lim inf
y→ω, y∈D

|g(y)
√

1 + |∇g(y)|2| > 0;

as g vanishes on the boundary,

lim inf
y→ω, y∈D

|g(y)
√

1 + |∇g(y)|2| = lim inf
y→ω, y∈D

|∇g2|
2

and conclusion follows applying Lemma 2.3 to the function f := g2

2 . ¤

Remark 2.4. Let σ ∈ ∂K(1) and let x ∈ R , y ∈MN×N
D as in (2.13). As g is nonpositive

and h is nonnegative, x + a > 0 is easily equivalent to x + a = h(y), then (2.22) and (2.23)
imply that

tr(nK(1)(σ)) > 0 ⇐⇒ x + a > 0. (2.24)

Let us fix ξ ∈ C1([0, +∞);MN×N
sym ). We introduce the elastic tensor C :MN×N

sym →MN×N
sym

and we suppose it is isotropic, that is to say

Cξ = 2µξD + κ(trξ)I , (2.25)

where the constant µ > 0 is the shear modulus, the constant κ > 0 is called modulus of
compression, and ξD denotes the projection of ξ onto the space of deviatoric matrices. In
particular, the quadratic form associated to C is positive definite. For every ε > 0 system
(1.2) is equivalent to

{
εėε(t) = εξ̇(t)− Ceε(t) + πK(zε(t))(Ceε(t)) ,

εżε(t) = tr(Ceε(t)) tr(Ceε(t)− πK(zε(t))(Ceε(t))) .
(2.26)

Lemma 2.5. For every ε > 0 and for every initial condition eε(0) = e0 and zε(0) = z0 > 0
system (2.26) has a unique solution defined for every t ∈ [0, +∞) . Moreover the solution
(eε, zε) of (2.26) with initial condition eε(0) = e0 and zε(0) = z0 > 0 satisfies zε(t) > 0
for every t ∈ [0, +∞) .

Proof. The first part of the statement can be proved as in [2], Lemma 2.2; we also have, in
particular that for every ε > 0 and T > 0 there exists a positive constant MT,ε such that
|Ceε(t)| ≤ MT,ε for every t ∈ [0, T ] . Let now T be the first time such that zε(T ) = 0 and
suppose by contradiction that T < +∞ . Fix t̂ < T such that T − t̂ < ε

2MT,εMK
, where MK

is given by (2.3) and let a < T be a maximum point for zε(t) in [t̂, T ] . We shall have, by
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(2.26) and (2.3)

0 = εzε(a) + ε

∫ T

a

żε(s) ds

= εzε(a) +
∫ T

a

[tr(Ceε(s))2 − tr(Ceε(s)) tr(πK(zε(s))(Ceε(s)))] ds

≥ εzε(a)−
∫ T

a

|tr(Ceε(s))| |tr(πK(zε(s))(Ceε(s)))| ds

≥ εzε(a)−MT,εMK

∫ T

a

zε(s) ds

≥ zε(a)[ε− (T − a)MT,εMK ] ≥ ε
2zε(a),

a contradiction. ¤

Introducing the dual variable σ , the system becomes{
εσ̇ε(t) = εCξ̇(t) + C[πK(zε(t))(σε(t))− σε(t)] ,

εżε(t) = tr(σε(t)) tr(σε(t)− πK(zε(t))(σε(t))) .
(2.27)

Since we want to consider a system which is initially in the elastic regime, for every ε > 0
we will consider an initial condition satisfying (σ0, z0) ∈ intK; in particular, we shall have
z0 > 0. For every ε the solution of (2.27) is trivially given, by

(σ(t), z(t)) = (σ0 + C(ξ(t)− ξ(0)), z0) (2.28)

for t small; actually, this formula gives the solution in the time interval [0, t1] , where

t1 = inf{t > 0 : (σ0 + C(ξ(t)− ξ(0)), z0) ∈ ∂K}. (2.29)

In terms of the function % defined by (2.7), for every t such that %(σε(t), zε(t)) > 0,
equations (2.27) become

{
Cξ̇(t)− σ̇ε(t) = 1

ε%(σε(t), zε(t))CnK(zε(t))(σε(t), zε(t)),
żε(t) = 1

ε%(σε(t), zε(t)) tr(σε(t)) tr(nK(zε(t))(πK(zε(t))(σε(t))).
(2.30)

Given the solution of (2.27) with the prescribed initial data we define

%ε(t) := %(σε(t), zε(t)); (2.31)

notice that %ε(t) is Lipschitz continuous, thus differentiable, for almost every t ; in particular
it is differentiable for every t such that %ε(t) > 0, and we have, by a direct computation,
taking into account (2.30) and (2.11), that

d

dt
%ε(t) = Φ(t, σε(t), zε(t)) +

%ε(t)
ε

Ψ(σε(t), zε(t)) whenever %ε(t) > 0, (2.32)

where

Φ(t, σ, z) : = nK(z)(πK(z)(σ)) · Cξ̇(t), (2.33)
Ψ(σ, z) : = −nK(z)(πK(z)(σ)) · CnK(z)(πK(z)(σ))

− tr(σ) tr(nK(z)(πK(z)(σ)))

z [πK(z)(σ) · nK(z)(πK(z)(σ))]. (2.34)

The function Φ is defined on [0, +∞)×{[MN×N
sym × (0, +∞)] \ intK} and is continuous,

while Ψ is defined on [MN×N
sym ×(0, +∞)] \ intK and is of class C1 . In what follows, it

is often convenient to consider extensions of Φ and Ψ to [0, +∞)×MN×N
sym × (0, +∞) and

MN×N
sym ×(0, +∞) of class C0 and C1, respectively. Notice that the partial derivatives of Ψ

at each point of ∂K do not depend on the extension.
As in [7], we will see that the sign of Φ determines the transition from elastic to inelastic

regime at times when the stress meets the yield surface, while in case of inelastic regime
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the sign of Ψ determines whether the quasistatic evolution follows the equation of the slow
dynamics (continuous evolution) or jumps along the trajectory of the fast dynamics. For
these reasons, Φ will be called elastic-inelastic indicator, while Ψ will be called slow-fast
indicator. Even if, for mathematical reasons, the two indicators are defined on the whole
space, we will also see that what only matters are the values they attain on the yield surface.

Remark 2.6. By positive definiteness of C and by (2.12) it is immediate to deduce that, for
every (σ, z) such that tr(σ) tr(nK(z)(πK(z)(σ))) ≥ 0, the indicator Ψ is strictly negative;
as we are going to see in what follows, this reflects the fact that, as long as we are in the
hardening regime, the evolution does not present discontinuities.

In general, it is easy to verify, taking into account (2.25) and (2.3), that the following
bounds on Ψ hold: from above, we have, for every (σ, z) ∈ [MN×N

sym ×(0,+∞)] \ intK ,

Ψ(σ, z) ≤ −min{κ, 2µ}+ MK

√
N |tr(σ)|, (2.35)

while from below
Ψ(σ, z) ≥ −max{κ, 2µ} −MK

√
N |tr(σ)| (2.36)

where k, 2µ are defined by (2.25) and MK is as in (2.3); clearly we may assume that any
extension of Ψ we will consider preserves these bounds in the whole space. Notice that,
by (2.35) and (2.3), if z is sufficiently close to 0, and (σ, z) ∈ K , then the indicator Ψ is
strictly negative uniformly in σ ; according to what we shall see in the following sections,
this means that when the internal variable is sufficiently small the evolution is continuous.

In what follows we shall define, for every σ ∈MN×N
sym ,

λ(σ) := max{κ, 2µ}+ MK

√
N |tr(σ)|. (2.37)

3. Continuous evolution

3.1. The equation of the slow dynamics. In this section we study in detail the equation
{

σ̇sl(t) = Φ(t,σsl(t),zsl(t))
Ψ(σsl(t),zsl(t))

CnK(zsl(t))(σsl(t)) + Cξ̇(t),

żsl(t) = −Φ(t,σsl(t),zsl(t))
Ψ(σsl(t),zsl(t))

tr(σsl(t)) tr(nK(zsl(t))(σsl(t))),
(3.1)

defined on the open submanifold ∂K ∩ {Ψ(σ, z) 6= 0} \ {(0, 0)} . This will be called the
equation of the slow dynamics: observe that this is a well-defined equation, since, for every
t ∈ [0, +∞), the vector field

χt(σ, z) = (Cξ̇(t) + Φ(t,σ,z)
Ψ(σ,z) CnK(z)(σ), −Φ(t,σ,z)

Ψ(σ,z) tr(σ) tr(nK(z)(σ)))

is a tangent vector field to ∂K ∩ {Ψ(σ, z) 6= 0} \ {(0, 0)} ; indeed, by (2.10), it suffices to
show that χt(σ, z) · (z nK(z)(σ),−σ · nK(z)(σ)) = 0, which follows by a direct computation,
recalling (2.33), and (2.34).

Remark 3.1. Let (σ(t), z(t)) a solution of (3.1) and define e(t), p(t) through the consti-
tutive relations in (1.1); we have that ṗ(t) = −Φ(t,σ(t),z(t))

Ψ(σ(t),z(t)) nK(z(t))(σ(t)), thus the flow rule

in (1.1) is satisfied as long as −Φ(t,σ(t),z(t))
Ψ(σ(t),z(t)) ≥ 0; that is, in our case, as long as Φ does not

become negative along the trajectory. We will see indeed that equation (3.1) appears in the
limit of (2.27) when the slow-fast indicator Ψ is negative.

Viceversa, let (σ(t), z(t)) a C1 function with values on ∂K satisfying (1.1) in a certain
interval of time; if we suppose Ψ(σ(t), z(t)) 6= 0, the flow rule and the condition

0 = nK((σ(t), z(t))) · (σ̇(t), ż(t)),

with the help of (2.10), easily imply that (σ(t), z(t)) satisfies (3.1) and that

−Φ(t,σ(t),z(t))
Ψ(σ(t),z(t)) ≥ 0.
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We endow equation (3.1) with initial data (σ1, z1) ∈ ∂K at a time t1 > 0, with z1 > 0
and Ψ(σ1, z1) 6= 0. We may thus apply all standard results about local existence and
uniqueness and the existence of a maximal interval where solutions to (3.1) are defined. So,
let (t1, t2) be the maximal interval of existence for the Cauchy problem associated to (3.1)
with datum (σ1, z1). As said in (2.13), we denote the spherical and the deviatoric part of
σsl(t) with xsl(t) and ysl(t), and the spherical and the deviatoric part of ξ(t) with η(t)
and γ(t). Using the identity tr(Cσ) = κNtr(σ), from (3.1) we obtain

κżsl(t) = xsl(t)(κNη̇(t)− ẋsl(t)). (3.2)

The next Proposition shows an useful consequence of this equation.

Proposition 3.2. Assume (2.1)-(2.5), and (2.25); let Φ , Ψ as in (2.33), and (2.34),
respectively. Let (σsl(t), zsl(t)) the unique solution to the Cauchy problem associated to
(3.1) with Cauchy data (σ1, z1) ∈ ∂K at a time t1 > 0 , with z1 > 0 and Ψ(σ1, z1) 6= 0 , and
let [t1, t2) be its maximal interval of existence. If t2 < +∞ , there exists a positive constant
M such that

|(σsl(t), zsl(t))| < M for every t ∈ [t1, t2) (3.3)

Proof. By (2.3), it suffices to show that zsl(t) is bounded. Let L > 0 such that |η̇(t)| < L
for every t ∈ [t1, t2] : by (3.2), and (2.3) we have, for every t ∈ [t1, t2)

κ(zsl(t)− zsl(t1)) = κ

∫ t

t1

żsl(s) ds

= −
∫ t

t1

xsl(s)ẋsl(s) ds + κN

∫ t

t1

η̇(s)xsl(s) ds

≤ 1
2 [x2

sl(t1)− x2
sl(t)] + κN

∫ t

t1

|η̇(s)||xsl(s)| ds

≤ 1
2x2

sl(t1) + κLNMK

∫ t

t1

zsl(s) ds

and conclusion follows by Gronwall’s inequality. ¤

By the use of (3.2) we are also able to show that zsl(t) cannot vanish at t = t2 .

Proposition 3.3. Assume (2.1)-(2.5), and (2.25); let Φ , Ψ as in (2.33), and (2.34),
respectively. Let (σsl(t), zsl(t)) the unique solution to the Cauchy problem associated to
(3.1) with Cauchy data (σ1, z1) ∈ ∂K at a time t1 > 0 , with z1 > 0 and Ψ(σ1, z1) 6= 0 ,
and let [t1, t2) be its maximal interval of existence. If t2 < +∞ , then

lim inf
t→t2

zsl(t) > 0. (3.4)

Proof. Suppose by contradiction that lim inf
t→t2

zsl(t) = 0; we first show that this liminf is a

limit. Let L > 0 such that |η̇(t)| < L for every t ∈ (t1, t2), and MK as in (2.3), and let
c := lim sup

t→t2

zsl(t); if we suppose c > 0, we may fix t̂ < t2 such that

1) LNMK(t2 − t̂) < 1
8 ;

2) zsl(t) < 2c for every t > t̂ ;
3) zsl(t̂) > c

2 .
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We shall then have, by (3.2), (2.3), and the previous assumptions, that, for every t > t̂

κzsl(t) = κzsl(t̂) +
∫ t

t̂

żsl(s) ds

= κzsl(t̂)−
∫ t

t̂

xsl(s)ẋsl(s) ds + κN

∫ t

t̂

η̇(s)xsl(s) ds

≥ κ c
2 + 1

2 [x2
sl(t̂)− x2

sl(t)]− κN

∫ t

t̂

|η̇(s)||xsl(s)| ds

≥ κ c
2 − 1

2x2
sl(t)− κNLMK

∫ t

t̂

zsl(s) ds

≥ κ c
2 − 1

2x2
sl(t)− κ c

4 .

So, let tn a sequence converging to t2 realizing the liminf; by (2.3) we shall get that
lim

n→+∞
xsl(tn) = 0. As tn > t̂ for n sufficiently large, we shall have

κzsl(tn) ≥ κ c
4 − 1

2x2
sl(tn),

which in the limit yields c
4 ≤ 0, a contradiction. We thus have that limt→t2 zsl(t) = 0,

which immediately implies, by (2.3), that lim
t→t2

xsl(t) = 0. We now fix t̄ < t2 such that

LNMK(t2 − t̄) < 1
2 ; as zsl(t) > 0 in (t1, t2) and lim

t→t2
zsl(t) = 0, there exists a maximum

point t3 for zsl(t) in [t̄, t2). Repeating the previous estimates, we shall have , for every
t > t3 , that

κzsl(t) ≥ κzsl(t3)− 1
2x2

sl(t)− κNLMKzsl(t3)(t2 − t̄) ≥ κ zsl(t3)
2 − 1

2x2
sl(t),

which in the limit as t → t2 gives zsl(t3) ≤ 0, a contradiction. ¤
Proposition 3.4. Assume (2.1)-(2.5), and (2.25); let Φ , Ψ as in (2.33), and (2.34),
respectively. Let (σsl(t), zsl(t)) the unique solution to the Cauchy problem associated to (3.1)
with Cauchy data (σ1, z1) ∈ ∂K at a time t1 > 0 , with z1 > 0 and such that Ψ(σ1, z1) 6= 0 ,
and let [t1, t2) be its maximal interval of existence. If t2 < +∞ , then

lim
t→t−2

Ψ(σsl(t), zsl(t)) = 0 (3.5)

Proof. Suppose by contradiction that there exists a sequence tk → t2 such that

lim
k→+∞

Ψ(σsl(tk), zsl(tk)) 6= 0. (3.6)

By Proposition 3.2, we may assume that (σsl(tk), zsl(tk)) tends to a finite limit (σ2, z2) as
k → +∞ ; by Proposition 3.3 we have that z2 > 0. By continuity of Ψ, (3.6) implies that
Ψ(σ2, z2) 6= 0; it follows now from Lemma 3.5 below that

lim
t→t2

(σsl(t), zsl(t)) = (σ2, z2);

we may then solve the Cauchy problem associated to (3.1) with data (σ2, z2) at time t2 ,
contradicting the maximality of [t1, t2). ¤

In the previous Proposition we have used the following elementary Lemma about differ-
ential equations, whose proof can be found in [4], Chapter 1, Lemma 3.1; we state it for the
reader’s convenience.

Lemma 3.5. Let E be a subset of R× Rn , let f : E → Rn a continuous function, and let
u(t) a solution of the ODE v̇(t) = f(t, v(t)) on an interval [a, δ) or (δ, a] where |δ| < +∞ .
If there exists a sequence tk converging to δ such that u(tk) → ū ∈ Rn and f(t, v) is
bounded on the intersection of E with an open neighborhood of the point (δ, ū) , then

lim
t→δ

u(t) = ū.
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In the next Proposition, we use Lemma 3.5 to prove that, if Ψ vanishes at time t2 < +∞ ,
then (σsl(t), zsl(t)) have a limit at t = t2 ; the proof is obtained by zsl(t) must be monotone
in a neighborhood of t2 . We also need the additional hypothesis that the elastic-inelastic
indicator is not vanishing at t2 , that is to say

lim inf
t→t−2

|Φ(t, σsl(t), zsl(t))| > 0. (3.7)

Proposition 3.6. Assume (2.1)-(2.5), and (2.25); let Φ , Ψ as in (2.33), and (2.34),
respectively. Let (σsl(t), zsl(t)) the unique solution to the Cauchy problem associated to
(3.1) with Cauchy data (σ1, z1) at a time t1 > 0 , with z1 > 0 and such that Ψ(σ1, z1) 6= 0 ,
and let [t1, t2) be its maximal interval of existence. If t2 < +∞ , and (3.7) holds, then there
exists

lim
t→t−2

(σsl(t), zsl(t)) := (σ2, z2) ∈ ∂K. (3.8)

Proof. By Proposition 3.4 we have limt→t−2
Ψ(σsl(t), zsl(t)) = 0; as seen in Remark 2.6, this

implies that
lim inf
t→t−2

xsl(t) < 0 and lim inf
s→t−2

tr(nK(zsl(t))(σsl(t))) > 0;

if not, in both cases we may find a sequence tn converging to t2 along which

lim sup
n→+∞

Ψ(σsl(tn), zsl(tn)) ≤ −min{κ, 2µ} < 0,

a contradiction. By (3.1), (3.5), and (3.7) we easily get that there exists a left neighborhood
of t2 , denoted with (t̂, t2), where żsl(t) 6= 0; thus zsl(t) is invertible in this interval, with
inverse t(z), and converges to a limit z2 , which is finite by Proposition 3.2. We now suppose,
for instance, that zsl(t) is strictly decreasing, the proof in the other case being completely
analogous. We put ẑ := zsl(t̂) and we express σ in function of z ; by (3.1), we then get that

−σ′sl(z) = 1
tr(σsl(z)) tr(nK(z)(σsl(z))) [CnK(z)(σsl(z))− Cχ(z) Ψ(σsl(z),z)

Φ(t(z),σsl(z),z) ] (3.9)

for every z ∈ (z2, ẑ); here we have put: χ(z) := ξ̇(t(z)). So, as

lim inf
z→z2

|tr(σsl(z)) tr(nK(z)(σsl(z)))| > 0

by the previous discussion, and taking into account (2.3) and (3.7), |σ′sl(z)| remains uni-
formly bounded in this interval. The conclusion follows. ¤

Remark 3.7. We will see in the next subsection that the solutions of (2.27) uniformly
converge to the solution of (3.1) in a right neighborhood of t1 if we suppose that

Φ(t1, σ1, z1) > 0 (3.10)

and
Ψ(σ1, z1) < 0. (3.11)

In general, [t1, t2) may not be the maximal interval of convergence, as positivity of Φ may
fail before of t2 . We will show that this convergence holds on [t1, t2) whenever

Φ(t, σsl(t), zsl(t)) > 0 for every t < t2. (3.12)

Assume this inequality, as well as (3.7), suppose that t2 < +∞ , and let (σ2, z2) be as in
(3.8); then

Ψ(σ2, z2) = 0. (3.13)

Let us prove that

∇Ψ(σ2, z2) · ( −CnK(z2)(σ2)

tr(σ2) tr(nK(z2)(σ2))
, 1) ≤ 0. (3.14)
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Indeed, as seen in Proposition 3.6 zsl(t) is strictly decreasing in a left neighborhood of t2 ,
with inverse t(z). If we define σsl(z) := σsl(t(z)), we shall then have that Ψ(σsl(z), z) < 0
in a right neighborhood of z2 , which yields

lim
z→z2

d

dz
Ψ(σsl(z), z) ≤ 0;

a direct computation involving (3.9) and (3.13) gives us condition (3.14).
We claim that the vector ( −CnK(z2)(σ2)

tr(σ2) tr(nK(z2)(σ2))
, 1) is tangent to ∂K at (σ2, z2). To prove

that, by (2.10), it suffices to show that

( −CnK(z2)(σ2)

tr(σ2) tr(nK(z2)(σ2))
, 1) · (z2 nK(z2)(σ2),−σ2 · nK(z2)(σ2)) = 0.

Recalling (2.34), the left-hand side is equal to z2Ψ(σ2,z2)
tr(σ2) tr(nK(z2)(σ2))

, and the conclusion follows
by (3.13). Thus the left-hand side of (3.14) is a tangential derivative and depends only on
the values Ψ attains on ∂K .

Due to the presence of the forcing term Cξ̇(t), the sign of żsl(t) may change, causing the
alternance of hardening and softening regime; we end this subsection by presenting a simple
condition that prevents this phenomenon. To be definite, we consider the case where the
spherical part of ξ(t) is constant, as in [2]. Observe that here we are assuming (2.14)-(2.17),
in order to apply Proposition 2.2.

Proposition 3.8. Assume that (2.25), and (2.14)-(2.17) are satisfied; let Φ , Ψ as in (2.33),
and (2.34), respectively. Let (σsl(t), zsl(t)) the unique solution to (3.1) with Cauchy data
(σ1, z1) at a time t1 > 0 , with z1 > 0 and Ψ(σ1, z1) < 0 , and let [t1, t2) be its maximal
interval of existence. Let t̂ ∈ [t1, t2) such that

Φ(t, σsl(t), zsl(t)) > 0 for every t ∈ [t1, t̂] (3.15)

and suppose that η̇(t) = 0 for every t ∈ [t1, t̂] . If there exists t̄ ∈ (t1, t̂) such that żsl(t̄) = 0 ,
then żsl(t) = 0 for every t ∈ [t1, t̂] .

Proof. As t̂ < +∞ , by the same arguments as in Proposition 3.2 and Proposition 3.3, we
may assume that Z := inft∈[t1,t̂] zsl(t) > 0 and that |xsl(t)| is bounded by a finite constant
M . By (3.1) we have that

ẋsl(t) =
√

N Φ(t,σsl(t),zsl(t))
Ψ(σsl(t),zsl(t))

κ tr(nK(zsl(t))(σsl(t))), (3.16)

while (3.2) reduces to
κżsl(t) = −xsl(t)ẋsl(t). (3.17)

By (3.16), (3.15), (2.9), and (2.19), we have that

ẋsl(t) = 0 ⇐⇒ xsl(t) + a zsl(t) = 0, (3.18)

where a > 0 is as in (2.14). Let us prove that xsl(t) 6= 0 for every t ∈ (t1, t̂] ; indeed, by
(2.5), which is equivalent to (2.16), if the value 0 is assumed, it is a maximum value for
xsl(t), thus, if for some t ∈ (t1, t̂] we have xsl(t) = 0, it must be also ẋsl(t) = 0, but this is
excluded by (3.18), as zsl(t) > 0.

Suppose that there exists t̄ ∈ (t1, t̂) such that żsl(t̄) = 0; as xsl(t̄) 6= 0, by (3.17) we
must have ẋsl(t̄) = 0, that is to say xsl(t̄)+ a zsl(t̄) = 0. Let f(t) := xsl(t)+ a zsl(t); under
our hypotheses, by (3.16) and (3.17) there exists a positive constant W such that

|ḟ(t)| ≤ W |tr(nK(zsl(t))(σsl(t))| for every t ∈ [t1, t̂];

(2.9) and (2.19) imply that

|tr(nK(zsl(t))(σsl(t))| ≤ F
Z |xsl(t) + a zsl(t)|,
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where F > 0 is as in (2.18). We conclude that

|ḟ(t)| ≤ W F
Z |f(t)| for every t ∈ [t1, t̂];

as f(t̄) = 0, Gronwall’s inequality implies that f(t) = 0 for every t ∈ [t1, t̂] , which in its
turn entails that ẋsl(t) = 0 for every t ∈ [t1, t̂] , and conclusion follows by (3.17). ¤

3.2. Convergence to the slow dynamics. In this subsection we examine how to recover
equation (3.1) from (2.27) in the limit as ε goes to 0, under suitable hypotheses on the sign
of the indicators Φ and Ψ: as the arguments are essentially the same as in [7, Section 3],
some of the proofs will be only sketched.

Throughout this part of the paper, t̂ denotes a time such that there exist a left continuous
function t 7→ (σ(t), z(t)) defined on [0, t̂) with values in MN×N

sym × [0, +∞) and an element
(σ̂, ẑ) of MN×N

sym × [0,+∞) satisfying the following properties:

(σε(t), zε(t)) → (σ(t), z(t)) for a.e. t ∈ [0, t̂), (3.19)

there exists t̂ε → t̂ such that (σε(t̂ε), zε(t̂ε)) → (σ̂, ẑ), (3.20)
(σ̂, ẑ) ∈ ∂K and ẑ > 0, (3.21)

Φ(t̂, σ̂, ẑ) > 0. (3.22)

For instance, we can take t̂ = t1 defined by (2.29), if t1 < +∞ and, setting

(σ1, z1) := (σ0 + C(ξ(t1)− ξ(0)), z0). (3.23)

we have
Φ(t1, σ1, z1) > 0; (3.24)

notice that in general we have Φ(t1, σ1, z1) ≥ 0, as the solution was in K at all previ-
ous times, thus we are only excluding the degenerate case when equality holds. The case
Φ(t1, σ1, z1) = 0 will be discussed in the next subsection.

Lemma 3.9. Assume (2.1)-(2.5), and (2.25), and let Φ as in (2.33). Let t̂ > 0 satisfy
(3.19)-(3.22), and let t̂ε be as in (3.20); then, for every t∗ > t̂ , the set {%ε(t) > 0} ∩ [t̂ε, t∗]
is nonempty, when ε is sufficiently small.

Proof. Assume on the contrary that along a suitable subsequence, that we shall not relabel,
one has %ε(t) = 0 for every t ∈ [t̂ε, t∗] ; we then get

(σε(t), zε(t)) = (σε(t̂ε) + C(ξ(t)− ξ(t̂ε)), zε(tε)) ∈ K (3.25)

for every t ∈ [t̂ε, t∗] . In the limit we obtain that, for every t ∈ [t̂, t∗] , (σ̂+C(ξ(t)− ξ(t̂)), ẑ) ∈
K ; by (3.21) we easily deduce that it must be Φ(t̂, σ̂, ẑ) ≤ 0, contradicting (3.22). ¤

Remark 3.10. Notice that if t̂ = t1 , the statement of the Lemma holds with t̂ε = t1 .

We fix an open neighborhood Uδ := (t̂− δ, t̂ + δ)×Bδ(σ̂, ẑ), where Bδ(σ̂, ẑ) denotes the
open ball of radius δ > 0 centered at (σ̂, ẑ), in a way that there exists a positive constant
γ2 > 0 such that

Φ(t, σ, z) ≥ γ2 > 0 for every (t, σ, z) ∈ Uδ. (3.26)

We may clearly assume that δ < max{κ,2µ}
2MK

√
N

, where k, 2µ are defined by (2.25) and MK

is as in (2.3), in a way that for every (σ, z) ∈ Bδ(σ̂, ẑ), the following holds:
λ(σ)
λ(σ̂) < 3

2 , (3.27)

where λ(σ) is defined as in (2.37). We define

aε := inf{t ∈ (t̂ε, t̂ε + δ) : (σε(t), zε(t)) ∈ ∂Bδ(σ̂, ẑ)}, (3.28)

where t̂ε is given by (3.20). The following lemma shows that, thanks to (3.26), the function
1
ε%ε(t) becomes greater than a fixed positive constant after a time tε converging to t̂ as
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ε → 0, while the motion is still in Bδ(σ̂, ẑ); we shall see that this implies a transition to the
inelastic regime.

Lemma 3.11. Assume (2.1)-(2.5), and (2.25), and let Φ as in (2.33). Let t̂ > 0 satisfy
(3.19)-(3.22), let t̂ε be as in (3.20), and let δ , aε , and γ2 , be as in (3.26) and (3.28). Let
ε > 0 and %ε(t) be as in (2.31). Define

tε := inf{t ∈ (t̂ε, t̂ε + δ) : 1
ε%ε(t) ≥ γ2

3λ(σ̂)}. (3.29)

Then:
a) tε − t̂ → 0 as ε → 0+ ;
b) tε < aε for ε sufficiently small;
c) 1

ε%ε(t) ≥ γ2
3λ(σ̂) for every t ∈ [tε, aε].

Proof. We closely follow [7, Lemma 3.3]. Concerning part a) and part b) of the statement,
we may clearly suppose that tε > t̂ε . Let sε := tε ∧ aε. We first claim that, for small ε , in
(t̂ε, sε) one has %ε(t) > 0.

Indeed, we first observe that if the set {%ε(t) > 0} ∩ [t̂ε, sε] is empty along a suitable
subsequence (unrelabelled), then clearly sε = aε , and (3.25) holds for every t ∈ [t̂ε, t∗] ; we
then easily get that lim inf aε > t̂ , and this contradicts Lemma 3.9. Then, for ε sufficiently
small, the set {%ε(t) > 0} ∩ [t̂ε, sε] has positive measure. Now, observe that %̇ε(t) = 0 a.e.
in {%ε(t) = 0} ∩ [t̂ε, sε] , while in the set {%ε(t) > 0} ∩ [t̂ε, sε] one has

%̇ε(t) ≥ γ2
2 (3.30)

by (2.32), (3.26), (2.36), and (3.27). Then, by the fundamental theorem of calculus and by
Lemma 3.9, we get

%ε(τ) =
∫

{%ε(t)>0}∩[t̂ε,τ ]

%̇ε(t) dt ≥ γ2
2 L1({%ε(t) > 0} ∩ [t̂ε, τ ]) > 0

for every τ ∈ [t̂ε, sε] , which proves our claim. Therefore {%ε(t) > 0} ∩ (t̂ε, sε] = (t̂ε, sε] so
that the previous estimate and the definition of sε yield

ε γ2
3λ(σ̂) ≥ %ε(sε) ≥ γ2

2 (sε − t̂ε),

which implies, by (3.20), that

sε − t̂ → 0 as ε → 0+. (3.31)

Now suppose, by contradiction, that sε = aε as ε → 0 along a suitable sequence. Then
aε − t̂ε → 0 as ε → 0+ and

sup
t∈[t̂ε,aε]

1
ε%ε(t) ≤ γ2

3λ(σ̂) ;

by the definition of aε , (2.30), and (3.20), this implies

δ + o(1) = |(σε(aε), zε(aε))− (σε(t̂ε), zε(t̂ε))|

≤ |(σε(aε)− σε(t̂ε), 0)|+ |(0, zε(aε)− zε(t̂ε))|

≤
∫ aε

t̂ε

|σ̇ε(t)|+ |żε(t)| dt

≤ (|C|+ |tr(σ̂)|+ δ + o(1))
∫ aε

t̂ε

%ε(t)
ε dt + |C|

∫ aε

t̂ε

|ξ̇(t)| dt

≤ [(|C|+ |tr(σ̂)|+ δ + o(1)) γ2
3λ(σ̂) ](aε − t1) + |C|

∫ aε

t̂ε

|ξ̇(t)| dt,

(3.32)

a contradiction, since the right-hand side tends to 0 as ε → 0. This proves part a) and part
b) of the statement.
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Observe now that (3.30) yields %̇ε(tε) ≥ γ2
2 . Thus, if c) is false, let t1ε be the first time

in (tε, aε) such that %ε(t1ε) = γ2
3λ(σ1)

; then %̇ε(t1ε) ≤ 0. Repeating the proof of (3.30) we find
%̇ε(t1ε) ≥ γ2

2 > 0, a contradiction. ¤

Remark 3.12. Notice that if t̂ = t1 , the statement of the Lemma holds with t̂ε = t1 .

We now focus on the case where the slow-fast indicator is negative at (σ̂, ẑ). As in [7],
this allows to show that, in a neighborhood of t̂ , the function 1

ε%ε(t) remains uniformly
bounded. This is the key ingredient to prove that the limit evolution is continuous.

For a suitable choice of δ in the definition of the neighborhood Uδ satisfying (3.26), we
may assume that there exists a positive constant γ1 such that

Ψ(σ, z) ≤ −γ1 for every (σ, z) ∈ Bδ(σ̂, ẑ). (3.33)

We now state an auxiliary lemma, analogous to [7, Lemma 3.6], which will be used also in
Section 4. Notice that in the statement of the lemma we make no assumption on the sign
of the indicator Φ.

Lemma 3.13. Assume (2.1)-(2.5), and (2.25); let Ψ be as in (2.34). Let t̃ > 0 , (σ̃, z̃) ∈
∂K , and t̃ε a sequence such that

t̃ε → t̃ as ε → 0+,

(σε(t̃ε), zε(t̃ε)) → (σ̃, z̃) as ε → 0+.

Suppose that there exist two constants η > 0 , γ > 0 such that, for every (σ, z) satisfying
|(σ, z)− (σ̃, z̃)| < η , one has

Ψ(σ, z) < −γ.

Let
bη
ε := inf{t ∈ (t̃ε, t̃ + η) : (σε(t), zε(t)) ∈ ∂Bη(σ̃, z̃)}.

Then there exist L > 0 and a sequence s̃ε , which may be taken equal to t̃ε whenever
lim sup

ε→0

%ε(t̃ε)
ε < +∞ , such that

a) s̃ε → t̃ as ε → 0+ ,

b) (σε(s̃ε), zε(s̃ε)) → (σ̃, z̃) as ε → 0+ ,

c) %ε(t)
ε ≤ L

γ for every t ∈ [s̃ε, b
η
ε ] ,

d) lim inf
ε→0

bη
ε ≥ t̃ + C(σ̃, η, γ) ,

where C(σ̃, η, γ) := min{η, ηγ
L[(1+γ)|C|+|tr(σ̃)|+η]} .

Proof. To prove a), b), c) it suffices to adapt the arguments of [7, Lemma 3.6]; to prove d)
one can proceed as in (3.32), using the above bound on %ε(t)

ε given by c); this explains why,
differently from [7, Lemma 3.6], here the constant C may also depend on σ̃ . ¤

The proof of the main theorem of this section involves of the following general result on
continuous dependence on a parameter, whose proof can be found in [6] (see also [5]).

Theorem 3.14. Let fε and f0 be Carathéodory functions defined on [a, b]×Rm with values
in Rm , let tε , t0 ∈ [a, b] , and let xε , x0 ∈ Rm . Assume that there exist two constants
L > 0 and M > 0 such that

|fε(t, x2)− fε(t, x1)| ≤ L |x2 − x1| , (3.34)
|fε(t, x)| ≤ M , (3.35)
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for every ε > 0 , every t ∈ [a, b] , and every x , x1 , x2 ∈ Rm . Let yε(t) and y0(t) be the
solutions of the Cauchy problems

{
ẏε(t) = fε(t, y(t)) ,

yε(tε) = xε ,

{
ẏ0(t) = f0(t, y(t)) ,

yε(t0) = x0 .
(3.36)

If tε → t0 , xε → x0 , and for every x ∈ Rm

∫ t

a

fε(s, x) ds →
∫ t

a

f(s, x) ds uniformly for t ∈ [a, b] ,

then yε(t) → y0(t) uniformly for t ∈ [a, b] .

In the following corollary inequalities (3.34) and (3.35) are satisfied only in the intervals
[tε, b] , and the conclusion is slightly weaker.

Corollary 3.15. Let fε and f0 be Carathéodory functions defined on [a, b]×Rm with values
in Rm , let tε → a , and let xε , x0 ∈ Rm . Assume that there exist two constants L > 0 and
M > 0 such that (3.34) and (3.35) hold for every ε > 0 , every t ∈ [tε, b] , and every x , x1 ,
x2 ∈ Rm . Let yε(t) and y0(t) be the solutions of the Cauchy problems (3.36). If xε → x0 ,
and for every x ∈ Rm and every η > 0

∫ t

a+η

fε(s, x) ds →
∫ t

a+η

f(s, x) ds uniformly for t ∈ [a + η, b] ,

then
sup

tε≤t≤b
|yε(t)− y0(t)| → 0

Proof. See [7, Corollary 3.5]. ¤

We are now ready to prove the main result of this section.

Theorem 3.16. Assume (2.1)-(2.5), (2.25), and let Φ ,Ψ be as in (2.33), and (2.34),
respectively. Let t̂ > 0 satisfy (3.19)-(3.22), let t̂ε be as in (3.20), and suppose that (3.33)
holds. Let (σsl(s), zsl(s)) be the unique solution to the equation of the slow dynamics (3.1)
with Cauchy datum (σ̂, ẑ) at t̂ , and let t2 > t̂ be as in (3.5). Let t̄ < t2 and suppose that
there exists a constant γ3 > 0 such that

Φ(s, σsl(s), zsl(s)) ≥ γ3 for every s ∈ [t̂, t̄]. (3.37)

Then (σε, zε) converges uniformly to (σsl, zsl) as ε → 0+ on compact subsets of (t̂, t̄] .

Proof. We follow the scheme of [7, Theorem 3.7]. Let δ , γ2 , γ1 , t̂ε , and aε be given by
(3.26), (3.33), (3.20), and (3.28), respectively. We put t∗ = lim inf

ε→0+
aε , and we apply Lemma

3.13 with t̃ = t̂ , t̃ε = t̂ε , and bη
ε = aε ; we have that t∗ > t̂ , and, by part c) of the Lemma,

we may assume that there exists a nonnegative function ω(t) such that, for every η > 0,
%ε(t)

ε w∗ -converges in L∞((t̂ + η, t∗)) to ω(t).
We write equation (2.27) in the form

{
Cξ̇(t)− σ̇(t) = ωε

1(t, σ(t), z(t))
ż(t) = ωε

2(t, σ(t), z(t)),

where

ωε
1(t, σ(t), z(t)) := %ε(t)

ε h1(σ(t), z(t)) (3.38)

ωε
2(t, σ(t), z(t)) := %ε(t)

ε h2(σ(t), z(t)); (3.39)

here h1(σ, z), h2(σ, z) denote two C1 globally Lipschitzian functions, which coincide with
CnK(z)(πK(z)(σ)), and tr(σ)tr(nK(z)(πK(z)(σ))), respectively, in Bδ(σ̂, ẑ)\ intK . Corollary
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3.15 now provides the uniform convergence of the solutions of (2.27) to the solution of the
problem {

Cξ̇(t)− σ̇(t) = ω(t)h1(σ(t), z(t))
ż(t) = ω(t)h2(σ(t), z(t)),

(3.40)

with the required Cauchy data, on the compact subintervals of (t̂, t∗] .
Now, Lemma 3.13, part c), implies that (σ(t), z(t)) ∈ K for every t ∈ (t̂, t∗] , while

Lemma 3.11 entails that, for every t ∈ (t̂, t∗] , the points (σε(t), zε(t)) do not belong to K
when ε is sufficiently small; this proves that (σ(t), z(t)) ∈ ∂K for every t ∈ (t̂, t∗] . Thus, for
every t ∈ (t̂, t∗] , the functions h1(σ(t), z(t)) and h2(σ(t), z(t)) coincide with CnK(z)(σ) and
tr(σ)tr(nK(z)(σ)), respectively. Since (σ(t), z(t)) ∈ ∂K , we must have, for every t ∈ (t̂, t∗]

0 = nK((σ(t), z(t))) · (σ̇(t), ż(t));

this in turn, recalling (2.10), is equivalent to

0 = (z nK(z)(σ),−σ · nK(z)(σ)) · (σ̇(t), ż(t)).

Then (3.40), (2.33), and (2.34) imply that

0 = ω(t)Ψ(σ(t), z(t)) + Φ(t, σ(t), z(t)). (3.41)

Therefore (3.40) coincides with (3.1). We conclude that the solutions of (2.27) converge
uniformly on compact subintervals of (t̂, t∗] to the solution of the equation (3.1) with Cauchy
data (σ̂, ẑ) at t̂ , and by uniqueness, the limit is exactly (σsl(t), zsl(t)).

Now, let t† the maximal time such that (σε, zε) converges uniformly to (σsl, zsl) as
ε → 0+ on compact subintervals of (t̂, t†); to conclude the proof, we have to show that
t† > t̄ . Let us argue by contradiction, supposing t† ≤ t̄ . Define(σ†, z†) := (σsl(t†), zsl(t†))
and observe that, by the hypotheses, there exist two constants η > 0 and γ > 0 such that,
for every (t, σ, z) ∈ [t†−η, t†+η] ×Bη(σ†, z†), one has Ψ(σ, z) < −γ and Φ(t, σ, z) > γ . We
define c(η

2 , γ) as the infimum in Bη
2
(σ†, z†) of C(σ, η

2 , γ), where the latter is the constant

defined in Lemma 3.13. Now we may fix t† − η
2 < t†1 < t†2 < t† < t†3 < t†1 + c(η

2 , γ)
in a way that (σsl(t

†
1), zsl(t

†
1)) ∈ B η

2
(σ†, z†) and we shall have that for every (t, σ, z) ∈

[t†1 − η
2 , t†1 + η

2 ] ×B η
2
(σsl(t

†
1), zsl(t

†
1)),

Ψ(σ, z) < −γ and Φ(t, σ, z) > γ. (3.42)

By Lemma 3.13, applied with t̃ = t̃ε = t†1 , we have that there exists L > 0 such that for ε

sufficiently small %ε(t)
ε ≤ L

γ for every t ∈ [t†2, t
†
3] . By Lemma 3.11, applied with t̂ = t̂ε = t†1 ,

and aε = b
η
2
ε we get that

%ε(t)
ε ≥ γ

3λ(σsl(t
†
1))

for every t ∈ [t†2, t
†
3], (3.43)

when ε is sufficiently small; here λ(σ) is defined by (2.37). We repeat the arguments of
the previous step of the proof, and we also notice that we are in position to apply Theorem
3.14 in place of Corollary 3.15, to get that the solutions of (2.27) converges uniformly in
the interval [t†2, t

†
3] to the solution of the problem (3.1) with Cauchy data (σ(t†2), z(t†2)) =

(σsl(t
†
2), zsl(t

†
2)), that is, by uniqueness, to (σsl(t), zsl(t)). This contradicts the maximality

of t† . ¤

Remark 3.17. A slight adaptation of the proof, taking into account Remark 3.12, easily
shows that in the particular case t̂ = t1 the conclusion of the Theorem holds on the whole
closed interval [t1, t̄] .

The previous theorem shows that, if one has

Φ(t, σsl(t), zsl(t)) > 0 for every t̂ ≤ t < t2, (3.44)
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then (σε, zε) converges uniformly to (σsl, zsl) as ε → 0+ on compact subintervals of (t̂, t2).
On the contrary, if

Φ(t̄, σsl(t̄), zsl(t̄)) = 0 (3.45)
for some t̂ < t̄ < t2 , then the elastic behavior may re-appear starting from the point
(σ̄, z̄) := (σsl(t̄), zsl(t̄)) ∈ ∂K , as we are going to discuss in the next subsection.

In the last section of the paper we will consider the case when (3.44) holds, and t2 < +∞ ;
we will show that a transition from the slow to the fast dynamics occurs at time t2 when(3.7)
and (3.14) hold with strict inequality.

3.3. Return to the elastic regime. In this subsection we take t̂ and t2 as in Theo-
rem 3.16, and we assume that there exists t̂ < t̄ < t2 satisfying (3.45) and such that
Φ(t, σsl(t), zsl(t)) > 0 for every t̂ ≤ t < t̄ . Our purpose is to give some conditions which
imply the return of the system to the elastic behavior after the time t̄ . The discussion will
be completely analogous to that in [7, Section 3.3], hence the proofs will be only sketched.

Assume that there exists a sequence tn → t̄ such that

Φ(tn, σsl(tn), zsl(tn)) < 0 (3.46)

and that there exists η > 0 such that, for every (t, s, σ, z) ∈ (t̄, t̄+η)×(0, η)×(Bη(σ̄, z̄))∩∂K
satisfying Φ(t, σ, z) ≤ 0,

(σ + C(ξ(t + s)− ξ(t)), z) ∈ intK. (3.47)

We then have the following theorem.

Theorem 3.18. Assume (2.1)-(2.5), (2.25), and let Φ ,Ψ be as in (2.33), and (2.34),
respectively. Let t̂ > 0 , (σsl(s), zsl(s)) , and t2 > t̂ be as in Theorem 3.16. Let t̄ < t2
satisfy (3.45) and suppose that Φ(t, σsl(t), zsl(t)) > 0 for every t̂ ≤ t < t̄ . Let (σ̄, z̄) :=
(σsl(t̄), zsl(t̄)) , and assume that (3.46) and (3.47) hold. Let (σel(t), zel(t)) := (σ̄ +C(ξ(t)−
ξ(t̄)), z̄) and

τ := sup{t > t̄ |(σel(s), zel(s)) ∈ intK for every s ∈ (t̄, t)}.
Then (σε, zε) converges uniformly on compact subsets of (t̂, τ) to the function (σ, z) defined
by

(σ(t), z(t)) :=

{
(σsl(t), zsl(t)) for t̂ < t ≤ t̄,

(σel(t), zel(t)) for t̄ ≤ t < τ.
(3.48)

Proof. Let τ̂ be the maximal time such that (σε, zε) converges uniformly to (σ, z) on com-
pact subintervals of (t̂, τ̂); we have to show that τ̂ = τ . By Theorem 3.16, it follows that
τ̂ ≥ t̄ . As in [7, Theorem 3.11], it is easy to see that τ̂ = τ when τ̂ > t̄ , therefore we have
only to exclude τ̂ = t̄ .

In this case, there exist two constants η > 0 and γ > 0 such that, for every (t, σ, z) ∈
[t̄ − η, t̄ + η] × Bη(σ̄, z̄), one has Ψ(σ, z) < −γ . We define c(η

2 , γ) as the infimum in
Bη

2
(σ†, z†) of C(σ, η

2 , γ), where the latter is the constant defined in Lemma 3.13. Now we

may fix t†− η
2 < t†1 < t†2 < t† < t†3 < t†1 +c(η

2 , γ) in a way that (σsl(t
†
1), zsl(t

†
1)) ∈ B η

2
(σ†, z†)

and we shall have that for every (t, σ, z) ∈ [t†1 − η
2 , t†1 + η

2 ] ×B η
2
(σsl(t

†
1), zsl(t

†
1)),

Ψ(σ, z) < −γ.

By Lemma 3.13, applied with t̃ = t̃ε = t†1 , we have that there exists L > 0 such that for
ε sufficiently small %ε(t)

ε ≤ L
γ for every t ∈ [t†2, t

†
3] , thus we may assume %ε(t)

ε w∗ -converges

in L∞((t†2, t
†
3)) to some nonnegative function ω(t). By (3.38), (3.39), and Theorem 3.14 the

sequence (σε, zε) converges uniformly in [t†2, t
†
3] to a continuous function (σ̃, z̃). Theorem

3.16 gives (σ̃, z̃) = (σsl, zsl) in [t†2, t̄), while [7, Theorem 3.11] gives (σ̃, z̃) = (σel, zel) in
[t̄, t†3] , thus (σ̃, z̃) = (σ, z) in [t†2, t

†
3] . This contradicts the maximality of τ̂ , when τ̂ = t̄ . ¤
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Remark 3.19. When ξ is at least C2 regular, by adapting the argument of [7, Remark 3.12]
we obtain that the inequality

Cξ̈(t̄) · nK(z̄)(σ̄) + Cξ̇(t̄) · [∇σnK(z̄)(σ̄)]Cξ̇(t̄) < 0. (3.49)

implies both (3.46) and (3.47). Notice that, since t̄ is the first time such that (3.45) is
satisfied, we always have

Cξ̈(t̄) · nK(z̄)(σ̄) + Cξ̇(t̄) · [∇σnK(z̄)(σ̄)]Cξ̇(t̄) ≤ 0.

It follows from the definition of Φ, from (3.45), and from (2.10), that the vector Cξ̇(t̄) is
tangent to ∂K(z̄) at σ̄ , hence Cξ̇(t̄) · [∇σnK(z̄)(σ̄)]Cξ̇(t̄) is exactly the second fundamental
form of ∂K(z̄) at σ̄ , applied to the tangent vector Cξ̇(t̄).

4. Softening with discontinuities

4.1. The equation of the fast dynamics. The goal of this section is a qualitative study
of the equation {

σ̇f (s) = C(πK(zf (s))(σf (s))− σf (s))
żf (s) = tr(σf (s)) tr

(
σf (s)− πK(zf (s))(σf (s))

)
;

(4.1)

this is called the fast dynamics equation and appears, as we shall see, as limit of a rescaled
version of (2.27) near a discontinuity point of a viscosity solution.

Under suitable conditions, we shall see the viscosity solution will jump between the two
endpoints of a heteroclinic orbit of (4.1), whose existence, together with other properties, is
the object of this subsection.

In order to prove the main theorem of this subsection, we need a preliminary lemma,
showing that the internal variable is constant along the unique solution of (4.1), with an
initial condition (σ̄, z̄) satisfying

(σ̄, z̄) /∈ K and tr
(
nK(z̄)(πK(z̄)(σ̄))

)
= 0. (4.2)

We preliminarly observe that taking an initial condition outside K easily implies that we
can never reach K in finite time, as the set K is made of critical points of the autonomous
equation (4.1). Through the decomposition (2.13) we identify MN×N

sym with R × MN×N
D ;

in particular σf (s) is identified with the pair (xf (s), yf (s)) of its spherical and deviatoric
parts. Introducing the function % defined by (2.7), which is positive by the previous remark,
we may rewrite equation (4.1) in the form





ẋf (s) = −κ
√

N %(xf (s), yf (s), zf (s)) tr
(
nK(zf (s))

(
πK(zf (s))(xf (s), yf (s))

))
,

ẏf (s) = −2µ%(xf (s), yf (s), zf (s)) nD
K(zf (s))

(
πK(zf (s))(xf (s), yf (s))

)
,

żf (s) =
√

Nxf (s) %(xf (s), yf (s), zf (s)) tr
(
nK(zf (s))

(
πK(zf (s))(xf (s), yf (s))

))
.

(4.3)

Here κ and µ are the constants defined in (2.25) and nD
K(zf (s))

(
πK(zf (s))(xf (s), yf (s))

)
is

the deviatoric part of nK(zf (s))

(
πK(zf (s))(xf (s), yf (s))

)
.

Lemma 4.1. Let (σ̄, z̄) ∈ [MN×N
sym × (0, +∞)] \ K satisfying (4.2), and let x̄ and ȳ the

spherical and the deviatoric part of σ̄ , respectively. Then, for every t ∈ R , the unique
solution to equation (4.3) with Cauchy data (xf (0), yf (0), zf (0)) = (x̄, ȳ, z̄) is given by

(xf (s), yf (s), zf (s)) = (x̄, y(s), z̄)

where y(s) solves the equation

ẏ(s) = −2µ%(x̄, y(s), z̄)ND
K(z̄)(πK(z̄)(x̄, ȳ)) (4.4)

with Cauchy condition y(0) = ȳ .
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Proof. Let y(s) be the unique solution to (4.4) with Cauchy condition y(0) = ȳ . Then, for
every s′ > 0

(x̄, y(s′)) =
(
x̄, ȳ − 2µ

∫ s′

0

%(x̄, y(s), z̄)nD
K(z̄)(πK(z̄)(x̄, ȳ)) ds

)

=
(
x̄, ȳ − 2µnD

K(z̄)(πK(z̄)(x̄, ȳ))
∫ s′

0

%(x̄, y(s), z̄) ds
)

=
(
(x̄, ȳ)− 2µnK(z̄)(πK(z̄)(x̄, ȳ))

∫ s′

0

%(x̄, y(s), z̄) ds
)
,

Therefore πK(z̄)(x̄, y(s′)) = πK(z̄)(x̄, ȳ), provided (x̄, y(s′), z̄) /∈ K; this allows to check that
(x̄, y(s), z̄) solves (4.3), at least for small |s| . The conclusion for every s follows, as solutions
to (4.3) can never reach K in finite time. ¤

Now we are able to prove the existence of an heteroclinic orbit of (4.1) starting from a
point (σ̂, ẑ) ∈ ∂K under suitable hypotheses on the slow-fast indicator Ψ.

Theorem 4.2. Assume that (2.25) and (2.14)-(2.17) are satisfied; let Φ , Ψ as in (2.33)
and (2.34), respectively. Let (σ̂, ẑ) ∈ ∂K and suppose that

Ψ(σ̂, ẑ) > 0 (4.5)

or
Ψ(σ̂, ẑ) = 0 and ∇Ψ(σ̂, ẑ) · ( −CnK(ẑ)(σ̂)

tr(σ̂) tr(nK(ẑ)(σ̂)) , 1) < 0. (4.6)

Then equation (4.1) has a unique solution (σ̂f (s), ẑf (s)) (up to time-translations) satisfying

lim
s→−∞

(σ̂f (s), ẑf (s)) = (σ̂, ẑ). (4.7)

Moreover, the limit
(σ∞, z∞) := lim

s→+∞
(σ̂f (s), ẑf (s)) (4.8)

exists and satisfies the following conditions

(σ∞, z∞) ∈ ∂K, z∞ > 0, (4.9)
Ψ(σ∞, z∞) ≤ 0, (4.10)

tr(σ∞) < 0, tr(nK(z∞)(σ∞)) > 0. (4.11)

Proof. We first observe that, by (2.5), (2.12), and by (2.34), both (4.5) and (4.6) imply that

tr(σ̂) < 0, tr(nK(ẑ)(σ̂)) > 0. (4.12)

Moreover, due to our regularity assumptions on K we may assume that in a suitably small
neighborhood of (σ̂, ẑ) an oriented distance function r from ∂K is well-defined; this is a
C1 -extension of the function % , defined by (2.7), to the interior of K . In view of the same
assumptions, we may also locally define a minimal distance projection onto ∂K(z), denoted
by π∂K(z) , which obviously coincides with πK(z) , outside of K(z). For all these reasons,
the Cauchy problem





σ′(z) =
−CnK(z)(σ(z))

tr(σ(z)) tr(nK(z)(π∂K(z)(σ(z))))
σ(ẑ) = σ̂

(4.13)

is well defined and admits a unique solution, which shall be denoted by σ̂(z). For z suffi-
ciently close to ẑ we then have that tr(σ̂(z)) < 0 and tr(nK(z)(π∂K(z)(σ(z))) > 0; moreover
for z < ẑ , sufficiently close to ẑ we can prove that (σ̂(z), z) /∈ K . Indeed, as r(σ̂, ẑ) = 0, it
suffices to show that in a left open neighborhood of ẑ one has

d
dz r(σ̂(z), z) < 0. (4.14)
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By a direct computation, similar to that in (2.11), exploiting (4.13) and (2.34) we get:

d

dz
r(σ̂(z), z) =

Ψ(σ̂(z), z)
tr(σ̂(z)) tr(nK(z)(π∂K(z)(σ̂(z))))

. (4.15)

Then (4.5) implies that d
dz r(σ̂(z), z) < 0 for z = ẑ , thus (4.14) follows; if (4.6) holds,

deriving Ψ(σ̂(z), z), we get that
d
dz r(σ̂(ẑ), ẑ) = 0 and d2

dz2 r(σ̂(ẑ), ẑ) > 0,

which in its turn implies (4.14). We thus may fix z̄ < ẑ such that, for every z ∈ [z̄, ẑ), the
following three hold

%(σ̂(z), z) > 0, (4.16)
tr(σ̂(z)) < 0, (4.17)

tr(nK(z)(πK(z)(σ̂(z)))) > 0; (4.18)

we may indeed replace π∂K with πK as (σ̂(z), z) /∈ K . Now, let ẑf (s) the unique solution
to the autonomous Cauchy problem{

żf (s) = tr(σ̂(zf (s))) tr(σ̂(zf (s))− πK(zf (s))(σ̂(zf (s))))
zf (0) = ẑ;

by (4.16)-(4.18), we have that tr(σ̂(z)) tr(σ̂(z)− πK(z)(σ̂(z)) < 0, for every z ∈ [z̄, ẑ), with
equality in z = ẑ ; the theory of autonomous equations implies that ẑf (s) is defined for
every s ≤ 0 and satisfies

lim
t→−∞

ẑf (s) = ẑ, ˙̂zf (s) < 0 for every t ≤ 0;

it now suffices to put σ̂f (s) := σ̂(ẑf (s)), to get a solution to (4.1) satifying (4.7).
To prove uniqueness, let (σ(s), z(s)) a solution to (4.1) satisfying (4.7); (4.12) implies

that there exists s̄ ∈ R such that, for every s ≤ s̄ , one has ż(s) < 0. Then z(s) is
invertible in (−∞, t̄) with inverse s(z). If we put σ(z) := σ(s(z)), it is easy to see that
σ(z) solves (4.13), thus coincides with σ̂(z); the theory of autonomous equation now implies
that (σ(s), z(s)) and (σ̂f (s), ẑf (s)) may only differ by a time translation, thus the first part
of the statement is proven.

Now, let (−∞, S) the maximal interval of definition for (σ̂f (s), ẑf (s)); observe that, as
orbits can never reach K in finite time, (σ̂f (s), ẑf (s)) also solves (4.3). We split σ̂f (s) in
its spherical part x̂f (s) and in its deviatoric part ŷf (s) as in (2.13), and we observe that,
by (4.3), the following equality holds:

κ ˙̂zf (s) = −x̂f (s) ˙̂xf (s). (4.19)

Moreover, (4.12) implies that there exist s̄ < S such that ˙̂xf (s) < 0 for every s ≤ s̄ . Let us
prove that ˙̂xf (s) < 0 for every s < S . Indeed, if there exists s1 < S such that ˙̂xf (s1) = 0,
by (4.3), as %(x̂f (s1), ŷf (s1), zf (s1) > 0, it must be

tr(nK(ẑf (s1))(σ̂f (s1))) = 0;

by Lemma 4.1, this implies x̂f (s) = x̂f (s1) for all s , a contradiction. In particular there
exists

xS := lim
s→S

x̂f (s) < x̂ < 0, (4.20)

where x̂ is the spherical part of σ̂ . Now (4.19) implies that ˙̂zf (s) < 0 for every s < S . In
particular there exists zS := lim

s→S
ẑf (s) < ẑ .

We now show that zS is greater than zero. Indeed, by (4.3), the fact that ˙̂xf (s) <
0 for every s < S is equivalent to the inequality

tr(nK(ẑf (s))(πK(ẑf (s))(x̂f (s), ŷf (s)))) > 0 for every s < S, (4.21)
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and also, as %(x̂f (s), ŷf (s), ẑf (s)) > 0, to the inequality

tr(πK(ẑf (s))(σ̂f (s)) < tr(σ̂f (s)) =
√

Nx̂f (s) for every s < S. (4.22)

By (2.9) and (2.24), (4.21) is equivalent to

tr(πK(ẑf (s))(σ̂f (s))) + a
√

Nẑf (s) > 0,

where a is the positive constant defined by (2.14); thus, by (4.22) we conclude that

x̂f (s) + aẑf (s) > 0 for every s < S (4.23)

which in the limit gives zS > |xS |
a > 0, as claimed.

We now show that (σ̂f (s), ẑf (s)) is bounded, which in particular implies that S = +∞ .
Clearly, it suffices to prove that ŷf (s) is bounded. We have, by (4.1), the negativeness of
x̂f (s) and (4.22), that

d
ds
|ŷf (s)|2

2 = ŷf (s) · ˙̂yf (s)

= 2µ ŷf (s) · (πK(ẑf (s))(σ̂f (s))− σ̂f (s)
)

= 2µ σ̂f (s) · (πK(ẑf (s))(σ̂f (s))− σ̂f (s)
)−

− 2 µ√
N

x̂f (s) tr
(
πK(ẑf (s))(σ̂f (s))− σ̂f (s)

)

≤ 2µ σ̂f (s) · (πK(ẑf (s))(σ̂f (s))− σ̂f (s)
) ≤ 0,

as a consequence of (2.12); this proves that |ŷf (s)|2 is decreasing, thus ŷf (s) is bounded.
Thus S = +∞ and zS is the limit of ẑf (s) at +∞ , which shall be denoted with z∞

from now on; by the previous discussion, we also have that z∞ > 0, as required by (4.9).
Now we prove that σ̂f (s) has a limit at +∞ . To do that, we observe that ẑf (s) is strictly
decreasing, thus globally invertible; we thus express σ̂ in function of z and we have to show
that there exists lim

z→z∞
σ̂(z). We already know that σ̂(z) is bounded and that its derivative

satisfies

σ̂′(z) =
−CnK(z)(σ̂(z))

tr(σ̂(z)) tr(nK(z)(πK(z)(σ̂(z))))
(4.24)

thus the claim will follow once we get that

lim inf
z→z∞

tr(nK(z)(πK(z)(σ̂(z)))) > 0. (4.25)

Suppose that (4.25) is false; first, observe that in this case the liminf must be a limit,
as a consequence of the boundedness of σ̂(z) and of Lemma 3.5. Therefore we will have,
exploiting (2.34),

lim
z→z∞

Ψ(σ̂(z), z) = −2µ. (4.26)

Moreover, observe that by (2.9) and (2.19),

lim
z→z∞

tr(nK(z)(πK(z)(σ̂(z)))) = 0 ⇔ lim
z→z∞

1
z [ tr(πK(z)(σ̂(z)))√

N
+ az] = 0; (4.27)

on the other hand, clearly limz→z∞ tr(nK(z)(πK(z)(σ̂(z)))) = 0 implies that

lim
z→z∞

[tr(πK(z)(σ̂(z)))−
√

Nx̂(z)] = 0, (4.28)

thus combining (4.27) and (4.28), we get that

lim
z→z∞

x̂(z) = −az∞. (4.29)
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Now, by (2.9), (2.19), (2.24), and (4.22), we have that

|tr(nK(z)(πK(z)(σ̂(z))))| ≤ | 1z [ tr(πK(z)(σ̂(z)))√
N

+ az]|
≤ 1

z∞
[ tr(πK(z)(σ̂(z)))√

N
+ az]

≤ 1
z∞

[x̂(z) + az]. (4.30)

By (4.24), x̂′(z) = −κ
x̂(z) ; this fact, together with (4.29) and (4.30), yields that

lim sup
z→z∞

|tr(nK(z)(πK(z)(σ̂(z))))|
z − z∞

≤ 1
z∞

(
κ

az∞
+ a). (4.31)

Since (4.15) gives
d
dz %(σ̂(z), z) = Ψ(σ̂(z),z)

tr(σ̂(z)) tr(nK(z)(πK(z)(σ̂(z)))) , (4.32)

recalling that tr(nK(z)(πK(z)(σ̂(z)))) > 0 for all z > z∞ , we conclude by (4.26), (4.29), and
(4.31), that

lim inf
z→z∞

(z − z∞) d
dz %(σ̂(z), z) ≥ 2µz∞√

N(κ+az∞)
> 0.

This finally implies that
lim

z→z∞
%(σ̂(z), z) = −∞,

contradicting the nonnegativeness of % .
We thus have that there exists

σ∞ := lim
z→z∞

σ̂(z),

thus the proof of (4.8) is concluded. It is obvious that (σ∞, z∞) ∈ ∂K as it must be a
critical point of (4.1), thus (4.9) is proved. Concerning (4.11), it immediately follows from
(4.25) and (4.20). Finally, as %(σ̂(z), z) ≥ 0 for z > z∞ , we must have d

dz %(σ̂(z), z) ≥ 0 for
z = z∞ ; observing that tr(σ∞) tr(nK(z∞)(σ∞)) < 0 by (4.11), from (4.32) we immediately
get (4.10). ¤

Remark 4.3. It is easy to show that, if an orbit of the system (4.1) has (σ̂, ẑ) as an α -limit
point, then (σ̂, ẑ) is indeed its unique α -limit point; indeed, by the same arguments used in
the proof of the previous theorem we can show that in this case z(s) is strictly decreasing
in a neighborhood of −∞ , thus it has ẑ as a limit; the rest of the proof follows from (4.24),
and Lemma 3.5.

We end up this analysis of equation (4.1) by showing an example where we can improve
(4.10), that is a case where Ψ(σ∞, z∞) < 0.

Example 4.4. We suppose that for every z ∈ (0, +∞), K(z) is an ellipsoid of the form

K(z) := {σ ∈MN×N
sym |(x + z)2 + |y|2

b2 = z2}, (4.33)

where x and y are as in (2.13). Notice that K(1) satisfies (2.14)-(2.17) with a = 1. Suppose
that, if κ and µ are as in (2.25) and b as in (4.33) the following condition holds:

κN ≥ 2µ
b2 . (4.34)

We first compute the expression of Ψ on the yield surface in this case. Let (σ, z) ∈ ∂K ,
with z > 0. We define

F (x, y, z) =
√

(x + z)2 + |y|2
b4 ; (4.35)

to compute the expression of Ψ, it suffices to take into account the following facts:
a) nK(z)(σ) = 1

F (x,y,z) [(x + z) I√
N

+ y
b2 ] ;

b) tr(nK(z)(σ)) =
√

N(x+z)
F (x,y,z) and tr(σ) =

√
Nx ;

c) CnK(z)(σ) = 1
F (x,y,z) [κN(x + z) I√

N
+ 2µy

b2 ] .
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It follows that

−nK(z)(σ) · CnK(z)(σ) = − 1
F (x,y,z)2 [κN(x + z)2 + 2µ|y|2

b4 ]

= − 1
F (x,y,z)2 [(κN − 2µ

b2 )(x + z)2 + 2µz2

b2 ], (4.36)

exploting (4.33). On the other hand, again by the use of (4.33),
tr(σ) tr(nK(z)(σ))

z [σ · nK(z)(σ)] = N(x+z)x
zF (x,y,z)2 (x(x + z) + |y|2

b2 )

= N(x+z)x
zF (x,y,z)2 (x(x + z) + z2 − (x + z)2)

= −N(x+z)x2

F (x,y,z)2 . (4.37)

Recalling (2.34), by the use of (4.36) and (4.37), we have that

Ψ(σ, z) = − 1
F (x,y,z)2 [(κN − 2µ

b2 )(x + z)2 + 2µz2

b2 −Nx2(x + z)] (4.38)

for every (σ, z) ∈ ∂K , z > 0. We put

G(x, z) := (κN − 2µ
b2 )(x + z)2 + 2µz2

b2 −Nx2(x + z) (4.39)

and

H(σ, z) = − G(x, z)
F (x, y, z)

. (4.40)

Now, let (σ̂(z), z) the heteroclinic trajectory joining the points (σ̂, ẑ) and (σ∞, z∞)
whose existence is guaranteed by the previous theorem; we shall denote the spherical and
the deviatoric part of σ̂(z) by x̂(z) and ŷ(z), respectively. Let x∞ and y∞ be the spherical
and the deviatoric part of σ∞ . Recall that, by (4.24), x̂(z) satisfies

x̂′(z) = − κ
x̂(z) . (4.41)

We claim that if (4.34) holds, one has

Ψ(σ∞, z∞) < 0. (4.42)

Suppose, by contradiction, that Ψ(σ∞, z∞) = 0; this means, according to (4.38), that

G(x∞, z∞) = 0. (4.43)

Observe now that by (4.32), we have d
dz %(σ̂(z∞), z∞) = 0; as %(σ̂(z), z) is strictly positive

for z > z∞ while it is 0 for z = z∞ , we must have
d2

dz2 %(σ̂(z∞), z∞) ≥ 0,

and by explictly calculating this derivative with the help of (4.24), and recalling (4.11), we
find that it must be

∇Ψ(σ∞, z∞) · ( −CnK(z∞)(σ∞)

tr(σ∞) tr(nK(z∞)(σ∞)) , 1) ≤ 0. (4.44)

As we have already discussed in Remark 3.7, the directional derivative in (4.44) is calculated
in a tangential direction with respect to ∂K , whenever we suppose Ψ(σ∞, z∞) = 0; as Ψ
and H coincide on ∂K , we conclude that (4.44) is equivalent to

∇H(σ∞, z∞) · ( −CnK(z∞)(σ∞)

tr(σ∞) tr(nK(z∞)(σ∞)) , 1) ≤ 0, (4.45)

where the left-hand side is, again by the use of (4.24) nothing more that d
dz H(σ̂(z), z)

calculated for z = z∞ . By (4.43) and (4.40), we conclude that we have
d
dz G(x̂(z), z) ≥ 0 for z = z∞. (4.46)

Now, by (4.41), recalling that x̂(z) < 0 for every z ∈ [z∞, ẑ] , we have that x̂′(z) > 0 for
all z ∈ [z∞, ẑ] ; moreover, by (4.41) it follows that, for every z ,

d
dz x̂2(z) = −2κ, d2

dz2 x̂2(z) = 0, x̂′′(z) = κ
x̂2(z) x̂

′(z) > 0. (4.47)
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As in our case the constant a defined in (2.14) is equal to 1, (4.23) gives us that x̂(z)+z >
0 for every z ; as x̂′′(z) > 0 by (4.47), we easily conclude that if (4.34) holds

d2

dz2 [(κN − 2µ
b2 )(x̂(z) + z)2] ≥ 0 for every z ∈ [z∞, ẑ]. (4.48)

Therefore, recalling (4.39), by the use of (4.47), we get

d2

dz2 G(x̂(z), z) ≥ d2

dz2 [ 2µz2

b2 −Nx̂2(z)(x̂(z) + z)]

= 4µ
b2 −N d2

dz2 [x̂2(z)(x̂(z) + z)]

= 4µ
b2 −N [2( d

dz x̂2(z))( d
dz (x̂(z) + z)) + x̂2(z) d2

dz2 (x̂(z) + z)]

= 4µ
b2 −N [−4κ(x̂′(z) + 1) + κx̂′(z)]

= 4µ
b2 + 4κN + 3κNx̂′(z) > 0;

thus, by (4.43) and (4.46) we have that

G(x̂(z), z) > 0 for every z ∈ (z∞, ẑ];

in particular, for z = ẑ we get G(x̂, ẑ) > 0, and then, by (4.38), (4.39), and (4.40), we
conclude that Ψ(σ̂, ẑ) < 0, which contradicts both (4.5) and (4.6).

4.2. Convergence to the fast dynamics. We want now to investigate how equation (4.1)
governs the jump of our viscosity solution when it reaches a point on the yield surface where
the elastic-inelastic indicator is strictly positive (which means that we are in the inelastic
regime), while the slow-fast indicator satisfies (4.5), or (4.6); we will see how a rescaled
version of the solution converges to a heteroclinic solution of the auxiliary system (4.1),
whose asymptotic values at s = ±∞ give the asymptotic values of the viscosity solution
before and after the jump time. Both the cases where (4.5) and (4.6) hold will be treated
simultaneously; the discussion will closely follow Section 4 and Section 5 of [7], hence some
proofs will be only sketched as the arguments are essentially the same as in [7].

Throughout this part of the paper, t̂ denotes a time such that there exist a left continuous
function t 7→ (σ(t), z(t)) defined on [0, t̂) with values in MN×N

sym × [0, +∞) and an element
(σ̂, ẑ) of MN×N

sym × [0,+∞) satisfying the following properties:

(σε(t), zε(t)) → (σ(s), z(t)) for a.e. t ∈ [0, t̂), (4.49)

(σ(t), z(t)) → (σ̂, ẑ) as t → t̂−, (4.50)
(σ̂, ẑ) ∈ ∂K and ẑ > 0, (4.51)
Ψ(σ̂, ẑ) satisfies (4.5) or (4.6), (4.52)

Φ(t̂, σ̂, ẑ) > 0. (4.53)

For instance, we can take t̂ = t1 defined by (2.29), if (3.24) holds and Ψ(σ1, z1) > 0, or
t̂ = t2 defined by (3.5), provided that (4.6) holds for (σ̂, ẑ) = (σ2, z2) defined in Proposition
3.6. In the latter case we have Ψ(σ2, z2) = 0 and in general, by Remark 3.7, we have the
weak inequality

∇Ψ(σ2, z2) · ( −CnK(z2)(σ2)

tr(σ2) tr(nK(z2)(σ2))
, 1) ≤ 0;

thus, assuming (4.6), we are excluding the degenerate case when equality holds.
By (4.49) and (4.50) we also may fix a sequence t̂ε → t̂ such that

(σε(t̂ε), zε(t̂ε)) → (σ̂, ẑ); (4.54)

Indeed, by (4.53), and Lemma 3.11 we can find another sequence, still denoted by t̂ε , which
preserves (4.54), and satisfies in addition, for every ε > 0,

%(σε(t̂ε), zε(t̂ε)) > cε, (4.55)

where c is a positive constant independent of ε .
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We finally recall, as we have already dicussed in Remark 2.6 and in Proposition 3.6, that
in the case t̂ = t2 the internal variable z is strictly decreasing in a left neighborhood of t2 ,
thus discontinuities can appear only in the softening regime.

We start by fixing an open neighborhood Uδ1 := (t̂ − δ1, t̂ + δ1) × Bδ1(σ̂, ẑ) of (t̂, σ̂, ẑ),
in a way that (3.26) holds. If (4.5) holds, we may assume for a suitable choice of δ1 there
exists a positive constant γ1 such that

Ψ(σ, z) ≥ γ1 for every (σ, z) ∈ Bδ1(σ̂, ẑ); (4.56)

if instead (4.6) holds, we may assume that there exists a positive constant γ4 such that

∇Ψ(σ, z) · ( −CnK(z)(πK(z)(σ))

tr(σ) tr(nK(z)(πK(z)(σ)) , 1) ≤ −γ4 for every (σ, z) ∈ Bδ1(σ̂, ẑ) \ intK. (4.57)

We now define the exit time from Bδ1(σ̂, ẑ)

b1
ε := inf{t ∈ (t̂ε, t̂ε + δ1) : (σε(t), zε(t)) ∈ ∂Bδ1(σ̂, ẑ)}; (4.58)

by the previous assumptions for small ε we will trivially have t̂ε < b1
ε . We then fix a

positive decreasing sequence δk ↘ 0+ , starting from δ1 , and consequently we define, for
every k ∈ N ,

bk
ε := sup{t ∈ (t̂ε, b1

ε) : (σε(t), zε(t)) ∈ ∂Bδk
(σ̂, ẑ)}. (4.59)

Next lemma, which will be crucial in the remainder of the section, shows that the exit
times bk

ε tend to t̂ when ε goes to 0 and that the difference b1
ε − bk

ε is of order ε for fixed
k .

Lemma 4.5. Assume (2.1)-(2.5), and (2.25); let Φ , Ψ as in (2.33), and (2.34), respectively.
Let t̂ > 0 satisfying (4.49)-(4.53). Let b1

ε be given by (4.58) and bk
ε be given for every

k ∈ N, k > 1 by (4.59). Then, for every k ∈ N :
a) bk

ε → t̂ as ε → 0+ ;
b) supε>0

b1ε−bk
ε

ε ≤ ck < +∞,

where ck is a constant depending on k . Moreover, for every k ∈ N , there exists a constant
mk such that

%(σε(bk
ε), zε(bk

ε)) > mk. (4.60)

Proof. As announced, we limit ourselves to giving a brief outline of the proof. Concerning
part a) of the statement, it clearly suffices to show this is true for b1

ε. As t̂ε → t̂ this will be
proved once we get:

lim sup
ε→0+

(b1
ε − t̂ε) = 0. (4.61)

By Lemma 3.11 we have that %ε(t) > 0 for every t ∈ (t̂ε, b1
ε), hence (2.32) holds.

Now, assume that (4.5) holds, which implies on his turn (4.56). With this condition, with
the help of (3.26) and (2.32), we get that %̇ε(t) ≥ γ1

1
ε%ε(t); dividing by %ε(t), we get

%̇ε(t)
%ε(t)

≥ γ1

ε
for every t ∈ (t̂ε, b1

ε), (4.62)

which is the analogue of [7, formula (4.17)]; now the proof of (4.61), of part b) of the state-
ment and of (4.60) can be easily achieved by simply adapting the arguments of [7, Lemma
4.3].

Assume instead (4.6), which implies (4.57). We have already observed that this implies
tr(σ̂) < 0; by (2.35) this means that

tr(σ̂) < −min{κ,2µ}
MK

√
N

,

where MK is as in (2.3) and κ, 2µ as in (2.25). Provided we have chosen δ1 suitably small,
we may clearly assume that

tr(σε(t)) < −min{κ,2µ}
2MK

√
N

for every t ∈ (t̂ε, b1
ε);
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analogously, as (4.6) implies tr(nK(z)(σ̂)) > 0 we may assume

tr(nK(zε(t))(πK(zε(t))(σε(t))) > 0 for every t ∈ (t̂ε, b1
ε).

By these facts and (2.30) we then easily get the existence of a positive constant C such that

żε(t) ≤ −C
%ε(t)

ε
for every t ∈ (t̂ε, b1

ε). (4.63)

In particular, for fixed ε > 0, the function żε(t) never vanishes in the prescribed interval.
We also immediately get, as zε(t) < ẑ + δ1 for every t ∈ (t̂ε, b1

ε) that there exists a positive
constant R̃ independent of ε such that:

∫ b1ε

t̂ε

%ε(t)
ε

dt ≤ R̃,

as in [7, formula (5.10)].
Differentiating the function Ψ along the trajectories, we get

d

dt
Ψ(σε(t), zε(t)) = ∇Ψ(σε(t), zε(t)) · (σ̇ε(t), żε(t))

= ∇Ψ(σε(t), zε(t)) · (Cξ̇(t), 0) +

+ żε(t)∇Ψ(σε(t), zε(t)) · (−C(ξ̇(t)−σ̇ε(t))
żε(t) , 1)

= ∇Ψ(σε(t), zε(t)) · (Cξ̇(t), 0) +

+ żε(t)∇Ψ(σε(t), zε(t)) · ( −CnK(zε(t))(πK(zε(t))(σε(t)))

tr(σε(t)) tr(nK(zε(t))(πK(zε(t))(σε(t))) , 1);

this equality, together with (4.63) and (4.57), implies that there exist two positive constants
L and R such that

d

dt
Ψ(σε(t), zε(t)) ≥ R

%ε(t)
ε

− L|C||ξ̇(t)| for every t ∈ (t̂ε, b1
ε), (4.64)

as in [7, formula (5.11)]. Now the proof of (4.61), of part b) of the statement and of (4.60)
can be achieved by repeating the arguments of [7, Lemma 5.1]. ¤

We are now ready to prove the main result of this section.

Theorem 4.6. Assume (2.25), and (2.14)-(2.17); let Φ , Ψ as in (2.33), and (2.34), respec-
tively. Let t̂ > 0 , (σ̂, ẑ) ∈ ∂K , such that (4.5) or (4.6) hold. Assume that Φ(t̂, σ̂, ẑ) > 0 , and
let δ1 > 0 as in (3.26) and let b1

ε be given by (4.58). For every s ∈ R, let (σ1
ε(s), z1

ε(s)) :=
(σε(b1

ε + εs), zε(b1
ε + εs)) . Then (σ1

ε(s), z1
ε(s)) converges uniformly on compact subsets of R

to a solution of the problem:




σ̇f (s) = C(πK(zf (s))(σf (s))− σf (s))
żf (s) = tr(σf (s)) tr(σf (s)− πK(zf (s))(σf (s)))
lim

s→−∞
(σf (s), zf (s)) = (σ̂, ẑ)

(4.65)

whose existence and uniqueness up to time translations is guaranteed by Theorem 4.2.

Proof. This proof closely follows [7, Theorem 4.4], which was in his turn reminiscent of [8,
Lemma 4.3]. First of all, we claim that it suffices to prove the statement along a subsequence
εk tending to 0. Indeed, the only difficulty is that the solutions of (4.65) may differ by a time
translation, thus the limit could depend on the chosen subsequence. We are able to exclude
this fact applying [8, Lemma 4.4], with the same arguments as in the proof of Theorem 3.5
of the same paper. In view of that, we shall extract from now on subsequences without
relabelling. We also define χε(s) := ξ̇(a1

ε + εs).
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We start by observing that the function (σ1
ε(s), z1

ε(s)) solves the problem




σ̇1
ε(s) = C(πK(z1

ε(s))(σ1
ε(s))− σ1

ε(s)) + εCχε(s),
ż1
ε(s) = tr(σ1

ε(s)) tr(σ1
ε(s)− πK(z1

ε(s))(σ1
ε(s))),

(σ1
ε(0), z1

ε(0)) = (σε(b1
ε), zε(b1

ε)),
(4.66)

in the interval [− b1ε
ε ,

t̂+δ1−b1ε
ε ] . As (σε(b1

ε), zε(b1
ε)) belongs to the compact set ∂Bδ1(σ̂, ẑ) we

may assume, possibly passing to a subsequence that (σε(a1
ε), zε(a1

ε)) → (σ̂1, ẑ1) ∈ ∂Bδ1(σ̂, ẑ)
as ε → 0. Notice that (σ̂1, ẑ1) has a strictly positive distance from K as a consequence
of (4.60). Therefore, Lemma 4.5 and the Continuous Dependence Theorem imply that
(σ1

ε(s), z1
ε(s)) converges uniformly on compact subsets of R , as ε → 0, to the solution

(σ1(s), z1(s)) of the problem




σ̇1(s) = C(πK(z1(s))(σ1(s))− σ1(s)),
ż1(s) = tr(σ1(s)) tr(σ1(s)− πK(z1(s))(σ1(s))),
(σ1(0), z1(0)) = (σ̂1, ẑ1).

(4.67)

To conclude the proof we have to show that

lim
s→−∞

(σ1(s), z1(s)) = (σ̂, ẑ). (4.68)

Actually, recalling Remark 4.3, it suffices to show that there exist sk → +∞ such that

lim
k→+∞

(σ1(−sk), z1(−sk)) = (σ̂, ẑ). (4.69)

To do that, we take δk and bk
ε as in Lemma 4.5, and we define S1,k

ε := b1ε−bk
ε

ε ; by Lemma
4.5 and a diagunal argument, we may suppose, passing to a subsequence, that for every
k ∈ N there exists

sk := lim
ε→0

S1,k
ε ∈ R+.

Now we define (σk
ε (s), zk

ε (s)) := (σε(bk
ε +εs), zε(bk

ε +εs)); by repeating the above arguments
we may suppose that for every k ∈ N there exists (σ̂k, ẑk) ∈ ∂Bδk

(σ̂, ẑ) \ K such that
(σk

ε (s), zk
ε (s)) converges, as ε → 0, uniformly on compact subsets of R , to the solution

(σk(s), zk(s)) of the problem




σ̇k(s) = C(πK(zk(s))(σk(s))− σk(s)),
żk(s) = tr(σk(s)) tr(σk(s)− πK(zk(s))(σk(s))),
(σk(0), zk(0)) = (σ̂k, ẑk).

(4.70)

Moreover, equality (σk
ε (S1,k

ε ), zk
ε (S1,k

ε )) = (σε(b1
ε), zε(b1

ε)) implies that (σk(sk), zk(sk)) =
(σ̂1, ẑ1), hence by the uniqueness of solutions for Cauchy problems we get

(σk(s), zk(s)) = (σ1(s− sk), z1(s− sk)); (4.71)

it follows that
(σ1(−sk), z1(−sk)) = (σ̂k, ẑk). (4.72)

As δk → 0, we have that (σ̂k, ẑk) → (σ̂, ẑ) as k goes to +∞ , hence

lim
k→+∞

(σ1(−sk), z1(−sk)) = (σ̂, ẑ); (4.73)

since (σ̂, ẑ) is an equilibrium point for equation (4.1), necessarily sk → +∞ as k → +∞ ;
so, (4.69) is proven and conclusion follows. ¤

Remark 4.7. (Return to the continuous evolution).
Let (σ∞, z∞) the unique ω -limit point of the solution of (4.65); by Theorem 4.2, we have

that Ψ(σ∞, z∞) ≤ 0; assume now that strict inequality holds (this is certainly true, for
instance, if we are in the situation described by Example 4.4). By the previous theorem we
may fix a sequence t̃ε converging to t̂ as ε → 0+ such that (σε(t̃ε), zε(t̃ε)) → (σ∞, z∞).
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Now, we have three possibilities:
a) Return to the continuous evolution in the softening regime. This situation

occurs if Φ(t̂, σ∞, z∞) > 0; by Theorem 3.16, in a right neighborhood of t̂ the
solutions of (2.27) uniformly converge, on compact subintervals, to the solution of
the slow dynamics equation given by (3.1) with Cauchy datum (σ∞, z∞) at time t̂ ;
notice that (4.11) implies that, when the continuous evolution restarts, we are still
in the softening regime, thus no istantaneous transition between the softening and
the hardening regime occurs during the jump.

b) Return to the elastic regime . This situation occurs if instead Φ(t̂, σ∞, z∞) < 0.
To prove that, take η > 0, γ > 0 such that, for every t ∈ [t̂, t̂ + η] and every (σ, z)
satisfying |(σ, z)− (σ∞, z∞)| < η , one has

Ψ(σ, z) < −γ and Φ(t, σ, z) < −γ (4.74)

We observe that (4.74) obviously implies both (3.46) and (3.47), hence repeating the
arguments of [7, Theorem 3.11], we get that (σε(t), zε(t)) uniformly converges to
the solution of the equation of linearized elasticity (σel(t), zel(t)) := (σ∞+C(ξ(t)−
ξ(t̂)), z∞) on compact subintervals of (t̂, τ), where

τ := sup{t > t̂ |(σel(s), zel(s)) ∈ intK for every s ∈ (t̄, t)}.
c) If Φ(t̂, σ∞, z∞) = 0, we need some higher order conditions on the indicator Φ to

establish whether the system will follow the first or the second alternative; how-
ever, by the negativeness of the indicator Ψ, applying Lemma 3.13, and Corollary
3.15, we are able to conlude that the evolution must be continuous in a right open
neighborhood of t̂ .

5. Statement of the main result

We collect the results of the previous sections in the next theorem, which gives a procedure
to construct a viscosity solution to our evolution problem under quite general assumptions;
in fact, if these assumptions are satisfied at every step of the construction, the viscosity
solution is also unique. The theorem will determine a possibly infinite sequence of times
t0 < t1 < · · · < ti < . . . such that in each interval (ti−1, ti] the solution, denoted here by
(σi−1, zi−1) is continuous and satisfies either the slow dynamics, or the elastic regime, or a
combination of the two. A jump may occur at time ti if the value (σi−1(ti), zi−1(ti)) satisfies
(4.5) or (4.6). In this case the new starting point (σ+

i , z+
i ) for the solution in the interval

(ti, ti+1] is determined by taking the limit as s → +∞ of the solution of the fast dynamics
originating from (σi−1(ti), zi−1(ti)) at s = −∞ . To prepare the technical statement of the
theorem it is convenient to introduce some notation.

Definition 5.1. For every (σ̂, ẑ) ∈ ∂K satisfying Ψ(σ̂, ẑ) 6= 0, and every T > 0 we define
(σsl, zsl)(t; σ̂, ẑ, T ) as the unique solution to (3.1) starting from the point (σ̂, ẑ) at time T .
For every (σ̂, ẑ) ∈ ∂K we define (σel, zel)(t; σ̂, ẑ, T ) = (σ̂ + C(ξ(t) − ξ(T )), ẑ). For every
(σ̂, ẑ) ∈ ∂K satisfying (4.5) or (4.6) we define (σf , zf )(s; σ̂, ẑ) as the unique solution to (4.1)
having (σ̂, ẑ) as an α -limit point.

To simplify our notation, in the statement of the theorem we also put

∂Kf := {(σ, z) ∈ ∂K : (σ, z) satisfy (4.5) or (4.6) }.
Theorem 5.2. Let (σ0, z0) ∈ intK , let t0 = 0 , t1 as in (2.29), and (σ0(t), z0(t)) =
(σ0 + C(ξ(t)− ξ(0)), z0) . For every i ≥ 1 with ti < +∞ define

(σ+
i , z+

i ) =

{
(σi−1, zi−1)(ti) if Ψ(σi−1(ti), zi−1(ti)) < 0,

lim
s→+∞

(σf , zf )(s;σi−1(ti), zi−1(ti)) if (σi−1(ti), zi−1(ti)) ∈ ∂Kf .
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If Ψ(σ+
i , z+

i ) < 0 , let t̂i be the maximal time of existence for (σsl, zsl)(t; σ+
i , z+

i , ti) , and

t̄i := inf{t ≥ ti : Φ(t, (σsl, zsl)(t; σ+
i , z+

i , ti)) ≤ 0}.
If t̂i = t̄i , put ti+1 := t̂i , and

(σi(t), zi(t)) = (σsl, zsl)(t; σ+
i , z+

i , ti)

for every ti ≤ t ≤ ti+1 ; if instead t̂i > t̄i , put (σ̄i, z̄i) := (σsl, zsl)(t̄i, σ+
i , z+

i , ti) ,

ti+1 := inf{t > t̄i |(σel, zel)(t; σ̄i, z̄i, t̄i) ∈ intK for every s ∈ (t̄i, t)},
and

(σi(t), zi(t)) =

{
(σsl, zsl)(t; σ+

i , z+
i , ti) for ti < t ≤ t̄i,

(σel, zel)(t; σ̄i, z̄i, t̄i) for t̄i ≤ t ≤ ti+1.

Define (σ(t), z(t)) :=
∑

i≥1 1(ti−1,ti](σi−1(t), zi−1(t)) . Assume that

Φ(σ(ti), z(ti)) > 0 for every i ≥ 1, (5.1)

(3.46) and (3.47) hold for every i with t̄i < t̂i (5.2)

lim inf
t→t−i+1

Φ(t, σ(t), z(t)) > 0 for every i with ti+1 = t̂i < +∞, . (5.3)

If we define e(t) and p(t) through the consitutive relations in (1.1), (e(t), p(t), σ(t), z(t)) is
the unique viscosity solution of (1.1) in [0, T ) , where T := supi ti .

Proof. The result follows from Theorem 3.16, Theorem 3.18, Theorem 4.6, and Remark
4.7. ¤
Remark 5.3. Notice that assumption (5.3) ensures that whenever ti+1 = t̂i < +∞ we
can extend by continuity (σsl, zsl) in ti+1 thanks to Proposition 3.6, hence at every step
(σ(ti), z(ti)) is well-defined. Concerning the other assumptions in the theorem, observe that
by construction and Theorem 4.2, we always have at least the weak inequality Ψ(σ+

i , z+
i ) ≤

0; by construction we also have that Φ(σ(ti), z(ti)) ≥ 0 for every i . Similarly, the weak
inequality in (5.3) is always true whenever ti+1 = t̂i . Thus our construction works at least
for the nondegenerate cases where equality is excluded while a higher-order analysis is needed
in the remaining situations to get insight of the limit behavior of the viscous approximations.
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