A DENSITY RESULT FOR SOBOLEV SPACES IN DIMENSION TWO, AND
APPLICATIONS TO STABILITY OF NONLINEAR NEUMANN PROBLEMS

ALESSANDRO GIACOMINI AND PAOLA TREBESCHI

ABSTRACT. We prove that if Q C R? is bounded and R?\  satisfies suitable structural assump-
tions (for example it has a countable number of connected components), then W12(Q) is dense
in WHP(Q) for every 1 < p < 2. The main application of this density result is the study of
stability under boundary variations for nonlinear Neumann problems of the form

—div A(z, Vu) + B(z,u) =0 in Q,

A(z,Vu) - v=0 on 08,
where A : R?2 xR? — R? and B : R? xR — R are Carathéodory functions which satisfy standard
monotonicity and growth conditions of order p.

Keywords : Sobolev spaces, capacity, Hausdorff measure, Hausdorff metric, nonlinear elliptic
equations, Mosco convergence.

2000 Mathematics Subject Classification: 35J65, 31A15, 47TH05, 49J45.

CONTENTS
1. Introduction 1
2. Notation and Preliminaries 3
3. The density result )
4. Applications 12
4.1. Stability of nonlinear Neumann problems under boundary variations 12
4.2. Nonlinear optimal cutting problem 17
5. Appendix: the density result for the symmetrized gradients 20
References 23

1. INTRODUCTION

In this paper we prove a density result for Sobolev spaces defined on two dimensional open
bounded sets. More precisely, for 1 < p < 2 and 2 C R? open, bounded and belonging to the
class A, (R?) of admissible domains (see Definition 3.1), we prove that the Sobolev space W12(Q)
is dense in W?(Q). The class A,(R?) contains for example domains whose complements have
a countable number of connected components or even whose complements are Cantor sets with
small dimension.

In the case € is sufficiently regular (for example if it satisfies a cone condition), this density
result is trivial because by means of extension operators and convolutions one can prove that
C>(Q) is dense in WP(Q). The situation is different when Q is irregular: extension operators
cannot be employed, and the density of C°°(Q) in W1P(Q) can fail, as in the case the domain
contains a crack. Even the density of C°°(Q2) in W1P(Q) proved by Meyers and Serrin [27] which
holds for every open bounded set €2 cannot be used because the control on the energy of order
2 is available only well inside, and can be lost approaching the boundary. In this direction, we
refer the reader to the paper of O’Farrel [28] for a counterexample to the density of W1>°(Q) in
WLP(Q) in the case Q is too irregular.
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The main motivation of our density result is the study of stability under boundary variations
for two dimensional nonlinear Neumann problems of the form

—divA(z, Vu) + B(z,u) =0 in Q
A(z,Vu) - v=0 on 09,

where A : R2 x R?2 — R? and B : R? x R — R are Carathéodory functions satisfying standard
monotonicity and growth conditions of order p (see conditions (4.3)-(4.5)). Namely we are inter-
ested in the continuity of the map Q — wugq, where ug € WHP(Q) is the solution of (1.1) in  (see
Section 4 for the precise sense of the continuity of this mapping).

The density of W12 in WP is a key point to infer stability for problem (1.1) from that of the
linear equation

(1.1)

(1.2)

gu =0 on 0.

{—Au +u=f inQ
Stability results for problem (1.2) have been obtained by several authors (see for example [10],
[11], [12], [14], [15], [8], [9]). These results hold in generic dimension N under quite restrictive
assumptions on € and its possible perturbations. For example Chenais [15] proved stability for
(1.2) under a uniform cone condition for the perturbed domains, and this condition excludes
several interesting cases like those of domains containing cracks which are of interest in fracture
mechanics. Moreover, the cone condition implies the existence of extension operators, and the
density of W2 in WP is trivial, so that the stability of (1.1) holds under the same assumptions.
In dimension N = 2 the situation is different, and restrictions only on the topological nature
of the domains have been individuated in order to achieve stability for (1.2): this is the reason
why we are interested in density for Sobolev spaces defined on two dimensional, possibly irregular,
domains. Bucur and Varchon [8] consider domains whose complements have a uniformly bounded
number of connected components and prove that, if 2, — € in the Hausdorff complementary
topology (see Section 2 for a definition), we have the stability ug, — uq if and only if

meas(Q2,) — meas(2).

Under strict monotonicity assumptions for A and B, Dal Maso, Ebobisse and Ponsiglione [18]
proved that the same conclusion holds for problem (1.1) in the case 1 < p < 2, while for p > 2
stability is in general false (see [18, Remark 3.7]). The main tool they employ is the Mosco
convergence of W1P(€,,) to WP(Q) (see Section 2 for a definition) which is equivalent to the
stability of (1.1) for every admissible A and B. The Mosco convergence in the case p = 2 is indeed
a corollary of the stability result by Bucur and Varchon [8]. Since they make use of conformal
mappings, and these are not useful in a nonlinear setting, Dal Maso, Ebobisse and Ponsiglione
provide a different proof of the Mosco convergence based on nonlinear harmonic conjugates. In
view of our density result, the Mosco convergence when 1 < p < 2 (and hence the stability result
for (1.1)) can be deduced from the case for p = 2 (see Proposition 4.3).
In Section 4 we consider the nonlinear Neumann problems

{—divA(x, Vu) + b(@)|ulP2u=h inQ

1.3
(1.3) A(z,Vu)-v=20 on 0f),

where b € L°°(IR?) is such that b > 0, and h satisfies suitable assumptions in order to guarantee
the existence of a solution. These problems introduce some degeneracy with respect to problems
(1.1) because b can vanish on subsets of {2 with positive measure. As a consequence stability
cannot be studied in terms of Mosco convergence of suitable functional spaces, because the two
notions are in general not equivalent (see [9, Remark 5.2]), and so in order to prove stability for
(1.3), the results of Dal Maso, Ebobisse and Ponsiglione cannot be directly used.

In the case p = 2, and with A(z,£) = &, Bucur and Varchon [9] proved that if the complement
of Q,, has a uniformly bounded number of connected components and §2,, — € in the Hausdorff
complementary topology, then stability holds if and only if

meas(Q, N {b > 0}) — meas(2 N {b > 0}).
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We prove (Proposition 4.4) that the same result holds in the nonlinear case 1 < p < 2. In the case
p > 2, stability does not hold in general (see [18, Remark 3.7]).

A second application of our density result is to a shape optimization problem, namely the
optimal cutting of a membrane. The admissible cuts we consider are compact and connected
sets which contain two given points. The case of a quadratic energy has been treated by Bucur,
Buttazzo and Varchon in [5]. In Proposition 4.5 we prove the existence of an optimal cut for
a nonlinear energy density f(z,£) with growth of order 1 < p < 2 in £. Moreover we prove a
stability result for the associated Euler-Lagrange equation, which is of Neumann-Dirichlet type.
We remark that in order to establish the existence of the optimal cut and the stability for the
associated equation, the approximation results of Dal Maso, Ebobisse and Ponsiglione [18] in terms
of Mosco convergence cannot be used (see Remark 4.7).

Finally, in the Appendix, we show how the arguments of Section 3 provide a new proof of a
result due to Chambolle [13] concerning the density of W12 in the space LD'? of two dimensional
linearized elasticity. Our approach also covers the nonlinear case LD for 1 < p < 2.

The main step in the proof of our main result is given by Theorem 3.5, which states the density
of WH2(Q) in WP(Q) at the level of the gradients. More precisely we prove that for every
u € WHP(Q) we have Vu € H, where

H:={Vv :veWh?(Q)} C LF(Q,R?).

We use the fact that H = (H+)~+, where (-)* denotes the orthogonal in the sense of Banach spaces.
Using Helmholtz Decomposition Theorem, in Lemma 3.4 we characterize H' as the family of
fields ¢ such that Ri) = V¢ with ¢ € W' (R2) constant on the connected components of R2\ €2,
where p’ is the conjugate exponent of p and R denotes a rotation of 90 degrees counterclockwise.
Moreover, using the approximation given in Lemma 3.3 and the fact that Q € AP(R2), we can
approximate ¢ through functions ¢,, € wtr' (R?) which are constant on a neighborhood of R?\ Q.
Then the orthogonality of Vu and 1 follows by integration by parts.

The paper is organized as follows. In Section 2 we introduce the notation and recall some useful
notions employed in rest of the paper. Section 3 contains the density result (Theorem 3.8), while
Section 4 contains the applications to stability of nonlinear Neumann problems and to the optimal
cutting of a membrane. In the Appendix we prove the density of W12 in the spaces of planar
elasticity.

2. NOTATION AND PRELIMINARIES

In this section we introduce the basic notation and recall some notions employed in the rest of
the paper.

If A C RY is open and 1 < p < +oo, we denote by LP(A) the usual space of p-summable
functions on A with norm indicated by || - [|,. W1(A) will denote the Sobolev space of functions
in LP(A) whose gradient in the sense of distributions belongs to LP(A,RY), and we denote by
Wy (A) the closure in W'P(A) of smooth functions with compact support.

If ECRY, we will denote with meas(E) its N-dimensional Lebesgue measure, and by H®(E)
its a-dimensional Hausdorff measure (see [19, Chapter 2] for a definition). Moreover, we denote
by E° the complementary set of E, and by 1g its characteristic function, i.e., 1g(z) =1if z € E,
1g(x) = 0 otherwise.

Capacity. Let 1 < p < +o0o, and let E C RY. We set
¢p(E) := inf {/ |VulP + [ulP dz : v € WHP(R?),u > 1 a.e. on E} .
R2

For the properties of capacity, and its relevance in the theory of Sobolev spaces, we refer the reader
to [19].

We say that a property P(z) holds c,-quasi everywhere (abbreviated c,-q.e.) on a set E C RY
if it holds for every « € E except a subset NV of E such that ¢,(IN) = 0.
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If A C RY is open, every function u € WP(A) admits a quasicontinuous representative, i.e., a
representative @ such that for every € > 0 there exists an open set B. with c,(B.) < ¢ and 1|4\ g,
is continuous. Throughout the paper, we will identify a Sobolev function with its quasicontinuous
representative. Notice that for p > N, the continuous representative of u (which exists by Sobolev
Embedding Theorem) is precisely the quasicontinuous representative. We will use the following
fact: if u, — u strongly in W'P(A), we have that up to a subsequence u,, — u c,-q.e. on A.

The following lemma will be useful in Section 3 and in the Appendix (a different proof can be
obtained using the arguments contained in [7, Lemma 5.1, Lemma 5.2]).

Lemma 2.1. Let u € C(R?), K C R? connected, and let ¢ € R. If u(x) = ¢ for ca-q.e. z € K,
then u(z) = ¢ for every x € K.

Proof. By assumption we have that there exists N C K such that c2(N) = 0 and u(z) = ¢ for
every © € K\ N. If for every « € N there exists x,, € K \ N such that x,, — x, by continuity of
u we conclude that also u(z) = ¢ and the result follows.

By contradiction, let us assume that there exists 2 € N such that ¢ K\ N. Then there exists
7 > 0 such that B(z,r) N (K \ N) =0 for r < 7. Since co(N) = 0, by [19, Section 4.7.2, Theorem
4] we have that H*(N) = 0 for every o > 0, and in particular H!(N) = 0. As a consequence,
for every 0 < € < 7 we can find a covering {B(x;,7:)}icn of N such that ), yr; < e. Let
B :=U;B(x;,r;) and

S :={r €)0,7[: 0B(z,r)NB # 0}.

We have that meas(S) < e, so that we can find » < 7 with dB(x,7) N N = (. Moreover, up to
reducing ¢, we can assume that N \ B(z,r) # 0, because otherwise we would get that N = {z}
with x isolated from the rest of K, against its connectedness.

Let us consider

Ky :=KnB(x,r) and Ky:=K)\ B(z,r).
K, and K> are closed in the relative topology of K. By construction they are not empty, disjoint
and such that K = K; U K,. But this is against the fact that K is connected, and the proof is
concluded. (]

Hausdorff metric on compact sets and Hausdorff complementary topology. Let A be
open and bounded in RY. We indicate the family of all compact subsets of A by K(A). K(A) can
be endowed with the Hausdorff metric dg defined by

dy (K1, Ks) := max{ sup dist(z, K3), sup dist(y,Kl)}
ze K, yeKo

with the conventions dist(x, () = diam(A) and sup@ = 0, so that dg(@, K) = 0 if K = () and
dg (0, K) = diam(A) if K # (. It turns out that K(A) endowed with the Hausdorff metric is a
compact space (see e.g. [30]).

In order to treat the stability of Neumann problems under boundary variations (see Section 4),
we will use the Hausdorff complementary topology on the family of open sets which is defined as
follows. Let (£2,)nen be a sequence of open sets in RY. We say that €2,, — € in the Hausdorff

complementary topology if for every closed ball B C RY we have

BNQ; — BNQ° in the Hausdorff metric.

The Mosco convergence of Sobolev spaces. In Section 4, we will refer to the notion of
Mosco convergence of Sobolev spaces in connection with stability results for nonlinear Neumann
problems. For the reader’s convenience, we recall here the definition.

Let (Q,)nen be a sequence of uniformly bounded open subsets of RY, and let 1 < p < +oc.
For every u,, € WHP(Q,,), let us denote by u,1lq, and by Vu,lq, the extension to zero outside
Q,, of u, and Vu, respectively.
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If 2 is a bounded open set in RY, we say that WP(Q,,) converges to W1P(Q) in the sense of
Mosco if the following two conditions hold.

(M1) Mosco-limsup condition. For every u € WHP(Q) there exists u,, € WP(Q,,) such that
Vuplg, — Vulg strongly in LP(RN, RN)

and
unlo, — ulg strongly in LP(RY).
(M2) Mosco-liminf condition. If ny is a sequence of indices converging to 400, (ug)ren is a
sequence such that uy € WHP(Q,,, ) for every k, and ug lg,, converges weakly in LP(RM)
to a function ¢, while Vuglg, —converges weakly in LP(RY,RY) to a function ®, then
there exists u € WHP(Q) such that ¢ = ulg and ® = Vulg.

Using a diagonal argument, we have that in order to establish (M1), it suffices to approximate
functions belonging to a dense subset of W1?(Q). This fact will be used several times in Section
4.

3. THE DENSITY RESULT

This section is devoted to the proof of the density of W12 into W' with 1 < p < 2 on a two-
dimensional domain which satisfies a suitable structural assumption, for example if its complement
has a countable number of connected components. Recall that the two-dimensional domain is not
assumed to be regular (for example it may contain a crack), so that extension operators cannot
be used.

First of all, we establish the density result at the level of the gradients (Theorem 3.5). The
extension to the full result on Sobolev spaces (Theorem 3.8) is then obtained through a truncation
argument.

The class of admissible domains we consider is given in the following definition.

Definition 3.1. (The class A,(R?) of admissible domains) Let 1 < p < 2, and let 2 C R?
be open and bounded. Let {K;};cr be the family of the connected components of Q°. We say that
Q belongs to the class A,(R?) of admissible domains if for every i € I there exists v; € K; such
that setting E := {x;,i € I'} we have

(3.1) H2P(E) = 0.

Notice that the class O;(R?) of two-dimensional domains such that their complements have at
most [ connected components (which is relevant for stability of nonlinear Neumann problems, see
Section 4.1) is contained in A,(R?). Moreover A,(R?) contains domains €2 such that Q¢ has a
countable number of connected components, or even an uncountable number provided that there
exists a suitable selection E of {K;};c; with zero Hausdorff measure of order 2 — p. We remark
that condition (3.1) is not referred to the connected components K; of £2¢ but to a selection E of
{K}ier: in particular it can be meas(K;) > 0 (not only for the unbounded connected component).

The following lemmas will be useful in the proof of Theorem 3.5.

Lemma 3.2. Let A C R? be open, and let u € WH9(A) with ¢ > 2. Then we have meas(u(E)) = 0
for every E C A such that Hi= (E) =0 (in the case ¢ = +0o we mean H(E) = 0).

Proof. If ¢ = 400, the result follows because u is a locally Lipschitz function and meas(f(C)) =
HL(f(C)) < LH(C) for every L-Lipschitz function f and every set C' (see [19, Theorem 1, Section
2.4.1)).

In the case 2 < ¢ < 400, we follow the approach that Marcus and Mizel [24] developed to
deal with N-property of Sobolev transformations (see [20] for a description of the problem of
N-property, and [20, Theorem 5.28]).

By Sobolev Embedding Theorem u is a Holder continuous function. Moreover, for any square
Q, C A of side r we have

(3.2) lu(z) = aQ,| < CollVullLaq, reyr' /1,
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where @, denotes the average of v on @Q,, and C, depends only on g. From (3.2) we deduce that
u(@r) is contained in an interval I, of length at most

lQT = QCq||VU||LQ(QT’R2)T1_2/‘1.

Let E C A be such that H%(E) =0, and let us fix e > 0 and § > 0. Since 'H%(E) =0, we
can find a covering F = {Q, (x;) }ien of E with @, (z;) C A,

too 4o
(3.3) Zri"_l <e
i=0

and such that

l; .= QCquuHLq(Q” (zi))Rz)T372/q < 4.
By Besicovich Covering Theorem (see [19, Section 1.5.2, Theorem 2]) there exist m families
Fi1,Foy.. s Fjyoo oy Fon C© F of disjoint squares {Qy, (i) }ien such that

m —+oo

EcJU @, @i

j=1i=0
By Holder inequality and by (3.3) we deduce that

m oo m oo

1-2
Z Z lij =2C, Z Z ||vu||L“(Qri,]- (i) R4 j /o
j=11i=0 j=11i=0
1 g=1
m +oo 1 m 400 a-2 g
<20, | > > IVulio,, 5 (@i,3).R?) > D iy
j=114=0 ' j=11i=0

g—1
< QCququL‘Z(A,RQ)E q
so that -
'Hé(u(E)) <2C,m||Vullpaareye @,

where H}(E) denotes the (1,d)-Hausdorff pre-measure. Since H!(u(E)) = lims_o H}(u(E)), and
H(u(E)) = meas(u(E)), we conclude that

meas(u(E)) < 2Cqm||vu||Lq(A7R2)€%.
Since ¢ is arbitrary, we deduce that meas(u(E)) = 0. O

Lemma 3.3. Let ¢ € WHP(RY) N CORY) with p € [1,+00]. Let K C RN be such that ¢(K) is
compact and meas(¢(K)) = 0. Then there exists ¢, € WHP(RN) N CORN) with

(3.4) bn — ¢ strongly in WHP(RY) if 1 <p < +oo,

(3.5) (6, V) = (6, Vo)  weakly® in L=°RN RV if p = +o0,

and such that ¢y, is locally constant on a neighborhood of K, i.e., V¢, =0 a.e. on a neighborhood
A, of K.

Proof. By assumption C' := ¢(K) is compact and such that meas(C') = 0. Let us set

1
Cp = {y e R : dist(y,C) < n}
and
y
7,0) = [ taic,(s)ds.
0

Since meas(Cy,) — 0 as n — 400, we get that
(3.6) T, — Id pointwise.
Moreover, T,, is 1-Lipschitz, T, = 0 a.e. on C,, and
(3.7) T!(y) =1 forae yeR.
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Let us set

(3.8) bp =T, 0 0.

We have that ¢,, € WHP(RY) N CO°(RY), and by the Chain Rule Formula for Sobolev functions
(see for instance [3, Theorem 3.99]) we get for a.e. x € RV

(3.9) Von(z) = T,,(6(2)) V()

(recall that V¢ = 0 a.e. on ¢~1(C) since C has zero measure [3, Proposition 3.92])).
In view of (3.9), Vé, =0 on A, := ¢~1(C,,) which is a neighborhood of K. Moreover, by (3.6)
and (3.7), we have that (3.8) and (3.9) imply that

ép — ¢ and V¢, — Vo ae on RV,
Since |¢,| < |¢| and |V, | < |[V¢|, we deduce that (3.4) and (3.5) hold. O

The following lemma is very close in spirit to [18, Lemma 3.6]

Lemma 3.4. Let Q C R? be open and bounded, and let ¢ > 2. Let ¢ € L1(2,R?) be such that
/ Y- Vudr =0 for every u € W2(Q).
Q

Then there exists ¢ € WH4(R?) constant on the connected components of Q¢ (in the case ¢ = 2
constant cy-quasi everywhere) and such that

Vo = R,
where R(a,b) := (—b,a) denotes a rotation of 90 degrees counterclockwise.

Proof. Let us denote by K;, ¢ € I, the connected components of ¢, and let K be the unbounded

one.
Since ¢ € L?*(Q,R?), by Helmholtz decomposition of the space L?(2,R?) (see [21, Theorem
1.1, Chapter III)), there exists 1, € C° (2, R?) with div,, = 0 and

(3.10) Vp — P strongly in L?(Q,R?).

By setting v, = 0 outside 2, we can consider 1),, as defined on the entire R?. Let us consider
©p = Ri,. Since R? is simply connected, and ¢, has zero-curl, we have that there exists
¢n € C°°(R?) such that

In particular V¢, = 0 on a neighborhood A™ of 2¢, so that for every ¢ € I there exists ¢} € R
such that

(3.11) ¢n = ¢ on a neighborhood A} of K.

7

Since ¢,, is well defined up to a constant, we can assume that ¢, = 0 on Ky. Let D be a disk
centered at the origin and such that Q@ C D. By (3.10) we deduce that there exists ¢ € Wol’Q(D)
such that
¢n — ¢ strongly in Wol’Q(D).

We have that

V¢ = Ry € LI(Q,R?).
We deduce that ¢ € Wol’q(D), and in particular ¢ € W4(IR?). Since up to a subsequence ¢, — ¢
co-q.e., from (3.11) we deduce that there exists ¢; € R, i € I, such that
(3.12) ¢ =c¢ co-q.e. on K.

In the case ¢ > 2, we have that ¢ is Holder continuous by Sobolev Embedding Theorem. So by
Lemma 2.1, we get that (3.12) implies that ¢ is constant on K, and the proof is concluded. O

The following theorem contains the density result for the gradients.
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Theorem 3.5. Let 1 < p < 2, and let Q € A,(R?) be an admissible domain. Then for every
u € WHP(Q) there exists (uy)nen sequence in W12(Q) such that
Vu, — Vu strongly in LP(Q,R?).

Proof. Let K;, i € I, be the connected components of 2¢. Let us consider

(3.13) H:={Vv :veW"3Q)} C LP(Q,R?).
In order to prove the density result, it suffices to check that for every u € W1P(Q) we have
Vu € H,

where H denotes the closure of H in the LP-norm. Since

H=(H")",
where (-)* denotes the orthogonal space in the sense of Banach spaces, we have to check that
(3.14) Vu € (HY)*.

Our strategy to prove (3.14) is the following. Firstly we characterize the functions v € H*,
and then we prove that for every u € W1P(Q) we have the orthogonality condition

(3.15) /Qz/) -Vudzr = 0.

Step 1: Characterization of H+. Let ¢y € H+ C Lp,(Q,RZ), where p’ > 2 is the conjugate
exponent of p (p/ = 1% if p €]1,2[, p’ = +oo if p = 1). By definition of H+ we have that for

every v € WH2(Q)
/ Y- Vodr = 0.
Q

By Lemma 3.4, we deduce that there exists ¢ € W' (R?) with V¢ = Rip (R(a,b) := (=b,a) is
the rotation of 90 degrees counterclockwise), and such that for every i € I

(316) ¢ =¢C; On Ki
for suitable ¢; € R.

Step 2: Checking the orthogonality condition. In order to conclude the proof, it suffices to
check that (3.15) holds for every u € WP(Q). By Step 1, we need to check that

(3.17) w-Vudx:—/RV¢~Vudx:0,
Q Q

where ¢ € W' (R?) satisfies (3.16) for some ¢; € R, i € I.
Notice that ¢(£2) is compact. Moreover, since Q2 € A,(R?), there exists a selection E of the
connected components K; of Q¢ such that

M7= (B)=H>P(E) =0 ifl<p<2
and
HYE)=0 ifp=1
By (3.16) we get ¢(Q°) = ¢(E), and by Lemma 3.2 we have that meas(¢(2°)) = meas(¢(F)) = 0.
Applying Lemma 3.3, there exists ¢,, € W' (R2?) such that

(3.18) ¢n — ¢ strongly in WHP'(R?) if1<p<2,
(3.19) (fn, V) = (¢, Vo) weakly™ in L=°(R%,R?) if p =1,
and

(3.20) Vé, =0 on a neighborhood A4, of Q°.
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Notice that RV¢, is divergence-free. Up to reducing A, we can assume that Q\ A, is regular,
and that the support of RV¢,, is contained in 2\ A,,. Then we have

/ RV¢-Vudr = lim / RV ¢, - Vudxr = lim RV ¢, - Vudzx,
Q n——4oo Q n—-4oo Q\I
and integrating by parts we deduce that
lim RV ¢, -Vudr = lim div (RV¢p)udz =0,
n—-+o0o Q\Tn n—-+4oo Q\Tn
so that (3.17) is proved, and the proof is concluded. O

Remark 3.6. As mentioned in the Introduction, the density result given by Theorem 3.5 (and
the similar result for Sobolev spaces Theorem 3.8) is useful to establish a link between stability
results for linear and nonlinear Neumann problems. Since stability results usually hold under the
assumption of a uniform bound on the number of the connected components of the complements
of the varying domains (see Section 4.1), the case Q€ has a finite number of connected components
is the relevant one for the applications.

In this case, the existence of the function ¢, satisfying conditions (3.18) and (3.20) in Step 2
of the proof of Theorem 3.5 can be established more directly without using the approximation
Lemma 3.3 as follows (the case p = 1 is usually not considered in the study of nonlinear Neumann
problems in view of a lack of compactness of W),

Let Ko, K1,..., K, be the connected components of 2¢, where K is the unbounded one. Let
us consider & € C*°(R?) and & € C°(R?), i = 1,...,m such that & = 1 on a neighborhood of
Ky, & =1 on a neighborhood of K;, and

supp(§p) Nsupp(§x) =0 for h # k.
By [2, Theorem 9.1.3] for every i = 0,1,...,m we can find ¢, € C*°(R?) with
¢! =¢; on a neighborhood of K;

and such that |
d); - Q/) StI‘OHgly in WLP (R2)
Setting

Op = (1Z§i> ¢+Z§i "
i=0

1=0

we get that (3.18) and (3.20) hold.

Remark 3.7. In the proof of Theorem 3.5 we used the assumption that Q belongs to the class
.Ap(RQ) in order to apply the approximation Lemma 3.3 and recover the functions ¢, satisfying
(3.18), (3.19) and (3.20). Lemma 3.3 requires that meas(¢(Q2¢)) = 0, and for Q € A,(R?) every
function ¢ € W?' (R?) constant on the connected components of Q° is such that meas(¢(Q2°)) = 0.
In particular this is the case for the functions we need to approximate, that is ¢ € wr' (R?) such
that RV € H+.

We do not know if for a general Q we can have meas(¢(Q°)) = 0 for any ¢ € Wh?'(R?)
determining an element of H+. For such a ¢, by Step 1 (and in view of the proof of Lemma 3.4),
we have that there exists a sequence of smooth functions ¢, such that

(3.21) V¢, =0 on aneighborhood of Q¢
and
(3.22) ¢n — ¢ strongly in WH2(R?).

In particular ¢, (£2°) is finite so that meas(¢,(£2°)) = 0. If this always implies that in the limit
meas(o(2°)) = 0, the fact that ¢ is energetically more regular than ¢y, i.e., ¢ € wir' (R?), plays
an essential role.

We can consider indeed the following example which shows a sequence (¢ )nen of smooth
functions satisfying (3.21) and (3.22) but with ¢ € WH2(R?) N C(R?) and such that ¢(Q2°) is the
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interval [—1,1]. Moreover ¢ can be chosen such that its connected components admit a selection
E with dimension zero, i.e., H*(E) = 0 for every o > 0, so that © € A,(R?). This example heavily
relies on a construction proposed by Maly and Martio [23] in connection with the N-property of
Sobolev transformations.

Let us consider the square @ :=] —2,2[x] —2,2[in R?, J := {(¢,0) : —1 <t <1}, and «,, \, 0.
Since a point has ca-capacity zero, there are functions u,, € C*°(R?) such that

Uy — 0 strongly in W12(R?)

and such that 0 < u,, <1, 0 € int{u,, = 1}, and u,, = 0 outside the ball B(0,1). Let 21,29 € J
and ro > 0 be such that the balls B(z1,rg) and B(z2,ro) are disjoint. Let us set

( ) 1 T — 2 1 T — 29
m(T) = —Um — —Um, .
g 2 To 2 To

The functions ¢,, € C*°(R?) are constructed as follows. Let ¢g be the constant function equal
to 0. If n > 1, let us divide the interval I := [—1,1] in n intervals I? of length 2/n; we can find
points z' € J and a radius 7, so small that nré» — 0 and ¢,_; maps B(z},7,) to the middle
point of I". Let B, := J_, B(z},ry),

[, (%) if |z — 27| < r, for some i
hnn (@) = -
0 otherwise,

and let m,, be such that
P mllwrzmey <277
We set
(bn = ¢n—1 + hmn,na
and we denote by ¢ the strong limit in W12(R?) of (¢, )nen, which is by construction a Cauchy
sequence. Notice that ¢ € W12(R?) N C(R?), and that the convergence is also uniform.

Let Q := Q\ N,y Bn- We have that Q° = Q° U, oy Bn. Since nrg» — 0, we have that
H*(NpenBr) = 0 for every @ > 0. As a consequence, the connected components of Q¢ admit a
selection E such that H*(E) = 0 for every a > 0. In particular Q € A,(R?).

By construction we have that ¢, is constant on a neighborhood of Q¢ but, since ¢, — ¢
uniformly, it is easy to see that ¢(Q¢) = [~1,1]. Clearly ¢ cannot belong to W4(R?) for some
g > 2, because otherwise its Holder continuity would imply meas(¢(Q2€)) = 0.

We are now in a position to prove the main density result of this paper.

Theorem 3.8. Let 1 < p < 2, and let Q € A,(R?) be an admissible domain. Then W12(Q) is
dense in W1P(Q).

Proof. The main ingredients in the proof are Theorem 3.5 and a truncation argument. It is not
restrictive to assume that () is connected, because we can work on each connected component.
Let u € WHP(Q). The density result will be proved if we show that for every e > 0 we can find
(tn)nen sequence in W12(Q) such that
(3.23) lim sup [[u, — ullwrr@q) < e,
n—-+o0o

where e, — 0 as ¢ — 0.
It is not restrictive to assume that

u € WHP(Q)N L>®(Q).
In fact, if £ > 0 and
Tk (u) := min{max{u, —k}, k},
we have Ty (u) € WHP(Q) N L>(Q) and Ty (u) — u strongly in W1P(Q) as k — +oo. Then if
(3.23) holds for Ty (u), by a diagonal argument it also holds for wu.
Let A CC Q, A regular and connected, such that

(3.24) ||VUHI[),P(Q\A) + [[ull &2\ A] <e.
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By Theorem 3.5, there exists v, € W12(Q) such that

(3.25) Vu, — Vu strongly in LP(Q,R?).
We claim that, up to adding a constant to v,, we can assume that
(3.26) Up — U strongly in W'P(A).
Let us set

(3.27) U, = min{max{v,, —||v/loo }, ||t/ 0o }-

Notice that u,, € W12(Q),

(3.28) up — u  strongly in WP (A),
and that
(3.29) [Vu,| < [V, a.e. in Q.

In view of (3.28), (3.29), (3.25), (3.27), and (3.24), we deduce that

: _ p : _ p : _ p
ljlrgiggllun UI\Wl,p(Q)Slggiggllun U\le,p(A)+lirgitgllun Uo7

-1 —_ P _ < p—1 P P P P
It~ By S ey [ O 9+l + 1)

< 2°(|| V|| ) w120\ Af) < 27

P
LP(Q\A

so that (3.23) is proved.
In order to complete the proof, let us check that claim (3.26) holds. If

il
Cp = — | v,dx,
Al Ja

since A is regular, by Poincaré inequality we have
Up = Up — ¢, is bounded in W1P(A).

Moreover, by the compact embedding of WP(A) in LP(A), there exists © € LP(A) such that up
to a subsequence
¥, — U strongly in LP(A).
Since Vo,, = Vv, on A, and in view of (3.25), we get that Vo = Vu in the sense of distributions
on A. We deduce that & € W1P(A),
Up — 0 strongly in WP (A),

and since A is connected
v=u+cy
for some constant c4 € R. If we set 0, := v, — ¢, — ca we get
bp — u  strongly in WP (A),
so that claim (3.26) is proved. O

Remark 3.9. (The case {2 unbounded) The density of W12(Q) into WP (Q2) when 1 < p < 2
holds also in the case 2 is unbounded but there exists r,, — +oo with ,, := QNB(0,r,) € A,(R?).
In fact, if u € W1P(Q), we have u € W1P(Q,,) so that there exists v € W%(Q,,) with v} — u
strongly in W1P(€,,) as k — +oo. If y,, is C* function with 0 < x,, <1, x,, = 1 on B(0,7,/2)
and x,, = 0 outside B(0,7,,), in order to conclude it suffices to choose u, := v x, € W(Q) for
k., sufficiently large.
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4. APPLICATIONS

In this section, we give some applications of Theorem 3.8 to stability under boundary variations
of nonlinear Neumann problems, and to the optimal cutting of a membrane.

Since we work on domains which are not assumed to be regular (for example they may contain
cracks), we will use Deny-Lions spaces. They are defined as follows. Let € be an open subset of
RN, p € [1,00[, and b € L®(RY) with b > 0. Let us set

loc

L) :={ueLl (Q) :Vuc L”(Q,]RN),/Q |ulPbdr < 4o00}.

We say that uRyv if
/ [[Vu — Vo|P + blu — v|P] dz = 0,
Q

and we set
(4.1) LiP(Q) = LEP ()R,
endowed with the norm ||ul| := ||Vul| 1o ryy + ([q [ulPb dx)/P. L;’p(Q) is the Deny-Lions space

of exponent p and weight b. In the case b = 0, it is usually denoted by L''?(Q).

Notice that W1P(2) C L;’p(ﬂ). In the case b > ¢ > 0 and (2 is Lipschitz, we have that equality
holds, while if b vanishes on subsets with positive measure or € is irregular, the inclusion can be
strict (see for example [26, Section 2.7]). Moreover W1P(Q) is always dense in L;*(f), as one
can check by truncation. As a consequence, in view of Theorem 3.8, we have the following density
result.

Proposition 4.1. Let Q € A,(R?) be an admissible domain (see Definition 3.1), and let b €
L>(R?) such that b > 0. Then W12(Q) is dense in L;’p(Q) for1 <p<2.

Let
(4.2) O;(R?) := {A CR? open : R?\ A has at most / connected components}.

For every u € L;’p(Q), we denote by Vulg and ulg the extension to zero outside €2 of Vu and
u respectively. We will use the following proposition due to Bucur and Varchon (see [8] and [9,
Theorem 4.1, Remark 5.2]), which is a sort of Mosco limsup condition (see Section 2) for the
spaces L2,

Proposition 4.2. Let Q,, be a sequence in O;(R?) converging to Q2 in the Hausdorff complementary
topology (see Section 2) and such that

meas(Q, N {b > 0}) — meas(Q N {b > 0}).
Then for every u € Ly () there exists u, € Ly> () such that

Vuplg, — Vulg strongly in L*(R?, Rz)
and

upla, — ulg strongly in Li(R?),

where L (R?) denotes the L*-space on R? with weight b.

Propositions 4.1 and 4.2 will be our main tools in dealing with stability of nonlinear Neumann
problems and with the optimal cutting of a membrane.

4.1. Stability of nonlinear Neumann problems under boundary variations. Let p €
J1,4+00[, and let A : R? x R? — R? and B : R? x R — R be two Carathéodory functions such that
the following conditions hold: there exist o € LP (R2) (p/ := ﬁ)’ B € LY(R?), 0 < ¢; < ¢g such
that for almost every x € R? and for every &, &1, & € R? with & # &

(4.3) (A2, &) — Az, &)) (&1 = &2) > 0,
(4.4) A2, €)| < af) + café]P,
(4.5) A(z,§) - £ = B(z) + crl€]P
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We assume that B satisfies (4.3), (4.4) and (4.5) for almost every x € R?, and for all £,¢;,&, € R,
with &1 # &o.

Let © be a bounded open subset of R?2. We are interested in the stability under boundary
variations of €2 of the elliptic equation

{divA(x, Vu)+ B(z,u) =0 in Q,

4.6
(4.6) Az, Vu)-v=0 on 012,

where v denotes the outer normal to J€2. Since we do not assume any regularity on A, B and on
the boundary of 2, we intend (4.6) in the usual weak sense of Sobolev spaces. More precisely by
a solution of problem (4.6) we mean a function ug € W1?(2) such that for every test function
© € WHP(Q) we have

/Q[A(:r, Vuq)Ve + B(z,uq)e| de = 0.

Existence and uniqueness of a solution to (4.6) follow by well known results on nonlinear elliptic
equations with strictly monotone operators (see for instance [22]).

Let (,,)nen be a sequence of uniformly bounded open sets in R?. We say that € is stable for
the Neumann problems (4.6) along the sequence (£2,)nen if

uq, lo, — uglg strongly in LP(R?)

and
Vug, la, — Vuaglg strongly in LP(R? R?).

Dal Maso, Ebobisse and Ponsiglione [18, Theorem 2.3] proved that (2 is stable for problem (4.6)
along (2, )nen for every admissible A and B if and only if the space WP (€,,) converges in the
sense of Mosco to W1P(Q) (see Section 2 for a definition).

If Q,, is in the class O;(R?) defined in (4.2), Bucur and Varchon [8] proved that if Q,, —  in
the Hausdorff complementary topology (see Section 2 for a definition) then W12(€2,,) converges
in the sense of Mosco to W12(Q) if and only if meas(2,,) — meas(Q).

Dal Maso, Ebobisse and Ponsiglione [18] extend this result to the case 1 < p < 2 using a
technique of nonlinear harmonic conjugates, and they prove that in the case p > 2 the result is in
general false.

In the following proposition, using Theorem 3.8 we prove that the result of [18] can be deduced
directly by that of [8].

Proposition 4.3. Let (Q,)nen be a sequence of uniformly bounded sets in O;(R?) such that €2,
converges to Q in the Hausdorff complementary topology, and let 1 < p < 2. Then WP(Q,)
converges in the sense of Mosco to WYP(Q) (and hence problems (4.6) are stable) if and only if

(4.7 meas(),) — meas(2).

Proof. Let us assume that the Mosco convergence holds. Let ¢ € R? with |£| = 1. Let us consider
u € WHP(Q) such that u(x) := £ - x. By (M1)-condition, there exists u,, € W1P({,,) such that

Vunlg, — Vulg strongly in LP(R? R?).
Since |Vu,lg, — Vulg| =1 a.e. on Q\ Q,, we get

(4.8) limsup meas(2\ ©2,) < lim / |Vupla, — Vulg|P de = 0.
R2

n—-+oo n— 400

Let us consider u,, € W1P(€,) such that u, (z) = £ - z. By (M2)-condition, up to a subsequence
we have that there exists u € W1P(Q) such that

Vunlg, — Vulg weakly in LP(R? R?).

Then, if D is a disk containing €2,, for every n we get

n—-+o0o

(4.9) £ liIE meas(€2, \ Q) = lim Vu,lg, 1p\gdz = / Vulglp\gdr = 0.
n—Too R2 R2

Combining (4.8) and (4.9), we get that (4.7) holds.
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On the contrary, let us assume that (4.7) holds, and let us prove the Mosco convergence of
WLP(€,,) to WHP(Q).
Concerning condition (M2), let ux € WP(Q,,) be such that

Vuglg, — ® weakly in LP(R? R?)
and
uplo, — ¢ weakly in LP(R?)

for some ® € LP(R? R?) and ¢ € LP(R?). Clearly, since €2, converges to Q in the Hausdorff
complementary topology, we have that ® = V¢ on €2, so that u := (¢)n € WhP(Q). In order to
conclude that (M2) holds, we have to prove that ® = Vulg and ¢ = ulg. Since £, — € in the
Hausdorff complementary topology and meas(f2,,) — meas(f2), we have

lg,, — lo strongly in L*(R?).
Then for all € C2°(R?,R?) we deduce

/Rz ®-ndr= lm . [Vurla, ] nde= lim g Vurla,,]- [ne,, | dz

:/ <I)~n19d3::/ <I>19~7)d:17:/ Vulg - ndx
R2 R?2 R?

so that ® = Vulg. Similarly we can prove that ¢ = ulq.

Let us prove condition (M1). Since it is sufficient to approximate functions in a dense subset of
Whr(Q), since O;(R?) C A,(R?), we can consider in view of Theorem 3.8 functions u € W12(Q).
Then by Proposition 4.2 (with b = 1) there exists u,, € W12(Q,) such that

||un19n — ’lLlQ||L2(R2) + HVulen — VulgHLz(Rsz) — 0.

Since W12(Q,,) € W1P(€,,), and since the L?-norm is stronger that LP-norm on bounded domains
(1 < p < 2), we deduce that (M1) holds, and the proof is concluded. O

Let us now consider the following nonlinear Neumann problem

—div A(z, Vu) + b(x)|ulP"2u=h in Q,
A(z,Vu) - v=0 on 02,

where A is a Carathéodory function satisfying conditions (4.3), (4.4), (4.5), A(z,0) = 0 for a.e.
x € R?, b€ L>®°(R?) and b > 0. In order to guarantee the solvability of (4.10), we assume moreover
that h =bf + g with f,g € ¥ (R2), suppg C €, and fC gdzx = 0 for every connected component
C of Q. We are interested in problem (4.10) because it introduces some degeneracy with respect
to problem (4.6) as b can vanish on regions of {2 with positive measure.

By a solution of (4.10) we mean a function ug € Li’p (©) (or more precisely an equivalence
class, see (4.1) for a definition) such that for every ¢ € Lll)’p(Q)

/[A(a?, Vug) - Vo + b(z) ug [P 2uqe] dr = / he dz.
Q Q

(4.10)

Notice that the integrals appearing in the weak formulation of (47 10) are well defined: in particular
notice that, if U is a regular open set such that suppg C U C U C 2, and ¢ denotes the average
of ¢ on U, by Holder and Poincaré inequalities we get

/gwdx /gwdw /g(sﬁfsﬁ)dm
Q U U

The existence of a solution ug of (4.10) can be established minimizing on Lll)’p (Q) the functional

< C”g”LIJ’(R?)HVSDHLI’(Q)-

Plu) = /Q Az, V) - Vi + b()|ul? — hu) dee

by means of the Direct Method of the Calculus of Variations. Uniqueness of the solution follows
by strict convexity of F'.
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We say that Q is stable for the Neumann problems (4.10) along the sequence (€2, )nen if

lim |V’LLQ" lgn — VUng‘p + b($)|UQn lgn — quQ|p dxr = 0.

n—-+4oo

The stability of Neumann problems (4.10) has been investigated by Bucur and Varchon in [9]
in the case p = 2 and A(x, &) = £ (but it easily generalizes to A(z, &) = a(x)€ with a giving the
correct coercivity).

The main interest in the stability of (4.10) is that, since b is not assumed to be strictly positive,
stability is not equivalent to the Mosco convergence of L;*(2,) to L, *(Q) (see [9, Remark 5.2]).
As a consequence, passing to the nonlinear setting with 1 < p < 2, an approach to stability in the
line of Dal Maso, Ebobisse and Ponsiglione [18] based on Mosco convergence cannot be directly
used in this situation.

Let (2,)nen be a sequence of uniformly bounded open sets in R2. In the case p = 2, Bucur and
Varchon [9] proved that, if Q,, € O;(R?) and €,, — Q in the Hausdorff complementary topology,
then stability of (4.10) holds if and only if meas(£2, N {b > 0}) — meas(2N {b > 0}). Proposition
4.1 permits to extend this result to problems (4.10).

Proposition 4.4. Let (,)nen be a sequence of uniformly bounded open sets in Oy(R?) converging
to Q in the Hausdorff complementary topology. Then Q is stable along (Qp)nen for the Neumann
problems (4.10) if and only if

(4.11) meas(, N {b > 0}) — meas(Q2 N {b > 0}).

Proof. Let us assume that stability holds. Then if we choose f =1 and g = 0 so that h = b, we
deduce that
uq, =1lq, and uq =1l

and that

(4.12) lg, — lo strongly in L} (R?),
where LV (R?) denotes the LP-space with weight b. In particular
(4.13) meas([Q,AQ]N{b>0}) — 0,

where CAD denotes the symmetric difference of C' and D. In fact, if (4.13) does not hold, we
have that there exists xy € L>°(R?) with X1gp>0y = 0, x # 0 and
Liq, AQ)N{b>0} Sx weakly® in L°°(R?).

As a consequence it would be

/]R2 blig, aq)dx = /RQ blia, Aqin{p>0} dT — /RQ bxdx >0
which is against (4.12). Since
|meas(€2, N {b > 0}) — meas(Q2 N {b > 0})| < meas([Q2,AQ] N {b>0}) — 0,
we deduce that (4.11) holds.

Let us assume now that (4.11) holds. Let us set u, := uq, . Choosing u, as a test in (4.10)

we deduce that u,, is bounded in L;’p (R?). Up to a subsequence we have that there exist ® €
LP(R?,R?) and ¢ € LY (R?) such that

(4.14) Vunlg, — ® weakly in LP(R? R?)
and
(4.15) uplo, — ¢ weakly in L} (R?).

By the convergence of €2, to €2 in the Hausdorff complementary topology, we have that ® = Vi on
Q. In fact let ¥ € C°(Q,R?) and let U be a regular subset of §2 such that supp(¥) CU C U C Q.

Then U C Q,, for n large and
/ Vu, - Vdr = —/ updiv¥ dz.
U U
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Let ¢,, be the average of uw,, on U. By Poincaré inequality and Rellich Compact Embedding of
WLP(U) into LP(U) we get up to a further subsequence
(4.16) (up — ¢p) — @ strongly in LP(U).

In particular the convergence is strong in L} (U) and

(4.17) /@-\de:—/ i div da.
U U

By (4.15) and (4.16) we deduce that ¢, = u, — (un, — ¢y) converges to some ¢ € R. We conclude
that @ = ¢ — ¢ and by (4.17) we get

/q)-\I/dx:—/cpdiV\I/d:r
U U

which means that & = V¢ on Q.
Notice moreover that (4.11) and (4.15) imply that

(4.18) lim Upla, hdr = / phdz.
R2 Q

n—-+00

In fact, since h = bf + g and supp(g) C €, it suffices to check that

lim unlgnbfda::/gobfdx.
Q

n—-+oo R2

Since 1o, np>0} — lon{s>o} strongly in L'(R?) we have
lim uplo, bf de = lim unlo,bflo,np>o0) dz = / wbflon(p>oy dz.
R2

n—-+oo R2 n—-+oo R2

Let us prove that ¢ = ug on 2. In fact, for every v € L;’p (©), by monotonicity we have that
(4.19) / [A(z, Volo) - (Volo — Vaunlo, ) + Bla, vlo)(vla — unle, )] de
R2

> / [A(z, Vupla,) - (Vulg — Vu,lq,) + B(z,uylq, ) (vl — unla, )] dz,
]RQ

where
B(x,€) == b(x)[¢[P~% — h(x).
We claim that there exists v,, € Lé’p(Qn) such that

(4.20) Vunlg, — Volg strongly in LP(R? R?)

and

(4.21) vple, — vl strongly in L} (R?).

Notice that

(4.22) lim hv,lq, dx = / hvlq dz.
n—-+oo R2 R2

In fact, because of (4.21), we have

lim bfv,lq, do = / bfvlgdx.
R2 R2

n—-+o0o

Moreover, if U is regular and with supp(g) C U C U C € we have by Poincaré inequality

/Ug(vn —v)dx

Since U C Q,, for n large enough, we conclude that (4.22) holds.

< llgll e @) [IVon = Vol e w2y — 0.
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Using v, — uy,, as a test function in (4.10) we can rewrite the right-hand side of (4.19) as
(4.23) / [A(z, Vuylg,) - (Vvlg — Vuyla,) + B(z,unla, ) (vl —unle, )] dz
R2
= / [A(z, Vuylq,) - (Vvlg — Vo, lg, ) + B(z,unlg, )(vlg — v,lq, )] de.
R2

Since A(x, Vu,la,) is bounded in LP' (R%,R?) and |u, [P~ 2u,1q, is bounded in Lf, (R?), passing
to the limit in (4.19) and in (4.23), by claims (4.20) and (4.21), and in view of (4.18) and of the
fact that A(z,0) = 0, we obtain

(4.24) /Q[A(x, Vo) - (Vv = Vo) + B(z,v)(v—¢)]dx

> lir_irrl [A(z, Vuylg,) - (Vvlg — Vu,la,) + B(z,unla, ) (vlg —v,lg, )] dz = 0.
n—+oo Jp2
Taking v = ¢ + €z in (4.24), with z € L;’p(ﬂ) and ¢ > 0, dividing by ¢, and passing to the limit
as € — 0, we obtain that ¢ = ug in Q.
Let us now prove that ¢ = uglg, ® = Vuglg, and that the convergences in (4.14) and (4.15)
are indeed strong. Let us take v := ugq in (4.23). Since A(z,0) = 0 we obtain that

lim (A(x, V’U,nlgn) — A(:E, VUng)) . (Vunlgn — VUQIQ) dx

n—-+o0o R2
+/ b(m)(\un|p*2unlgn - ‘UQ|p72UQ].Q)(Un1Qn —uglg)]dx = 0.
R?

By monotonicity we get that each integral tends to zero. Now, the strong convergence of Vu,1lq,
to Vuglg in LP(R?,R?) and of u,1lg, to ugle in LY(R?) is a consequence of [18, Lemma 2.4].
In order to conclude the proof, we have to prove our claim on the existence of v,, € L;’p ()
satisfying (4.20) and (4.21). By Proposition 4.2, every function z € L;’2(Q) is strong limit of
a sequence of functions z, € Lé’Q(Qn) (with the usual extension to zero outside € and 2, re-
spectively). Since Q € A,(R?), by Proposition 4.1 v is a strong limit in L;’p(Q) of functions in
W12(Q), which in particular are in Li’Q(Q). Then the strong approximability for v that we need
follows easily using a diagonal argument. O

4.2. Nonlinear optimal cutting problem. In this subsection, we apply Theorem 3.8 to the
problem of optimal cutting for a membrane governed by a nonlinear energy.
Let © C R? be open, bounded, and with a Lipschitz boundary, and let z1, x5 € . Let us set

K(Q):={K CQ : K is compact and connected with z1,zo € K}.

Let f: R? x R? — [0, +00] be a Carathéodory function such that f(z,0) = 0 and satisfying the
following growth estimate

(4.25) alg]” < f(x,€) < a(l)” + 1),

where o > 0 and p €]1, +o0o].
Let g € WLP(R?). For every K € K(Q) let us set

(4.26) E(K) ::inf{ f(z,Vu)de : w€ L"P(Q\ K),u =g on BQ\K},

Q\K
where LP(Q2\ K) is the Deny-Lions space defined in (4.1) with b = 0. Notice that it is natural
to consider displacements in LY?(Q2\ K) because the energy involves only Vu, and so we cannot
expect to control the LP-norm of u. Moreover, notice that the boundary condition on 99 \ K is
well defined since € is Lipschitz and u € WP (Q N B,.(x)) for every x € 9Q \ K and r such that
B.(z)N K =1.
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We have that £(K) can be rewritten as

(4.27) E(K)inf{ fz,Vu)dz :uer’p(Q\K),ugonaﬂ\K}.

QK

This is due to the density of W1P(Q \ K) in L'?(Q\ K), but a little care should be paid
for the boundary condition. In particular, denoting by T,; the truncation operator Th;u :=
min{max{u, —M}, M}, we have for every u € L1?(Q\ K)

fx,Vu)de = lim f@&,VTpyu—VTyg+ Vg)dx

so that (4.27) holds. B
The optimal cutting problem consists in finding the "cut” K € () which maximizes £ among
all admissible cuts, i.e., to solve the problem

(4.28) max E(K).
KeKk(Q)

The existence of an optimal cutting has been established by Bucur, Buttazzo and Varchon in [5]
in the case p = 2 and with a quadratic energy density f(z,&) = A¢-¢£. In view of Theorem 3.8,
the existence of an optimal cut can be proved also in the nonlinear case 1 < p < 2. The following
result holds.

Proposition 4.5. Let 1 < p < 2. Then problem (4.28) has a solution.

In order to prove Proposition 4.5 we need the following lemma which is based on Theorem 3.8
and on the first condition of Mosco convergence for Sobolev spaces W12 proved in [9].

Lemma 4.6. Let 1 < p < 2, and let (K,)nen be a sequence in K(Q2) converging in the Hausdorff
metric to K. Then for everyu € WHP(Q\ K) withu = g on OQ\ K there exists u,, € WP (Q\ K,,)
with u, = g on 00\ K, such that

Vunlo\k, — Vula\g  strongly in LP(R? R?).
Proof. Let B be an open ball containing Q. Let us consider

{u in Q\ K

g in B\Q.
Notice that @ € WP(B\ K). By applying Theorem 3.8 to (B \ K) € A,(R?) we have that there
exists 75, € WH2(B \ K) such that
Op — @ strongly in W'P(B\ K).

By Proposition 4.2 (with b = 0, so that the convergence of the measures is automatically satisfied),
for each h € N there exists 07 € W2(B\ K,,) such that

Voylp\k, — Viplp\ g strongly in L?*(R?,R?).
Using a diagonal argument, and since the L2-convergence is stronger than LP-convergence on
bounded domains (1 < p < 2), we can find @, € W?(B\ K,,) such that
(4.29) Viin1p\x, — Vilpx  strongly in LP(R* R?).

The functions @, do not satisfy a-priori the required boundary condition, so that we have to
modify them. We follow here an idea due to Chambolle [13]. Up to adding a constant to u,, we
can assume that
@, — g strongly in W'P(B\ Q).
Let us consider g, := (g — ﬂn)|B\§' We have that g, € WYP(B\ Q) with §, — 0 strongly in
WtP(B\ Q). Let E denote a linear extension operator from W1?(B\ Q) to WLP(B): such an E
exists because () has a Lipschitz boundary. Let us set

Up 1= (ﬂn + Egﬂ)m\Kn
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We have u,, € WhP(Q\ K,,) with u,, = g on 9Q \ K,,. Moreover, since Eg, — 0 strongly in
WP (B), in view of (4.29), we deduce that (u,)nen is the required sequence. O

We are now in a position to prove Proposition 4.5.

Proof of Proposition 4.5. Let (K, )nen be a maximizing sequence for the optimal cutting problem,
ie.,

E(K,) —sup{&(K) : K € K(Q)}.
Up to a subsequence, we can assume that K, — K in the Hausdorfl metric. We have that K is
an admissible cut, that is K € ().
By Lemma 4.6, for every u € WP (Q\ K) with u = g on 9Q\ K there exists u,, € WHP(Q\ K,,)
with u, = ¢ on 92\ K,, such that
Vuplo\k, — Vulg\g  strongly in LP(R? R?).
Since f(z,0) = 0, we deduce
f(z,Vu)dxr = lim flx,Vu,)dx > lim E(K,).
O\K n—+oo Jok,, n—+oo

Taking the infimum over all admissible u we get

S(K)> lim &(K,)

n—-+o0o
so that K is an optimal cut, and the proof is concluded. O
Remark 4.7. In the proof of Proposition 4.5, it is not clear if meas(K,,) — meas(K) for n — +o0.
As a consequence, the result of Dal Maso, Ebobisse and Ponsiglione [18] cannot be applied to
recover the approximability of gradients of functions in W?(Q2\ K) through gradients of functions

in WHP(Q\ K,,) that we need. It seems essential to use the approximability of the gradients for
the relative W'2-spaces established in [9] and the density result given by Theorem 3.8.

Let us assume that f(z,£) is strictly convex in £ so that the problem
(4.30) min{ f(z,Vu)de : w€ LY"P(Q\ K),u =g on OQ\K}
O\K

admits a unique solution ug\ g € L*?(2\ K). In particular, in view of (4.26) we have

E(K) = f(z, Vug\ ) dz.
O\K
The associated Euler-Lagrange equation is
divoe f(z, Vuorx) =0 in Q\ K
(4.31) Ocf(x,Vugrg) -v=0 on K
u\x = ¢ on 00\ K.
We deduce that the following stability result for the Neumann-Dirichlet problem (4.31) holds.

Proposition 4.8. Let 1 < p < 2, let K be a solution of (4.28), and let (K,)nen be a sequence
in K(Q2) converging in the Hausdorff metric to K. Then we have that Q\ K is stable for (4.31)
along the sequence (2 \ Ky )nen, that is

(4.32) Vuo\k, Lok, — Vua\xlo\x  strongly in LP(R?,R?).

Proof. Choosing g as an admissible displacement in (4.30), we get that Vug\ k, 1o\ k,, is bounded
in LP(R?,R?) so that up to a subsequence we have

Vuori, lovk, = ®  weakly in LP(R? R?).
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Since K,, — K in the Hausdorff metric, there exists u € L1?(Q\ K) with u = g on Q \ K such
that ® = Vu on Q\ K. Moreover by lower semicontinuity we have that

(4.33) flz,Vu)dz < / f(z, @) dx <liminf [ f(z, Vuo\ g, lo\k, ) dx
Q\K R2 n—+00 Jgr2

n—-+oo

= lim inf/ f(z,Vuo\g,,) dx.
O\K,,
Let v € LY?(Q\ K) with v = g on 90\ K. By Lemma 4.6, there exists v, € L'"P(Q\ K,,) with
v, = g on I\ K,, such that
Vo lovk, — Vulo\k strongly in L?(R? R?).
Then by (4.33) we get

(4.34) / flx,Vv)dx = lim f(z,Volog\g, ) de = lim f(z,Vv,)dx
O\K n— 400 R2 n—-4o0o O\K,

> lim inf/ f(z,Vuo\g,, ) dz > f(z,Vu) dz
n—+o0 Jo\k,, O\K

so that u = ug\ g. Taking v = u in (4.34) we obtain

lim [z, Vuo\g,,) dx = [z, Vug\ k) d.
n—t+oo Jo\ Kk, O\K
By [4] we conclude that (4.32) holds, and the proof is concluded. O

5. APPENDIX: THE DENSITY RESULT FOR THE SYMMETRIZED GRADIENTS

The aim of this appendix is to show how our approach to density explained in Section 3 can be
employed to prove the density of the Sobolev space W12 in the spaces LD of two dimensional
elasticity. The case p = 2 is the really interesting one, and has been proved by Chambolle in [13]:
using this density, he proves existence for the Cantilever Problem and for the evolution of brittle
fractures in the context of planar linearized elasticity. Our approach provides a different proof of
Chambolle’s result, and covers also the case 1 < p < 2.

In order to make the context precise, let 2 be an open subset of R2. For 1 < p < +o0, let us
set

loc sym

LDl,P(Q) = {u S WLP(Q,RQ) L e(u) € LP(Q,MQXZ)},

where e(u) := (Vu + (Vu)”)/2 denotes the symmetrized gradient of u, and M2%? denotes the
space of 2 x 2 symmetric matrices. Clearly W1P(Q,R?) C LDVP(Q). If Q is Lipschitz, by means
of Korn’s inequality, it turns out that LD?(Q) coincides with W1? (2, R?), while if Q2 is irregular,
the inclusion can be strict.

The main result of this section is the following.

Theorem 5.1. Let 1 < p < 2, and let Q C R? be a bounded open set such that Q° has a finite
number of connected components. Then for every u € LDYP(Q) there exists u, € W12(Q,R?)
such that

e(un) — e(u) strongly in LP (2, MZ5Y).

Proof. Let K;, i = 0,1,...,m, be the connected components of ¢, where K is the unbounded
one. Let us consider the space

H:={e(v) : v € HY(Q,R?)} C LP(Q, M2%2),

sym
where on MZ22 we consider the scalar product A : B := tr(ABT) = ), ; @ijbij.
In order to prove the theorem, it suffices to check that for every u € LD1?(£2) we have

e(u) € H,

where the closure is taken in the LP-norm.
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We employ a functional analysis argument, namely that H = (H+)*, where (-)* denotes the
orthogonal in the sense of Banach spaces. So our strategy is the following. Firstly we characterize
H*, and then we check that e(u) is orthogonal to every element of H*.

Step 1: Characterization of H+. We claim that

(5.1) H' = {ﬁgs/s(go) tp € Wg’p/(R2)7ap is linear on K; for ¢ =0,1,... ,m} ,
where I-/Iggs(ga) is defined as

(o) [ %3 —Onp
(5.2) Hess(yp) := ( Oy .

By linearity of ¢ on K; we mean that there exist ¢; € R? and b; € R such that (notice that
Wy” (R?) € C'(R?))
(5.3) o) =ci-x+b; for x € K;.

Since ¢ € Woz’p/ (R?), we clearly have ¢ = 0 and by = 0.
Let us check (5.1). Let ¥ € LV (2, M2%2) be an element of H+, where p’ := p/(p — 1) is the
conjugate exponent to p, with

Y1 )
U = .
( a3
This means that for every v € H! (2, R?) we have
/ U : e(v)dr =0.
Q
Choosing v € H of the form v := (v1,0) with v; € HY(Q), we deduce that for every v; € H(Q)
/(1/11,’@[12) . V’Ul dxr = 0.
Q
Similarly we deduce that for every vy € H(Q)
/(¢2, Y3) - Vug dr = 0.
Q

From Lemma 3.4 we conclude that there exist ¢1,¢s € Wl’p,(RQ) and ¢; € R%, i =0,1,...,m
such that

V(bl - R(¢1»¢2)7 VQSQ - R(1/J27¢3)7

(5.4) (p1,02) =¢; on K; for 1 <p < 2,
and
(5.5) (¢p1,d2) = ¢;  co-q.e. on K; for p =2,

where R(a,b) := (—b, a) denotes a rotation of 90 degrees counterclockwise. We can assume ¢y = 0,
hence ¢1, py € Wy? (R?).
Let us set
(5.6) & = (¢1,d) € WLP (R2 R?).
Let D be a disk centered at the origin and such that Q C D. For every v € H'(D,R?) we have
that
/ d-Vodr = —/ (div®)vdx = —/ (0101 + Dagp2)v dx = —/ (=12 + 2)vdx = 0.
D D D D

Using again Lemma 3.4, we get that there exists ¢ € W' (R?) with ¢ = 0 on R?\ D, and such
that

V(,O = R@ = (7¢2,¢1).
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In view of (5.6), we conclude that ¢ € WOQ’p/ (R?). Since p’ > 2, by Sobolev Embedding Theorem
we have that ¢ € C1(R?), so that, by Lemma 2.1, from (5.4) and (5.5) we get (up to replacing ¢;
with Re;)

(5.7) Vo =¢ on kK.

By construction we have that ¥ = I:ITegs(cp). In order to complete the proof of claim (5.1), we
need to check (5.3). Let us consider

vi(z) = p(x) —¢ - x.

By (5.7), we clearly have that Vip; = 0 on Kj, i.e., K; C C;, where C; is the set of critical points
of ;. By Sard’s Lemma we have that

meas(p;(C;)) = 0.
Since ;(K;) is connected, and meas(p;(K;)) = 0, we conclude that ¢;(K;) = {b;} for a suitable
b; € R, so that (5.3) is proved.

Step 2: Checking the orthogonality condition. Let u € LD'?(f2), and let ¥ € H-. We

have to check that
/\II :e(u) =0.
Q

According to (5.1), let ¥ = Hess(p) with ¢ € Woz’p/ (R?) satisfying (5.3). Let us consider & €
C*(R?) and & € C°(R?), i = 1,2,...,m such that £ = 1 on a neighborhood of Ky, & =1 on a
neighborhood of K;, and

supp(&n) Nsupp(§x) =0 for h # k.
By [2, Theorem 9.1.3] we can find ¢!, € C°°(R?) with
¢! (r) =c;-x+b; on aneighborhood of K,
and such that
@l — ¢ strongly in w2v (R?).

Let us set
on 1= (1 - Zfz) o+ Zgi@;'
i=0 i=0

Clearly we have that

(5.8) ©n — ¢ strongly in W2 (R?),
and
(5.9) }/Iggs(gon) =0 on a neighborhood 4,, of Q°.

We can assume that Q\ A4, is regular. Then by means of Korn’s inequality we have that
(5.10) u€ WhHP(Q\ 4,,R?).
By (5.8) and (5.9) we conclude that

/\Il ce(u)dr = / I?eé%(go) s e(u)dr = lim ﬁs(@n) :e(u)dx
Q Q

n—-+4oo Q

= lim I:IES/S(gan) :e(u) dz.
n—-+4oo Q\Tn

By (5.10) and since Hess(i,) is symmetric, we deduce that

(5.11) /\Il s e(u)dr = lim Hess(¢y,) @ Vuda.
Q n—-+4o0o Q\Tn



A DENSITY RESULT FOR SOBOLEV SPACES IN DIMENSION TWO 23

Notice that the rows of I-Egs(wn) are divergence free in Q\ A,,, and with null trace on 9(Q \ 4,,).
Integrating by parts in (5.11), we get

so that the proof is concluded. O

Remark 5.2. In his proof of the density of W12(Q) in LD'2(Q2), Chambolle [13] considers
LDY2(Q) (up to functions u such that e(u) = 0) as a Hilbert space with scalar product (u,v) :=
Jo e(u) : e(v) dz, and proves that

{e(u) : ue WH2(Q)}t =0,

where (-)* is the orthogonal in the sense of Hilbert spaces. In this framework, the function ¥
appearing in our Step 1 is of the form ¥ = e(v) for some v € LDY2?(Q), and the same analysis

implies that e(v) = I?eé%(cp). As a consequence we get A2p = 0 (¢ is usually called the Airy
function). Chambolle uses some PDE and capacity arguments to show that ¢ = 0 in the case
is simply connected, and then proves the general case by reduction to the simply connected one.

In our case, we cannot employ PDE arguments, because we consider LDP({2) as a natural
subspace of LP(€2, ngxn%), and this seems unavoidable in the case 1 < p < 2. As a consequence our
function ¢ does not satisfy A%2p = 0, and we must work out an approximation of ¢ as in Step 2.

Remark 5.3. In order to follow the arguments of Step 2, it suffices to approximate ¥ = ﬁégs(go) €

Ht by ¥, € LV (Q, ngxnzl ) which are null on a neighborhood of Q¢ and whose rows are divergence

free. This is obtained taking ¥, := I-Te%(apﬁ, where ¢,, € WOQ"’/ (R?) is such that
©n — @ strongly in WOQ’p/ (R?),

and with ¢,, linear on a neighborhood of 2¢. This last constraint cannot be treated using ideas
similar to Lemma 3.3, so that we used partition of unity (which requires Q¢ with a finite number
of connected components) and the approximation result [2, Theorem 9.1.3] (which requires 1 <
p < +00).
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