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Abstract

We compare a general controlled diffusion process with a deterministic system where a
second controller drives the disturbance against the first controller. We show that the
two models are equivalent with respect to two properties: the viability (or controlled
invariance, or weak invariance) of closed smooth sets, and the existence of a smooth
control Lyapunov function ensuring the stabilizability of the system at an equilibrium.
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1 Introduction

An Ito stochastic differential equation in IRN

dXt = f(Xt)dt + σ(Xt)dBt, t > 0, X0 = x, (1)

where Bt is an M -dimensional Brownian motion and the matrix-valued function σ has Lips-
chitz first derivatives, can be rewritten in the Stratonovich form

dXt =

(
f(Xt)−

1
2

M∑
i=1

Dσi(Xt)σi(Xt)

)
dt + σ(Xt) ◦ dBt, X0 = x, (2)

where σi denotes the i-th column of σ and Dσi its Jacobian matrix, and it is well-known that
this equation is equivalent in several senses to the deterministic control system

ẋ = f(x)− 1
2

M∑
i=1

Dσi(x)σi(x) + σ(x)β(t), x(0) = x, (3)

where β : [0,+∞) → IRM varies in some function space. In fact, Stroock and Varadhan [32, 33]
proved that the support of the measure defined by (1) on the set of functions [0, 1] → IRN is the
closure in uniform topology of the trajectories of (3) as β runs over smooth functions. Doss [19]
used this result to prove that a closed set K with smooth boundary is invariant for (1) (i.e., a
trajectory of (1) starting in K remains forever in K almost surely) if and only if K is invariant
for (3) for all locally integrable β; very recently Aubin and Doss [3] extended this result to
non-smooth sets K. Sussmann [34] proved that the solution of the Stratonovich equation
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(2) coincides with the set of trajectories of (3) as β varies among continuous functions.
The uniform convergence in the support theorem of Stroock and Varadhan was improved to
convergence in Hölder norm in the 90s [1, 13, 24].

The next step in the comparison between stochastic and deterministic models of dynamical
systems with disturbances concerns the controlled diffusion process{

dXt = f(Xt, αt)dt + σ(Xt)dBt, t > 0,
X0 = x,

(CSDE)

where the control α takes values in a given compact metric space A, and the deterministic
control system {

ẋ = f(x, α)− 1
2

∑M
i=1 Dσi(x)σi(x) + σ(x)β(t), t > 0,

x(0) = x,
(DS)

where the disturbance β is modelled as a second controller whose goals can be different
from those of the first controller α. This fits naturally in the theory of differential games
and robust control, see [10], [4] (the Appendix by Soravia, in particular), and the references
therein. Further motivations come from mathematical finance [11, 25].

In the recent paper [18] Da Prato and Frankowska showed that a closed set K is invariant
for (CSDE) (i.e., it is almost surely invariant for all stochastic controls αt, that is, functions
in A progressively measurable with respect to Bt) if and only if it is invariant for (DS) (i.e.,
for all α ∈ L∞([0,+∞), A) and β ∈ L1

loc([0,+∞), IRM )). Their proof is based on estimates
on the trajectories of the two systems, as in [19] and [34], under weak regularity assumptions
on the data. Note that in this problem the controllers α and β cooperate.

The goal of this paper is showing the equivalence of (CSDE) and (DS) with respect to two
more properties. Different from the invariance studied in [18], both these properties involve
a conflict of the controller against the disturbance, and they are satisfied if the controller
can win it. For the deterministic system (DS) this is modelled as a two-person zero-sum
differential game.

The first property is the viability, or controlled invariance, or weak invariance, of a closed
set K with smooth boundary. For the controlled diffusion (CSDE) this means the existence
for all x ∈ K of a stochastic control α that keeps the system forever in K almost surely, a prop-
erty that we call a.s. viability. For (DS) it means the existence of a non-anticipating strategy
for the first controller that keeps the system in K for all controls β ∈ L1

loc([0,+∞), IRM ) of
the second controller, a property that we call worst case viability (briefly, w.c. viability). Here
the controller choosing α is modelled as the first player of the game and the disturbance as the
opponent player. A direct approach to the equivalence by estimates on the trajectories seems
rather hard in this case, and we make instead a comparison between geometric characteriza-
tions of the properties, usually called viability theorems. Such a theorem for deterministic
differential games with bounded controls and disturbances was found by Cardaliaguet [14]
and it involves only the vector fields of the system (DS) and the normal to the boundary (see
also [8] for a different proof). We provide in Section 2 an extension of this result to systems
affected by unbounded disturbances, with a new proof relying on viscosity solutions of H-J
equations [17, 20, 4] and optimality principles [29, 31]. The geometric characterization of a.s.
viability of (CSDE) due to the first author and Jensen [9] uses also the second fundamental
form of the boundary (see also [2, 12] and the references therein for earlier results). In Section
2 we prove that these two conditions are equivalent, thus a.s. viability of K for (CSDE) is
equivalent to w.c. viability for (DS).
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The second property is the stabilizability of the system to an equilibrium position, and
we do it for both notions of plain (Lyapunov) stability and of asymptotic stability. Again,
for (CSDE) stabilizability means the existence of a stochastic control α that stabilizes the
system almost surely, for (DS) it means the existence of a strategy that does the job for
all disturbances β ∈ L1

loc([0,+∞), IRM ) and we call it worst case (briefly, w.c.) stability.
The almost sure stabilizability of (CSDE) was introduced by the authors in [7] and studied
by means of suitable Lyapunov functions satisfying 2nd order partial differential inequalities
in the viscosity sense, see also [15] for converse Lyapunov theorems. We remark that this
property is stronger than stability in probability and pathwise stability, and in fact it is
never verified by a nondegenerate process. Worst case stability for bounded disturbances
was studied by Soravia [28, 29] by means of Lyapunov functions satisfying first order partial
differential inequalities in the viscosity sense, and he also treated the case of unbounded noise
in the framework of H∞ control [30, 31]. In Section 3 we extend his results on worst case
stability to unbounded disturbances and show that the existence of a w.c. Lyapunov function
is equivalent to w.c. stability. Then we prove that a C2 function is a Lyapunov function for
the a.s stabilizability of (CSDE) if and only if it is a Lyapunov function for the w.c. stability
of (DS).

Let us recall some of the many issues related to these properties. Invariance and reachabil-
ity properties of (CSDE) arise in financial mathematics, see [26, 3] and the references therein,
and in the geometric partial differential equations describing the motion of fronts, see Soner
and Touzi [27]. They are also used, together with the viability and reachability properties of
(DS), in the study of strong maximum principles for nonlinear degenerate elliptic equations
[5, 6], in a similar way as the support theorem was used by Stroock and Varadhan for linear
PDEs. The notion of w.c. stabilizability is related to the robust stabilization and robust
control Lyapunov function studied by Freeman and Kokotovic [21] for bounded disturbances,
see also [23] and the references therein.

We end this introduction with a list of assumptions that will hold throughout the paper
and with some basic definitions and notations. Given a compact metric space A, the data
f : IRN × A → IRN and σ, which maps IRN to the space of N ×M matrices, are continuous
functions which satisfy

|f(x, α)− f(y, α)| ≤ C|x− y|, ∀x, y ∈ IRN , ∀α ∈ A, (4)

σ ∈ C1,1, ‖Dσi(x)−Dσi(y)‖ ≤ C|x− y| i = 1, . . . ,M ∀x, y ∈ IRN . (5)

The class of admissible controls for (CSDE) is the class U of strict controls with values in A,
as defined in [22, Definition 2.2]. The admissible controls and disturbances for (DS) are given
by the two sets A := L∞([0,+∞), A) and B := L1

loc([0,+∞), IRM ). The admissible strategies
Γ for the controller (i.e., the first player) are functionals γ : B → A with the property of being
non-anticipating:

∀t > 0, β = β a.e. in [0, t] implies γ(β) = γ(β) a.e. in [0, t].

We define a(x) := 1
2σ(x)σ(x)T , where T denotes the transpose. Finally, we assume

{f(x, α) : α ∈ A} is convex for all x ∈ IRN . (6)

This is a classical condition to ensure existence of optimal controls in problems satisfying
standard regularity assumptions, and if it is not satisfied one can get it by considering relaxed
controls, see [22].
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2 A.s. stochastic viability is equivalent to w.c. deterministic
viability.

We begin recalling the definition of stochastic and worst case viability of a set. Almost sure
viability was first studied by Aubin and Da Prato, see [2, 12] and the references therein. Here
we use a geometric characterization found by the first author and Jensen [9].

Definition 2.1 (A.s. viability). A closed set K ⊂ IRN is a.s. viable or controlled invariant
or weakly invariant for the stochastic system (CSDE) if for all initial points x ∈ K there
exists an admissible control α ∈ U such that the corresponding trajectory X. satisfies Xt ∈ K
for all t > 0 almost surely.

Definition 2.2 (W.c. viability). A closed set K ⊂ IRN is worst case viable with respect to
the system (DS) if for every x ∈ K there exists a strategy γ ∈ Γ such that the corresponding
trajectory x(·) = x(·; γ(β), β) satisfies x(t) ∈ K for every t ≥ 0 and every admissible control
β ∈ B.

The characterization of a.s. viability in [9] is in terms of a generalized second order normal
cone introduced in [8]. We recall the definition.

Definition 2.3 (Second order normal cone). Let K ⊆ IRN a closed set. The second
order normal cone at x ∈ K is

N 2
K(x) := {(p, Y ) ∈ IRN × S(N) : for y → x, y ∈ K,

p · (y − x) +
1
2
(y − x) · Y (y − x) ≥ o(|y − x|2) }

where S(N) is the set of symmetric N ×N matrices.

Note that, if (p, Y ) ∈ N 2
K(x) and x ∈ ∂K, the vector p is a Bony (i.e. proximal) interior

normal to the set K at x. In particular, if ∂K is a smooth surface in a neighborhood of x,
p/|p| is the interior unit normal and Y is related to the second fundamental form of ∂K at
x, see [8].
Here is the Nagumo-type geometric characterization of viability, see [9, Thm 1] and [9, Prop.1].

Theorem 2.1. Let K ⊂ IRN be a closed set. Then K is a.s. viable for (CSDE) if and only
if

∀x ∈ ∂K, ∀(p, Y ) ∈ N 2
K(x), ∃α ∈ A : f(x, α) · p + trace(a(x, α)Y ) ≥ 0. (7)

Moreover,
σi(x) · p = 0 ∀ i = 1, . . . ,M. (8)

Now we turn to the geometric characterization of w.c. viability. The first result of this
kind was given by Cardaliaguet [14] in terms of the Severi-Bouligand tangent cone and of its
dual cone. Later the first author and Goatin [8] gave a characterization of w.c. viability in
terms of the interior Bony (i.e. proximal) normal cone, namely,

N 1
K(x) := {p ∈ IRN : for y → x, y ∈ K, p · (y − x) ≥ o(|y − x|)}.

These characterizations were proved in the case in which both the controls and the distur-
bances acting in the differential game take value in a compact metric space. We provide next
the extension of this result to our system (DS), where the set of disturbances is IRM . Our
proof is different from those in [14, 8], and it relies on the superoptimality principle in the
Appendix.
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Theorem 2.2. Let K ⊂ IRN be a closed set. Then K is viable for (DS) if and only if

∀x ∈ ∂K, ∀p ∈ N 1
K(x), ∀β ∈ IRM , ∃α ∈ A :(

f(x, α)− 1
2

M∑
i=1

Dσi(x)σi(x) + σ(x)β

)
· p ≥ 0. (9)

Proof. We define the LSC function

vK(x) :=
{

1 x 6∈ K,
0 x ∈ K.

It is easy to check that, for x ∈ ∂K, the subdifferential D−vK(x) = −N 1
K(x), whereas

D−vK(x) = {0} for x 6∈ ∂K (we refer to [17, 4] for the definitions of subdifferential and
viscosity supersolution). So the differential condition (9) holds if and only if vK is a viscosity
supersolution to

inf
β∈IRM

max
α∈A

(
−f(x, α) +

1
2

M∑
i=1

Dσi(x)σi(x)− σ(x)β

)
·DvK(x) = 0 in IRN . (10)

Moreover it is easy to check that K is viable if and only if vK satisfies the following superop-
timality principle:

vK(x) = inf
γ∈Γ

sup
β∈B

sup
t≥0

vK(x(t; γ(β), β)). (11)

Therefore we obtain the conclusion if we show that a LSC function W is a viscosity super-
solution to (10) if and only if it satisfies (11). The direct part is proved in Proposition A.1
of the Appendix, whereas the converse part relies on standard methods in viscosity solution
theory (see, e.g., [4, Chapter VIII]).

We prove now the equivalence between a.s. viability and w.c. viability.

Proposition 2.1. Consider K = Ω, where Ω ⊆ IRN is an open set whose boundary ∂Ω is a
C2 hypersurface. Then K is a.s. viable with respect to the stochastic system (CSDE) if and
only if it is w.c. viable with respect to the deterministic system (DS).

Proof. We denote with ~n(x) the interior normal at x ∈ ∂Ω. Under the regularity assumptions
on K, we can express the second order normal cone in terms of the gradient and the Hessian
matrix of any function ρ of class C2 in a neighborhood of ∂K and such that ρ(x) = 0 and
Dρ(x) = ~n(x) for x ∈ ∂K (e.g., the signed distance function from ∂K). Indeed, for x ∈ ∂K,
N 2

K(x) = {(Dρ(x), Y ) | Y ≥ D2ρ(x)}.
Assume that K is a.s. viable for (CSDE). Then, by Theorem 2.1,

∀x ∈ ∂K ∃α ∈ A : f(x, α) ·Dρ(x) + trace(a(x)D2ρ(x)) ≥ 0 (12)

and moreover, by (8), σi(x) ·Dρ(x) = 0 for every i = 1, . . . M . Now we observe that

0 = σi(x)D[σi(x) ·Dρ(x)] = σi(x)T D2ρ(x)σi(x) + Dσi(x)σi(x) ·Dρ(x). (13)

We sum over i and compute

1
2

M∑
i=1

σi(x)T D2ρ(x) σi(x) =
1
2
trace(σ(x)T D2ρ(x) σ(x)) = trace(a(x)D2ρ(x)).
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By substituting into (12) we get

∀x ∈ ∂K ∃α ∈ A : σi(x) ·Dρ(x) = 0 f(x, α) ·Dρ(x)− 1
2

M∑
i=1

Dσi(x)σi(x) ·Dρ(x) ≥ 0,

from which we deduce that for every x ∈ ∂K there exists α ∈ A such that, for every β ∈ IRM ,(
f(x, α)− 1

2

M∑
i=1

Dσi(x)σi(x) + σ(x)β

)
·Dρ(x) ≥ 0. (14)

By Theorem 2.2 the last condition is equivalent to the viability of K for (DS).
Assume now that K is viable for (DS). Then condition (14) holds for some α ∈ A and

every β ∈ IRM . From this we deduce immediately that σi(x) ·Dρ(x) = 0. Now we substitute
(13) in (14) and we get (12), which is equivalent to the viability of K for (CSDE).

Example 2.1. Consider the 1-dimensional stochastic control system

dXt = Xt

(
1− αt −

Xt

k

)
dt + σ(Xt)dBt

modelling the density of a specie in an ecosystem, where the control α represent the harvesting
factor and takes values in [0, 1]. Note that when there is neither disturbance nor exploitation,
i.e., σ ≡ 0 and α ≡ 0, the dynamics reduces to a standard logistic equation with carrying
capacity k > 0. The corresponding deterministic model is

ẋ = x
(
1− α(t)− x

k

)
− 1

2
σ′(x)σ(x) + σ(x)β(t)

with α(t) ∈ [0, 1] and β(t) ∈ IR.
The viability of an interval [b, c], 0 ≤ b ≤ c, means the existence of an exploitation policy

that keeps the population between the levels b and c almost surely (resp., for all disturbances
β). By Proposition 2.1 this property can be checked on either one of the two models. Let us
do it for the deterministic model, by means of Theorem 2.2. The interval [b, c] is w.c. viable
if and only if for all β ∈ IR there is α ∈ [0, 1] such that the function

φ(x) := x
(
1− α− x

k

)
− 1

2
σ′(x)σ(x) + σ(x)β

is nonnegative at x = b, and for all β ∈ IR there is α ∈ [0, 1] such that φ(c) ≤ 0. And this
occurs if and only if

σ(b) = σ(c) = 0 and b ≤ k.

In this very simple example the proof of the a.s. viability could also be easily got directly
by means of Theorem 2.1. However, in higher dimensions (e.g., in predator-prey models or
in competing species models), the calculation of the second order normal cone might be hard
and one could prefer the criterion for deterministic systems of Theorem 2.2 that involves only
the unit normals at the boundary.

Note that in this example no interval [b, c] with b > 0 is invariant for all control functions,
even when σ ≡ 0, because φ(b) < 0 for α sufficiently close to 1. Therefore the invariance
theory of [18] does not give any sufficient condition of viability in this case.
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3 A.s. stabilizability is equivalent to w.c. stability

We recall the notion of almost sure (open loop) stabilizability for stochastic systems and the
notion of stability in the worst case for deterministic systems.

Definition 3.1 (Comparison functions). K denotes the class of continuous real functions
κ strictly increasing and such that κ(0) = 0. KL denotes the class of continuous functions
λ : [0,+∞) × [0,+∞) → [0,+∞) which are strictly increasing in the first variable, strictly
decreasing in the second variable, and satisfy

λ(0, t) = 0 ∀t ≥ 0 lim
t→+∞

λ(r, t) = 0 ∀r ≥ 0.

Definition 3.2 (A.s. stabilizability). The system (CSDE) is almost surely (open-loop
Lyapunov) stabilizable at the origin if there exists κ ∈ K and δo > 0 such that for any starting
point x with |x| ≤ δo

∃α ∈ U : |Xt| ≤ κ(|x|) ∀t ≥ 0 a.s. (15)

If, in addition, limt→+∞Xt = 0 a.s., the system is a.s. (open loop) asymptotically stabiliz-
able, or a.s. asymptotically controllable, locally if this occurs for every x in a neighborhood
of 0, globally if it does for every x.

Remark. The a.s. stabilizability implies that the origin is a controlled equilibrium, i.e.,
∃α ∈ A : f(0, α) = 0, σ(0) = 0. For more details, see [7].

Definition 3.3 (W.c. stability). The system (DS) is worst case stable (w.c. stable) at the
origin if there is κ ∈ K and δ0 > 0 such that for any starting point x with |x| ≤ δ0

∃γ ∈ Γ : |x(t; γ(β), β)| ≤ κ(|x|) for every β ∈ B,∀t ≥ 0.

If moreover there exists λ ∈ KL, independent of x and γ, such that

|x(t; γ(β), β)| ≤ λ(|x|, t), for every β ∈ B,∀t ≥ 0, (16)

then the system is worst case asymptotically stable (w.c. asymptotically stable).

In [7] and [15] we characterized the a.s. stabilizability property by means of appropriate
control Lyapunov functions.

Definition 3.4 (A.s. control Lyapunov function). Let O ⊆ IRN be an open set containing
the origin. A function V : O → [0,+∞) is an a.s. control Lyapunov function for the system
(CSDE) if
(i) V is LSC and continuous at 0;
(ii) V is positive definite, i.e., V (0) = 0 and V (x) > 0 for all x 6= 0;
(iii) V is proper, i.e., the sublevel sets {x|V (x) ≤ µ} are bounded ∀µ ∈ [0,+∞);
(iv) V is a viscosity supersolution in O\{0} of the following system of PDEs and inequalities{

maxα∈A {−DV (x) · f(x, α)} − trace
[
a(x)D2V (x)

]
≥ l(x)

σi(x) ·DV (x) = 0 ∀ i,
(17)

where l : O → IR is a Lipschitz continuous nonnegative function such that l(0) = 0. When l
is positive definite, we say that V is a strict a.s. control Lyapunov function for (CSDE).
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The system of PDEs and inequalities (17) is not a standard Hamilton-Jacobi-Bellman
inequality arising in stochastic optimal control. In fact, the system of equations σ(x)·DV (x) =
0 implies that we are allowing only functions V whose level sets are tangential to the diffusion
matrix in a generalized sense.

The characterization of almost sure stabilizability in terms of Lyapunov functions found
in [7, 15] is summarized in the next result.

Theorem 3.1. Assume (4), (6). Then
(i) the system (CSDE) is almost surely stabilizable in a neighborhood of the origin if and
only if there exists an a.s. Lyapunov function V for the system;
(ii) the system (CSDE) is almost surely asymptotically stabilizable in a neighborhood of the
origin if and only if there exists a strict a.s. Lyapunov function V for the system.

Remark. The key observations for such a Lyapunov characterization is that, as in the de-
terministic case, the a.s. stabilizability is equivalent to the existence of a basis of viable
neighborhoods of the equilibrium and that the sublevel sets of every a.s. control Lyapunov
function form a basis of viable neighborhoods of the equilibrium. The proof of both direct and
converse theorems is based on the analysis of viability properties of sublevel sets of viscosity
supersolutions to (17), using the characterization of viability recalled in the previous section.
The direct Lyapunov theorems are proved in [7] and the converse results in [15]. We recall
only the explicit construction of the Lyapunov functions. Define

V (x) := inf{r | ∃α admissible control such that |Xt| ≤ r almost surely ∀t ≥ 0}

or, equivalently,
V (x) := inf

α∈U
sup
t≥0

ess sup
ω∈Ω

|Xα
t |.

This is an a.s. Lyapunov function for an a.s. stabilizable system. For an a.s. asymptotically
stabilizable system in a bounded set O, in [15] we construct a Lipschitz continuous positive
definite function l such that the function defined as

V (x) := inf
α∈U

ess sup
ω∈Ω

∫ +∞

0
l(Xα

t )dt

is a strict a.s. Lyapunov function.

We present next a complete Lyapunov-like characterization of worst case stability by
means of control Lyapunov functions, see [23, 21] and the references therein.

Definition 3.5 (W.c. control Lyapunov function). A function W : IRN → [0,+∞) is a
worst case control Lyapunov function for the system (DS) if
(i) W is LSC and continuous at 0,
(ii) W is positive definite,
(iii) W is proper;
(iv) W is a viscosity supersolution of

inf
β∈IRM

max
α∈A

(
−f(x, α) +

1
2

M∑
i=1

Dσi(x)σi(x)− σ(x)β

)
·DW (x) ≥ l(x), (18)

where l : IRN → IR is a nonnegative Lipschitz continuous function such that l(0) = 0. If,
moreover, l is positive definite, we say that W is a strict w.c. control Lyapunov function.
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The following characterization of w.c. stability in terms of w.c. Lyapunov functions
extends some results by Soravia [29, 28] to the case of unbounded disturbances. In particular
it gives a formula for the construction of a Lyapunov function in the case of asymptotic w.c.
stability.

Theorem 3.2. Assume (4), (6), then the system (DS) is w.c. stable (respectively, w.c.
asymptotically stable) at the origin if and only if there exists a w.c. control Lyapunov function
W (respectively, a strict w.c. control Lyapunov function).

Proof. The proofs of the direct part rely on the following superoptimality principle for vis-
cosity supersolution W of the Hamilton-Jacobi-Bellman-Isaacs equation (18), see Proposition
A.1 in the Appendix:

W (x) = inf
γ∈Γ

sup
β∈B

sup
t≥0

[
W (x(t; γ(β), β)) +

∫ t

0
l(x(s; γ(β), β))ds

]
. (19)

When l is merely non-negative we deduce from this, using the properties of W , that for every
ε > 0 there exists δ such that for |x| ≤ δ there exists an admissible strategy γ such that
for every admissible disturbance β the corresponding trajectory satisfies |x(t; γ(β), β)| ≤ ε
for every t. This gives the w.c. stability. When l is positive definite, using (19) again, the
properties of W and standard properties of the trajectories of the system, we get in addition
that x(t; γ(β), β) → 0 as t → +∞, and this gives the w.c. asymptotic stability. For more
details see [29] for the w.c. stability and [28] for the w.c. asymptotic stability.

Conversely, given a w.c. stable differential system, a candidate Lyapunov function W is
constructed as follows: it is the lower semicontinuous envelope W∗ of the lower value function

W (x) := inf
γ∈Γ

sup
β∈B

sup
t≥0

|x(t; γ(β), β)|.

It is immediate to check the first three conditions in Definition 3.5, the proof of the differential
condition relies on standard methods in viscosity solution theory (see, e.g., [4, Chapter VIII]).

We assume now that the system is w.c. asymptotically stable. Then it is possible to
construct an appropriate running cost l which is positive definite and Lipschitz continuous
by using the decay estimate (16). For more details we refer to [16, section 1.6]. Moreover, by
the definition of l we get that the value function W of the infinite horizon problem

W (x) := inf
γ∈Γ

sup
β∈B

∫ +∞

0
l(|x(t; γ(β), β)|)dt

is finite. It is quite standard to prove, using the properties of l, that the LSC envelope of W
is a w.c. strict Lyapunov function for the system (for the details see [4, chapter VIII] and [16,
section 1.6]).

Example 3.1. Let us look for conditions under which the system (DS) has a radial w.c.
control Lyapunov function, i.e., W (x) = w(|x|) for some C1 function w : [0,+∞) → [0,+∞)
with w′(r) > 0 for r > 0. We assume for simplicity that the disturbance is scalar, so M = 1
and σ(x) ∈ IRN . Then the left hand side of (18) is

inf
β∈IR

max
α∈A

(
−f(x, α) +

1
2
Dσ(x)σ(x)− σ(x)β

)
· x w′(|x|)

|x|
,
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which is −∞ if σ(x) · x 6= 0. Therefore we assume σ(x) · x = 0, and differentiate it to get

N∑
k=1

∂σk(x)
∂xj

xk = −σj(x) for j = 1, . . . , N.

We multiply by σj and add over j to obtain

Dσ(x)σ(x) · x = −|σ(x)|2.

In conclusion, (DS) with M = 1 admits a radial C1 w.c. Lyapunov function if and only if

σ(x) · x = 0 and max
α∈A

(−f(x, α) · x) ≥ |σ(x)|2

2
. (20)

This condition is independent of the choice of w. Moreover, if

l(x) :=
[
max
α∈A

(−f(x, α) · x)− |σ(x)|2

2

]
w′(|x|)
|x|

is Lipschitz in a neighborhood of 0, positive for x 6= 0 and l(x) → 0 as x → 0, then W is a
strict Lyapunov function.

Example 3.2. We consider the case that the system ẋ = f(x, α), i.e., (DS) with σ ≡ 0, is
asymptotically stabilizable. By the converse Lyapunov theorem of Sontag (see, e.g., [16]),
there exists a strict continuous control Lyapunov function for this subsystem, i.e., there
exists a proper function V satisfying in viscosity sense in IRN \ {0}, for some positive definite
continuous function L,

max
α∈A

(−f(x, α) ·DV )− L(x) ≥ 0.

Under this condition, the left hand side of (18) is

inf
β∈IRM

max
α∈A

(
−f(x, α) +

1
2
Dσ(x)σ(x)− σ(x)β

)
·DV =

{
−∞, σ ·DV 6= 0,
≥ L + 1

2Dσσ ·DV, σ ·DV = 0.

So V is also a w.c. control Lyapunov function for (DS) if and only if it satisfies in viscosity
sense

σ(x) ·DV (x) = 0 and L(x) +
1
2
Dσ(x)σ(x) ·DV (x) ≥ 0. (21)

The main result of this Section is the equivalence between smooth a.s. Lyapunov functions
for the system (CSDE) and smooth w.c. Lyapunov functions for the system (DS).

Proposition 3.1. Let V : IRN → IR a C2 function. Then V is an a.s. control Lyapunov
function (respectively, strict a.s. control Lyapunov function) for the stochastic system (CSDE)
if and only if it is a w.c. control Lyapunov function (respectively, strict w.c. control Lyapunov
function) for the deterministic system (DS).

Proof. We assume there exists a C2 a.s. Lyapunov function V for the system (CSDE) ac-
cording to Definition 3.4. Then for every x there exists α ∈ A such that

σi(x) ·DV (x) = 0 and −DV (x) · f(x, α)− 1
2
trace

(
σ(x)T D2V (x)σ(x)

)
≥ l(x) (22)
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where l ≥ 0. From the equality in (22) we get

0 = σi(x)D[σi(x) ·DV (x)] = σi(x)T D2V (x)σi(x) + Dσi(x)σi(x) ·DV (x), (23)

and we plug it into the inequality in (22) to deduce that for every x there exists α ∈ A such
that for every β ∈ IRM(

−f(x, α) +
1
2

M∑
i=1

Dσi(x)σi(x)− σ(x)β

)
·DV (x) ≥ l(x). (24)

This implies that V is a supersolution of

max
α∈A

inf
β∈IRM

(
−f(x, α) +

1
2

M∑
i=1

Dσi(x)σi(x)− σ(x)β

)
·DV (x) ≥ l(x) (25)

and therefore it is a w.c. Lyapunov function.
Assume now that V is a C2 w.c. Lyapunov function, i.e., a supersolution of (25). Then

for every x there exists α ∈ A such that for all β ∈ IRM (24) is verified. This implies that
DV (x) ·σi(x) = 0 for all i = 1, ...,M . Now (23) gives that for every x there exists α ∈ A such
that (22) holds. Therefore V is an a.s. Lyapunov function for the system (CSDE).

Remark. We do not know the minimal regularity of V under which the last proposition
remains true. If it held for merely semicontinuous V we would get the equivalence of a.s.
stabilizability and w.c. stability.

Example 3.3. Let W (x) = w(|x|) be a radial function, with w : [0,+∞) → [0,+∞) of class
C2 and such that w′(r) > 0 for r > 0. In Example 3.1 we showed that W is a w.c. control
Lyapunov function for the system (DS) if and only if condition (20) is satisfied. Under the
same condition W is also an a.s. control Lyapunov function for the system (SDE): this follows
from Proposition 3.1, and it can also be checked by direct computation (see Example 4 in
[7]).

Example 3.4. We consider the case that (CSDE) is a stochastic perturbation of an asymp-
totically stabilizable system ẋ = f(x, α). We assume that the unperturbed system admits
a C2 control Lyapunov function V and we wonder under which conditions V remains an
a.s. control Lyapunov function for (CSDE). By Proposition 3.1 a necessary and sufficient
condition is (21) derived in Example 3.2; note that it involves only the gradient of V . An
equivalent condition involving the second derivatives of V is the following:

σ(x) ·DV (x) = 0 and L(x)− 1
2
trace(σ(x)σT (x))D2V (x) ≥ 0,

that was was found in Example 2 of [7].

A Appendix. A superoptimality principle

This appendix is devoted to the superoptimality principle for viscosity supersolution of
Hamilton-Jacobi-Isaacs equations with possibly infinite Hamiltonian. The proof is an adap-
tation of a result obtained by Soravia (Lemma 2.2 in [31]) in a different setting, namely, for
a problem of H∞ control. Therefore we give here an outline of the proof and we refer to [31]
for some technical details. We recall that we are still assuming the conditions listed in the
Introduction.
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Proposition A.1. Let W : IRN → IR a lower semicontinuous supersolution of

inf
β∈IRM

max
α∈A

(
−f(x, α) +

1
2

M∑
i=1

Dσi(x)σi(x)− σ(x) · β

)
·DW (x)− l(x) = 0, (26)

where l : IRN → IR is a nonnegative, Lipschitz continuous function. Then W satisfies the
following superoptimality principle:

W (x) = inf
γ∈Γ

sup
β∈B

sup
t≥0

[
W (x(t; γ(β), β)) +

∫ t

0
l(x(s; γ(β), β))ds

]
. (27)

Proof. We may assume without loss of generality that l ≡ 0. Indeed, if it is not so, we add a
new variable to the dynamics

ẋ = f(x)− 1
2

∑M
i=1 Dσi(x)σi(x) + σ(x)β(t), x(0) = x,

ṙ = l(x), r(0) = r.

and define the function W ′(x, r) := W (x) + r with r ∈ IR. W ′ is a viscosity supersolution
to infβ∈IRM maxα∈A

(
−f(x, α) + 1

2

∑M
i=1 Dσi(x)σi(x)− σ(x) · β , l(x)

)
·DW ′(x) = 0. If (27)

holds for W ′ and for the trajectories of the augmented system, then it is immediate to show
that it holds also for W and the trajectories of the original system.

Moreover we may assume without loss of generality that W is nonnegative and bounded.
Indeed, consider a function ρ : IR → IR which is smooth, bounded, nonnegative and sat-
isfies 0 < ρ̇ < M for some M . The function ρ(W ) is still a viscosity supersolution to
(26) with l = 0 and is bounded and nonnegative. If we prove (27) for ρ(W ), then the
same conclusion holds also for W . If it is not so, then there exists x such that W (x) <
infγ∈Γ supβ∈B supt≥0 [W (x(t; γ(β), β))]. So, it is possible to find ε such that for every γ ∈ Γ
there exist β ∈ B and t > 0 with W (x) < W (x(t; γ(β), β))+ ε. Now, applying ρ to both sides
and using the properties of this function, we get

ρ(W (x)) < ρ (W (x(t; γ(β), β)) + ε) ≤ ρ (W (x(t; γ(β), β))) + Mε for some M > 0,

in contradiction with the assumption that (27) holds for ρ(W ).
We start dividing the Hamiltonian by the factor 1 + |b| to take care of unbounded distur-

bances: this leads to a reparametrization of the trajectories of the original dynamical system
(DS). Indeed if W is a supersolution to (26) then it is also a supersolution to

inf
β∈IRM

max
α∈A

[−F (x, α, β) ·DW (x)] = 0, (28)

where

F (x, α, β) :=
f(x, α)− 1

2

∑M
i=1 Dσi(x)σi(x) + σ(x) · β

1 + |β|
.

Observe that, by assumptions (4) and (5), F satisfies the following uniform Lipschitz condi-
tion: there exists K independent of α, β such that

|F (x, α, β)− F (y, α, β)| ≤ K|x− y|, for x, y ∈ IRN .
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We consider now a sequence of continuous nonnegative functions Wn such that W =
supn Wn. For every λ ∈ (0, 1) and every n, W is a lower semicontinuous supersolution to the
variational inequality of obstacle type (with obstacle Wn)

min
{

λV (x) + inf
β∈IRM

max
α∈A

[−F (x, α, β) ·DV (x)] , V (x)−Wn(x)
}

= 0.

This equation satisfies a comparison principle among semicontinuous viscosity sub- and su-
persolutions (see [17, 4]). Then W is greater than the value function of the differential game
with optimal stopping criterion associated to the equation, that is,

W (x) ≥ inf
γ∈Γ

sup
β∈B

sup
s≥0

[
e−λsWn(y(s; γ(β), β))

]
(29)

where y(· ;α, β) denotes the trajectory of the system:

(DS′)
{

ẏ = F (y, α, β) s > 0,
y(0) = x.

We fix S > 0 and get from (29), as λ → 0, W (x) ≥ infγ∈Γsupβ∈B,s∈[0,S] [Wn(y(s; γ(β), β))] .
Now for every n there exists γn such that

W (x) + 1/n ≥ sup
β∈B

sup
s∈[0,S]

[Wn(y(s; γn(β), β))] . (30)

Using the compactness of the product space (L∞((0, S), Ar))B and the convexity assumption
(6), we get, passing to a subnet if necessary, that γn converges to γ in the product topology
of (L∞((0, S), Ar))B (for the detailed argument, we refer to [31, Lemma 2.2]). It is easy to
check, using the fact that W is LSC and W = supWn, that lim infn,z→x Wn(z) = W (x). From
this and (30) we get, letting n → +∞,

W (x) ≥ sup
β∈B

sup
s∈[0,S]

[W (y(s; γ(β), β))] ≥ inf
γ∈Γ

sup
β∈B

sup
s∈[0,S]

[W (y(s; γ(β), β))] .

We conclude by sending S → +∞: this is done by constructing a global strategy repeating
the previous argument on a sequence of intervals covering [0,+∞), we refer to [31, 30] for the
details of this standard construction. Therefore we get

W (x) ≥ inf
γ∈Γ

sup
β∈B

sup
s≥0

[W (y(s; γ(β), β))] . (31)

For every β ∈ B we define a map sβ(t) =
∫ t
0 (1 + |β(u)|)du and denote with tβ(s) the inverse

of this map. Observe that the trajectories of the differential system (DS′) coincide with the
trajectories of the original system (DS) reparametrized using the new time variable s, so
y(s; γ(β), β) coincides with x(tβ(s); γ(β), β). Therefore we can rewrite (31) in terms of the
trajectories of the original differential system (DS) and in terms of the time variable t:

W (x) ≥ inf
γ∈Γ

sup
β∈B

sup
t≥0

[W (x(t; γ(β), β))] .

This proves the assertion, since the other inequality is obtained by taking t = 0.
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