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Abstract

Given an open bounded connected subset Ω of Rn, we consider the overdetermined bound-
ary value problem obtained by adding both zero Dirichlet and constant Neumann boundary
data to the elliptic equation −div(A(|∇u|)∇u) = 1 in Ω. We prove that, if this problem
admits a solution in a suitable weak sense, then Ω is a ball. This is obtained under fairly
general assumptions on Ω and A. In particular, A may be degenerate and no growth condi-
tion is required. Our method of proof is quite simple. It relies on a maximum principle for a
suitable P -function, combined with some geometric arguments involving the mean curvature
of ∂Ω.
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1 Introduction

For a bounded, connected, open set Ω ⊂ Rn and for a parameter c > 0, consider the elliptic
boundary value problem




−div(A(|∇u|)∇u) = 1 in Ω

u = 0 on ∂Ω
|∇u| = c on ∂Ω .

(1)

Imposing boundary conditions for both u and ∇u on ∂Ω makes problem (1) overdetermined, so
that in general it has no solution. On the other hand, it is not difficult to verify that, under
reasonable assumptions on A, if Ω is a ball then problem (1) admits a unique solution, which is
radially symmetric (see Proposition 2.2 below). A natural question which arises is to determine
if this condition is also necessary, namely whether the following statement holds true:

if (1) admits a solution, then Ω is a ball. (2)
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In the linear case, when A ≡ 1 and the equation becomes −∆u = 1, (1) may be used to
describe both the motion of a viscous incompressible fluid moving in straight parallel streamlines
through a pipe with planar section Ω or the torsion of a solid straight bar of given cross section
Ω. For these models, (2) has the following meaning, which we quote from [34]: “the tangential
stress on the pipe wall is the same at all points of the wall if and only if the pipe has a circular
cross section” and “when a solid straight bar is subject to torsion, the magnitude of the resulting
traction which occurs at the surface of the bar is independent of position if and only if the bar
has a circular cross section”.

When A(t) = (1 + t2)−1/2 the solution of (1) describes the shape of a capillary surface in
absence of gravity, adhering to a given plane with constant contact angle. In this case, (2) means
that the wetted area on the plane is necessarily spherical, see [34, 38].

For degenerate elliptic operators, further physical applications may be pointed out. For
instance, when A(t) = tp−2 for some p > 1, problem (1) models torsional creep with constant
stress on the boundary [21]. When A(t) = 1 + αtp−2 (with α > 0, p > 1), equation (1) has
applications in Born-Infeld theory for electrostatic fields [14], and its solutions are static critical
points of an action functional with Lorentz-invariant Lagrangian density proposed by Derrick
[12] as a model for elementary particles. We also refer to [3, 4] for more general applications to
quantum physics.

Indeed, the problem of proving (2) has raised a good deal of attention in the last decades.
The first fundamental contribution is due to Serrin. In his celebrated paper [34], (2) is obtained
in the uniformly elliptic case, when solutions of (1) are classical. Serrin’s proof is based on
what is now known as the “moving planes method”. This method has subsequently been used
in many further symmetry results for elliptic equations, see [17, 26, 32]. In its original version,
the method applies under the requirement that ∂Ω ∈ C2. Later this assumption was weakened;
we refer to [5] and [31] for the case of domains with Lipschitz boundary and with one possible
corner or cusp.

In the special (and simplest) case where A ≡ 1, a different method to obtain (2) was discovered
by Weinberger [37] whose proof is the first successful attempt to use an associated “P -function”.
By using some integral identities and the maximum principle, he shows that a certain function
of u is constant in all of Ω (see Remark 5.4 below). As a consequence the Hessian matrix of
u is a multiple of the identity, which gives (2). This approach requires very weak assumptions
on the regularity of the boundary. Let us also mention that for smooth domains, an alternative
proof still valid only for the case A ≡ 1 has been obtained by Choulli-Henrot [10] via shape
derivatives.

All these methods, including the original one of moving planes, fail when A is a general elliptic
operator, possibly degenerate. In this case, solutions of (1) may lose regularity and must be
intended in some weak sense. For instance, when A(t) = tp−2 for some p > 1 (which corresponds
to the p-Laplacian operator), solutions are generally of class C1,α but not C2. In fact, as far as
we are aware, the existing results about (1) in the degenerate case cover just “p-Laplacian type”
equations. More precisely, assuming that A(t) ≈ tp−2 as t →∞ for some p > 1 (see Remark 5.1
below), in [15] Garofalo-Lewis deal with solutions of (1) which belong to W 1,p(Ω) and satisfy
the boundary conditions in a fairly weak sense. In their ingenious proof of (2), inspired by
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Weinberger’s approach, the asymptotic behaviour of A is used to obtain gradient bounds and
to apply elliptic regularity. Later, under the same assumptions on A but only for p ≥ 2, (2) was
derived via continuous Steiner symmetrization by Brock-Henrot [6], assuming initially that Ω is
convex and that solutions are in C1(Ω). Finally let us mention the paper by Damascelli-Pacella
[13], where (2) is proved when A(t) = tp−2 and p ∈ (1, 2). In this special case the authors are
able to adapt the moving planes method because, at critical points of solutions, the operator is
more likely to be singular rather than degenerate.

The scope of the present paper is to provide a new simple unifying proof of (2) for very
general problems, possibly degenerate. Dealing with C1(Ω) solutions, we make fairly weak
assumptions (in particular, no growth restrictions) on the function A. The price that we must
pay for these general assumptions are some geometric restrictions on the admissible domains Ω,
i.e. simple connectedness for planar domains (see Theorem 2.4) and star-shapedness in higher
space dimensions n ≥ 3 (see Theorem 2.3). If we make no geometric assumptions on Ω, we
may only prove a much weaker version of (2), namely that Ω coincides with its Cheeger set, see
Theorem 2.5.

Our approach combines analytical and geometrical arguments. It is based on Alexandrov
characterization of spheres [1, 2]. In order to apply his principle, we use a suitable P -function,
which enables us to obtain a uniform upper bound for the mean curvature of ∂Ω. Then we employ
two crucial tools from geometry, a sharp estimate for the radius of the maximal inscribed disk
in dimension n = 2 (see Lemma 3.4 below) and a so-called Minkowski identity in any space
dimension (see the first identity in formula (21) below).

The outline of the paper is as follows. The main results are stated in Section 2 and proved
in Section 4. Section 3 contains some crucial preliminary lemmata. In Section 5 we gather some
concluding remarks.

2 Main results

Throughout the paper we assume that ∂Ω ∈ C2,α. This ensures that solutions of (1) are C2,α

in a neighbourhood of ∂Ω, see Lemma 3.1. In particular, the Neumann condition reads

−uν = c on ∂Ω ,

where ν denotes the exterior unit normal to ∂Ω. We remark that less regularity on ∂Ω could
be required thanks to the results in [36], but it is not our purpose to discuss here the optimal
assumptions on the boundary. Our attention is mainly focused on the operator A. We ask it to
satisfy the regularity requirement

A ∈ C2(0, +∞) (3)

and the (possibly degenerate) ellipticity conditions

lim
t→0+

tA(t) = 0 ,
(
tA(t)

)′
> 0 for t > 0. (4)
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Note that the first condition in (4) is necessary for the existence of a C1(Ω) solution of (1).
To see this, let r → 0+ in (18) in the proof of Proposition 2.2 below. Note also that, in view of
Theorem 2.5, the second condition in (4) could be assumed to hold only for t ∈ (0, c).

Under assumptions (3)-(4) on A, we consider C1 distributional solutions of (1). More precisely
we give the following:

Definition 2.1 We say that u is a solution of (1) if u ∈ C1
0 (Ω), uν = −c on ∂Ω and

∫

Ω
A(|∇u|)∇u∇ϕ =

∫

Ω
ϕ for all ϕ ∈ C∞

c (Ω) .

To investigate the existence of a solution of (1), one starts in a natural way from the easiest
case when Ω is, by assumption, a ball. In such case, the radius of the ball and the corresponding
solution can be uniquely and explicitly determined according to the following simple proposition,
that is proved for completeness in Section 4.

Proposition 2.2 Let A satisfy (3) and (4) and assume that Ω = BR is a ball of radius R in
Rn. Then problem (1) admits a solution u if and only if R = ncA(c). In this case, u is radially
symmetric and decreasing in BR and, when BR is centered at the origin, u can be written as

u(x) =
∫ R

|x|
A

( s

n

)
ds ,

where A is the inverse of the map t 7→ tA(t).

The delicate matter is to prove the converse statement of Proposition 2.2, namely that (2)
holds. We are able to prove this implication under the initial assumption that Ω is a star-shaped
domain, i.e. that there exists a point x0 ∈ Ω such that (x− x0) · ν ≥ 0 on ∂Ω.

Theorem 2.3 Let A satisfy (3) and (4) and assume that Ω ⊂ Rn is star-shaped with C2,α

boundary. If problem (1) admits a solution, then Ω is a ball of radius R = ncA(c).

In dimension n = 2 the result remains valid if Ω is merely assumed to be simply connected.

Theorem 2.4 Let A satisfy (3) and (4) and assume that Ω ⊂ R2 is simply connected with C2,α

boundary. If problem (1) admits a solution, then Ω is a disk of radius R = 2cA(c).

In arbitrary dimension, if Ω is not assumed to be star-shaped, we can prove a result weaker
than Theorem 2.3. According to [24] and [25] we say that Ω coincides with its Cheeger set if

|∂Ω|
|Ω| = min

D

|∂D|
|D| := h(Ω)

where the minimum is taken over all open, nonempty, simply connected subdomains D of Ω.
h(Ω) is named after [9] and called the Cheeger constant of Ω.
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Theorem 2.5 Let A satisfy (3) and (4) and assume that Ω ⊂ Rn has a C2,α boundary. If
problem (1) admits a solution u, then |∇u(x)| ≤ c for all x ∈ Ω, and Ω coincides with its
Cheeger set.

In [25] it was shown that convex plane domains satisfy h(Ω) = |∂Ω|/|Ω| if and only if the
curvature of their boundary is bounded from above by |∂Ω|/|Ω|. For instance, ellipses and other
domains coincide with their Cheeger sets. But not all domains coinciding with their Cheeger sets
are star-shaped. Annuli or rounded L-shaped domains can serve as counterexamples. Thus, com-
bining Theorems 2.3 and 2.5 is unfortunately not sufficient to conclude that the star-shapedness
assumption in Theorem 2.3 may be removed.

3 Preliminary results

Throughout this section we assume without further mention that ∂Ω ∈ C2,α and that A satisfies
(3)-(4). We first show that, if a solution of (1) exists, it is unique and it gains regularity.

Lemma 3.1 There exists at most one solution u of (1) in the sense of Definition 2.1. If it
exists, it satisfies

u ∈ C2,α(Ω \ {x : ∇u(x) 6= 0}) . (5)

Proof. To prove uniqueness, observe that any solution of (1) is a critical point of the integral
functional

J(u) =
∫

Ω

[
B(|∇u|)− u

]
, u ∈ C1

0 (Ω) , (6)

where B(s) :=
∫ s
0 tA(t)dt. Due to (4), the map s 7→ B(s) is strictly convex, then so is J , and u

must coincide with its unique minimizer. Condition (5) follows from standard elliptic regularity
theory. ¤

Now we put Φ(t) := 2
∫ t
0 (A(s) + sA′(s))s ds and we assume that u solves (1) in the sense of

Definition 2.1. Then, we consider the P -function defined by

P (x) := Φ(|∇u(x)|) +
2
n

u(x) (x ∈ Ω) . (7)

Clearly, P is continuous in Ω and, by Lemma 3.1, it is of class C1 in a neighbourhood of ∂Ω. The
next lemma is an extension of a known result on P -functions to possibly degenerate equations.
Let us stress that it does not exclude that P might attain its maximum also in critical points of
u (which are in the interior of Ω).

Lemma 3.2 (P -function)
If u solves (1) in the sense of Definition 2.1, then the P -function defined by (7) is either constant
in Ω or it satisfies Pν > 0 on ∂Ω.

5



Proof. Throughout the proof we assume that P is not constant in Ω. We first claim that P
attains its maximum on ∂Ω and that if P also attains its maximum in a point x ∈ Ω then
necessarily ∇u(x) = 0. We divide the proof of this claim into two steps. In the former we
assume that A is uniformly elliptic, in the latter we proceed by approximation.
Step 1. In this step we follow essentially [28] and [35] and prove the statement when A satisfies
the uniform ellipticity conditions (which imply (3) and (4))

A ∈ C2[0,+∞) ,
(
tA(t)

)′
> 0 for t ≥ 0. (8)

We set

LP := ∆P +
A′(|∇u|)

|∇u|A(|∇u|)∇
2P∇u · ∇u .

By some long but straightforward computations, one may obtain the explicit expression of LP
and write it down as

LP + L · ∇P = g (9)

where L = L(u) is a suitable vector-valued function, and g = g(u) contains all the “remainder
terms”, see [35, Section 7]. Via an application of Schwarz’s inequality, one gets that the function
g is nonnegative on Ω, so that P turns out to satisfy the second order differential inequality

LP + L · ∇P ≥ 0 in Ω . (10)

Clearly, since (8) holds, the operator L has bounded coefficients, and also the vector field
L = L(u) remains bounded, see e.g. [35, Theorem 7.3]. Moreover, thanks to (8), the operator L
is strongly elliptic, because there exists µ > 0 such that

|ξ|2 +
A′(|∇u|)

|∇u|A(|∇u|)(∇u · ξ)2 ≥ µ|ξ|2 for all ξ ∈ Rn , x ∈ Ω . (11)

Indeed, for those x ∈ Ω such that A′(|∇u(x)|) ≥ 0, (11) is satisfied with µ = 1. Otherwise, we
may apply Schwarz’s inequality to obtain

|ξ|2 +
A′(|∇u|)

|∇u|A(|∇u|)(∇u · ξ)2 ≥ A(|∇u|) + A′(|∇u|)|∇u|
A(|∇u|) |ξ|2 .

Hence, (11) holds for all x ∈ Ω with

µ = inf
{(

tA(t)
)′

A(t)
: t ∈ [

0, max
x∈Ω

|∇u(x)|]
}

> 0 .

Thus, under assumption (8), (10) is an elliptic inequality of second order with bounded differen-
tiable coefficients. Hence, the second order operator may be written in divergence form. Then,
the classical maximum principle (see e.g. [18, Theorem 8.1]) proves that P attains its maximum
over Ω on ∂Ω. Notice that in this case, since P is assumed nonconstant, the maximum of P
over Ω is attained only on ∂Ω.
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Step 2. Let us turn to the case when A is possibly degenerate. If (8) is weakened to (3) and (4),
the coefficients of the inequality (10) may become singular on the set C := {x ∈ Ω : ∇u(x) = 0},
and also (11) may fail. Thus, we proceed through a careful perturbation argument. We set

LεP := ∆P +
A′(|∇u|+ ε)

(|∇u|+ ε)A(|∇u|+ ε)
∇2P∇u · ∇u ,

and we choose a sequence {Lε} in C0(Ω;Rn) which converges to L locally uniformly in Ω \ C as
ε → 0. For every ε > 0 we consider now the solution Pε to the boundary value problem

{ LεPε + Lε · ∇Pε = g in Ω
Pε = P = Φ(c) on ∂Ω ,

with g defined by (9). By construction, for every ε the operator Lε has bounded coefficients,
and also the vector field Lε = Lε(u) remains bounded. Moreover, arguing as in Step 1, we find
an ellipticity constant given by

µε = inf
{(

tA(t)
)′

A(t)
: t ∈ [

ε, ε + max
x∈Ω

|∇u(x)|]
}

> 0 .

Thus, by the maximum principle, Pε attains its maximum on ∂Ω. In particular, for every
neighbourhood U of C, there holds

max
Ω

Pε = max
∂Ω

Pε = max
Ω\U

Pε .

Now, since C ∩ ∂Ω = ∅, and since Pε converges to P uniformly on compact subsets of Ω \ C, we
deduce that

max
∂Ω

P = lim
ε

max
∂Ω

Pε = lim
ε

max
Ω\U

Pε = max
Ω\U

P = max
Ω\C

P ,

where the last equality follows from the arbitrariness of U . We infer that, if P (x∗) > max∂Ω P
for some x∗ ∈ Ω, then x∗ belongs to the interior of C. But such interior is empty, as otherwise
integrating the first equation in (1) on a ball B ⊂ C would give a contradiction via the divergence
theorem. Hence P assumes its maximum on ∂Ω. Moreover, the above approximation method
shows that any maximum point for P in Ω belongs necessarily to C. This completes the proof
of the claim.

In order to complete the proof of the lemma, note that since u solves (1), we have |∇u| 6= 0
in a (closed) neighbourhood D ⊂ Ω of ∂Ω. By the just proved claim, P attains its maximum in
D only on ∂Ω. Moreover, the equation (9) is uniformly elliptic in D and therefore P satisfies
the classical boundary point principle. This shows that Pν > 0 on ∂Ω. ¤

As a consequence of Lemma 3.2, we obtain a uniform upper bound for the mean curvature
of ∂Ω for those domains where (1) admits a solution.
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Lemma 3.3 (Upper bound for the mean curvature)
If problem (1) admits a solution, then the mean curvature H(x) of ∂Ω satisfies

either H(x) <
1

n c A(c)
for all x ∈ ∂Ω or H(x) ≡ 1

n c A(c)
.

Proof. Since c 6= 0, the first equation in (1) is nondegenerate in a neighbourhood of ∂Ω, and by
(5) it may be rewritten pointwise on ∂Ω as

[
A(c) + cA′(c)

]
uνν − (n− 1)cA(c)H(x) = −1 . (12)

Consider now the P -function associated with u defined in (7). According to Lemma 3.2, two
cases may occur. Let us first consider the case where

Pν =
[
A(c) + cA′(c)

]
2uνuνν +

2
n

uν > 0 on ∂Ω. (13)

Since uν < 0 on ∂Ω, we can divide by 2uν and obtain

[
A(c) + cA′(c)

]
uνν +

1
n

< 0 on ∂Ω. (14)

By combining (12) and (14) we readily obtain H(x) < [n cA(c)]−1 for all x ∈ ∂Ω.
The second case of Lemma 3.2 turns (13) into an equality. Then, arguing as above, also (14)

becomes an equality so that H(x) = [n c A(c)]−1 for all x ∈ ∂Ω. This proves the lemma. ¤

Lemma 3.3 states that in any case

H(x) ≤ 1
n c A(c)

for all x ∈ ∂Ω . (15)

For planar domains, inequality (15) has the following intuitive geometrical consequence.

Lemma 3.4 (Maximal inscribed ball)
Assume that n = 2 and that Ω is a simply connected domain. If (15) holds, then Ω contains a
ball of radius R = 2cA(c).

Proof. See [8, Section 30.4.1] and also the previous papers [29, 19] for a complete proof. ¤

Remark 3.5 In dimension n ≥ 3 the analogue of Lemma 3.4 is false. For a (sharp) lower bound
on the radius of the maximal inscribed ball in arbitrary dimension, see [8, Section 30.4.2].

Lemma 3.4 will be exploited for the proof of Theorem 2.4, by inscribing a ball of radius
R = 2cA(c) inside Ω and using comparison principles which we prove below. Here and in the
sequel, we use the notation

Qu := −div(A(|∇u|)∇u) .

8



Definition 3.6 Let u1, u2 ∈ C1(Ω). We say that Qu1 = Qu2 in Ω if
∫

Ω
A(|∇u1|)∇u1∇ϕ =

∫

Ω
A(|∇u2|)∇u2∇ϕ for all ϕ ∈ C∞

c (Ω).

We say that Qu1 ≤ Qu2 in Ω if∫

Ω

[
A(|∇u1|)∇u1 −A(|∇u2|)∇u2

]
∇ϕ ≤ 0 for all ϕ ∈ C∞

c (Ω), ϕ ≥ 0 . (16)

With this definition, we may state our first comparison result:

Lemma 3.7 (Weak comparison principle)
Assume that u1, u2 ∈ C1(Ω) satisfy

{
Qu1 ≤ Qu2 in Ω
u1 ≤ u2 on ∂Ω.

Then u1 ≤ u2 in Ω.

Proof. Let v := (u1 − u2)+. By assumption, v ∈ W 1,∞
0 (Ω) so that by a density argument it can

be used as a test function in (16). By subtracting, we infer that
∫

{u1>u2}
[A(|∇u1|)∇u1 −A(|∇u2|)∇u2] · (∇u1 −∇u2) ≤ 0 . (17)

Thanks to Schwarz’s inequality and assumption (4), there holds

[A(|∇u1|)∇u1 − (A(|∇u2|)∇u2] · (∇u1 −∇u2)
≥ A(|∇u1|)|∇u1|2 + A(|∇u2|)|∇u2|2 − [A(|∇u1|) + A(|∇u2|)]|∇u1||∇u2|
= [A(|∇u1|)|∇u1| −A(|∇u2|)|∇u2|](|∇u1| − |∇u2|) ≥ 0,

the latter inequality being strict for |∇u1| 6= |∇u2|. This combined with (17) gives a contradic-
tion unless v ≡ 0. ¤

Let us now prove a boundary point principle. We are grateful to J. Serrin for making us
aware that, in the same spirit of his paper [33], the following statement holds under the mere
assumption A ∈ C1(0, +∞) instead of A ∈ C2(0, +∞). Therefore, also Theorem 2.4 remains
valid under this weaker regularity assumption on A.

Lemma 3.8 (Boundary point principle)
Let B be a ball with center 0 and let u1 ∈ C1(B)∩C2(B \ {0}), with |∇u1| 6= 0 on ∂B. Assume
that there exists a function u2 ∈ C1(B) and a point x∗ ∈ ∂B such that





Qu1 ≤ Qu2 in B

u1 < u2 in B

u1(x∗) = u2(x∗) .

Then ∇u1(x∗) 6= ∇u2(x∗).
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Proof. Assume without loss of generality that B is the unit ball B1 and |∇u1(x)| 6= 0 for
|x| ∈ [1/2, 1]. For α > 0, set

v(x) :=
e−α|x|2 − e−α

α2
.

Clearly, for sufficiently large α we have u1 + v ≤ u2 on ∂(B1 \ B1/2). We claim that (still for
sufficiently large α) there holds Q(u1 + v) ≤ Qu2 in B1 \ B1/2. Were this claim proved, the
statement would follow at once. Indeed, since

{
Q(u1 + v) ≤ Qu2 in B1 \B1/2

u1 + v ≤ u2 on ∂(B1 \B1/2) ,

Lemma 3.7 ensures that u1 + v ≤ u2 in B1 \B1/2 and the claim follows.
Since u1 ∈ C2(B1 \ B1/2), we may argue pointwise. With some tedious but straightforward

computations we obtain Q(u1 + v) = −I− II, where, in the asymptotic expansion as α → +∞,

I := A
(|∇(u1 + v)|)∆(u1 + v) = A

(|∇u1|
)
∆u1 + 4|x|2A(|∇u1|)e−α|x|2 + o(e−α)

and

II :=
A′

(|∇(u1 + v)|)

2|∇(u1 + v)| ∇(|∇(u1 + v)|2) · ∇(u1 + v)

=
A′

(|∇u1|
)

2|∇u1| ∇(|∇u1|2
) · ∇u1 + 4(x · ∇u1)2

A′
(|∇u1|

)

|∇u1| e−α|x|2 + o(e−α) .

We point out that, in order to perform the above asymptotic expansion, one needs the fact that
∇u1 6= 0 in B1 \B1/2. Hence

Q(u1 + v)−Q(u1) = −4e−α|x|2
[
|x|2A(|∇u1|) + (x · ∇u1)2

A′
(|∇u1|

)

|∇u1|
]

+ o(e−α) .

We claim that the term inside square brackets in the above expansion is positive. This is
trivially true when A′(|∇u1|) ≥ 0 (recall ∇u1 6= 0). Otherwise, by Schwarz’s inequality and
assumption (4), we obtain as well

|x|2A(|∇u1|) + (x · ∇u1)2
A′

(|∇u1|
)

|∇u1| ≥ |x|2
[
A(|∇u1|) + |∇u1|A′

(|∇u1|
)]

> 0 .

This shows that for α sufficiently large we have Q(u1 + v) ≤ Qu1 pointwise in B1 \ B1/2 and,
a fortiori, the same inequality holds in the weak sense of (16). Hence, in the same weak sense,
Q(u1 + v) ≤ Qu2 in B1 \B1/2, which concludes the proof. ¤
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4 Proofs of the main results

Proof of Proposition 2.2. If (1) admits a solution u, then by Lemma 3.1 it is unique and
coincides with the minimizer of the functional J in (6). Standard symmetrization arguments (see
e.g. [7] or [20]) then show that such a minimizer is radially symmetric and radially decreasing.
Now, any radial C1-solution u = u(r) must satisfy the ordinary differential equation

(
rn−1A(|ur|)ur

)
r

= −rn−1 on [0, R],

whose first integral is easily computed as

A(|ur(r)|) ur(r) = − r

n
on [0, R].

This tells us that ur < 0, and that the above equation may be rewritten as

A(|ur(r)|) |ur(r)| = r

n
on [0, R]. (18)

Hence, if A is the inverse function of t 7→ tA(t), we have ur(r) = −A(
r
n

)
and, subsequently,

u(r) =
∫ R

r
A

( s

n

)
ds .

Finally, writing (18) for r = R we obtain R = ncA(c). ¤

Proof of Theorem 2.3. The claim of Theorem 2.3 follows from Alexandrov’s characterization
of spheres [1, 2] once we show that

H(x) ≡ 1
n c A(c)

on ∂Ω . (19)

Assume for contradiction that (19) is false. In view of Lemma 3.3, this means that

H(x) <
1

n c A(c)
on ∂Ω . (20)

Up to a translation, we may assume that Ω is star-shaped with respect to the origin. Inspired
by [16], we now point out that

∫

∂Ω
H(x) x · ν = |∂Ω| ,

∫

∂Ω
x · ν = n|Ω| , (21)

where the first identity is a so-called Minkowski formula (see for instance Section 2A in [27]), and
the second one is immediate from the divergence theorem. In particular, (21) and starshapedness
with respect to the origin tell us that x · ν ≥ 0 on ∂Ω with x · ν > 0 on a subset of positive
(n− 1) measure. Therefore, multiplying inequality (20) by x · ν and integrating over ∂Ω yields

∫

∂Ω
H(x) x · ν <

∫

∂Ω

x · ν
n c A(c)

. (22)
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By (21) and (22) we get
cA(c)|∂Ω| < |Ω| . (23)

On the other hand, integrating the differential equation in (1) and using again the divergence
theorem gives

|Ω| = −
∫

Ω
div(A(|∇u|)∇u) = cA(c)|∂Ω| . (24)

This contradicts (23) and completes the proof. ¤

Proof of Theorem 2.4. By Lemmata 3.3 and 3.4, Ω contains a disk B of radius R = 2cA(c)
and center, say, 0. Without loss of generality we may assume that B touches ∂Ω tangentially in a
point x∗, so that they have the same outward normal ν∗. Otherwise we shift B. By Proposition
2.2 the boundary value problem (1) on B admits a unique solution v ∈ C1

0 (B)∩C2(B \ {0}). In
particular, this solution v satisfies

∇v(x∗) = −cν∗ = ∇u(x∗) , (25)

and Qv = Qu in B. Moreover, v ≤ u on ∂B, because by Lemma 3.7 we know that u ≥ 0 in
Ω. Hence, again by Lemma 3.7 applied now to B, we deduce that v ≤ u in B. After setting
E := {x ∈ B : v(x) = u(x)}, three cases may occur: E = ∅, ∅ 6= E 6= B, and E = B. Let us
exclude the first two cases.

In the first case, we have




Qv = Qu in B

v < u in B

v(x∗) = u(x∗) ,

and then by Lemma 3.8 we infer that ∇u(x∗) 6= ∇v(x∗). This contradicts (25).
In the second case, we can find a disk B0 ⊂ B (not containing the origin) and a point

x0 ∈ B ∩ ∂B0 such that 



Qv = Qu in B0

v < u in B0

v(x0) = u(x0) ,

but then Lemma 3.8, now applied on B0, gives ∇v(x0) 6= ∇u(x0). This contradicts the fact that
x0 is a minimum point for u− v in B.

Hence, the third case E = B necessarily holds, and so v ≡ u in B. In particular, the
conditions u = v = 0 and uν = vν < 0 hold on ∂B. If B ( Ω, this would imply that u is
negative somewhere in Ω, while we know from Lemma 3.7 that u ≥ 0 in Ω. Therefore, Ω = B
and the proof is complete. ¤

Proof of Theorem 2.5. By Lemma 3.7 we know that u(x) ≥ 0 for all x ∈ Ω. This, together
with Lemma 3.2, shows that

Φ(|∇u(x)|) ≤ Φ(|∇u(x)|) +
2
n

u(x) ≤ Φ(c) for all x ∈ Ω .
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Since t 7→ Φ(t) is strictly increasing in view of (4), we deduce that the first statement in Theorem
2.5 holds, namely |∇u(x)| ≤ c for all x ∈ Ω. Hence, for any subdomain D ⊆ Ω an integration of
the differential equation (1) over D and an integration by parts yields

|D| = −
∫

∂D
A(|∇u|)uν ≤

∫

∂D
A(|∇u|)|∇u| ≤ cA(c)|∂D|.

This, combined with (24), shows that

|∂Ω|
|Ω| =

1
cA(c)

≤ |∂D|
|D| for all D ⊆ Ω

and proves the second statement in Theorem 2.5. ¤

5 Concluding remarks

Remark 5.1 The assumptions made on the operator A in [15] (and in [6]) were that A(t) =
f ′(t)/t, where f is a positive convex function of class C2(0, +∞) satisfying

c1(tr − 1) ≤ tf ′(t) ≤ c2(tr + 1) , c1 ≤ tf ′′(t)/f ′(t) ≤ c2

for all t > 0, some r ∈ (1, +∞) and some positive constants c1 and c2. It is immediate to check
that these hypotheses imply the validity of (4), while the converse is clearly false. In terms of
f , we require no growth conditions besides the ellipticity inequality f ′′(t) > 0 on (0, +∞). For
instance, given real exponents p > 1 and q ≥ 0, consider an operator A of the kind

A(t) :=
tp−2

(1 + t2)q/2
.

As special cases, A becomes the p-Laplacian when q = 0, and the mean curvature operator when
p = 2 and q = 1. It is easy to check that (3)-(4) are satisfied as soon as p > 1 and p− 1− q ≥ 0,
while the case p−1−q = 0 (including the mean curvature operator) is not covered by the setting
of Garofalo-Lewis and Brock-Henrot. On the other hand, if p 6= 2 the operator is degenerate
and it is not covered by the setting of Serrin.

Remark 5.2 In some sense, our proof of Theorem 2.3 is reminiscent of Pohožaev’s identity [30].
In its proof, Pohožaev multiplies the PDE with x · ∇u and integrates over Ω. In our proof we
multiply with essentially the same thing, namely x ·ν, but in contrast we multiply the curvature
bound and integrate over ∂Ω (where ∇u = −cν).

Remark 5.3 Solutions of (1) are minimizers for the functional J defined in (6). Under very
weak assumptions on A and Ω, it has recently been shown by Crasta [11] that if the minimizer
is a web function (in other words, if it only depends on the distance to the boundary), then Ω
is a ball. Of course, requiring the minimizer of J to be a web function is much more stringent
than just requiring the additional boundary condition uν = −c.
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Remark 5.4 In the linear case where A ≡ 1, Weinberger [37] proved that, if (1) admits a
solution, then the P -function P (x) given by Lemma 3.2 satisfies P (x) ≡ Φ(c) on all of Ω. To
that aim, since P (x) assumes its maximum on ∂Ω and it is constantly equal to Φ(c) there, he
managed to bring the integral inequality

∫

Ω
P (x) < Φ(c)|Ω| (26)

to a contradiction. We tried to follow the same approach, but it does not work for general A
satisfying just (3)-(4). Since it seems instructive to see where the proof breaks down, for the
benefit of the reader let us present the line of argument in the case of the p-Laplacian, for which

P (x) =
2(p− 1)

p
|∇u(x)|p +

2
n

u(x).

Testing (1) with u, it is easy to see that (26) can be rewritten as
(

n +
p

p− 1

)∫

Ω
u dx < n cp |Ω|. (27)

Now one would like to relate
∫
Ω u to |Ω|. To this end, set r := |x|. Since ∆(r2) = 2n, via

integration by parts we obtain

−2n

∫

Ω
u(x) =

∫

Ω
∇ (

r2
)∇u = 2

∫

Ω
r
∂u

∂r
. (28)

On the other hand, since ∆(r ∂u
∂r ) = −2, by Green’s formula and using (1) we have

∫

Ω

[
2u− r

∂u

∂r

]
=

∫

Ω

[
−u∆(r

∂u

∂r
) + r

∂u

∂r
div(|∇u|p−2∇u)

]

= d +
∫

∂Ω

[
−u

∂

∂ν

(
r
∂u

∂r

)
+ r

∂u

∂r
|∇u|p−2 ∂u

∂ν

]
= d + cp

∫

∂Ω
r
∂r

∂ν
= d + n cp|Ω| , (29)

where

d :=
∫

Ω
∇u∇

(
r
∂u

∂r

) [−1 + |∇u(x)|p−2
]

dx .

Now, only for p = 2 the extra term d vanishes and then (28) and (29) contradict (27).
Let us also mention that a symmetry proof showing that the P -function is constant on all

of Ω cannot extend to general semilinear equations of the type ∆u = f(u) either. This was
explained in [22].

Remark 5.5 Once it is known that the P -function satisfies P (x) ≡ Φ(c) in Ω, the function u
satisfies the system of two autonomous equations

div
(
A(|∇u|)) = 1 and |∇u|Φ−1

(
Φ(c)− 2

n
u
)

=: g(u) .
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The first equation is of second order and the second one of first order and both equations hold in
Ω, an extremely overdetermined situation. Therefore the level surfaces {x ∈ Ω : u(x) = c} must
be isoparametric, i.e. their nonzero principal curvatures are all equal. They can be spheres,
cylinders or planes, but for positive solutions to homogeneous Dirichlet problems they can only
be spheres. This observation was pointed out in [23] in the context of Weinberger’s proof of
Serrin’s result and for two other symmetry problems.
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