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1. Introduction

In this paper we prove a density result for Sobolev spaces defined on two dimensional open
bounded sets. More precisely, for 1 ≤ p < 2 and Ω ⊆ R2 open, bounded and belonging to the
class Ap(R2) of admissible domains (see Definition 3.1), we prove that the Sobolev space W 1,2(Ω)
is dense in W 1,p(Ω). The class Ap(R2) contains for example domains whose complements have
a countable number of connected components or even whose complements are Cantor sets with
small dimension.

In the case Ω is sufficiently regular (for example if it satisfies a cone condition), this density
result is trivial because by means of extension operators and convolutions one can prove that
C∞(Ω) is dense in W 1,p(Ω). The situation is different when Ω is irregular: extension operators
cannot be employed, and the density of C∞(Ω) in W 1,p(Ω) can fail, as in the case the domain
contains a crack. Even the density of C∞(Ω) in W 1,p(Ω) proved by Meyers and Serrin [27] which
holds for every open bounded set Ω cannot be used because the control on the energy of order
2 is available only well inside, and can be lost approaching the boundary. In this direction, we
refer the reader to the paper of O’Farrel [28] for a counterexample to the density of W 1,∞(Ω) in
W 1,p(Ω) in the case Ω is too irregular.
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2 A. GIACOMINI AND P. TREBESCHI

The main motivation of our density result is the study of stability under boundary variations
for two dimensional nonlinear Neumann problems of the form

(1.1)

{
−divA(x,∇u) +B(x, u) = 0 in Ω
A(x,∇u) · ν = 0 on ∂Ω,

where A : R2 × R2 → R2 and B : R2 × R → R are Carathéodory functions satisfying standard
monotonicity and growth conditions of order p (see conditions (4.3)-(4.5)). Namely we are inter-
ested in the continuity of the map Ω → uΩ, where uΩ ∈W 1,p(Ω) is the solution of (1.1) in Ω (see
Section 4 for the precise sense of the continuity of this mapping).

The density of W 1,2 in W 1,p is a key point to infer stability for problem (1.1) from that of the
linear equation

(1.2)

{
−∆u+ u = f in Ω
∂u
∂ν = 0 on ∂Ω.

Stability results for problem (1.2) have been obtained by several authors (see for example [10],
[11], [12], [14], [15], [8], [9]). These results hold in generic dimension N under quite restrictive
assumptions on Ω and its possible perturbations. For example Chenais [15] proved stability for
(1.2) under a uniform cone condition for the perturbed domains, and this condition excludes
several interesting cases like those of domains containing cracks which are of interest in fracture
mechanics. Moreover, the cone condition implies the existence of extension operators, and the
density of W 1,2 in W 1,p is trivial, so that the stability of (1.1) holds under the same assumptions.

In dimension N = 2 the situation is different, and restrictions only on the topological nature
of the domains have been individuated in order to achieve stability for (1.2): this is the reason
why we are interested in density for Sobolev spaces defined on two dimensional, possibly irregular,
domains. Bucur and Varchon [8] consider domains whose complements have a uniformly bounded
number of connected components and prove that, if Ωn → Ω in the Hausdorff complementary
topology (see Section 2 for a definition), we have the stability uΩn

→ uΩ if and only if

meas(Ωn) → meas(Ω).

Under strict monotonicity assumptions for A and B, Dal Maso, Ebobisse and Ponsiglione [18]
proved that the same conclusion holds for problem (1.1) in the case 1 < p < 2, while for p > 2
stability is in general false (see [18, Remark 3.7]). The main tool they employ is the Mosco
convergence of W 1,p(Ωn) to W 1,p(Ω) (see Section 2 for a definition) which is equivalent to the
stability of (1.1) for every admissible A and B. The Mosco convergence in the case p = 2 is indeed
a corollary of the stability result by Bucur and Varchon [8]. Since they make use of conformal
mappings, and these are not useful in a nonlinear setting, Dal Maso, Ebobisse and Ponsiglione
provide a different proof of the Mosco convergence based on nonlinear harmonic conjugates. In
view of our density result, the Mosco convergence when 1 < p < 2 (and hence the stability result
for (1.1)) can be deduced from the case for p = 2 (see Proposition 4.3).

In Section 4 we consider the nonlinear Neumann problems

(1.3)

{
−divA(x,∇u) + b(x)|u|p−2u = h in Ω
A(x,∇u) · ν = 0 on ∂Ω,

where b ∈ L∞(R2) is such that b ≥ 0, and h satisfies suitable assumptions in order to guarantee
the existence of a solution. These problems introduce some degeneracy with respect to problems
(1.1) because b can vanish on subsets of Ω with positive measure. As a consequence stability
cannot be studied in terms of Mosco convergence of suitable functional spaces, because the two
notions are in general not equivalent (see [9, Remark 5.2]), and so in order to prove stability for
(1.3), the results of Dal Maso, Ebobisse and Ponsiglione cannot be directly used.

In the case p = 2, and with A(x, ξ) = ξ, Bucur and Varchon [9] proved that if the complement
of Ωn has a uniformly bounded number of connected components and Ωn → Ω in the Hausdorff
complementary topology, then stability holds if and only if

meas(Ωn ∩ {b > 0}) → meas(Ω ∩ {b > 0}).
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We prove (Proposition 4.4) that the same result holds in the nonlinear case 1 < p < 2. In the case
p > 2, stability does not hold in general (see [18, Remark 3.7]).

A second application of our density result is to a shape optimization problem, namely the
optimal cutting of a membrane. The admissible cuts we consider are compact and connected
sets which contain two given points. The case of a quadratic energy has been treated by Bucur,
Buttazzo and Varchon in [5]. In Proposition 4.5 we prove the existence of an optimal cut for
a nonlinear energy density f(x, ξ) with growth of order 1 < p ≤ 2 in ξ. Moreover we prove a
stability result for the associated Euler-Lagrange equation, which is of Neumann-Dirichlet type.
We remark that in order to establish the existence of the optimal cut and the stability for the
associated equation, the approximation results of Dal Maso, Ebobisse and Ponsiglione [18] in terms
of Mosco convergence cannot be used (see Remark 4.7).

Finally, in the Appendix, we show how the arguments of Section 3 provide a new proof of a
result due to Chambolle [13] concerning the density of W 1,2 in the space LD1,2 of two dimensional
linearized elasticity. Our approach also covers the nonlinear case LD1,p for 1 < p < 2.

The main step in the proof of our main result is given by Theorem 3.5, which states the density
of W 1,2(Ω) in W 1,p(Ω) at the level of the gradients. More precisely we prove that for every
u ∈W 1,p(Ω) we have ∇u ∈ H, where

H := {∇v : v ∈W 1,2(Ω)} ⊆ Lp(Ω,R2).

We use the fact that H = (H⊥)⊥, where (·)⊥ denotes the orthogonal in the sense of Banach spaces.
Using Helmholtz Decomposition Theorem, in Lemma 3.4 we characterize H⊥ as the family of
fields ψ such that Rψ = ∇φ with φ ∈W 1,p′(R2) constant on the connected components of R2 \Ω,
where p′ is the conjugate exponent of p and R denotes a rotation of 90 degrees counterclockwise.
Moreover, using the approximation given in Lemma 3.3 and the fact that Ω ∈ Ap(R2), we can
approximate φ through functions φn ∈W 1,p′(R2) which are constant on a neighborhood of R2 \Ω.
Then the orthogonality of ∇u and ψ follows by integration by parts.

The paper is organized as follows. In Section 2 we introduce the notation and recall some useful
notions employed in rest of the paper. Section 3 contains the density result (Theorem 3.8), while
Section 4 contains the applications to stability of nonlinear Neumann problems and to the optimal
cutting of a membrane. In the Appendix we prove the density of W 1,2 in the spaces of planar
elasticity.

2. Notation and Preliminaries

In this section we introduce the basic notation and recall some notions employed in the rest of
the paper.

If A ⊆ RN is open and 1 ≤ p ≤ +∞, we denote by Lp(A) the usual space of p-summable
functions on A with norm indicated by ‖ · ‖p. W 1,p(A) will denote the Sobolev space of functions
in Lp(A) whose gradient in the sense of distributions belongs to Lp(A,RN ), and we denote by
W 1,p

0 (A) the closure in W 1,p(A) of smooth functions with compact support.
If E ⊆ RN , we will denote with meas(E) its N -dimensional Lebesgue measure, and by Hα(E)

its α-dimensional Hausdorff measure (see [19, Chapter 2] for a definition). Moreover, we denote
by Ec the complementary set of E, and by 1E its characteristic function, i.e., 1E(x) = 1 if x ∈ E,
1E(x) = 0 otherwise.

Capacity. Let 1 < p < +∞, and let E ⊆ RN . We set

cp(E) := inf
{∫

R2
|∇u|p + |u|p dx : u ∈W 1,p(R2), u ≥ 1 a.e. on E

}
.

For the properties of capacity, and its relevance in the theory of Sobolev spaces, we refer the reader
to [19].

We say that a property P(x) holds cp-quasi everywhere (abbreviated cp-q.e.) on a set E ⊆ RN

if it holds for every x ∈ E except a subset N of E such that cp(N) = 0.
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If A ⊆ RN is open, every function u ∈W 1,p(A) admits a quasicontinuous representative, i.e., a
representative ũ such that for every ε > 0 there exists an open set Bε with cp(Bε) < ε and ũ|A\Bε

is continuous. Throughout the paper, we will identify a Sobolev function with its quasicontinuous
representative. Notice that for p > N , the continuous representative of u (which exists by Sobolev
Embedding Theorem) is precisely the quasicontinuous representative. We will use the following
fact: if un → u strongly in W 1,p(A), we have that up to a subsequence un → u cp-q.e. on A.

The following lemma will be useful in Section 3 and in the Appendix (a different proof can be
obtained using the arguments contained in [7, Lemma 5.1, Lemma 5.2]).

Lemma 2.1. Let u ∈ C(R2), K ⊆ R2 connected, and let c ∈ R. If u(x) = c for c2-q.e. x ∈ K,
then u(x) = c for every x ∈ K.

Proof. By assumption we have that there exists N ⊆ K such that c2(N) = 0 and u(x) = c for
every x ∈ K \N . If for every x ∈ N there exists xn ∈ K \N such that xn → x, by continuity of
u we conclude that also u(x) = c and the result follows.

By contradiction, let us assume that there exists x ∈ N such that x 6∈ K \N . Then there exists
r̄ > 0 such that B(x, r) ∩ (K \N) = ∅ for r < r̄. Since c2(N) = 0, by [19, Section 4.7.2, Theorem
4] we have that Hα(N) = 0 for every α > 0, and in particular H1(N) = 0. As a consequence,
for every 0 < ε < r̄ we can find a covering {B(xi, ri)}i∈N of N such that

∑
i∈N ri < ε. Let

B := ∪iB(xi, ri) and
S := {r ∈]0, r̄[ : ∂B(x, r) ∩ B 6= ∅}.

We have that meas(S) < ε, so that we can find r < r̄ with ∂B(x, r) ∩ N = ∅. Moreover, up to
reducing ε, we can assume that N \ B(x, r) 6= ∅, because otherwise we would get that N = {x}
with x isolated from the rest of K, against its connectedness.

Let us consider
K1 := K ∩B(x, r) and K2 := K \B(x, r).

K1 and K2 are closed in the relative topology of K. By construction they are not empty, disjoint
and such that K = K1 ∪K2. But this is against the fact that K is connected, and the proof is
concluded. �

Hausdorff metric on compact sets and Hausdorff complementary topology. Let A be
open and bounded in RN . We indicate the family of all compact subsets of A by K(A). K(A) can
be endowed with the Hausdorff metric dH defined by

dH(K1,K2) := max
{

sup
x∈K1

dist(x,K2), sup
y∈K2

dist(y,K1)
}

with the conventions dist(x, ∅) = diam(A) and sup ∅ = 0, so that dH(∅,K) = 0 if K = ∅ and
dH(∅,K) = diam(A) if K 6= ∅. It turns out that K(A) endowed with the Hausdorff metric is a
compact space (see e.g. [30]).

In order to treat the stability of Neumann problems under boundary variations (see Section 4),
we will use the Hausdorff complementary topology on the family of open sets which is defined as
follows. Let (Ωn)n∈N be a sequence of open sets in RN . We say that Ωn → Ω in the Hausdorff
complementary topology if for every closed ball B ⊆ RN we have

B ∩ Ωc
n → B ∩ Ωc in the Hausdorff metric.

The Mosco convergence of Sobolev spaces. In Section 4, we will refer to the notion of
Mosco convergence of Sobolev spaces in connection with stability results for nonlinear Neumann
problems. For the reader’s convenience, we recall here the definition.

Let (Ωn)n∈N be a sequence of uniformly bounded open subsets of RN , and let 1 < p < +∞.
For every un ∈ W 1,p(Ωn), let us denote by un1Ωn

and by ∇un1Ωn
the extension to zero outside

Ωn of un and ∇un respectively.
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If Ω is a bounded open set in RN , we say that W 1,p(Ωn) converges to W 1,p(Ω) in the sense of
Mosco if the following two conditions hold.
(M1) Mosco-limsup condition. For every u ∈W 1,p(Ω) there exists un ∈W 1,p(Ωn) such that

∇un1Ωn
→ ∇u1Ω strongly in Lp(RN ,RN )

and
un1Ωn → u1Ω strongly in Lp(RN ).

(M2) Mosco-liminf condition. If nk is a sequence of indices converging to +∞, (uk)k∈N is a
sequence such that uk ∈W 1,p(Ωnk

) for every k, and uk1Ωnk
converges weakly in Lp(RN )

to a function ϕ, while ∇uk1Ωnk
converges weakly in Lp(RN ,RN ) to a function Φ, then

there exists u ∈W 1,p(Ω) such that ϕ = u1Ω and Φ = ∇u1Ω.
Using a diagonal argument, we have that in order to establish (M1), it suffices to approximate
functions belonging to a dense subset of W 1,p(Ω). This fact will be used several times in Section
4.

3. The density result

This section is devoted to the proof of the density of W 1,2 into W 1,p with 1 ≤ p < 2 on a two-
dimensional domain which satisfies a suitable structural assumption, for example if its complement
has a countable number of connected components. Recall that the two-dimensional domain is not
assumed to be regular (for example it may contain a crack), so that extension operators cannot
be used.

First of all, we establish the density result at the level of the gradients (Theorem 3.5). The
extension to the full result on Sobolev spaces (Theorem 3.8) is then obtained through a truncation
argument.

The class of admissible domains we consider is given in the following definition.

Definition 3.1. (The class Ap(R2) of admissible domains) Let 1 ≤ p < 2, and let Ω ⊆ R2

be open and bounded. Let {Ki}i∈I be the family of the connected components of Ωc. We say that
Ω belongs to the class Ap(R2) of admissible domains if for every i ∈ I there exists xi ∈ Ki such
that setting E := {xi, i ∈ I} we have

(3.1) H2−p(E) = 0.

Notice that the class Ol(R2) of two-dimensional domains such that their complements have at
most l connected components (which is relevant for stability of nonlinear Neumann problems, see
Section 4.1) is contained in Ap(R2). Moreover Ap(R2) contains domains Ω such that Ωc has a
countable number of connected components, or even an uncountable number provided that there
exists a suitable selection E of {Ki}i∈I with zero Hausdorff measure of order 2 − p. We remark
that condition (3.1) is not referred to the connected components Ki of Ωc but to a selection E of
{Ki}i∈I : in particular it can be meas(Ki) > 0 (not only for the unbounded connected component).

The following lemmas will be useful in the proof of Theorem 3.5.

Lemma 3.2. Let A ⊆ R2 be open, and let u ∈W 1,q(A) with q > 2. Then we have meas(u(E)) = 0
for every E ⊆ A such that H

q−2
q−1 (E) = 0 (in the case q = +∞ we mean H1(E) = 0).

Proof. If q = +∞, the result follows because u is a locally Lipschitz function and meas(f(C)) =
H1(f(C)) ≤ LH1(C) for every L-Lipschitz function f and every set C (see [19, Theorem 1, Section
2.4.1]).

In the case 2 < q < +∞, we follow the approach that Marcus and Mizel [24] developed to
deal with N -property of Sobolev transformations (see [20] for a description of the problem of
N -property, and [20, Theorem 5.28]).

By Sobolev Embedding Theorem u is a Hölder continuous function. Moreover, for any square
Qr ⊆ A of side r we have

(3.2) |u(x)− ūQr | ≤ Cq‖∇u‖Lq(Qr,R2)r
1−2/q,
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where ūQr denotes the average of u on Qr, and Cq depends only on q. From (3.2) we deduce that
u(Qr) is contained in an interval IQr

of length at most

lQr
:= 2Cq‖∇u‖Lq(Qr,R2)r

1−2/q.

Let E ⊆ A be such that H
q−2
q−1 (E) = 0, and let us fix ε > 0 and δ > 0. Since H

q−2
q−1 (E) = 0, we

can find a covering F = {Qri
(xi)}i∈N of E with Qri

(xi) ⊆ A,

(3.3)
+∞∑
i=0

r
q−2
q−1
i < ε

and such that
li := 2Cq‖∇u‖Lq(Qri

(xi),R2)r
1−2/q
i < δ.

By Besicovich Covering Theorem (see [19, Section 1.5.2, Theorem 2]) there exist m families
F1,F2, . . . ,Fj , . . . ,Fm ⊆ F of disjoint squares {Qri,j (xi,j)}i∈N such that

E ⊆
m⋃

j=1

+∞⋃
i=0

Qri,j (xi,j).

By Hölder inequality and by (3.3) we deduce that
m∑

j=1

+∞∑
i=0

li,j = 2Cq

m∑
j=1

+∞∑
i=0

‖∇u‖Lq(Qri,j
(xi,j),R2)r

1−2/q
i,j

≤ 2Cq

 m∑
j=1

+∞∑
i=0

‖∇u‖q
Lq(Qri,j

(xi,j),R2)

 1
q
 m∑

j=1

+∞∑
i=0

r
q−2
q−1
i,j


q−1

q

≤ 2Cqm‖∇u‖Lq(A,R2)ε
q−1

q

so that
H1

δ(u(E)) ≤ 2Cqm‖∇u‖Lq(A,R2)ε
q−1

q ,

where H1
δ(E) denotes the (1, δ)-Hausdorff pre-measure. Since H1(u(E)) = limδ→0H1

δ(u(E)), and
H1(u(E)) = meas(u(E)), we conclude that

meas(u(E)) ≤ 2Cqm‖∇u‖Lq(A,R2)ε
q−1

q .

Since ε is arbitrary, we deduce that meas(u(E)) = 0. �

Lemma 3.3. Let φ ∈ W 1,p(RN ) ∩ C0(RN ) with p ∈ [1,+∞]. Let K ⊆ RN be such that φ(K) is
compact and meas(φ(K)) = 0. Then there exists φn ∈W 1,p(RN ) ∩ C0(RN ) with

(3.4) φn → φ strongly in W 1,p(RN ) if 1 ≤ p < +∞,

(3.5) (φn,∇φn) ∗
⇀ (φ,∇φ) weakly∗ in L∞(RN ,RN+1) if p = +∞,

and such that φn is locally constant on a neighborhood of K, i.e., ∇φn = 0 a.e. on a neighborhood
An of K.

Proof. By assumption C := φ(K) is compact and such that meas(C) = 0. Let us set

Cn :=
{
y ∈ R : dist(y, C) ≤ 1

n

}
and

Tn(y) :=
∫ y

0

1R\Cn
(s) ds.

Since meas(Cn) → 0 as n→ +∞, we get that

(3.6) Tn → Id pointwise.

Moreover, Tn is 1-Lipschitz, T ′n = 0 a.e. on Cn, and

(3.7) T ′n(y) → 1 for a.e. y ∈ R.
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Let us set

(3.8) φn := Tn ◦ φ.

We have that φn ∈ W 1,p(RN ) ∩ C0(RN ), and by the Chain Rule Formula for Sobolev functions
(see for instance [3, Theorem 3.99]) we get for a.e. x ∈ RN

(3.9) ∇φn(x) = T ′n(φ(x))∇φ(x)

(recall that ∇φ = 0 a.e. on φ−1(C) since C has zero measure [3, Proposition 3.92])).
In view of (3.9), ∇φn = 0 on An := φ−1(Cn) which is a neighborhood of K. Moreover, by (3.6)

and (3.7), we have that (3.8) and (3.9) imply that

φn → φ and ∇φn → ∇φ a.e. on RN .

Since |φn| ≤ |φ| and |∇φn| ≤ |∇φ|, we deduce that (3.4) and (3.5) hold. �

The following lemma is very close in spirit to [18, Lemma 3.6]

Lemma 3.4. Let Ω ⊆ R2 be open and bounded, and let q ≥ 2. Let ψ ∈ Lq(Ω,R2) be such that∫
Ω

ψ · ∇u dx = 0 for every u ∈W 1,2(Ω).

Then there exists φ ∈ W 1,q(R2) constant on the connected components of Ωc (in the case q = 2
constant c2-quasi everywhere) and such that

∇φ = Rψ,

where R(a, b) := (−b, a) denotes a rotation of 90 degrees counterclockwise.

Proof. Let us denote by Ki, i ∈ I, the connected components of Ωc, and let K0 be the unbounded
one.

Since ψ ∈ L2(Ω,R2), by Helmholtz decomposition of the space L2(Ω,R2) (see [21, Theorem
1.1, Chapter III]), there exists ψn ∈ C∞c (Ω,R2) with divψn = 0 and

(3.10) ψn → ψ strongly in L2(Ω,R2).

By setting ψn = 0 outside Ω, we can consider ψn as defined on the entire R2. Let us consider
ϕn := Rψn. Since R2 is simply connected, and ϕn has zero-curl, we have that there exists
φn ∈ C∞(R2) such that

∇φn = Rψn.

In particular ∇φn = 0 on a neighborhood An of Ωc, so that for every i ∈ I there exists cni ∈ R
such that

(3.11) φn = cni on a neighborhood An
i of Ki.

Since φn is well defined up to a constant, we can assume that φn = 0 on K0. Let D be a disk
centered at the origin and such that Ω ⊆ D. By (3.10) we deduce that there exists φ ∈ W 1,2

0 (D)
such that

φn → φ strongly in W 1,2
0 (D).

We have that
∇φ = Rψ ∈ Lq(Ω,R2).

We deduce that φ ∈W 1,q
0 (D), and in particular φ ∈W 1,q(R2). Since up to a subsequence φn → φ

c2-q.e., from (3.11) we deduce that there exists ci ∈ R, i ∈ I, such that

(3.12) φ = ci c2-q.e. on Ki.

In the case q > 2, we have that φ is Hölder continuous by Sobolev Embedding Theorem. So by
Lemma 2.1, we get that (3.12) implies that φ is constant on Ki, and the proof is concluded. �

The following theorem contains the density result for the gradients.
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Theorem 3.5. Let 1 ≤ p < 2, and let Ω ∈ Ap(R2) be an admissible domain. Then for every
u ∈W 1,p(Ω) there exists (un)n∈N sequence in W 1,2(Ω) such that

∇un → ∇u strongly in Lp(Ω,R2).

Proof. Let Ki, i ∈ I, be the connected components of Ωc. Let us consider

(3.13) H := {∇v : v ∈W 1,2(Ω)} ⊆ Lp(Ω,R2).

In order to prove the density result, it suffices to check that for every u ∈W 1,p(Ω) we have

∇u ∈ H,

where H denotes the closure of H in the Lp-norm. Since

H = (H⊥)⊥,

where (·)⊥ denotes the orthogonal space in the sense of Banach spaces, we have to check that

(3.14) ∇u ∈ (H⊥)⊥.

Our strategy to prove (3.14) is the following. Firstly we characterize the functions ψ ∈ H⊥,
and then we prove that for every u ∈W 1,p(Ω) we have the orthogonality condition

(3.15)
∫

Ω

ψ · ∇u dx = 0.

Step 1: Characterization of H⊥. Let ψ ∈ H⊥ ⊆ Lp′(Ω,R2), where p′ > 2 is the conjugate
exponent of p (p′ = p

p−1 if p ∈]1, 2[, p′ = +∞ if p = 1). By definition of H⊥ we have that for
every v ∈W 1,2(Ω) ∫

Ω

ψ · ∇v dx = 0.

By Lemma 3.4, we deduce that there exists φ ∈ W 1,p′(R2) with ∇φ = Rψ (R(a, b) := (−b, a) is
the rotation of 90 degrees counterclockwise), and such that for every i ∈ I

(3.16) φ = ci on Ki

for suitable ci ∈ R.

Step 2: Checking the orthogonality condition. In order to conclude the proof, it suffices to
check that (3.15) holds for every u ∈W 1,p(Ω). By Step 1, we need to check that

(3.17)
∫

Ω

ψ · ∇u dx = −
∫

Ω

R∇φ · ∇u dx = 0,

where φ ∈W 1,p′(R2) satisfies (3.16) for some ci ∈ R, i ∈ I.
Notice that φ(Ωc) is compact. Moreover, since Ω ∈ Ap(R2), there exists a selection E of the

connected components Ki of Ωc such that

H
p′−2
p′−1 (E) = H2−p(E) = 0 if 1 < p < 2

and
H1(E) = 0 if p = 1.

By (3.16) we get φ(Ωc) = φ(E), and by Lemma 3.2 we have that meas(φ(Ωc)) = meas(φ(E)) = 0.
Applying Lemma 3.3, there exists φn ∈W 1,p′(R2) such that

(3.18) φn → φ strongly in W 1,p′(R2) if 1 < p < 2,

(3.19) (φn,∇φn) ∗
⇀ (φ,∇φ) weakly∗ in L∞(R2,R3) if p = 1,

and

(3.20) ∇φn = 0 on a neighborhood An of Ωc.
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Notice that R∇φn is divergence-free. Up to reducing An, we can assume that Ω \ An is regular,
and that the support of R∇φn is contained in Ω \An. Then we have∫

Ω

R∇φ · ∇u dx = lim
n→+∞

∫
Ω

R∇φn · ∇u dx = lim
n→+∞

∫
Ω\An

R∇φn · ∇u dx,

and integrating by parts we deduce that

lim
n→+∞

∫
Ω\An

R∇φn · ∇u dx = lim
n→+∞

∫
Ω\An

div (R∇φn)u dx = 0,

so that (3.17) is proved, and the proof is concluded. �

Remark 3.6. As mentioned in the Introduction, the density result given by Theorem 3.5 (and
the similar result for Sobolev spaces Theorem 3.8) is useful to establish a link between stability
results for linear and nonlinear Neumann problems. Since stability results usually hold under the
assumption of a uniform bound on the number of the connected components of the complements
of the varying domains (see Section 4.1), the case Ωc has a finite number of connected components
is the relevant one for the applications.

In this case, the existence of the function φn satisfying conditions (3.18) and (3.20) in Step 2
of the proof of Theorem 3.5 can be established more directly without using the approximation
Lemma 3.3 as follows (the case p = 1 is usually not considered in the study of nonlinear Neumann
problems in view of a lack of compactness of W 1,1).

Let K0,K1, . . . ,Km be the connected components of Ωc, where K0 is the unbounded one. Let
us consider ξ0 ∈ C∞(R2) and ξi ∈ C∞c (R2), i = 1, . . . ,m such that ξ0 = 1 on a neighborhood of
K0, ξi = 1 on a neighborhood of Ki, and

supp(ξh) ∩ supp(ξk) = ∅ for h 6= k.

By [2, Theorem 9.1.3] for every i = 0, 1, . . . ,m we can find φi
n ∈ C∞(R2) with

φi
n = ci on a neighborhood of Ki

and such that
φi

n → φ strongly in W 1,p′(R2).
Setting

φn :=

(
1−

m∑
i=0

ξi

)
φ+

m∑
i=0

ξiφ
i
n,

we get that (3.18) and (3.20) hold.

Remark 3.7. In the proof of Theorem 3.5 we used the assumption that Ω belongs to the class
Ap(R2) in order to apply the approximation Lemma 3.3 and recover the functions φn satisfying
(3.18), (3.19) and (3.20). Lemma 3.3 requires that meas(φ(Ωc)) = 0, and for Ω ∈ Ap(R2) every
function φ ∈W 1,p′(R2) constant on the connected components of Ωc is such that meas(φ(Ωc)) = 0.
In particular this is the case for the functions we need to approximate, that is φ ∈W 1,p′(R2) such
that R∇φ ∈ H⊥.

We do not know if for a general Ω we can have meas(φ(Ωc)) = 0 for any φ ∈ W 1,p′(R2)
determining an element of H⊥. For such a φ, by Step 1 (and in view of the proof of Lemma 3.4),
we have that there exists a sequence of smooth functions φn such that

(3.21) ∇φn = 0 on a neighborhood of Ωc

and

(3.22) φn → φ strongly in W 1,2(R2).

In particular φn(Ωc) is finite so that meas(φn(Ωc)) = 0. If this always implies that in the limit
meas(φ(Ωc)) = 0, the fact that φ is energetically more regular than φn, i.e., φ ∈W 1,p′(R2), plays
an essential role.

We can consider indeed the following example which shows a sequence (φn)n∈N of smooth
functions satisfying (3.21) and (3.22) but with φ ∈ W 1,2(R2) ∩ C(R2) and such that φ(Ωc) is the
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interval [−1, 1]. Moreover Ωc can be chosen such that its connected components admit a selection
E with dimension zero, i.e., Hα(E) = 0 for every α > 0, so that Ω ∈ Ap(R2). This example heavily
relies on a construction proposed by Malý and Martio [23] in connection with the N -property of
Sobolev transformations.

Let us consider the square Q :=]− 2, 2[×]− 2, 2[ in R2, J := {(t, 0) : −1 ≤ t ≤ 1}, and αn ↘ 0.
Since a point has c2-capacity zero, there are functions um ∈ C∞(R2) such that

um → 0 strongly in W 1,2(R2)

and such that 0 ≤ um ≤ 1, 0 ∈ int{um = 1}, and um = 0 outside the ball B(0, 1). Let z1, z2 ∈ J
and r0 > 0 be such that the balls B(z1, r0) and B(z2, r0) are disjoint. Let us set

gm(x) :=
1
2
um

(
x− z1
r0

)
− 1

2
um

(
x− z2
r0

)
.

The functions φn ∈ C∞(R2) are constructed as follows. Let φ0 be the constant function equal
to 0. If n ≥ 1, let us divide the interval I := [−1, 1] in n intervals In

i of length 2/n; we can find
points xn

i ∈ J and a radius rn so small that nrαn
n → 0 and φn−1 maps B(xn

i , rn) to the middle
point of In

i . Let Bn :=
⋃n

i=1B(xn
i , rn),

hm,n(x) :=

{
2−n+1gm

(
x−xn

i

rn

)
if |x− xn

i | ≤ rn for some i

0 otherwise,

and let mn be such that
‖hmn,n‖W 1,2(R2) ≤ 2−n.

We set
φn := φn−1 + hmn,n,

and we denote by φ the strong limit in W 1,2(R2) of (φn)n∈N, which is by construction a Cauchy
sequence. Notice that φ ∈W 1,2(R2) ∩ C(R2), and that the convergence is also uniform.

Let Ω := Q \
⋂

n∈N Bn. We have that Ωc = Qc ∪
⋂

n∈N Bn. Since nrαn
n → 0, we have that

Hα(∩n∈NBn) = 0 for every α > 0. As a consequence, the connected components of Ωc admit a
selection E such that Hα(E) = 0 for every α > 0. In particular Ω ∈ Ap(R2).

By construction we have that φn is constant on a neighborhood of Ωc but, since φn → φ
uniformly, it is easy to see that φ(Ωc) = [−1, 1]. Clearly φ cannot belong to W 1,q(R2) for some
q > 2, because otherwise its Hölder continuity would imply meas(φ(Ωc)) = 0.

We are now in a position to prove the main density result of this paper.

Theorem 3.8. Let 1 ≤ p < 2, and let Ω ∈ Ap(R2) be an admissible domain. Then W 1,2(Ω) is
dense in W 1,p(Ω).

Proof. The main ingredients in the proof are Theorem 3.5 and a truncation argument. It is not
restrictive to assume that Ω is connected, because we can work on each connected component.

Let u ∈W 1,p(Ω). The density result will be proved if we show that for every ε > 0 we can find
(un)n∈N sequence in W 1,2(Ω) such that

(3.23) lim sup
n→+∞

‖un − u‖W 1,p(Ω) ≤ eε,

where eε → 0 as ε→ 0.
It is not restrictive to assume that

u ∈W 1,p(Ω) ∩ L∞(Ω).

In fact, if k > 0 and
Tk(u) := min{max{u,−k}, k},

we have Tk(u) ∈ W 1,p(Ω) ∩ L∞(Ω) and Tk(u) → u strongly in W 1,p(Ω) as k → +∞. Then if
(3.23) holds for Tk(u), by a diagonal argument it also holds for u.

Let A ⊂⊂ Ω, A regular and connected, such that

(3.24) ‖∇u‖p
Lp(Ω\A) + ‖u‖p

∞|Ω \A| < ε.
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By Theorem 3.5, there exists vn ∈W 1,2(Ω) such that

(3.25) ∇vn → ∇u strongly in Lp(Ω,R2).

We claim that, up to adding a constant to vn, we can assume that

(3.26) vn → u strongly in W 1,p(A).

Let us set

(3.27) un := min{max{vn,−‖u‖∞}, ‖u‖∞}.

Notice that un ∈W 1,2(Ω),

(3.28) un → u strongly in W 1,p(A),

and that

(3.29) |∇un| ≤ |∇vn| a.e. in Ω.

In view of (3.28), (3.29), (3.25), (3.27), and (3.24), we deduce that

lim sup
n→+∞

‖un − u‖p
W 1,p(Ω) ≤ lim sup

n→+∞
‖un − u‖p

W 1,p(A) + lim sup
n→+∞

‖un − u‖p

W 1,p(Ω\A)

= lim sup
n→+∞

‖un − u‖p

W 1,p(Ω\A)
≤ lim sup

n→+∞
2p−1

(∫
Ω\A

|∇un|p + |∇u|p + |un|p + |u|p dx

)
≤ 2p(‖∇u‖p

Lp(Ω\A)
+ ‖u‖p

∞|Ω \A|) ≤ 2pε

so that (3.23) is proved.
In order to complete the proof, let us check that claim (3.26) holds. If

cn :=
1
|A|

∫
A

vn dx,

since A is regular, by Poincaré inequality we have

ṽn = vn − cn is bounded in W 1,p(A).

Moreover, by the compact embedding of W 1,p(A) in Lp(A), there exists ṽ ∈ Lp(A) such that up
to a subsequence

ṽn → ṽ strongly in Lp(A).

Since ∇ṽn = ∇vn on A, and in view of (3.25), we get that ∇ṽ = ∇u in the sense of distributions
on A. We deduce that ṽ ∈W 1,p(A),

ṽn → ṽ strongly in W 1,p(A),

and since A is connected
ṽ = u+ cA

for some constant cA ∈ R. If we set v̂n := vn − cn − cA we get

v̂n → u strongly in W 1,p(A),

so that claim (3.26) is proved. �

Remark 3.9. (The case Ω unbounded) The density of W 1,2(Ω) into W 1,p(Ω) when 1 ≤ p < 2
holds also in the case Ω is unbounded but there exists rn → +∞ with Ωn := Ω∩B(0, rn) ∈ Ap(R2).
In fact, if u ∈ W 1,p(Ω), we have u ∈ W 1,p(Ωn) so that there exists vn

k ∈ W 1,2(Ωn) with vn
k → u

strongly in W 1,p(Ωn) as k → +∞. If χn is C∞ function with 0 ≤ χn ≤ 1, χn = 1 on B(0, rn/2)
and χn = 0 outside B(0, rn), in order to conclude it suffices to choose un := vn

kn
χn ∈W 1,2(Ω) for

kn sufficiently large.
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4. Applications

In this section, we give some applications of Theorem 3.8 to stability under boundary variations
of nonlinear Neumann problems, and to the optimal cutting of a membrane.

Since we work on domains which are not assumed to be regular (for example they may contain
cracks), we will use Deny-Lions spaces. They are defined as follows. Let Ω be an open subset of
RN , p ∈ [1,∞[, and b ∈ L∞(RN ) with b ≥ 0. Let us set

L1,p
b (Ω) := {u ∈ Lp

loc(Ω) : ∇u ∈ Lp(Ω,RN ),
∫

Ω

|u|pb dx < +∞}.

We say that uRbv if ∫
Ω

[|∇u−∇v|p + b|u− v|p] dx = 0,

and we set

(4.1) L1,p
b (Ω) := L1,p

b (Ω)/Rb

endowed with the norm ‖u‖ := ‖∇u‖Lp(Ω,RN ) + (
∫
Ω
|u|pb dx)1/p. L1,p

b (Ω) is the Deny-Lions space
of exponent p and weight b. In the case b ≡ 0, it is usually denoted by L1,p(Ω).

Notice that W 1,p(Ω) ⊆ L1,p
b (Ω). In the case b ≥ c > 0 and Ω is Lipschitz, we have that equality

holds, while if b vanishes on subsets with positive measure or Ω is irregular, the inclusion can be
strict (see for example [26, Section 2.7]). Moreover W 1,p(Ω) is always dense in L1,p

b (Ω), as one
can check by truncation. As a consequence, in view of Theorem 3.8, we have the following density
result.

Proposition 4.1. Let Ω ∈ Ap(R2) be an admissible domain (see Definition 3.1), and let b ∈
L∞(R2) such that b ≥ 0. Then W 1,2(Ω) is dense in L1,p

b (Ω) for 1 ≤ p < 2.

Let

(4.2) Ol(R2) := {A ⊆ R2 open : R2 \A has at most l connected components}.
For every u ∈ L1,p

b (Ω), we denote by ∇u1Ω and u1Ω the extension to zero outside Ω of ∇u and
u respectively. We will use the following proposition due to Bucur and Varchon (see [8] and [9,
Theorem 4.1, Remark 5.2]), which is a sort of Mosco limsup condition (see Section 2) for the
spaces L1,2.

Proposition 4.2. Let Ωn be a sequence in Ol(R2) converging to Ω in the Hausdorff complementary
topology (see Section 2) and such that

meas(Ωn ∩ {b > 0}) → meas(Ω ∩ {b > 0}).
Then for every u ∈ L1,2

b (Ω) there exists un ∈ L1,2
b (Ωn) such that

∇un1Ωn
→ ∇u1Ω strongly in L2(R2,R2)

and
un1Ωn

→ u1Ω strongly in L2
b(R2),

where L2
b(R2) denotes the L2-space on R2 with weight b.

Propositions 4.1 and 4.2 will be our main tools in dealing with stability of nonlinear Neumann
problems and with the optimal cutting of a membrane.

4.1. Stability of nonlinear Neumann problems under boundary variations. Let p ∈
]1,+∞[, and let A : R2 ×R2 → R2 and B : R2 ×R → R be two Carathéodory functions such that
the following conditions hold: there exist α ∈ Lp′(R2) (p′ := p

p−1 ), β ∈ L1(R2), 0 < c1 ≤ c2 such
that for almost every x ∈ R2 and for every ξ, ξ1, ξ2 ∈ R2 with ξ1 6= ξ2

(4.3) (A(x, ξ1)−A(x, ξ2))(ξ1 − ξ2) > 0,

(4.4) |A(x, ξ)| ≤ α(x) + c2|ξ|p−1,

(4.5) A(x, ξ) · ξ ≥ β(x) + c1|ξ|p.
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We assume that B satisfies (4.3), (4.4) and (4.5) for almost every x ∈ R2, and for all ξ, ξ1, ξ2 ∈ R,
with ξ1 6= ξ2.

Let Ω be a bounded open subset of R2. We are interested in the stability under boundary
variations of Ω of the elliptic equation

(4.6)

{
−divA(x,∇u) +B(x, u) = 0 in Ω,
A(x,∇u) · ν = 0 on ∂Ω,

where ν denotes the outer normal to ∂Ω. Since we do not assume any regularity on A,B and on
the boundary of Ω, we intend (4.6) in the usual weak sense of Sobolev spaces. More precisely by
a solution of problem (4.6) we mean a function uΩ ∈ W 1,p(Ω) such that for every test function
ϕ ∈W 1,p(Ω) we have ∫

Ω

[A(x,∇uΩ)∇ϕ+B(x, uΩ)ϕ] dx = 0.

Existence and uniqueness of a solution to (4.6) follow by well known results on nonlinear elliptic
equations with strictly monotone operators (see for instance [22]).

Let (Ωn)n∈N be a sequence of uniformly bounded open sets in R2. We say that Ω is stable for
the Neumann problems (4.6) along the sequence (Ωn)n∈N if

uΩn1Ωn → uΩ1Ω strongly in Lp(R2)

and
∇uΩn

1Ωn
→ ∇uΩ1Ω strongly in Lp(R2,R2).

Dal Maso, Ebobisse and Ponsiglione [18, Theorem 2.3] proved that Ω is stable for problem (4.6)
along (Ωn)n∈N for every admissible A and B if and only if the space W 1,p(Ωn) converges in the
sense of Mosco to W 1,p(Ω) (see Section 2 for a definition).

If Ωn is in the class Ol(R2) defined in (4.2), Bucur and Varchon [8] proved that if Ωn → Ω in
the Hausdorff complementary topology (see Section 2 for a definition) then W 1,2(Ωn) converges
in the sense of Mosco to W 1,2(Ω) if and only if meas(Ωn) → meas(Ω).

Dal Maso, Ebobisse and Ponsiglione [18] extend this result to the case 1 < p < 2 using a
technique of nonlinear harmonic conjugates, and they prove that in the case p > 2 the result is in
general false.

In the following proposition, using Theorem 3.8 we prove that the result of [18] can be deduced
directly by that of [8].

Proposition 4.3. Let (Ωn)n∈N be a sequence of uniformly bounded sets in Ol(R2) such that Ωn

converges to Ω in the Hausdorff complementary topology, and let 1 < p < 2. Then W 1,p(Ωn)
converges in the sense of Mosco to W 1,p(Ω) (and hence problems (4.6) are stable) if and only if

(4.7) meas(Ωn) → meas(Ω).

Proof. Let us assume that the Mosco convergence holds. Let ξ ∈ R2 with |ξ| = 1. Let us consider
u ∈W 1,p(Ω) such that u(x) := ξ · x. By (M1)-condition, there exists un ∈W 1,p(Ωn) such that

∇un1Ωn
→ ∇u1Ω strongly in Lp(R2,R2).

Since |∇un1Ωn
−∇u1Ω| = 1 a.e. on Ω \ Ωn, we get

(4.8) lim sup
n→+∞

meas(Ω \ Ωn) ≤ lim
n→+∞

∫
R2
|∇un1Ωn

−∇u1Ω|p dx = 0.

Let us consider un ∈ W 1,p(Ωn) such that un(x) = ξ · x. By (M2)-condition, up to a subsequence
we have that there exists u ∈W 1,p(Ω) such that

∇un1Ωn ⇀ ∇u1Ω weakly in Lp(R2,R2).

Then, if D is a disk containing Ωn for every n we get

(4.9) ξ lim
n→+∞

meas(Ωn \ Ω) = lim
n→+∞

∫
R2
∇un1Ωn

1D\Ω dx =
∫

R2
∇u1Ω1D\Ω dx = 0.

Combining (4.8) and (4.9), we get that (4.7) holds.
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On the contrary, let us assume that (4.7) holds, and let us prove the Mosco convergence of
W 1,p(Ωn) to W 1,p(Ω).

Concerning condition (M2), let uk ∈W 1,p(Ωnk
) be such that

∇uk1Ωnk
⇀ Φ weakly in Lp(R2,R2)

and
uk1Ωnk

⇀ ϕ weakly in Lp(R2)

for some Φ ∈ Lp(R2,R2) and ϕ ∈ Lp(R2). Clearly, since Ωn converges to Ω in the Hausdorff
complementary topology, we have that Φ = ∇ϕ on Ω, so that u := (ϕ)|Ω ∈ W 1,p(Ω). In order to
conclude that (M2) holds, we have to prove that Φ = ∇u1Ω and ϕ = u1Ω. Since Ωnk

→ Ω in the
Hausdorff complementary topology and meas(Ωn) → meas(Ω), we have

1Ωnk
→ 1Ω strongly in L1(R2).

Then for all η ∈ C∞c (R2,R2) we deduce∫
R2

Φ · η dx = lim
k→+∞

∫
R2

[∇uk1Ωnk
] · η dx = lim

k→+∞

∫
R2

[∇uk1Ωnk
] · [η1Ωnk

] dx

=
∫

R2
Φ · η1Ω dx =

∫
R2

Φ1Ω · η dx =
∫

R2
∇u1Ω · η dx

so that Φ = ∇u1Ω. Similarly we can prove that ϕ = u1Ω.
Let us prove condition (M1). Since it is sufficient to approximate functions in a dense subset of

W 1,p(Ω), since Ol(R2) ⊆ Ap(R2), we can consider in view of Theorem 3.8 functions u ∈W 1,2(Ω).
Then by Proposition 4.2 (with b ≡ 1) there exists un ∈W 1,2(Ωn) such that

‖un1Ωn − u1Ω‖L2(R2) + ‖∇un1Ωn −∇u1Ω‖L2(R2,R2) → 0.

Since W 1,2(Ωn) ⊆W 1,p(Ωn), and since the L2-norm is stronger that Lp-norm on bounded domains
(1 < p < 2), we deduce that (M1) holds, and the proof is concluded. �

Let us now consider the following nonlinear Neumann problem

(4.10)

{
−divA(x,∇u) + b(x)|u|p−2u = h in Ω,
A(x,∇u) · ν = 0 on ∂Ω,

where A is a Carathéodory function satisfying conditions (4.3), (4.4), (4.5), A(x, 0) = 0 for a.e.
x ∈ R2, b ∈ L∞(R2) and b ≥ 0. In order to guarantee the solvability of (4.10), we assume moreover
that h = bf + g with f, g ∈ Lp′(R2), supp g ⊆ Ω, and

∫
C
g dx = 0 for every connected component

C of Ω. We are interested in problem (4.10) because it introduces some degeneracy with respect
to problem (4.6) as b can vanish on regions of Ω with positive measure.

By a solution of (4.10) we mean a function uΩ ∈ L1,p
b (Ω) (or more precisely an equivalence

class, see (4.1) for a definition) such that for every ϕ ∈ L1,p
b (Ω)∫

Ω

[A(x,∇uΩ) · ∇ϕ+ b(x)|uΩ|p−2uΩϕ] dx =
∫

Ω

hϕdx.

Notice that the integrals appearing in the weak formulation of (4.10) are well defined: in particular
notice that, if U is a regular open set such that supp g ⊆ U ⊆ U ⊆ Ω, and ϕ̄ denotes the average
of ϕ on U , by Hölder and Poincaré inequalities we get∣∣∣∣∫

Ω

gϕ dx

∣∣∣∣ = ∣∣∣∣∫
U

gϕ dx

∣∣∣∣ = ∣∣∣∣∫
U

g(ϕ− ϕ̄) dx
∣∣∣∣ ≤ C‖g‖Lp′ (R2)‖∇ϕ‖Lp(Ω).

The existence of a solution uΩ of (4.10) can be established minimizing on L1,p
b (Ω) the functional

F (u) :=
∫

Ω

[A(x,∇u) · ∇u+ b(x)|u|p − hu] dx

by means of the Direct Method of the Calculus of Variations. Uniqueness of the solution follows
by strict convexity of F .
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We say that Ω is stable for the Neumann problems (4.10) along the sequence (Ωn)n∈N if

lim
n→+∞

∫
|∇uΩn1Ωn −∇uΩ1Ω|p + b(x)|uΩn1Ωn − uΩ1Ω|p dx = 0.

The stability of Neumann problems (4.10) has been investigated by Bucur and Varchon in [9]
in the case p = 2 and A(x, ξ) = ξ (but it easily generalizes to A(x, ξ) = a(x)ξ with a giving the
correct coercivity).

The main interest in the stability of (4.10) is that, since b is not assumed to be strictly positive,
stability is not equivalent to the Mosco convergence of L1,2

b (Ωn) to L1,2
b (Ω) (see [9, Remark 5.2]).

As a consequence, passing to the nonlinear setting with 1 < p < 2, an approach to stability in the
line of Dal Maso, Ebobisse and Ponsiglione [18] based on Mosco convergence cannot be directly
used in this situation.

Let (Ωn)n∈N be a sequence of uniformly bounded open sets in R2. In the case p = 2, Bucur and
Varchon [9] proved that, if Ωn ∈ Ol(R2) and Ωn → Ω in the Hausdorff complementary topology,
then stability of (4.10) holds if and only if meas(Ωn ∩ {b > 0}) → meas(Ω∩ {b > 0}). Proposition
4.1 permits to extend this result to problems (4.10).

Proposition 4.4. Let (Ωn)n∈N be a sequence of uniformly bounded open sets in Ol(R2) converging
to Ω in the Hausdorff complementary topology. Then Ω is stable along (Ωn)n∈N for the Neumann
problems (4.10) if and only if

(4.11) meas(Ωn ∩ {b > 0}) → meas(Ω ∩ {b > 0}).

Proof. Let us assume that stability holds. Then if we choose f = 1 and g = 0 so that h = b, we
deduce that

uΩn
= 1Ωn

and uΩ = 1Ω

and that

(4.12) 1Ωn → 1Ω strongly in Lp
b(R

2),

where Lp
b(R2) denotes the Lp-space with weight b. In particular

(4.13) meas([Ωn∆Ω] ∩ {b > 0}) → 0,

where C∆D denotes the symmetric difference of C and D. In fact, if (4.13) does not hold, we
have that there exists χ ∈ L∞(R2) with χ1{b>0} = 0, χ 6= 0 and

1[Ωn∆Ω]∩{b>0}
∗
⇀ χ weakly∗ in L∞(R2).

As a consequence it would be∫
R2
b1[Ωn∆Ω] dx =

∫
R2
b1[Ωn∆Ω]∩{b>0} dx→

∫
R2
bχ dx > 0

which is against (4.12). Since

|meas(Ωn ∩ {b > 0})−meas(Ω ∩ {b > 0})| ≤ meas([Ωn∆Ω] ∩ {b > 0}) → 0,

we deduce that (4.11) holds.
Let us assume now that (4.11) holds. Let us set un := uΩn

. Choosing un as a test in (4.10)
we deduce that un is bounded in L1,p

b (R2). Up to a subsequence we have that there exist Φ ∈
Lp(R2,R2) and ϕ ∈ Lp

b(R2) such that

(4.14) ∇un1Ωn
⇀ Φ weakly in Lp(R2,R2)

and

(4.15) un1Ωn ⇀ ϕ weakly in Lp
b(R

2).

By the convergence of Ωn to Ω in the Hausdorff complementary topology, we have that Φ = ∇ϕ on
Ω. In fact let Ψ ∈ C∞c (Ω,R2) and let U be a regular subset of Ω such that supp(Ψ) ⊆ U ⊆ U ⊆ Ω.
Then U ⊆ Ωn for n large and ∫

U

∇un ·Ψ dx = −
∫

U

undivΨ dx.
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Let cn be the average of un on U . By Poincaré inequality and Rellich Compact Embedding of
W 1,p(U) into Lp(U) we get up to a further subsequence

(4.16) (un − cn) → ũ strongly in Lp(U).

In particular the convergence is strong in Lp
b(U) and

(4.17)
∫

U

Φ ·Ψ dx = −
∫

U

ũ divΨ dx.

By (4.15) and (4.16) we deduce that cn = un − (un − cn) converges to some c ∈ R. We conclude
that ũ = ϕ− c and by (4.17) we get∫

U

Φ ·Ψ dx = −
∫

U

ϕdivΨ dx

which means that Φ = ∇ϕ on Ω.
Notice moreover that (4.11) and (4.15) imply that

(4.18) lim
n→+∞

∫
R2
un1Ωn

h dx =
∫

Ω

ϕhdx.

In fact, since h = bf + g and supp(g) ⊆ Ω, it suffices to check that

lim
n→+∞

∫
R2
un1Ωn

bf dx =
∫

Ω

ϕbf dx.

Since 1Ωn∩{b>0} → 1Ω∩{b>0} strongly in L1(R2) we have

lim
n→+∞

∫
R2
un1Ωn

bf dx = lim
n→+∞

∫
R2
un1Ωn

bf1Ωn∩{b>0} dx =
∫

R2
ϕbf1Ω∩{b>0} dx.

Let us prove that ϕ = uΩ on Ω. In fact, for every v ∈ L1,p
b (Ω), by monotonicity we have that

(4.19)
∫

R2
[A(x,∇v1Ω) · (∇v1Ω −∇un1Ωn

) +B(x, v1Ω)(v1Ω − un1Ωn
)] dx

≥
∫

R2
[A(x,∇un1Ωn) · (∇v1Ω −∇un1Ωn) +B(x, un1Ωn)(v1Ω − un1Ωn)] dx,

where
B(x, ξ) := b(x)|ξ|p−2ξ − h(x).

We claim that there exists vn ∈ L1,p
b (Ωn) such that

(4.20) ∇vn1Ωn
→ ∇v1Ω strongly in Lp(R2,R2)

and

(4.21) vn1Ωn → v1Ω strongly in Lp
b(R

2).

Notice that

(4.22) lim
n→+∞

∫
R2
hvn1Ωn

dx =
∫

R2
hv1Ω dx.

In fact, because of (4.21), we have

lim
n→+∞

∫
R2
bfvn1Ωn

dx =
∫

R2
bfv1Ω dx.

Moreover, if U is regular and with supp(g) ⊆ U ⊆ U ⊆ Ω we have by Poincaré inequality∣∣∣∣∫
U

g(vn − v) dx
∣∣∣∣ ≤ ‖g‖Lp′ (U)‖∇vn −∇v‖Lp(U,R2) → 0.

Since U ⊆ Ωn for n large enough, we conclude that (4.22) holds.
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Using vn − un as a test function in (4.10) we can rewrite the right-hand side of (4.19) as

(4.23)
∫

R2
[A(x,∇un1Ωn) · (∇v1Ω −∇un1Ωn) +B(x, un1Ωn)(v1Ω − un1Ωn)] dx

=
∫

R2
[A(x,∇un1Ωn

) · (∇v1Ω −∇vn1Ωn
) +B(x, un1Ωn

)(v1Ω − vn1Ωn
)] dx.

Since A(x,∇un1Ωn
) is bounded in Lp′(R2,R2) and |un|p−2un1Ωn

is bounded in Lp′

b (R2), passing
to the limit in (4.19) and in (4.23), by claims (4.20) and (4.21), and in view of (4.18) and of the
fact that A(x, 0) = 0, we obtain

(4.24)
∫

Ω

[A(x,∇v) · (∇v −∇ϕ) +B(x, v)(v − ϕ)] dx

≥ lim
n→+∞

∫
R2

[A(x,∇un1Ωn
) · (∇v1Ω −∇vn1Ωn

) +B(x, un1Ωn
)(v1Ω − vn1Ωn

)] dx = 0.

Taking v = ϕ ± εz in (4.24), with z ∈ L1,p
b (Ω) and ε > 0, dividing by ε, and passing to the limit

as ε→ 0, we obtain that ϕ = uΩ in Ω.
Let us now prove that ϕ = uΩ1Ω, Φ = ∇uΩ1Ω, and that the convergences in (4.14) and (4.15)

are indeed strong. Let us take v := uΩ in (4.23). Since A(x, 0) = 0 we obtain that

lim
n→+∞

∫
R2

(A(x,∇un1Ωn
)−A(x,∇uΩ1Ω)) · (∇un1Ωn

−∇uΩ1Ω) dx

+
∫

R2
b(x)(|un|p−2un1Ωn − |uΩ|p−2uΩ1Ω)(un1Ωn − uΩ1Ω)] dx = 0.

By monotonicity we get that each integral tends to zero. Now, the strong convergence of ∇un1Ωn

to ∇uΩ1Ω in Lp(R2,R2) and of un1Ωn to uΩ1Ω in Lp
b(R2) is a consequence of [18, Lemma 2.4].

In order to conclude the proof, we have to prove our claim on the existence of vn ∈ L1,p
b (Ωn)

satisfying (4.20) and (4.21). By Proposition 4.2, every function z ∈ L1,2
b (Ω) is strong limit of

a sequence of functions zn ∈ L1,2
b (Ωn) (with the usual extension to zero outside Ω and Ωn re-

spectively). Since Ω ∈ Ap(R2), by Proposition 4.1 v is a strong limit in L1,p
b (Ω) of functions in

W 1,2(Ω), which in particular are in L1,2
b (Ω). Then the strong approximability for v that we need

follows easily using a diagonal argument. �

4.2. Nonlinear optimal cutting problem. In this subsection, we apply Theorem 3.8 to the
problem of optimal cutting for a membrane governed by a nonlinear energy.

Let Ω ⊆ R2 be open, bounded, and with a Lipschitz boundary, and let x1, x2 ∈ Ω. Let us set

K(Ω) := {K ⊆ Ω : K is compact and connected with x1, x2 ∈ K}.

Let f : R2 × R2 → [0,+∞] be a Carathéodory function such that f(x, 0) = 0 and satisfying the
following growth estimate

(4.25) α|ξ|p ≤ f(x, ξ) ≤ α(|ξ|p + 1),

where α > 0 and p ∈]1,+∞[.
Let g ∈W 1,p(R2). For every K ∈ K(Ω) let us set

(4.26) E(K) := inf

{∫
Ω\K

f(x,∇u) dx : u ∈ L1,p(Ω \K), u = g on ∂Ω \K

}
,

where L1,p(Ω \K) is the Deny-Lions space defined in (4.1) with b ≡ 0. Notice that it is natural
to consider displacements in L1,p(Ω \K) because the energy involves only ∇u, and so we cannot
expect to control the Lp-norm of u. Moreover, notice that the boundary condition on ∂Ω \K is
well defined since Ω is Lipschitz and u ∈ W 1,p(Ω ∩ Br(x)) for every x ∈ ∂Ω \K and r such that
Br(x) ∩K = ∅.
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We have that E(K) can be rewritten as

(4.27) E(K) = inf

{∫
Ω\K

f(x,∇u) dx : u ∈W 1,p(Ω \K), u = g on ∂Ω \K

}
.

This is due to the density of W 1,p(Ω \ K) in L1,p(Ω \ K), but a little care should be paid
for the boundary condition. In particular, denoting by TM the truncation operator TMu :=
min{max{u,−M},M}, we have for every u ∈ L1,p(Ω \K)∫

Ω\K
f(x,∇u) dx = lim

M→+∞

∫
Ω\K

f(x,∇TMu−∇TMg +∇g) dx

so that (4.27) holds.
The optimal cutting problem consists in finding the ”cut” K ∈ K(Ω) which maximizes E among

all admissible cuts, i.e., to solve the problem

(4.28) max
K∈K(Ω)

E(K).

The existence of an optimal cutting has been established by Bucur, Buttazzo and Varchon in [5]
in the case p = 2 and with a quadratic energy density f(x, ξ) = Aξ · ξ. In view of Theorem 3.8,
the existence of an optimal cut can be proved also in the nonlinear case 1 < p < 2. The following
result holds.

Proposition 4.5. Let 1 < p < 2. Then problem (4.28) has a solution.

In order to prove Proposition 4.5 we need the following lemma which is based on Theorem 3.8
and on the first condition of Mosco convergence for Sobolev spaces W 1,2 proved in [9].

Lemma 4.6. Let 1 < p < 2, and let (Kn)n∈N be a sequence in K(Ω) converging in the Hausdorff
metric to K. Then for every u ∈W 1,p(Ω\K) with u = g on ∂Ω\K there exists un ∈W 1,p(Ω\Kn)
with un = g on ∂Ω \Kn such that

∇un1Ω\Kn
→ ∇u1Ω\K strongly in Lp(R2,R2).

Proof. Let B be an open ball containing Ω. Let us consider

ũ :=

{
u in Ω \K
g in B \ Ω.

Notice that ũ ∈W 1,p(B \K). By applying Theorem 3.8 to (B \K) ∈ Ap(R2) we have that there
exists ṽh ∈W 1,2(B \K) such that

ṽh → ũ strongly in W 1,p(B \K).

By Proposition 4.2 (with b ≡ 0, so that the convergence of the measures is automatically satisfied),
for each h ∈ N there exists ṽn

h ∈W 1,2(B \Kn) such that

∇ṽn
h1B\Kn

→ ∇ṽh1B\K strongly in L2(R2,R2).

Using a diagonal argument, and since the L2-convergence is stronger than Lp-convergence on
bounded domains (1 < p < 2), we can find ũn ∈W 1,2(B \Kn) such that

(4.29) ∇ũn1B\Kn
→ ∇ũ1B\K strongly in Lp(R2,R2).

The functions ũn do not satisfy a-priori the required boundary condition, so that we have to
modify them. We follow here an idea due to Chambolle [13]. Up to adding a constant to ũn, we
can assume that

ũn → g strongly in W 1,p(B \ Ω).
Let us consider g̃n := (g − ũn)|B\Ω. We have that g̃n ∈ W 1,p(B \ Ω) with g̃n → 0 strongly in

W 1,p(B \Ω). Let E denote a linear extension operator from W 1,p(B \Ω) to W 1,p(B): such an E
exists because Ω has a Lipschitz boundary. Let us set

un := (ũn + Eg̃n)|Ω\Kn
.
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We have un ∈ W 1,p(Ω \ Kn) with un = g on ∂Ω \ Kn. Moreover, since Eg̃n → 0 strongly in
W 1,p(B), in view of (4.29), we deduce that (un)n∈N is the required sequence. �

We are now in a position to prove Proposition 4.5.

Proof of Proposition 4.5. Let (Kn)n∈N be a maximizing sequence for the optimal cutting problem,
i.e.,

E(Kn) → sup{E(K) : K ∈ K(Ω)}.
Up to a subsequence, we can assume that Kn → K in the Hausdorff metric. We have that K is
an admissible cut, that is K ∈ K(Ω).

By Lemma 4.6, for every u ∈W 1,p(Ω\K) with u = g on ∂Ω\K there exists un ∈W 1,p(Ω\Kn)
with un = g on ∂Ω \Kn such that

∇un1Ω\Kn
→ ∇u1Ω\K strongly in Lp(R2,R2).

Since f(x, 0) = 0, we deduce∫
Ω\K

f(x,∇u) dx = lim
n→+∞

∫
Ω\Kn

f(x,∇un) dx ≥ lim
n→+∞

E(Kn).

Taking the infimum over all admissible u we get

E(K) ≥ lim
n→+∞

E(Kn)

so that K is an optimal cut, and the proof is concluded. �

Remark 4.7. In the proof of Proposition 4.5, it is not clear if meas(Kn) → meas(K) for n→ +∞.
As a consequence, the result of Dal Maso, Ebobisse and Ponsiglione [18] cannot be applied to
recover the approximability of gradients of functions in W 1,p(Ω\K) through gradients of functions
in W 1,p(Ω \Kn) that we need. It seems essential to use the approximability of the gradients for
the relative W 1,2-spaces established in [9] and the density result given by Theorem 3.8.

Let us assume that f(x, ξ) is strictly convex in ξ so that the problem

(4.30) min

{∫
Ω\K

f(x,∇u) dx : u ∈ L1,p(Ω \K), u = g on ∂Ω \K

}
admits a unique solution uΩ\K ∈ L1,p(Ω \K). In particular, in view of (4.26) we have

E(K) =
∫

Ω\K
f(x,∇uΩ\K) dx.

The associated Euler-Lagrange equation is

(4.31)


div∂ξf(x,∇uΩ\K) = 0 in Ω \K
∂ξf(x,∇uΩ\K) · ν = 0 on K
uΩ\K = g on ∂Ω \K.

We deduce that the following stability result for the Neumann-Dirichlet problem (4.31) holds.

Proposition 4.8. Let 1 < p < 2, let K be a solution of (4.28), and let (Kn)n∈N be a sequence
in K(Ω) converging in the Hausdorff metric to K. Then we have that Ω \K is stable for (4.31)
along the sequence (Ω \Kn)n∈N, that is

(4.32) ∇uΩ\Kn
1Ω\Kn

→ ∇uΩ\K1Ω\K strongly in Lp(R2,R2).

Proof. Choosing g as an admissible displacement in (4.30), we get that ∇uΩ\Kn
1Ω\Kn

is bounded
in Lp(R2,R2) so that up to a subsequence we have

∇uΩ\Kn
1Ω\Kn

⇀ Φ weakly in Lp(R2,R2).
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Since Kn → K in the Hausdorff metric, there exists u ∈ L1,p(Ω \K) with u = g on ∂Ω \K such
that Φ = ∇u on Ω \K. Moreover by lower semicontinuity we have that

(4.33)
∫

Ω\K
f(x,∇u) dx ≤

∫
R2
f(x,Φ) dx ≤ lim inf

n→+∞

∫
R2
f(x,∇uΩ\Kn

1Ω\Kn
) dx

= lim inf
n→+∞

∫
Ω\Kn

f(x,∇uΩ\Kn
) dx.

Let v ∈ L1,p(Ω \K) with v = g on ∂Ω \K. By Lemma 4.6, there exists vn ∈ L1,p(Ω \Kn) with
vn = g on ∂Ω \Kn such that

∇vn1Ω\Kn
→ ∇v1Ω\K strongly in Lp(R2,R2).

Then by (4.33) we get

(4.34)
∫

Ω\K
f(x,∇v) dx = lim

n→+∞

∫
R2
f(x,∇vn1Ω\Kn

) dx = lim
n→+∞

∫
Ω\Kn

f(x,∇vn) dx

≥ lim inf
n→+∞

∫
Ω\Kn

f(x,∇uΩ\Kn
) dx ≥

∫
Ω\K

f(x,∇u) dx

so that u = uΩ\K . Taking v = u in (4.34) we obtain

lim
n→+∞

∫
Ω\Kn

f(x,∇uΩ\Kn
) dx =

∫
Ω\K

f(x,∇uΩ\K) dx.

By [4] we conclude that (4.32) holds, and the proof is concluded. �

5. Appendix: the density result for the symmetrized gradients

The aim of this appendix is to show how our approach to density explained in Section 3 can be
employed to prove the density of the Sobolev space W 1,2 in the spaces LD1,p of two dimensional
elasticity. The case p = 2 is the really interesting one, and has been proved by Chambolle in [13]:
using this density, he proves existence for the Cantilever Problem and for the evolution of brittle
fractures in the context of planar linearized elasticity. Our approach provides a different proof of
Chambolle’s result, and covers also the case 1 < p < 2.

In order to make the context precise, let Ω be an open subset of R2. For 1 ≤ p ≤ +∞, let us
set

LD1,p(Ω) :=
{
u ∈W 1,p

loc (Ω,R2) : e(u) ∈ Lp(Ω,M2×2
sym)

}
,

where e(u) := (∇u + (∇u)T )/2 denotes the symmetrized gradient of u, and M2×2
sym denotes the

space of 2× 2 symmetric matrices. Clearly W 1,p(Ω,R2) ⊆ LD1,p(Ω). If Ω is Lipschitz, by means
of Korn’s inequality, it turns out that LD1,p(Ω) coincides with W 1,p(Ω,R2), while if Ω is irregular,
the inclusion can be strict.

The main result of this section is the following.

Theorem 5.1. Let 1 < p ≤ 2, and let Ω ⊆ R2 be a bounded open set such that Ωc has a finite
number of connected components. Then for every u ∈ LD1,p(Ω) there exists un ∈ W 1,2(Ω,R2)
such that

e(un) → e(u) strongly in Lp(Ω,M2×2
sym).

Proof. Let Ki, i = 0, 1, . . . ,m, be the connected components of Ωc, where K0 is the unbounded
one. Let us consider the space

H := {e(v) : v ∈ H1(Ω,R2)} ⊆ Lp(Ω,M2×2
sym),

where on M2×2
sym we consider the scalar product A : B := tr(ABT ) =

∑
i,j aijbij .

In order to prove the theorem, it suffices to check that for every u ∈ LD1,p(Ω) we have

e(u) ∈ H,
where the closure is taken in the Lp-norm.
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We employ a functional analysis argument, namely that H = (H⊥)⊥, where (·)⊥ denotes the
orthogonal in the sense of Banach spaces. So our strategy is the following. Firstly we characterize
H⊥, and then we check that e(u) is orthogonal to every element of H⊥.

Step 1: Characterization of H⊥. We claim that

(5.1) H⊥ :=
{

H̃ess(ϕ) : ϕ ∈W 2,p′

0 (R2), ϕ is linear on Ki for i = 0, 1, . . . ,m
}
,

where H̃ess(ϕ) is defined as

(5.2) H̃ess(ϕ) :=
(

∂2
2ϕ −∂12ϕ

−∂12ϕ ∂2
1ϕ

)
.

By linearity of ϕ on Ki we mean that there exist ci ∈ R2 and bi ∈ R such that (notice that
W 2,p′

0 (R2) ⊆ C1(R2))

(5.3) ϕ(x) = ci · x+ bi for x ∈ Ki.

Since ϕ ∈W 2,p′

0 (R2), we clearly have c0 = 0 and b0 = 0.
Let us check (5.1). Let Ψ ∈ Lp′(Ω,M2×2

sym) be an element of H⊥, where p′ := p/(p − 1) is the
conjugate exponent to p, with

Ψ =
(
ψ1 ψ2

ψ2 ψ3

)
.

This means that for every v ∈ H1(Ω,R2) we have∫
Ω

Ψ : e(v) dx = 0.

Choosing v ∈ H of the form v := (v1, 0) with v1 ∈ H1(Ω), we deduce that for every v1 ∈ H1(Ω)∫
Ω

(ψ1, ψ2) · ∇v1 dx = 0.

Similarly we deduce that for every v2 ∈ H1(Ω)∫
Ω

(ψ2, ψ3) · ∇v2 dx = 0.

From Lemma 3.4 we conclude that there exist φ1, φ2 ∈ W 1,p′(R2) and ci ∈ R2, i = 0, 1, . . . ,m
such that

∇φ1 = R(ψ1, ψ2), ∇φ2 = R(ψ2, ψ3),

(5.4) (φ1, φ2) = ci on Ki for 1 < p < 2,

and

(5.5) (φ1, φ2) = ci c2-q.e. on Ki for p = 2,

where R(a, b) := (−b, a) denotes a rotation of 90 degrees counterclockwise. We can assume c0 = 0,
hence φ1, φ2 ∈W 1,p′

0 (R2).
Let us set

(5.6) Φ := (φ1, φ2) ∈W 1,p′

0 (R2,R2).

Let D be a disk centered at the origin and such that Ω ⊆ D. For every v ∈ H1(D,R2) we have
that ∫

D

Φ · ∇v dx = −
∫

D

(div Φ) v dx = −
∫

D

(∂1φ1 + ∂2φ2)v dx = −
∫

D

(−ψ2 + ψ2)v dx = 0.

Using again Lemma 3.4, we get that there exists ϕ ∈ W 1,p′(R2) with ϕ = 0 on R2 \D, and such
that

∇ϕ = RΦ = (−φ2, φ1).
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In view of (5.6), we conclude that ϕ ∈ W 2,p′

0 (R2). Since p′ ≥ 2, by Sobolev Embedding Theorem
we have that ϕ ∈ C1(R2), so that, by Lemma 2.1, from (5.4) and (5.5) we get (up to replacing ci
with Rci)

(5.7) ∇ϕ = ci on Ki.

By construction we have that Ψ = H̃ess(ϕ). In order to complete the proof of claim (5.1), we
need to check (5.3). Let us consider

ϕi(x) := ϕ(x)− ci · x.

By (5.7), we clearly have that ∇ϕi = 0 on Ki, i.e., Ki ⊆ Ci, where Ci is the set of critical points
of ϕi. By Sard’s Lemma we have that

meas(ϕi(Ci)) = 0.

Since ϕi(Ki) is connected, and meas(ϕi(Ki)) = 0, we conclude that ϕi(Ki) = {bi} for a suitable
bi ∈ R, so that (5.3) is proved.

Step 2: Checking the orthogonality condition. Let u ∈ LD1,p(Ω), and let Ψ ∈ H⊥. We
have to check that ∫

Ω

Ψ : e(u) = 0.

According to (5.1), let Ψ = H̃ess(ϕ) with ϕ ∈ W 2,p′

0 (R2) satisfying (5.3). Let us consider ξ0 ∈
C∞(R2) and ξi ∈ C∞c (R2), i = 1, 2, . . . ,m such that ξ0 = 1 on a neighborhood of K0, ξi = 1 on a
neighborhood of Ki, and

supp(ξh) ∩ supp(ξk) = ∅ for h 6= k.

By [2, Theorem 9.1.3] we can find ϕi
n ∈ C∞(R2) with

ϕi
n(x) = ci · x+ bi on a neighborhood of Ki,

and such that
ϕi

n → ϕ strongly in W 2,p′(R2).

Let us set

ϕn :=

(
1−

m∑
i=0

ξi

)
ϕ+

m∑
i=0

ξiϕ
i
n.

Clearly we have that

(5.8) ϕn → ϕ strongly in W 2,p′(R2),

and

(5.9) H̃ess(ϕn) = 0 on a neighborhood An of Ωc.

We can assume that Ω \An is regular. Then by means of Korn’s inequality we have that

(5.10) u ∈W 1,p(Ω \An,R2).

By (5.8) and (5.9) we conclude that∫
Ω

Ψ : e(u) dx =
∫

Ω

H̃ess(ϕ) : e(u) dx = lim
n→+∞

∫
Ω

H̃ess(ϕn) : e(u) dx

= lim
n→+∞

∫
Ω\An

H̃ess(ϕn) : e(u) dx.

By (5.10) and since H̃ess(ϕn) is symmetric, we deduce that

(5.11)
∫

Ω

Ψ : e(u) dx = lim
n→+∞

∫
Ω\An

H̃ess(ϕn) : ∇u dx.
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Notice that the rows of H̃ess(ϕn) are divergence free in Ω \An, and with null trace on ∂(Ω \An).
Integrating by parts in (5.11), we get ∫

Ω

Ψ : e(u) dx = 0,

so that the proof is concluded. �

Remark 5.2. In his proof of the density of W 1,2(Ω) in LD1,2(Ω), Chambolle [13] considers
LD1,2(Ω) (up to functions u such that e(u) = 0) as a Hilbert space with scalar product (u, v) :=∫
Ω
e(u) : e(v) dx, and proves that

{e(u) : u ∈W 1,2(Ω)}⊥ = 0,

where (·)⊥ is the orthogonal in the sense of Hilbert spaces. In this framework, the function Ψ
appearing in our Step 1 is of the form Ψ = e(v) for some v ∈ LD1,2(Ω), and the same analysis
implies that e(v) = H̃ess(ϕ). As a consequence we get ∆2ϕ = 0 (ϕ is usually called the Airy
function). Chambolle uses some PDE and capacity arguments to show that ϕ = 0 in the case Ω
is simply connected, and then proves the general case by reduction to the simply connected one.

In our case, we cannot employ PDE arguments, because we consider LD1,p(Ω) as a natural
subspace of Lp(Ω,M2×2

sym), and this seems unavoidable in the case 1 < p < 2. As a consequence our
function ϕ does not satisfy ∆2ϕ = 0, and we must work out an approximation of ϕ as in Step 2.

Remark 5.3. In order to follow the arguments of Step 2, it suffices to approximate Ψ = H̃ess(ϕ) ∈
H⊥ by Ψn ∈ Lp′(Ω,M2×2

sym) which are null on a neighborhood of Ωc and whose rows are divergence

free. This is obtained taking Ψn := H̃ess(ϕn), where ϕn ∈W 2,p′

0 (R2) is such that

ϕn → ϕ strongly in W 2,p′

0 (R2),

and with ϕn linear on a neighborhood of Ωc. This last constraint cannot be treated using ideas
similar to Lemma 3.3, so that we used partition of unity (which requires Ωc with a finite number
of connected components) and the approximation result [2, Theorem 9.1.3] (which requires 1 <
p < +∞).

Acknowledgements. The authors wish to thank Dorin Bucur for having brought to their at-
tention the problem of the density of W 1,2 into W 1,p in connection with the stability of nonlinear
Neumann problems.
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