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Abstract

We provide a mathematical proof of the existence of traveling vortex rings
solutions to the Gross-Pitaevskii (GP) equation in dimension N > 3. We also
extend the asymptotic analysis of the free field Ginzburg-Landau equation to
a larger class of equations, including the Ginzburg-Landau equation for super-
conductivity as well as the traveling wave equation for GP. In particular we
rigorously derive a curvature equation for the concentration set (i.e. line vor-
tices if N = 3).

1 Introduction

In this paper, we consider the Gross-Pitaevskii equation

Oy

i+ A+ (1= [pf) =0, (1)

where 7 : R x R — C and N > 3. In dimension 3, this equation, or close variants,
are often used as models in various areas of physics : nonlinear optics, superfluidity,
Bose-Einstein condensation (see e.g. [21, 35, 38] for surveys). At least formally, it
possesses a Hamiltonian structure, whose energy is given by

B@) =5 [ oG0P+ 1 [ (- WGoP). (2)
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Another important quantity conserved by the flow (1) is the momentum PeRY ,
given, again formally, by

P)=tm [ v-Vi=[ (i, V), 3)

where (,) stands for the scalar product in R2. The first component of the vector P
will be denoted by P, i.e. P= P-¢&,.

Traveling wave solutions to (1) are known to play an important role in the full
dynamics of (1). More precisely, these are solutions of (1) of the form (up to rotation)

Y(z,t) =U(xy — Ctyz9,- -+ ,xN), (4)



where C > 0 is the wave’s speed and U : RN — C. One easily verifies that 1 is a
solution of (1) iff the “profile” U is a solution to the equation

0% — AUt U - UPL. (5)
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The focus of this paper is on finite energy solutions to (5). Our purpose is twofold.
First, we embed equation (5) in a larger class of equations (which contain in particular
the equations of superconductivity) and study qualitative properties of solutions in an
asymptotic regime which is described below. Since these results are of independent
interest (and will be used in forthcoming works), we devote a large appendix to this
analysis. It will then enter in a crucial way in our second scope, namely the existence
problem for (5). The existence of solutions in the case N = 2 was considered in [14],
our main existence result here concerns its extension to higher dimensions. For that
purpose, consider in cylindrical coordinates (z1,7,6), where r :=,/z2+-+2%, the sphere
S :={(0,1,0)}, and on the upper half plane H, := {(z,r), r > 0}, the operator

LY = V29, (r*"No,w) + 02 .

The linear problem

—LV =27, qg=(0,1)

U(z,0) =0
has a unique solution ¥, bounded at infinity. Up to a phase change, there also exists
(see e.g. [9]) a unique function w, € C*°(H, \ {¢}), such that |w.| =1 and

o Ows o Ow, ov, o0V,
Wy X ——, Wy = -——,

0x; or or ’ 0z
(here a X b := a1by —asb, is the exterior product of two vectors a,b € R? ~ C). Finally,
we consider the function U, defined by

Uc(z1,7,0) := we(x1,7)-

The function U, is cylindrically symmetric, smooth on R" \ S, with values into the
circle S'. In particular, in dimension 3, U, is singular on a circle (often refered to as
a “concentrated vortex ring”). Our main result states that, after scalings, there are
solutions of (5) close to U..

Theorem 1. There exists eg > 0 such that for every 0 < e < gq there exists a solution
U to (5) with C = C(e) verifying

C(e)

e|loge|

and, for E(e) := E(U,), P(¢) := P(U.), we have

- N -2 as e — 0, (6)

P(e) N—1 E(e) N—2
=|B"7, m — [S77F, (7)
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and
|Ue(z)| = 1 as |z| = +o0. (8)

Moreover, for every k € N,

U(2) = U in Cl(B¥\S). (9)
Remark 1. Notice that both the energy F(e) and the momentum P(e) diverge as
e — 0, and instead that C(¢) — 0 as € — 0.

A few comments are in order. First, observe that (1) corresponds to a defocusing
nonlinear Schrédinger equation (NLS); it has been widely studied with respect to
the Cauchy problem in case the initial data are in L?(R") (see e.g. [40]). In this
(different) situation, due to dispersion, any solution vanishes as time tends to infinity.
This phenomenon of course excludes traveling wave solutions except for the trivial
one. Instead, in our situation, the L?-norm is not bounded (this is incompatible
with the fact that E is bounded) for the solution U,; we have seen that |U.(z)| — 1
as |x| — +oo, and dispersion effects are balanced by the nonlinearity. Our results
provide some rigorous mathematical proofs to the study in [30].

Second, the Cauchy problem for (1) with an initial data in H'(RY)+{1} having its
vorticity concentrating on round spheres has been considered by Jerrard [28]. Although
our results are of a different nature, some of the arguments there are closely related
to ours.

Third, some properties of (1) can be usefully analyzed through the Madelung trans-
form

b(z,t) = /pexp(ip),

which is meaningful if |¢| is not zero. In the p and v := V¢ variables, equation (1)
can be written as

{ % + div(pv) =0, (10)

p(%#—v-VU)%—V(%):—pV(%—i—ﬁ).

Neglecting the term of the right-hand side of (10) (which is often termed the “quantum
pressure” in the physics literature), this system reduces to the Euler equations for
compressible ideal fluids with pressure given by %2. The full system (10) enters in the
larger class of quantum fluids equations (see e.g. [36]).

The existence of traveling wave solutions for the incompressible Euler equations was
already considered by Helmholtz in his celebrated paper of 1858 [27]; more precisely,
the solutions he proposed have vorticity concentrated on a ring of small cross-section
(like “smoke rings”). Later, Lord Kelvin computed the relations between the cross-
section, the radius of the ring, and its propagation speed. The first rigorous proofs
of existence of such steady vortex-rings (steady in a traveling frame) were given by
Fraenkel and Berger [22] in the seventies, and later by Ambrosetti and Struwe [4].



Concerning the compressible Euler equation, we are only aware of numerical results in
this direction [33].

We will turn later to the properties of the solutions in Theorem 1. In view of
the last statement of the theorem, it is clear that they behave like vortex rings. The
remainder of this introduction is a detailed description of the strategy of the analysis.
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sions. This work was partially supported by European RTN Grant HPRN-CT-2002-
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1.1 The variational approach

Since, as already mentioned, (1) is Hamiltonian, it follows that (5) is variational. At
least two different variational approaches are under hand. First, as considered in [14],
one could introduce the Lagrangian

Fo(U) := E(U) — C P(U),

whose critical points are solutions to (5). This approach has the advantage that the
wave speed C is prescribed a priori. It was shown in [14], for N = 2, that for some
Cy > 0, F¢ has the mountain-pass geometry for C' < Cjy, providing existence in a full
interval of speed ]0, Cy|. In this approach however, the question of stability seems more
difficult to address.

The second possible approach, the one we will use here, is by minimizing the energy
E keeping the momentum P fixed. It is convenient to perform the following rescaling
for 0 <e < 1/2,

—U.%), o) = L8
u(a) = UQ) ele) = o,

so that if U, is a solution of (5), then u, solves the equation

. Ou, 1 9
zc(s)|10g6|ax1 = Au, + €2u5(1 — |uel?), (11)

and . .
. 2—-N _ - 2 o - 2\2 —
B.(u) = NE(U) = [ SIVuf+ 50— juf)?= [ elu).

The energy E. is often called the Ginzburg-Landau energy, and has been extensively
studied, in particular in the asymptotic limit ¢ — 0 (see e.g. [9]). Likewise, the
momentum rescales as

Flu) = e"NPU.) = /

(tue, Vue).
RN



One major difficulty comes from the fact that in the natural energy space
X :={u € Hy (RV), E.(u) < +o0},

the momentum p’ is not well defined. Indeed, consider for example the function w :=
exp(ip), where ¢ is smooth and ¢(z) = |z|* for some (1 — N)/2 < a < (2= N)/2
and |z| > 1. Notice that |w| = 1 and |Vw| = |Vy| € L*(R") so that w € X. On the
other hand, (iw, Vw) = Vy ¢ L'(RY) and similarly (i(w — 1), Vw) ¢ L'(R"); hence
p(w) is not well defined in the Lebesgue sense. To overcome this difficulty, we will
introduce a series of approximate problems (PZ) on expanding tori. A price has to be
paid, however :

e one has to find uniform bounds for both the Lagrange multipliers and the solu-
tions associated to (Pg),

e some information (energy, momentum,...) could be lost in the limit (see the
discussion on stability later).

1.2 The approximating problems

Setting. For n € N*, consider the flat torus
I, ~Q, = [-n,n]",
with opposite faces identified, and the space
X, :=H'(Il,,C) ~ H}.(Qy,C)

of 2n-periodic H' functions. Since II,, is compact, we can define the (first component
of the) momentum as

p(u) ::/H (tu, O1u),

and this clearly defines a quadratic functional on X,,.
Let
I, :={ue X, puv)=2x|B |},

and consider the minimization problem :

(P;) I, := inf E.(u).

u€ely,

The constraint is easily seen to be non void. It is also straightforward to prove
existence of a minimizer for (P%).

Proposition 1. There erists a minimizer u,. € X, for (P;) and some constant
Cne € R such that u, . verifies (11), i.e.

Oun,e

1
loge| o Aty + 5_2%’5(1 — |un,s|2) on I1,.
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In the sequel, for sake of simplicity, we will skip the subscripts n or € when this is
not misleading.

Remark 2. There is presumably some freedom in the choice of the approximate
problem. A natural candidate might have been

Y, = {ue H'(Q,,C), u=1ondQ,}.

One advantage of Y, is that

p(u) = m(u) := / (Ju, &), for all u €Yy,
Qp
which follows easily by integration by parts. Here, Ju (the Jacobian of u) denotes the
2-form on €2, .
Ju = §d(u X du) =Y (Qu x dju)dz; A dzj, (12)
i<j
and the 2-form &; is defined on €2, by

N
&1(z) = 25 Y miday A dw;. (13)
i=2

Finally (-,-) stands for the scalar product of 2-forms. As we will see later, m has
a convenient geometric interpretation which we will use throughout. On the torus
I1,, however, m is not well defined (due to &), and we will have to circumvent this
difficulty by choosing suitable unfoldings.

Whereas part of the analysis is somewhat simpler in Y,,, the main disadvantage is that
the translation invariance of our original problem is broken in Y,.

Upper bound for I, . and ¢, . The upper bound on I, . is obtained using appro-
priate comparison functions for (PZ). As already mentioned, in the limit € — 0, the
solution u, (and also u, ) will ultimately look like thin vortex rings. In the sequel, for
R >0 (2R < n) we propose a simple construction of such a vortex ring w, g of radius
R, which will turn out to be an almost optimal candidate.

We carry out the construction in cylindrical coordinates (1,7, §) where r 1=, /z2++a7,.
The function w, g will be independent of # (i.e. cylindrically symmetric); we therefore
just need to describe it in the (zq,r) half-plane H,. For that purpose, consider in the
complex plane the point zg := iR and the function wg defined on Bsyg by

_Z—Zr Z+ 2R
B |z — 2| |2 + 2

wr(2) | exp(ip),

where ¢ is a real harmonic function such that wg = 1 on 0By (see [9]). Then we set

w (LE r 0) L UJR($1 + ZT‘) if T +ir € BQR \ BS(ZR),
SEL DI e ey +4(r — R)|wg(wy +ir) if 1 + ir € B:(zr).



By standard computations,

1
3 Jon 190

1
Z = —|SN_2|/ \Vwe g|*rN2dz, dr
2 Hi

=7RY 2SN ?||loge| + O(1),

and similarly

1 2\2 __
= [, (1= o) = 0(1),
so that
E.(w.r) = |SV2|RV2|loge| + O(1). (14)

For the momentum p(w. g) = m(w,gr), we have

€ € 2 —
plue) = 577 [ (Gt Q) 2o 2y
H N

0xy or -1 (15)
= 2 S RN 4 o(1) = 20| BN RN 4 0(1),
since
Jwe g(z1,7,0) = (0, we g X Orwe g) dxy A dr
and since

aa:l We, R X arwe,R — 7T5(O,R)

in the sense of measures on H,. The detailed computations to obtain estimates (14)
and (15) are standard and can be found in many places (see e.g. [9]), we do not repeat
them here. With the help of these estimates, it is then fairly easy to obtain a (sharp)
upper bound for I, ..

Lemma 1. There exists some constant Ky, which is independent of n and e, such that

‘In,s‘ < K0‘10g5|' (16)
Moreover,
Ine —
limsup | sup — < m|SN2. (17)
e=0  \nen |logel

We turn next to ¢, . As a consequence of the Pohozaev identity for (11) and some
careful analysis of the boundary terms relating p(u) and m(u) in X,, we obtain the
following.

Lemma 2. There exists 1 > 0 such that for 0 < ¢ < &1 andn > n(e), wheren(e) € N
depends only on €, we have

< K;. (18)

Here K is some constant which is independent of n and ¢.

‘Cn,s

Remark 3. It follows from our proof of Lemma 2 that an upper bound for n(e) is
Ks|loge|e3 Y where K, is some sufficiently large constant. With a little more work,
one should be able to prove that a large (but independent of ¢) constant is a valid
upper bound. Since our final goal is to let n — +o0 at fixed ¢, the first upper bound
is sufficient.



1.3 Some properties of the Euler-Lagrange equation

An important part of our results relies on the analysis of the Euler-Lagrange equation
(11). Since we believe that it is of interest in related topics, as, for instance, super-
conductivity (see Remark 4 iv) we will be more general than what is strictly needed
for the proof of Theorem 1. Therefore, we will consider solutions w, to the class of
equations

1
illogelé(z) - Vw = Aw + ?w(l — |w]?) — Nloge|?d(z)w on (19)

where  C RY is a piecewise C' simply connected domain, ¢: Q — RY is a bounded
Lipschitz vector field and d : @ — R is Lipschitz non-negative and bounded [in our
original problem ¢ is constant and d = 0]. If we allow ¢ and d to depend on ¢ (in
view in particular of the application to superconductivity), then we require that there
exists some constant Ay > 0 not depending on ¢ such that

Notice that (19) can be rewritten as
1
illogelé(z) - Vw = Aw + 8—2w(a6(:1c) — |w|?), (20)

where
a.(z) := 1 —d(z)e*[loge|*.

When divé = 0 it is also equivalent to
. 8 2 1 2
(V — z|logs\§) w ~+ g—zw(bs(x) —|w|*) =0, (21)

where )
b () := a.(x) + €2|log6\20 4(13;)

Equation (19) is variational when ¢ is divergence free; we will make this assumption
throughout. It is likely however that a large part of the analysis can be done in the
general case. Notice also that no boundary condition is prescribed here so that the
focus in this section will be on local properties.

The outline of our analysis of (19) follows closely the corresponding theory for the
Ginzburg-Landau equation developed in [9, 41, 13, 37, 31, 32, 10, 29, 5, 16] and the
references therein. In particular, the emphasis is placed there on the set

1
Se:i={zr €, |w(z)| < 5},

where vorticity and energy will eventually concentrate in the limit ¢ — 0. Notice that
for the proof of Theorem 1, the structure of S, for € fixed but expanding 2 will also
play a key role. We first start with the following standard pointwise estimates.



Lemma 3. Let K be any compact subset of Q. Then, for any solution w. of (19) we

have : ,
\We|poo(ry < 14 2 e2|logel® + C G a0y
\Vwe| poo (k) < %Ka
where Cy = |Clr=, C is a constant depending only on N, and Ck is a constant

depending only on N, cy and K.

In order to describe the properties of S., monotonicity formulas play an important
role (as in the works quoted above). More generally, they have been extensively used
in the context of regularity for various problems in PDE’s and geometry (see e.g.
(34, 23]).

For zy € Q and r > 0 such that B,(zq) C 2, consider the scaled energy

- 1 1 / |Vw, |2 N (ac(z) — |w5\2)2. (22)
By (

Es(wsax()’r) = TN72E5(wE’xO’T) = ’r‘N72 T ) 2 452
0

When this does not lead to a confusion, we will also note it by E. (o, ) or even E,(r).

Lemma 4. There exists C > 0 depending only on N such that for
A:=C(cx + 1) |logel, Q := CAglloge|%,
and for any w satisfying (19) on Br(x¢) C 2, we have

2

d

i Q’ Loroou
p. (exp(AT)(Es(xoﬂ’) + K)) Z N2 /aBr

on

+

L[ )l

rN-1 4e?

for 0 < r < R. In particular, exp(Ar)(E.(x,7) + Q?/A) is increasing.

The above inequality is obtained using a crude estimate for the Jacobian Jw,. This
restricts somehow its usefulness to balls of size O(1/|loge|). In order to handle balls
of radius O(1), refined estimates on Jacobian integrals are needed (see [29, 1]).

Proposition 2. There ezxists C > 0 and 5 > 0 depending only on N such that for any
w, satisfying (19) on Br(zo) C Q, we have

E.(0,0r) < C (Ex(zo,7) + (14 Ag) V') (23)

for 0<0<1/2 and 0 < r < min(R, t27).

Using the two previous results, and following the arguments of [10] (see also [37,
31, 32|), we derive the following result, which plays an important role in the analysis.



Theorem 2. Let w. be a solution of (19) on Q and o > 0 be given. There exists
constants n > 0 and g9 > 0, depending only on N, o and Ag, such that if zo € 0, € <
€0, \/g S r S ]-/(]- + A0)7 BQT(‘Z‘O) - Q’ and

Es(xO’T) S 77|10g5| )

then
|we(zo)| > 1 — 0.

Asymptotic analysis of concentrating measures
We assume from now on that w, verifies the bound

E.(w.) = | e.(w.) < Mo|logel, (24)

where M, is some fixed constant. In this regime, one of the main consequences of
Theorem 2 is that as € tends to zero, the set S, concentrates on a rectifiable limiting
set S,, of locally finite N — 2 Hausdorff measure. It is convenient to introduce the
following measures :

. ee(we)
= 5
ne = ¢ 2lg, du,
Je = Jw,.

In view of assumption (24), p. is bounded. Therefore, up to a subsequence we may
assume that
fhe — [y as measures.

Using Theorem 2 again, combined with a Besicovitch covering argument, it follows
that e 21, is locally bounded in L'(2). Extracting possibly a further subsequence,
we may thus assume that

Ne — Nk as measures.

Concerning J. (a measure with values in 2-forms), it is tempting to believe that it
is also bounded in L], (2). We have no proof of that fact, however we may invoke
Jerrard Soner’s [29] compactness result (valid for arbitrary functions verifying (24),
see also [1]) to assert that .J. is bounded in [C%*(K)]* for any compact K C 2 and
any 0 < a < 1. Going possibly to a third subsequence, we thus have

J. — J, in [CO*(K, A,RM)], for every compact K C €.
It is proved moreover in [29, 1] that
12l < pa, (25)

and that the current [J,] associated to J, is an integer multiplicity (N — 2)-current.
In particular, its geometrical support

EJ = {.T € Q) s.t. @N_Q(”J*”,x) > 0}

10



is an (N — 2)-rectifiable set. Here, for a Radon measure v € M(Q2) and m > 0, the m
dimensional density of v at x € Q is defined by

Likewise we set
Y, ={r € Qst. On_o(ps,x) > 0}

and similarly we define ¥,,.

In the next theorem we will clarify the structure of the measure p, and we will
specify its relation to .J,. We emphasize that no boundary condition has been
prescribed on 0f2.

Theorem 3. The following properties hold.
i) The set ¥, is closed in Q and (N — 2)-rectifiable. There exists g > 0 such that for
each xp € X,

o (B
O.(20) = On 2(ts, To) = h{gl(?f% > 1o- (26)

Moreover, for every compact set FF C Q\ X,
lwe(z)| — 1 uniformly on F as e — 0. (27)

ii) The measure u, can be decomposed as
e = |Vh(z)|? - HN + O.(z) - HN 2L, (28)

where h is some harmonic function.
iii) Let K C Q2 be any compact set. There exists some constant Cy, depending only
on K, such that

i) The varifold V := V(¥,,0,) satisfies the equation

ﬁ(x) = % (E’(x) A % 3/{*> for ps-a.e.  in %, (29)

where ﬁ(x) denotes the generalized mean curvature of V at x, * refers to the Hodge
duality, and % s the Radon-Nikodym derivative of J, with respect to .

A short comment is needed concerning the interpretation of (29). The generalized
mean curvature H of the varifold V' is defined by (see [39])

/dng#X: = —/ H-X for all X € C(Q,RY),
Q Q

where divs, denotes the divergence restricted to the tangent space. Moreover, we
identify vector fields and 1-forms.

11



Remark 4. i) In the case ¢ = 0 and d = 0, (19) is the standard Ginzburg-Landau
equation and then (29) means that V is a stationary varifold (see [5, 10]).
ii) Equation (29) is very reminiscent of the prescribed mean curvature equation in
codimension 1. However here, in codimension 2, an important difference is that the
right hand side of (29) does depend on V' through its tangent space. To give a flavour
of the structure of (29), let us first consider the case N = 3, and %Z—:“ = 1. Then V is
a smooth curve and (29) writes

R=¢CXT, (30

~—

where T is the unit tangent vector to V' and K its curvature vector. In the case ¢ = ¢
is a constant vector field, the solutions are

e Straight lines parallel to ¢,
e Circles of radius 1/c¢g in a plane orthogonal to ¢,

e Helicoidals of axis parallel to ¢.

On the other hand, any constant mean curvature hypersurface in dimension N — 1
yields a solution of (29) for some constant vector field ¢y. In dimension 3, this yields,
as already mentioned, the round circle as unique compact solution. In higher dimension
however, there is a rich class of constant mean curvature hypersurfaces besides spheres
(e.g. Wente’s tori in dimension N = 4). It is tempting to believe that any compact
solution of (29) with a constant vector field ¢y is contained in an affine hyperplane
(and is thus a constant mean curvature hypersurface).

iii) In the case % =1, V has integer multiplicity. In the optimal case where J, has
constant multiplicity, it follows from (29) and Allard’s theorem (see [2, 39]) that V is
a C1® manifold.

iv) Equation (19) with ¢(z) = A(z) and d(z) = |A(x)[?/4 is the first equation in the
Ginzburg-Landau system of superconductivity, namely

. 1
(V —iAlloge|/2)*u = 6—2u(1 — [ul?).

In particular, for solutions verifying the energy bound (24) in the Coulomb gauge,
vortices will be curved according to the equation
kK=AXT,
provided %Z—:“ = 1.
Theorem 3 states some compactness properties for the measures. However, without
assumptions on the boundary data, we cannot expect compactness for the functions
we, as noticed in [17]. The presence in the decomposition (28) of one part which is

absolutely continuous with respect to the Lebesgue measure is precisely due to possible
wild oscillations of w, on the boundary.

Asymptotics for w,

12



If we impose boundary conditions on 0f2, then we may obtain compactness properties
for the sequence w,.. In this subsection, we will focus only on the case which is of
interest for Theorem 1, namely

Q:.=1I, ~ Q,,

with the convention that Il := RY; we refer to Appendix A for more general state-
ments. We make the assumption that

n > (Mo + 1)[logel. (31)

The main point here is that we would like to obtain estimates which are uniform with
respect to the domain size (i.e. independent of n). In this situation we obtain :

Theorem 4. Let w. be a solution of (11) such that (24) and (31) are satisfied.
i) Let 1 <p< % Then there exists some constant C' depending only on p, Ay and
My, but independent of € and n, such that for any zy € 11, we have

/ IVw.|? < C.
B(zo,1)

ii) There erist R > 0, C > 0 and | € N depending only on Ay and My, and q points
Tie, - 3 Tqe (¢ < 1) inll, such that S C UL, B(zi., R), B(zi, 8R)NB(zje, 8R) =
0 if i # 34, and

/ e:(we) < C.
Hn\UB(.’L‘i,E,R)

1.4 The isoperimetric problem

After this rather lenghty discussion on the Euler-Lagrange equation, we go back to
our original problem and consider from now on only minimizers u, . of (P;). Since
our ultimate goal is to provide the existence of a solution u. of (11) as well as some
qualitative properties (see Theorem 1), we will eventually let n go to +oc keeping ¢
fixed (in particular, we assume throughout that (31) is verified). In order to describe
properly the behavior of u, (including the stability properties, which will be discussed
later), it is extremely important, in this approach, to get more information than a
simple H,,, convergence.

The first crucial observation in this section, is the relation of the energy E.(un.)
and the flux p(u,.) with geometrical properties of Ju, . (as already observed in [14]
and [28]). This relation is best understood taking the limit as € tends to 0 when n is
fixed (note however that this is incompatible with n > n(e) of Lemma 2 !). It follows
from the analysis of [29, 1] that, up to a subsequence,

Jup . — 7T, = TR, in [C(IT,)]*

13



where T,, = OR,, is an (N — 2) dimensional integral boundary, i.e. T,, is a rectifiable
current with integer multiplicities (of course the choice of the rectifiable current R, is
not unique). Moreover,

P(Un ) = TOR, (%&) = TRy (¥d*&) = 27 R, (xdxr) = F(T,),

where F(T,,) represents 27 times the flux of the vector €; through R,. Notice that in
particular F(7,) < 2rM(R,). On the other hand, it is also proved in [29, 1] that

lim inf Ze0ne) S vz
e=0  7|loge]
This establishes immediately the inequality
N-1 N-1
M 8Rn N-2 2 Es ne) N2
ORn)Y2 gy i 27 Eene) ¥ (32)
M(R,) 20 (r|loge|) ™2 p(un,)
Using Lemma 1 we deduce that
M(R,) ~ "7 BN

Since the right hand side of (33) is the best constant in the isoperimetric inequality it
follows that T,, = OR,, is a round (N — 2)-sphere (contained in a (N — 1)-hyperplane
orthogonal to é}).

In our situation, we will obtain an inequality similar to (33), but uniformly for n
large. To be more precise, assume from now on that n > n(e) where n(e) was defined
in Lemma 2. Then we have

Lemma 5. For every n > n(e) there exists an (N — 2) dimensional integral boundary
T, = OR, . supported in at most £ balls of radius R (¢, R being independent of n and
e ), such that

Z) ||JU,n,E - 7TTn,s||[C°:1(Hn)]* < 7’(6) )
i) [p(une) — F(Tne)| < r(e),

Es(un,é‘) + T’(E) ’

0t) M(T),..) <
i) M(Tne) < m|loge|
where r(e) — 0 as € — 0, independently of n.

As mentioned, the choice of a current R, . such that T},, = OR, . is not unique.
We may therefore additionally require that

M(R,.) = inf {M(R), OR = T,.} . (34)

For such a choice (which is always possible by [20], 4.1.12), the following isoperimetric
inequality is valid (see [3]):

el T s Ay (35)



Proposition 3. We have

N—-1

M(OR,, .) "=
M(R,,.)

4

= Ay +7(e), (36)

where r(e) = 0 as € = 0, independently of n. In particular, for all sequences e; — 0
and n; > n(e;) there exist subsequences (still denoted €; and n;) and translations 7;
in I, such that

TiTn, e, = SN2 in [CON(RY)]* as j — 4oo, (37)
where SN2 is the unit round (N — 2)-sphere contained in the hyperspace orthogonal
to 51.

Remark 5. Actually, as j — +oo we have 7, R, .. — BY~! and also 7Ty, ., — SN2
in the flat norm sense (see [20], 4.1.12), with M(R,,.,) — [BY!| and M(T,,, ;) —
|SV2.

Note that (37) states a rather weak convergence. In particular, it does not exclude
very small structures even far from the limit S¥~2. The next lemma, which improves
statement (ii) of Theorem 4, excludes such structures.

Lemma 6. There exist R > 0, C' > 0 independent of € and n, and z,, € II,, such
that

Z) Ss(un,s) C B(xn,sa R) )

i) e:(une) < C,

II,\B(zn,s,R)
for every e < ey and n > n(e), €y being independent of n.

As already mentioned, our problem is invariant under translation. We now remove
this invariance. To that aim, in view of Lemma 6 and Proposition 3, we assume that
the identification II, ~ [—n, n]" is such that

Tpe=0 and  JUp,, > 7SY"? in [CI'(RY)]*

9

for all sequences ¢; — 0 and n; > n(eg;), where SV=2 is the unit (N — 2)-sphere
contained in the subspace orthogonal to €.

1.5 Limits of growing tori

It remains at this stage, for fixed € (but choosen sufficiently small), to let n — +o0.
Since E.(uy,) is bounded uniformly in n by Lemma 1 (but not in €!), up to a possible
subsequence we may assume

Upe —u. in HE (RY) asn — +oo,

15



so that
E.(u.) < liminf B, (up ).

n—-+0o0o

Moreover, by standard elliptic estimates (¢ is fixed),
Une — ue  strongly in HE (RY) asn — +oo.

Note also that since (uy ¢ )nen is bounded in L*°, so is u., and we may pass to the limit
in the equation. Hence, u, verifies (11) with

cle) = nl—g{loo Cne-

Since we also have Ju,, — 7SV~2 as ¢ — 0, for fixed but small € the jacobian Ju,
is far from zero (for all n > n(e)) and therefore u. is not a trivial solution. Hence,
existence of U.(x) := uc(ex) in Theorem 1 is established. Properties (6), (7), (8) and
(9) follow then from the analysis of Subsection 1.3 (see Section 4 for the details).

The definition of P(U,) needs some clarification. For this purpose, we consider the
class of functions

W = {u € L*(RY), E.(u) < +oo and IR > 0 s.t. infR|u(aﬁ)| >1/2 }

|z|>
If u € W, we may write, for |z| > R,
U = pexp iy

where ¢ is a real function on RY \ Bp(0) defined modulo a multiple of 2. We define

plw) = [ Gwoux+ [ 1= ~Dow+ [ en1-x) ()

where x is an arbitrary smooth function with compact support such that y = 1 on
Bgr(0) and 0 < x < 1. On checks immediately that the definition makes sense in W
and is independent of the choice of x and ¢. [To motivate this choice, notice that
formally

/RN (tu, Oyu) = /RN (iu, Oyu)x + /RN (tu, O1u)(1 — x)

/RN (iu, Oru)x + /sz(l — x)p*0p
/RN (iu, Bru)x + /RN(1 (P = Do+ /RN 0di(1—x)

so that we recover the usual formula when Vu € L'(RY)]. Clearly, in view of our
analysis, u, € W so that P(U,) := " p(u,) is well defined.

16



Remark 6. Consider the affine space
Y =H'®R")+ {1} ={u, st.u=1+v, ve L*R"), Vv e L*(R")},

equipped with the H!-distance. For functions in Y, one may set

as a definition of the momentum. It is straightforward to see that p; is continuous on
Y (for the H' norm). On the other hand, C2°(RY) + {1} is dense in Y, and included
in W. One verifies, in view of the definition of p, that

pi(u) =pi(u), Yu e C°RY) + {1} c W.

1.6 Discussion on stability

The discussion about stability of special solutions for dynamical systems is a funda-
mental issue, in particular if one argues about some physical relevance. This is a
vast topic, and the very notion of stability appears in different places with different
meanings. We want to stress first that we are not yet able to state any trully satisfac-
tory result concerning the stability of U.. We next explain the main difficulty in this
direction, and the partial results we have obtained.

When dealing with PDE’s, a first step commonly needed for stability is to solve
the Cauchy problem, at least in a neighborhood of the special solution. In particular,
one has to define a suitable functional space, and this usually requires some knowledge
of the decay properties of the solution. In our case, it can be proved (see [14]) that the
Cauchy problem is well defined on Y = HY(RY¥) N L*(RY) + {1} and that both energy
E,. and momentum p are conserved during the flow. However, it is not known that
the solution u. belongs to Y (see however results by Gravejeat [25] for the asymptotic
behavior of finite energy travelling waves), and the possibility to solve the Cauchy
problem in other spaces has not been investigated yet.

Assume that in some way one is able to overcome this difficulty. Then in our
context the notion of (nonlinear) orbital stability seems to be the most adequate (see
e.g. [6, 15,18, 26]). Indeed, recall that our solution is obtained as a limit of constrained
minimizers for which both the constraint and the minimized quantity are conserved
by the flow. We will show that u. is itself a constrained minimizer. For this
purpose, set

oo :={u €W st. p(u)=2r|B"[}.

Theorem 5. We have

p(ue) = 2m| BN (39)
so that u, € W and
E.(ue) := 1€I%f E.(u) (40)

17



The proof of Theorem 5 relies essentially on the following proposition which pro-
vides a decay of the energy at infinity.

Proposition 4. There exists constants A > 0 and C > 0, independent of n > n(e),
such that

e(une) < CR™ 41
oy ©=C0me) < (41)
In particular,
nl_lgfoo Ea(un,E) = E.(u.) (42)
and
. _ _ N-1
im_p(ue) = plue) = 20 BY. (43)

Recall that the definition of p(u.) was given in (38).

Remark 7. i) The result of Proposition 4 is an exact result for fixed ¢, and has to
be compared with the weaker asymptotic result

E.(un.) = E.(u:) + O(1) ase —0

which is an easy consequence of Theorems 1 and 4.

ii) In fact, it follows from the proof of Proposition 4 that (41) holds for any A <
v N — 1, provided ¢ is sufficiently small. One might expect however, that the gradient
of u. decays as the gradient of U,, and A = N should be the optimal constant in (41).
iii) The statements in Proposition 4 essentially mean that there is no loss of compact-
ness at infinity (it excludes for example a sliding bump “escaping” towards infinity, or
vanishing but widespread oscillations).

Comments. i) The existence of a unique solution for the Cauchy problem in H'(IT,)
is standard. Moreover, it is easily proved that the set of minimizers for (P, ) (which
contains u,, .) is orbitally stable. In particular, the uniqueness of u,, . (up to translation
and multiplication by a complex number of modulus one) would imply its orbital
stability.

ii) One may wonder wether there is no direct proof (i.e. avoiding the approximate
problems) of Theorem 5, and thus also of Theorem 1. This seems to be a difficult
task, mainly since W is not open.

iii) A rigorous proof of the orbital stability of U. would require, in addition to solving
the Cauchy problem, to obtain compactness properties for minimizing sequences for
(40). We will not tackle this problem here.

Added in proof. After the completion of this work, P. Gravejeat was able to prove
that any finite energy solution (in particular u.) belongs to Y. It follows therefore
from Remark 6 that

E.(u.) = inf{E.(u), u € Y, p(u) = 2r|B"7'|},

which is certainly an important step towards orbital stability, since, as mentioned, the
Cauchy problem is well-defined on Y.

18



1.7 Cylindrically symmetric solutions

Since equation (11) is invariant under rotations preserving the x; axis, it is tempting to
believe that up to a translation U, inherits this symmetry; i.e. that U, (z1, 2") depends
only on z; and |2'|, where 2’ = (z4,--- ,zx). We have no proof of this fact. However,
the following variant of Theorem 1 can be easily established with minor changes in
the proof.

Theorem 6. There exists €1 > 0 such that for every 0 < € < g1 there is a solution
U. to equation (5) with C = C(e) verifying (6), (7), (8), (9) and such that U. is
cylindrically symmetric.

The slight change is to introduce the space Z, of axially symmetric functions on
[—n,n]" with periodic boundary conditions :

Zy = {u € H'([-n,n]"), u=u(xy,|2'|) and Vk € {1,--- , N}
W1, Ty =My Tha1, - TN) = U(T1, -+ Tho1, My Ty, - - ,a:N)}
and to consider the minimization problem
inf{Eg(u), u € Zn, p(u) = 2r|BN ! } :

All the arguments in the proof of Theorem 1 can be carried out similarly working with
Z, instead of X, yielding the proof of Theorem 6.

We emphasize however an important difference, concerning stability. Stability
properties of U can be obtained (in the same way) for axially symmetric perturbations
only. This is a rather restricted class, and it seems difficult to obtain stability results
for general perturbations.

Remark 8. i) As already mentioned, we nevertheless suspect that, up to translation
and multiplication by a complex of modulus one, U, = U..

ii) An alternate proof of Theorem 6 would be to work directly in the upper half-plane
(x1,7), where r = |2/, at the cost of introducing a degenerate elliptic operator. Since
this approach is basically two dimensional, the results of the Appendix could possibly
be replaced by easier two dimensional analysis.

2 The approximating problems

The main purpose of this section is to present the proofs of Proposition 1 and of
Lemmas 1 and 2. In particular, we stress the fact that Lemma 2 provides an important
upper bound for the Lagrange multiplier ¢, .. This is the first required step in order
to implement the PDE analysis of the Appendix.

Before we start with the proofs, we wish first to clarify the identification II, ~
[—n,n|¥ = Q,, as well as the notion of unfolding.
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Unfolding the torus. We start with the usual definition IT,, = RY /(2nZ)" obtained
by the identification z ~ z' iff z — 2’ € (2nZ)". For a fixed o = (ay,-+- ,ay) € RY,
the cube C, := [IX,[-n + a;,n + o4 contains a unique element of each equivalence
class (C, is often termed a fundamental domain); it may therefore be identified with
I1,,. Given oo € RY, the unfolding 7, of II,, associated to « is by definition the one to
one mapping

To: Iy — Q, =[-n,n["
p=[(x1+o, -, ony +an)| — (z1,--- ,2N).

This corresponds to a translation of the origin in RV, and thus on the torus. For a
given function f defined on II,, each unfolding 7, induces a 2n-periodic function f,
defined on (2,,.

In some computations (in particular dealing with integration by parts for functions
which are not necessarily all periodic), we will need to estimate boundary integrals.
The following Lemma provides a choice of a “good” unfolding of the torus, by averag-

ing.

Lemma 2.1. Let f € L'(I1,,) be given. There exists an unfolding of the torus I1,, such

that
2N71

o Jal@)de | < == [ |fo(a) do. (14)

Moreover, for any 0 < o < 1 there exists a subset D,, of €2, of measure larger than
o|Qy|, such that for any a € D, we have

n

[, @ al < S [ ) (49

Proof. Integrate the left hand side of (44) for a € [-n,n[" and use the mean value
theorem to get (44). For (45), argue similarly. O

[Notice that the trace of f, is well defined for almost every unfolding] In the sequel,
we will no longer distinguish f and f, : hopefully this will not lead to a confusion.

Proof of Proposition 1. Let (Ulﬁ,g)keN be a minimizing sequence for (PZ). Since
E.(uf ) is uniformly bounded with respect to k, (uf )gen is bounded in H*(II,) so
that up to a subsequence we may assume

Up . — Up,e IN H'(TL,) as k — +oo,

n,e

for some u, . in H'(II,). By weak lower semi-continuity and Rellich compactness
theorem, we infer that

E.(tup,) < lim inng(ufl,g) =1Ip..

k——+o00
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On the other hand, Rellich compactness theorem also yields

plune) = lim | (iug., Oruy,.) = 27| BY.
n

Hence uy, . is a minimizer for (PZ). The Lagrange multiplier rule implies that for some
Ane €R,

dEs(U'n,s) = )‘n,s : dp(un,s)-
Define ¢, . := 2\, ./|loge|. The previous equality is precisely the weak formulation for
the equation

Oy,

8$1
This ends the proof. O

%) on II,.

. 1
icne|loge| = Aup . + E—Qunﬁ(l — |un,,

Proof of Lemma 1. We will use the test functions w, r constructed in Subsection
1.2. Notice that E(w, g) and p(w, r) depend continuously on R. It then follows from
(15) that

JR(e) >0  such that w, g €Ty

for each large enough n and that
R(e) »1 as € —0.

The conclusion of Lemma 1 then follows from (14). O

We turn now to the proof of Lemma 2. As often in elliptic PDE’s, Pohozaev’s identity
(also termed virial identity in the physics literature) leads to useful estimates. In our
case, after unfolding it reads (see Lemma A.2)

_ N _
N2 /Q Vel 4 /Q (1= June)? — ene¥=3loge] /Q (Jtn s, €1)
. ‘VUn,s 2 n 202 aun75 N 6“71,5
- 3Qn[n ) + 482 (]‘ - |una5‘ ) - ay : (lexl axz )]ﬂ (46)

where &; is the two form defined in (13). Notice that & is not periodic and therefore
(46) depends on the choice of unfolding. In order to bound ¢, ., we thus need to
provide a lower bound for the quantity

| (6] (a7)

As we have already noticed in the Introduction (see Remark 2), (47) is related to the
momentum p(u,.) (actually they would even be equal if u, . was constant on 0€,).
In the situation which is of interest for us, we have the following.
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Lemma 2.2. Let My > 0. There exists a constant Ky > 0 (depending only on M)
such that for anyn € N and u € H(I1,,) verifying

n > K|logele3~V,
Ec(u) < My|loge],

there exists an unfolding of 11, such that

/ (i, 9ru) - /Q (Ju &)

<r(e),

where r(e) — 0 as € — 0, independently of n, and
() <C [ e
n/mne(u)_ Hne(u)
Proof. We first claim that there exists v € X, such that
C
|V|e < - Voo < 1, E.(v) < 2Mpl|loge|

and
<r(e),

‘/Hn(zu, O1u) — /Hn(iv,alv)

where 7(e) — 0 as ¢ — 0, independently of n. Indeed, consider first the function v,
defined by

 fu(z) iflu(z) <1
v(z) = ‘Zga if not.

Clearly, F.(v;) < E.(u) and

‘/Hn(zu,alu) — /Hn (ivl,ﬁlvl)

S / |U — ’U1| . |VU| + ‘/ (ivl,alu — 81’1)1)
I, I,

:/ |u—v1|-|Vu|+‘/ (101v1,u — v1)
I, II,

<C (/H u— 01‘2)1/2 E.(u)"2 (48)

1/2

<o(f 0-nrr) Ew

< Cellogel| :=r1(e).
Next, consider a function v, defined as a solution of the minimization problem

) lw — vy 2
wer}IIlll(I}_In) Es(w) + I, 2e )
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Clearly, we also have E.(vy) < E.(v;) and

1/2
<cC (/ oy — v2|2> E.(v))"?
1y
< CVEE.(n)"/? E;(u)"/?
< Cy/ellogel == ro(e).

On the other hand, vy satisfies the equation

/(ivlaalvl)_/n(iUQ;alUQ)

(49)

1 Vg —V
Auyt Sl = o) = 222,

so that 0y(x) := vy(ex) satisfies
A/ﬁQ + ’172(1 — ‘172‘2) =& ('172 - 771)

(0, is defined similarly). Since |01 |c, |[U2]0o < 1, it follows from standard elliptic esti-
mates that o

|Vig]o < C and so  |Vugle < =

Combining (48) and (49) we obtain that v := v, satisfies the conditions of the claim
with r(g) := r1(g) + ra(e).
We will now choose a suitable unfolding. Notice first that for any unfolding of II,,,

/n(zu, O1u) — /Qn<Ju, &) = n/ann(zu, oLu). (50)
By Lemma 2.1, there exists an unfolding such that

/ann% + Ve(e:(u) + e (v2)) < - n_ /n‘“ ?/g2| +Ve(ee(u) +ec(v2)).  (51)

Hence, arguing as in (48),

n| /(9%("“’31“) — (ivg, O119)| < C - n/an lu — va| + (|Vu| + [Vuvg|)

n

lu — vy |?

<C- n/am[ 7 + Ve(e:(u) + ec(v2))]

(52)
<o [ el e + e
— m, \/g £ £ 2
< Cy/z|loge| = ra(e).
If n > Coe® N |loge|, then it follows from (51) that
C
< — &N,
J, o) < e (53)
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It is an easy matter to verify that the last inequality, combined with the estimate
[Vvs|oo < € implies that for K, sufficiently large,

1
lvg ()] > 5 for all z € 09,,.

We may thus write vy = pexp(ip) on 99, and from (53) it follows that ¢ is 2n-periodic
(see step 4 of Theorem 4 in Appendix C for a detailed proof of this last statement).
Hence,

|-

n

< Ce (/BQ @)W . (/an |w2‘2)”2 (54)
E

‘/ (’L"UQ, 81}2
(21979

Combining (50),(52) and (54) we finally obtain

/ (iu, Ovu) - /Q (Ju.6)

which finishes the proof. O

< ry(e) +7i(e),

We are now in position to obtain the expected upper bound for the Lagrange
multiplier ¢, ..

Proof of Lemma 2. We deduce form (46), that for each unfolding we have

/Qn<Jun,g,£1> <Cln / o ec(Une) + /H ) eg(un,s)]. (55)

By Lemma 2.2, there exist an unfolding such that

n /a el <C /H ex(w) (56)

‘ /H (i, 0ru) - /Q (Ju6)

provided ¢ is chosen sufficiently small and n > n(e). Therefore, since u, . verifies the
constraint [i (iUn,, O1un,) = 2m|BY 71|, we obtain

| g

Combining (55), (56) and (57) we deduce
Es(un,s) <

lloge| — b

Cnc|loge|

and
S 7T|BN_1|

> | BN (57)

[Cne| <

where we have used Lemma 1 for the last inequality.
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3 Relation with the isoperimetric problem

In this section, we specify the geometrical interpretation of both the momentum and
the energy,in the asymptotic limit ¢ — 0. Roughly speaking, for N = 3, E (uy,) is
proportional to the length of the concentration set, whereas p(uy ) is proportionnal
to the flux (along €) through the concentration set. As we emphasized in the Intro-
duction, the concepts of Geometric Measure Theory are appropriate to express these
properties.

We start with the proof of Lemma 5. Recall that in view of Theorem 4, there exists
¢eN, R >0 and ¢ points z1 .,--- ,x,, with ¢ <[ such that

|t ()| > on IT,, \ UL, B(z;., R). (58)

N | —

Without loss of generality, we may assume that the balls B(z;.,8R) are disjoint. For
amap u € H'(II,,C), let & be defined by

u(z) if v € UL, B(z;., R)
u(z) = )\éxgu(:c) + (1= Ax))a(x) if}a: € L.nglB(xi,E, 2R) \ B(z;., R)
u(x otherwise,

where

a@) = { By @) >3
2u(xz) otherwise,

and \(z) := 2222l if ¢ € B(x,.,2R) \ B(@ig, R). In view of (58),
JUpe =0 on IT,, \ UL, B(z;, 2R) (59)

and
/ Jitn, = 0, (60)
B(z;,¢,2R)

this last inequality follows by integration by parts, using the fact that |i,.| = 1 on
0B(z;.,2R). These localization properties of Ja, . will be useful in the sequel. On the
other hand, Ja, . and Ju,, are close in view of the following lemma.

Lemma 3.1. Let u € H'(I1,,, C) such that E.(u) < My|loge|. Then, there exists an
unfolding of I1,, such that for every ¢ € C*®(Q,, A*RY), we have

_ 1 .
| (Ju=73,0)| < (lIglloo + 11" ¢lc)Celloge] (61)

n

and in particular
| Ju — Jal|jcorm, - < Cellogel, (62)

where C depends only on N and My but is independent of n.
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Proof. According to Lemma 2.1 there exists an unfolding of II,, such that

N-1

2
/ u X du — i x dii| < / lu X du — @ x dii| . (63)
21975

n n

Let ¢ € C*®(£2,, A’RY). Integrating by parts on €,,, we obtain

_ 1 . 1 N T
/QSJu—Ju,go)—E/anguXdu—uXdu)T/\(*go)T—§/Q(u><du—uxdu,d(p).

n

Hence, we deduce from (63) that

2N71

[ gu= .0 < CC— Il + 1l ol x du = @ % dillix,y - (64)

n

The proof is completed using the estimate for ||u X du — % x dii||;1(q,) given in the
next lemma. 0

Lemma 3.2. There exists an absolute constant C > 0 such that
||’U, X du — U X dﬂ/“Ll(Qn) < C&Eg(u). (65)

Proof. Let A= {Ju| >1/2}, B=Q\ A. A simple computation gives

e ¢ du — i x dii]| 14y < C/A (1 u x dul

_W)

cor(f, ) (L)

< CeE(u).

On the other hand, we have

lu x du — i x dit|| 1 gy < C/ lu x dul
B

1/2
<ciB ([ vuP)

o ( / wy/z - (67)

22
< CeE.(u).
Combining (66) with (67) yields (65). O

In view of (59), Jay . is localized in balls B(z; ., 2R). Concerning the existence of
integral boundaries close to Ju., we will make use of recent works on the geometry of
the Jacobians [29, 1]. In particular the I-convergence results contained in the above
quoted works lead to the following.
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Lemma 3.3. Let My >0, R > 0 and X := {u € H*(B4g,C), |u] >1/2 on Byz\ Bg}.
Then, for every 6 > 0, there exists ¢ > 0 (depending only on 6, R and M), such
that for any € < eq, and for any u € X such that E.(u) < My|loge|, there exists an
(N — 2)-dimensional integral boundary T, = OR,, supported in Br verifying

i) ||JU—7TTU||[62,1(B4R)]* S 5

Ee(u) +6

ii) M(7,) < .
i) M(To) = m|loge|

Proof. We argue by contradiction. Assume that there exists some § > 0, a sequence
g; — 0, and maps u; € X satisfying the bound

E., (uj) < Mylloge;| (68)

i
and such that for every integral boundary 7" supported in Bg and verifying i), state-
ment 7i) is contradicted, i.e.

E.(u)

M(T') > .
(T) 7|loge|

(69)

According to the I'-convergence results in [29, 1] (see e.g. Theorem 3.1 and Remark
3.2 in [1]), there exists an integral boundary 7™ supported in Byg such that

[Juj = 7T || o1 (g, py — 0 @S J — +00 (70)

4R

and

M(T) < lim inf 2e{%)

;-0 m|loge,|

We deduce from (70) that i) is satisfied for T = T* and j sufficiently large, so that
(71) contradicts (69) [indeed the fact that 7* is supported in Bg, and therefore can
be used as a test current in i), follows from its construction in [1]]. O

(71)

Proof of Lemma 5 completed. We apply Lemma 3.3 to 4, restricted to the balls
B(z;¢,4R), for i = 1,---,q. This yields integral boundaries 7; (depending of course
on ¢ and n) supported in B(z; ., R) such that

| Jtn,e — 71—%||[CS’I(B($¢,E,4R))]* <r(e) (72)

and
EE (ﬂn,s; B(xi,ea 4R))

7|loge]

EE (un,s; B(xi,sa 4R))

M(T;) <
(T:) m|loge|

+7r(e) <

+7r(e). (73)

[here and in the following, (¢) denotes a generic function such that r(¢) — 0 ase — 0,
independently of n, but whose exact value may differ from place to place]

Set T' =31, T;. By (73),

Es(un,s)
m|loge]

M(T) < + r(e), (74)
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so that i77) is established. Concerning i), since Ji,, . is supported in the balls of radius
2R, we deduce form (72) that

q
[T tine = 7T [[icormays < D e = 7Tillicos (Bs o 2m))-

q
< C X M ne = 7Tl (pa, . aryye < 7(E)-

i=1

Since ||Jupe — Jine||jcorqm,)y» < 7(€) in view of Lemma 3.1, we derive ¢) from the
previous inequality.
Finally, we turn to 7). For any unfolding we have

[ e =T ) < | [ (e =T, €01+ | [ (il = Juns &) (79)

Notice that

] e - ﬂ71§0|<:§:|/- (Jiin,: — 7T;,£1)]

-Tz E’2R

(76)
_Z‘/ - J’un,g—ﬂ'ﬂafl_fi”’

where ¢! denotes the constant form
N
Z Tie);dx; A dxj,

and (z;.); denotes the j-component of the point z;.. For the last inequality, we have
used (60). By construction,

: 4R
1
16— &l (Blzie 2R) = 377

(whereas ||£1]| Lo (B(a;..,2r)) diverges as n — +00). Hence, we obtain the estimate

| B(zi,5,2R)<Jan’E — 7T, & = &) < Ot — 7TTi||[cS’1(4R)]* <r(e). (77)

We now choose the particular unfolding given by Lemma 3.1, and similarly we obtain

[ e = Tines0)] < 760) (78)

so that 4i) follows from (75), (76), (77) and (78). O
Proof of Proposition 3. First, observe that

[ T €)= | || (TR, 2d01)| < 27M(R,) (79)
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In view of 4i) and #ii) of Lemma 5 and (79), we deduce

N-1 N—

M) 7™ 2B (un) V2
M(Rue) (nlloge]) V= p(un.)

-

+r(e), (80)

where r(¢) — 0 as € — 0, independently of n. The last inequality together with (17)
proves (36).
Moreover, from Lemma 1 and (35), we deduce

M(T,0) = [S¥72)| < r(e),  [M(Rae) = [BYY| < r(e), (81)

and
[ (R = B
In

where 7(¢) — 0 as € — 0, independently of n. From (81) we infer in particular (see
[20], 4.2.17) that for each sequences €; — 0 and n; > n(e;) there exists subsequences
(still denoted €; and n;) and translations 7; in II,,; such that

<r(e), (82)

Ty e; = Too and R, = Reo in [C%!(RV)]*

as j — +oo, where T, = OR,, satisfy

= . (83)

From (83) and (81) we conclude that T,, = S¥~2, Ry, = BY¥~!. Combining (79) with
(82) we also obtain

[ oy o) = M(Rec) (84

i.e. Ry is contained in a hyperplane orthogonal to €;. The proof is complete. O

Proof of Lemma 6. We claim first that T}, . is contained in a single ball B(z; ., R).
The other statements are then direct consequences of Theorem 4.

We argue by contradiction. Assume there exists sequences €; — 0 and n; > n(e;) for
which the claim is false. In particular, for every R > 0 and every sequence z; € II,,,

(I, \ B(zj, R)) N Sy, c; # 0 (85)
for j sufficiently large. By Proposition 3, up to some subsequence we have
75T e; — SV 72, (86)
where 7; is a translation in Il,,. Let z,, ., := 7; *(0) and 7 > 1 be such that

|Un;e;| > 1/2 on B(Zn,;,4r) \ B(Zn,;,7)
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(the fact that such an r always exists follows easily by Theorem 2). From (85) with
R = 8r we infer that

(I, \ B(@n, z;,87)) N S, ey # 0
for j sufficiently large. We deduce from Theorem 2 the inequality

/ e (tnje;) / ey (Unye)) 1 (87)
B( I, ’

onje;dr) Tlloge;l T n|loge;| w

where 7 > 0 is the constant given by Theorem 2 for o = % Taking the limit 7 — 400
we obtain, using respectively (86), Lemma 3.3 47) with § := 3L, and (17),

65]' (unj,z-:]) 77

|SN?| < lim inf —is il 4
77400 JB(an; e; 1) T[loge ] 2
< liminf 2 Wnse) 1 1
jo+oo  mlloge;|  wm 2w
< |V - T
<| | 2w
This is a contradiction. O

4 Proof of Theorem 1 completed

Recall that in Section 1.5 of the introduction we have already constructed, for 0 < € <
go small but fixed, a subsequence of u, . (still denoted here w, .) such that

Upe — Ue  strongly in H (RY),
Cne —>C. InR,

as n — +o00. Moreover, as € — 0, we have
Ju, — 7SN 72 (88)

and u, is a solution on RY of

ou, 1
= Au, + 6—2u5(1 — |ue|?). (89)

ice|loge| T

In view of (88), u. is non trivial (non constant) at least for small .

Theorem 1 is stated with U.(x) := u.(ex). We will prove the equivalent statements
for u,; it is then straighforward to come back to U.. We decompose the remaining of
the proof in several steps.

Step 1. We have
limsup |E; (u:) — Ee(une)| < C,

n—-+o0o

where C' is independent of €.
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Proof. This is a direct consequence of Theorem 4 and of the strong H\. . convergence
at € fixed. n

Step 2. We have
E,(u,)

m|loge|

= 5V +7(o).

where r(¢) — 0 as € — 0.

Proof. This is a direct consequence of Step 1, Lemma 1, assertion ii) of Lemma 5,
and (36). O

Step 3. Similarly, we have
p(ue) = p(un ) +r(€) = 2r| BNt +1(e)
where r(¢) — 0 as € — 0, independently of n.

Proof. Recall that by Lemma 6

[Une| > on I, \ B(0, R),

1
2
so that we may write
Une = Pn,e €XP(ipne) on I, \ B(0, R).
The definition of p(u,.) is then given by (see (38))
pud) = [ Gue oy + [ 0= = Doree+ [ oo =x),  (90)

where x is an arbitrary smooth function with compact support such that y = 1 on
Bgr(0) and 0 < x < 1. On the other hand, we have, for n sufficiently large,

p(tne) = /RN(Z'U"’E’ O1tn,e)X + /!,2 (1- X)(pvzz,s — 1)0ipne + /RN P01 (1 —x). (91)

e convergence, the first and third terms in (91) converge to the corre-
sponding terms in (90). For the second one, we have
1/2
2>

\ o\ 12
- ( Qn(pn’g ) ( Qn\B(O:JZ) o
A similar estimate holds for the second term in (90), so that the proof is complete. [

By strong H}

‘/Q(l - X)(pi,s - 1)61()071,5

< CeE,(ung).

Step 4. We have
cle) > N -2 as e — 0.
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Proof. The proof relies (as in Lemma 2) on Pohozaev identity; however we are now in
position to use Theorem 4 and Lemma 6, which provide a better decay of the energy
at infinity. Set B := B(0, R). By Lemma 2.1, there exists an unfolding of the torus
such that 09, N B = () and

‘n/mn ec(Up )

the last inequality being a consequence of Theorem 4. On the other hand, by Corollary
A.1 of the Appendix, we know that

S / es(un,s) . ]-Qn\B S C: (92)

/n w = o(|loge|) ase — 0. (93)

c2

Finally, using Lemma 2.2, we may choose our unfolding such that it verifies the addi-
tional condition

/ (iun,sa alun,s) - <J’U«n,sa£1> S T(‘f)-

n

Hence, by Step 2,

[ (Ttnes0) = plune) +7(e) = 22 BY |+ 7(e). (94)

n

Going back to (46), we have by (92), for fixed ¢,

%/Q|Vun,s|2 + % /Q(l — |unel*)? = cn 25t loge] /Q<Jun,5,§1> <C.
Dividing by |loge| and using(93) and (94) we are led to
N-1 E. (un.)
R = (N -2 ! .
Pl e, = (V=2 58 o) (95)
The conclusion follows from Step 2 and Step 3. O

From now on, we will not consider u, . anymore in this Section, and derive asymp-
totic properties of u, as € goes to zero.

Step 5. Up to a subsequence, there exists some map U, € VVI})’CP(RN,SI), 1<p<
) such that
u, — U, weakly in WLP(RY) ase — 0,

C

where U, is defined (up to a constant phase) in the statement of Theorem 1.

Proof. By Theorem 4 i), u, is bounded in W,.”(RY). Therefore, up to a subsequence,

C
there exists some map u, € WLP(RV) such that u, — u, weakly in W,>P(RY) and

C C
almost everywhere. Moreover,

/ V2 < C (96)
]RN\BR(O)
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since the same inequality holds for u.. We show next that u, = U,. Since u,. satisfies
the equation (89), taking the exterior product of (89) with u. and iu. respectively we
are led to

d*(ue X du.) = z'cg|logs|8%l(|ug|2 -1)

d(ue x du,.) = 2Ju,.

Passing to the limit & — 0 [notice that c.|loge|(|u.|* — 1) — 0 in L2(RY) so that the
right hand side of the first equation here above converges to zero in H '(RY)], we
obtain

d(u, x du,) = 2rSN 2.

This elliptic system, together with (55) determines wu, uniquely (up to a constant
phase). Indeed, from the first equation and classical Hodge-de Rham theory (see e.g.
the Appendix of [10]) there exists a two form ¢ such that

Uy X du, = d*1, dy =0, and V¢ € L*(RY \ Bg(0)).

{ d*(us X du,) =0

Inserting this in the second equation satisfied by u, we obtain
Aty =27 SN2
so that ¢ = 9, (¢ is defined before Theorem 1), and the conclusion follows. O

Step 6. Let K C RV \ S¥~2 be compact and simply connected. For ¢ sufficiently
small, we have

1
luc(z)| > 5 on K.

Proof. We apply Theorem 3 with the sequence (u.).>o. Indeed, we have
¥, =85N"?

[This can be established arguing as in the proof of Lemma 4]|. The claim follows then
directly for (27). O

We may now write
ue(z) 1= pe(x) exp(ip:(z)) on K.

For convenience we skip the subscripts ¢ in the sequel. It remains to prove the stronger
convergence in the compact K. In contrast with the case ¢ = 0, where %‘%B remains
bounded as ¢ goes to zero (see [8]), this is not the case here (it diverges like |loge|).
We rely instead on a cancellation effect.

Step 7. We have

i) IVelleraxy < Cr VE >0 (97)

.. 2(1 — 0
i) 12072 4 eioge 2 ey <00 vz 0 (98)
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In particular
IV pller(rey < Cre®loge| Yk >0 (99)

and the convergence claim in Theorem 1 follows from (97) and (99).
Proof. The first important point is to obtain uniform C%® bounds, namely
||ullcoaxy < C, (100)

for some v > 0. This is achieved as in [10] Theorem IV.1, obtaining first a monotonicity
property

1 ~
E.(0r,z9) < iEg(r, Zg) for all 0 < r < ryg,

for every xy € K and for some § > 0, and then using the Morrey embedding theorem.
We skip the details [see however Step 1 of the proof of Theorem 3 for a very similar
proof to obtain (B-9)]. The analysis of the further regularity properties of u is long
and technical in the case of the general equation (19). For equation (89), we make
use of the following trick which gives rather directly some first rough (in the sense
non uniform) estimates for all the derivatives (see also [19]). The remaining analysis
is then substantially simplified.
Let v := exp(—ic.|loge|z1)u. Then v satisfies the equation

1
Av + 6—20(h5 — v} =0,

where h, == 1+ 22|loge|?. Set w(x) := (h.)""?v(z) and w(z) = W(rez)- We have

[

A + (1 — |[@]*) =0,
5
where £2 := €2|loge|*h_!. By (100) and the construction of w,
il < C

Using the regularity theory for the Ginzburg-Landau equation, we thus infer (see [10]
Theorem IV.1) that

5 1— |w|?
lolg <G and |22y, <o
for all £ > 0. Coming back to u, this yields
k 1 —[ul? 2+k
[ullee < Cilloge| and |l llex,_ < Cilloge|™". (101)

Starting with these rough estimates we are now going to prove (97) and (98) using a
bootstrap argument. Define

0
B, :=2(1-p)+ ce\log£|62a—g0 and A, :=¢°B,.
X1
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The set of equations needed for the bootstrap are

div(p’V) = cc|loge|5o-(0* = 1) (102)
—Ap = 4. + cellogel(p = 1) 5 — 2057 (p +2) (103)
—AB, + %30 B, = 29|V + p(p — 1)[logelc. 52 — (1 — p?)e?A22.  (104)

Since p is bounded in C%* by (100), we infer from Schauder regularity theory, (101)
and (102) that
Vel < C. (105

Using (101) and (105), we deduce that the right hand side of (104) is bounded in L2
Hence, using (105) and standard arguments,

[ Belleo < Ce?  and thus [Aellee < C. (106)
Using (101) and (106), we deduce from (103) and then from (102) that
Vol <€, and [[Vellgge < C: (107)

We are now in position to differentiate (104) once. This leads us, using (101),(107),
to the estimate
|Beller < C¢?, ie. Al <C. (108)

loc

We have thus proved that i) and ii) hold for £ = 1. The estimates for the next
derivatives are obtained following exactly the same steps. This finishes the proof of
Theorem 1. O

5 Proof of Theorem 5

The main ingredient in the proof of Proposition 4 is the following inequality

Lemma 5.1. There exists a constant C > 0 such that

[ el SCR[eun,)
Q. \B(R) dB(R)

for R> 2, n>n(e), and € sufficiently small.
Proof. We multiply the equation

. Ce 0
div(p*V) = _5‘10g6‘6—351(p2 - 1)

by ¢ — @, where

_ 1 /
Y= 10B[R)| Jonm ¥
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denotes the mean value of the phase on dB(0, R). Integrating by parts on €, \ B(R),
we obtain

0¢ o 1), _ .
2 2

—11 N\ ) _
/Qn\B(L ol = /aB(R pro, P — @)+ \ogs\/n\B oo P9

2 0p _
6B(R)p 5 (o =) |0g8|/ (P = 1)(¢ — @)
Oy

Ce
—1 1—
+ 2 [log | Qn\B(R)( )Bxl

We estimate each of the three terms on the right hand side separately. For the first
term, we invoke the Poincaré-Wirtinger inequality to assert

By 1/2 1/2
9P _ 3\ < 2 2
/aB(R)p 5, ¥~ P)|<C (/83(& Vel ) (/M(R)(w ) )

(109)
<CR (/ \Vg0|2> < CR/ ee(Une)-
OB(R) dB(R)
Similarly, we obtain
Zogel|[ (0~ (e —@)m| <
2 dB(R) -
(1- p2)2 1/2
Celloge|R (/ 72/ |Vg0\2) < C’€|log€\R/ e(Une), (110)
dB(R) € dB(R)
and
% loge| / (1— )22 < Ceflo g|/ e (tUn.s) (111)
plogel | (g g ne)-
Combining (109),(110),(111) we are led to
/ e 190 < CR/ ex(ttn.) +Cs\1ogs\/ ec(un,).  (112)
Qn\B(R
We now turn to the equation for p,
0 1 — p?
—Ap + p|Vop|? +cg|10g5\p690 = p( 2p )
T1 g
Multiplying by p? — 1 and integrating by parts on €, \ B(R) gives
1—p*)? Oy
2p|Vp|? + a=r) :/ (1 -=p?
/Qn\B(R) pIVPF +p g? dB(R) 61/( 7)
Iy
o 1- )22 / 1— )| Vpl2. (113
+ ce[loge| B (L= p)g—+ B p(1 = p7) Vol (113)
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We have,

(% 2
Pa-2l<c / (), 114
Lo = P SCe [ ealmn) (114)
and
c:|loge] / p(l—p2)a—g0 < Celloge| € (Un,e). (115)
Qn\B(R) ori| — Qn\B(R) ’

For the third term, we invoke the fact (see Theorem 1) that V| < C in Q, \ B(R)
so that

1—p°)|Ve|?
Lo P PNV

Combining (113),(114),(115),(116), we are led to

<C 1— )|V <C/ (). (116
< nn\m’)’( PVl < 5Qn\B(R§(“’) (116)

1— p2)2
v2(7<c/ (un.) + Cell / (un.). (117
S VAP < Ce [ calun) + Celloge] [ eau). (117)
Finally, from (112) and (117) we derive the conclusion. O

Proof of Proposition 4. Set, for R > 2,

n R ::/ e\Uneg)-

B = [ el

We infer from Lemma 5.1 that the f,, verify the following differential inequality
fn(8) < =Csf,(s), for all s > 2.

Integrating between 2 and R yields

fm) < 12 ()

where X := &. This proves (41). The other statements (42) and (43) follow directly
from this decay. O

Remark 5.1. In the previous computations, we have not tried to optimize the con-
stants. Using the best constant in Poincaré-Wirtinger inequality for (109), we may
prove that (41) is valid with any A < /N — 1 provided ¢ is sufficiently small (depend-
ing on A).

Proof of Theorem 5. Equality (39) has already been established in Proposition 4.
For (40), we argue by contradiction and assume it is false. Then, there exists v € W
such that

E.(v) < E;(u:) = lim E (up.) (118)

n—-+o0o
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and

p(v) = 27| BN 7. (119)
If v were constant outside some large ball B(R), then its restriction to €2,, for n > R,
would be well defined on II,, and therefore, in view of (119), a test function for (P%).
This contradicts (118) for n sufficiently large.
In the general situation, we will construct from v a function o, constant outside some
large ball B(R), and verifying

p(9) = 2| B | (120)
and

E.(0) < Ec(ue), (121)
so that a contradiction holds similarly.
Construction of v. Since v € W, we may write

v=mnexp(iy)  onRY\B(R),
provided R is sufficiently large. We begin by the construction of a function vg, constant
outside B(3R), but which will not yet satisfy (120). For that purpose, consider the
functions 7 and 1 defined on RN \ B(R) by
ial(e) = o(@)n(x) + (1 = o(x)), with o(a) o= 222
V() :=7(x)¥(z) + (1 — 7(z)) (m Jon(r) 10) , with (z) := 2

Set,
v(z) if [z| <R,
3 nir () exp(iv(z)) if R <[z <2R,
0r(2) =\ exp(itip) it 2R < |z| < 3R,

exp (im Jon(r) w) otherwise.

A few computations show that, for some constant C' > 0 independent of R,

/8B(R) ee(v) + /Qn\B(R) eg(v)] '

We may take next a sequence (R,,)men, such that R, — +oo and

|Ee(0r) — Ec(v)| + |p(0r) —p(v)| < C

/BB(Rm) e(v) = 0 as m — 400,

so that

p(r,,) =27|BY ! +0(1)  asm — +oo (122)
and

E.(Vg,) = E.(v) + o(1) as m — +00. (123)
We finally complete the construction of v setting

Ug,, (z) := Vg, (),

where o, > 0 is uniquely defined by the relation p(vg,, ) = 27|BY¥|. It follows from

(122) that oy, = 1+ 0(1) as m — +o0. Hence, if we choose 0 := g, , we verify that 0
satisfies the required conditions for m sufficiently large. O
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Appendices

The purpose of these appendices is to develop the asymptotic analysis of the equation
1

ifloge|d(z) - Vw = Aw + Sw(1 — |w|*) — [loge|*d(z)w on £, (124)
€

where Q2 C RY is a piecewise C' simply connected domain, ¢: Q — R is a bounded
Lipschitz vector field and d : © — R is Lipschitz non negative and bounded. The
main results of this analysis have been stated in Lemmas 3 and 4, Proposition 2 and
Theorems 2, 3 and 4. We will provide proofs here. Notice that (124) can be rewritten
as

1
illoge|é(x) - Vw = Aw + E—2w(a5(x) — |w/?) (125)

where
a.(z) =1 —d(z)e*[loge|*.

When div ¢ = 0 it is also equivalent to
C 1
(V — i|10ga|g)2w + Swb(2) - ) =0, (126)
where

c*(x)
4

bo(z) == a.(x) + £*|loge?
In the sequel, we assume throughout that

divc= 0.

Appendix A: the PDE analysis

In this first Appendix we establish some basic estimates, in particular we give th proof
of Lemma 3.

Proof of Lemma 3. Let w satisfy (124) and p(z) := |w(z)|. Then we have

Ap? = (2w, Aw) + 2|Vwl|?

2
= _6_2,02(%(56) — p%) + [loge| (2iw, & Vw) + 2|Vw|?

2 1 1 A-1
> —8—2,02(@5(:6) — %) + (V2|Vw| - Ecoo|loges||w|)2 - §c§o|logs|2p2 (A-1)
2 o
2 _6_2102(65 - p2)
where b2 := |b.| (k). Hence the function W (z) := p*(z) — b2° satisfies the inequality

2
AW 2 SW(W +bF)  on Q.
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If o € K and R := dist(xg, 092), the rescaled function

Y(z) := W(R(z — x0))

is thus a subsolution to the equation

2

+. On the other hand, it is easy to check that there exists a constant C' > 0
depending only on N such that the function

where € :=

Z(a) = {052(|m\ —1)72 if | € [3,1]

2ce® + 8Cez)? if |z| € [0, ]

is a supersolution to (A-2) [notice that Y (z) — +oo as |z| — 1]. It then follows from
the maximum principle that Y (z) < Z(z) for all  in B(0, 1), and in particular

2
W (@) = Y(0) < C8% < O~ o

dist(K, 09)2°
Hence, we obtain the desired estimate

2
(i) < [W [poogiy +5° < 1+ ee[loge]> + O
[w|peo(ry < [Wlpeo(zey +02° <1+ ce”[logel” + dist (K, 09)?
Concerning the estimate on the gradient, let r := dist(X, 0€2) and

K = {z € Qs.t. dist(z, K) < r/2}.
By the first step, |w\Loo(k) < Ck where Ck does not depend on w or €. Let U be the
solution of

(V —illogel£)?U =0 on I~(~ (A3)
U=w on OK.

Since w — U € H*(K) N H, (K), we deduce from the Gagliardo-Nirenberg inequality
that

1 11 3

< Ol + Nogelbewe? |V (w0 = U) 2 ) (A-4)
1 1

< Okl + 5| V(0 = ) gee ity + 20sccoclloge]),

so that

C
IV(w=U)lpeeiy < ?K
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Hence, since U satisfies (A-3)

C C
\Vw|peory < |VU | ook +—K<—|U‘Lw _|__K s
A-5
Iy
£
where Cx depends only on K, N and ce. The lemma is proved. 0

Let us now define the 2-forms on R”,

2
f](x) = 7_1 szd.’ﬂj N dﬂ?z for _] = 1, ,N
i#j

which satisfy the equations d*§; = 2dx;.

Lemma A.2 (Pohozaev identity). Let w be a solution of equation (124) on 2, then

5 [ 1vul + 5 | () = ) = S oge| [ (Jw, i) ()

= [T 2 ) - oy - 5 (o)

Elo) 2 4e?
+ 5l1ogel? [ (au(z) ~ )z - Vd(z). (-6

In particular, for B,(xy) C Q we have

N -2 N
Vuwl|? + Qe w|?)?
Q_me\ | i o @@~ o)

s logel [ G S ete)te - a0)

(A-7)
‘“Ogd / (ac(x le ) (x — @o) - Vd(x)
|VTw|2 r|ow|? T .
" By (o) 2 2 |0n +4g2(“€(x) |wl]*)].

For zy € Q and r > 0 such that B,(zo) C 2, consider the scaled energy

rN-2 rN-2

3 1 1 1 a.(z) — |w|?)?
E.(w,xg,7) 1= E.(w,zo,7) = /B( )i‘vw‘2+( ( )482| ) _
r\Z0

When this will not lead to a confusion, we will also note it E,(xq,7) or even E.(r).
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Lemma A.3. Let w satisfy (124) on Bgr(xo) C Q, then for 0 <r < R

d - 1 owl> 1 (ac(z) — |w[?)?
d_(E (%0, 7)) = rN—2 /a& (z0) | O + rN-1 /BT(wO) 2¢2
N —
- W\logel /T(wo)uw, Xi:ci(x)&(x — 7)) (A-8)
5N 1\10g8\ Br(wo)((x—xo)-Vd(x))(as(w) — [w[?).

Proof. Without loss of generality, we can assume that xq = 0. First one has,

d |Vw|? 1 o5

—(E = — -

e =[S +482 /837<a5(x) w]?)

Vrwl? aw 1
= [ T 5 e et~
Hence,

d - 1 Vw2 10w (a(z) — |w]?)?
—(E. = _ ; Z 1=
dr( () = (T)+TN 2 JoB, 2 2 0n 4e2?

N-2
FN-
\Vw\Q -2

\V w|2 owl> 1
- /aB L2+ (an(e) — lw)?

(], X5t i)

1
+ W/BT(“S(“T) — |w|?)?

N 1 / \VTw|2+ ow |’
rN=2 JaB, 2 on
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Using Lemma A.2, we obtain

2

d - 1 \V4 2 1|0 1
%(EE(T)) - |:7‘N—2 /33, | ;w| 2 % 4—‘52(a€($) - ‘W|2)2]
N -1
— W\logs\/BT(Jw,;Ci(x)gi(x))
1

sv=illogel” [ (a- Vd(a))(a:(@) ~ [w]’)

1 Vrw? 1 |0w
b [, T L
r B, 2 2 0n

=,
rN=2 JaB,

— s logel [ (7w, X e)éio)

3

+ 5 (0e(a) - |w|2>2]

8_w
on

o1 [ face) =l

rN-1 2e?

- grvrlosel [ (@ Vi) ao) - fuf),

which yields the result. O

Proof of Lemma 4 (Monotonicity at small scales). Again we can assume that
o = 0. In view of the previous Lemma, we need to estimate the last two terms in
(A-8). For the first one, notice that

|Jw(z)|| < C|Vw(z)]> and |&(z)]| < Cr forallx € B,,
where || - || refers e.g. to the Euclidean norm on two-forms. Hence,

N -1
ovllogel

N—1
2r ;

[, tw S ata)

<C cxolloge] / |Vw|* < Ccoo|10g5|Es(T)a
B,

T'N_2

where C' depends only on N. For the second term we have,

; [, @ V@) o) - [w)

2rN-1

C /2 (a-(z) — |w[?)2) "
< TN_2£|loga|2 (/B |Vd|2> : </B =

- _ 2\2\ 1/2
< CAoTTS|]0gg|2 (/ (at?(x)482|w| ) >
B,

loge|*

(A-10)

< CAgelloge2EM2(r)
< E.(r) + C?A2e?|loge|*.
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Set A := C (¢ + 1)|loge|, then using Lemma A.3, (A-9) and (A-10),

dii" (exp(Ar)E’E(r)) = Aexp(AT)Eg(T) + exp(Ar)dii(Es(T))
> Nexp(Ar) Bu(r) — exp(Ar) (C coolloge | Bo(r) + Bu(r) + C?AZe?logel') (A1)

2722 4 d (@
> —exp(Ar)C?Age|logel®) = ~ar Kexp(Ar) :

This finishes the proof. O

As already mentioned, the pointwise estimate on the Jacobian used in the previous
proof is far from being optimal. In order to obtain a monotonicity formula valid on
larger balls, we will use the following estimate due to Jerrard and Soner [29] (see [29]
for a more quantitative version).

Lemma A.4 (Jerrard & Soner). Let w € H, (Q,C), ¢ € CO(Q, A’RY) and set
K := supp . Then there exists constants C > 0 (depending only on N) and 0 < o < 1
such that

[0 < golells [ ecw)+ Celldpllm 1+ [ ectw))1 + KP). (A2

The big advantage of (A-12) with respect to estimate (A-9) is the factor 1/|loge|
which appears in front of the energy. However, since (A-12) contains a second term

involving a derivative of ¢, we need to adapt temporarily the definition of E..
We define a cut-off function f on R, x R, by

1 ifb<a
fla,b) =<2—-b/a ifa<b<2a
0 if b > 2a.

For zy € 2 and r > 0 such that By, (z9) C €2, we will consider the quantity

_ 1
E (zg,7) := o /32 o e(w)f(r, |z — z¢]) dz. (A-13)

Lemma A.5. Let w satisfy (124) on Bgr(xy) C Q, then for 0 <r < R/2

(B, 1)

1 /Zt/ ow
N2 )1 " JaBy(xe) | ON

2
! (0c(a) = w]’)
b [y o gl =)
N

- orilosel [ (7w S a(we - an) o~ au))

i

(A-14)

1 9 )
—grrlogel” [ (@~ 0) - V() (as(a) ~ [w)f(r, |z — o).
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Proof. For xq = 0 we have,

4 (Br) = —¥ / %es(w)f(r,|x|>dx+% /. es(wmrf(r,m)dx

2r
_ i d dt
rN 1 / /BWe / /azat 7"2 o
= rN - / /Btreg dacdt—i—TN 2/ /83” w) dz dt

:/1 A IME (tr) dt.

It suffices then to use Lemma A.3 and to integrate in ¢. The case xy # 0 is reduced to
the first one by a change of variable. 0

(A-15)

Lemma A.6 (Monotonicity at large scales). There ezists a constant C > 0 such
that for any w satisfying (124) and xy € Q, r > 0 such that By, (o) C £,

|10g6|
(6r)N-

Es(e T, ~T0) S Cexp(C AO T) (Es(r: .’Eo) + + A €2|10g6|4>

for every 0 < 6 < 1.

Proof. The proof bears some resemblance with the one of Lemma 4. Once more we
restrict to the case xy = 0; we first need to estimate the last two terms in (A-14). The
second one is treated as before,

grillosel? [ (@ Vi) (a.(@) - [w) £ (r.]o)

C ) 2\ /2 (a.(z) — [w|?)?\ "
N72s|10g5| (/Bzr |Vd| ) /BQT 12

(as(x>4;\w|2>2>”2

= r
(A-16)

2r

< C'/\()r#sﬂogd2 (/
B

< CAgelloge2EM?(2r)
< E.(2r) + C?AZe?|loge".

Concerning the first term, notice that the 2-form

o) = ci(z)&(x) f(r, |z])

i
satisfies the bounds

l¢llzoo(Boy) < Ceoor and  ||dop||poo(,,) < CAg.
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Hence, using Lemma A.4, we obtain

%uogg\ /| ,(Ju Z @@ (r )

< CenEo(2r) + CA05a|loga|( -+ E.(2r)) (A-17)
C Ay
< CAE.(2r) + TN715“|10g5\.
From (A-14), (A-16) and (A-17) we thus infer that
d - _ A
ZEL(r) 2 —C AE.(2r) = C (TNﬂleauogd + Agg2|1oge|4) . (A-18)
The conclusion then follows form a discrete version of Gronwall’s lemma given here-
after. =

Lemma A.7 (Discrete Gronwall inequality). Let h: (0,1] — R, be continuously
differentiable and such that

h(s) < ON=2h(0s) for all 0 € [1,2]

K (s) > —Ch(2s) — D for all s <1/2,

where C and D are positive constants. Then,
h(s) < 2¥~2exp(Ct) (h(t) + D/C) forall0<s<t<1. (A-19)
Proof. Let g(s) := h(s) + D/C. We have

c

g(s) = h(s) + 2 < ON=2h(0s) + 0N 22 = 9N~2g(hs) for all § € [1,2] (A-20)
g'(s) =W (s) > =Ch(2s) — D = —Cyg(2s) for all s <1/2, i

so that we just need to consider the case D = 0. Let 0 < s < t < 1 be given. If
s € [t/2,t], then by (A-20),
gls) < 2V-24(1)

By induction, assume that for some k£ € N, it holds

o) <22 IO+ 5 Vse ol

Then, if s € [Qkil, 2%] )

t =
g(s) < g(ﬁ) +C i g(2r)dr
_ k Ct Ct
<2V Zg(t)i_l_[Z(l + ? 2k+12N 21‘[ (1 + — (A-21)
k+1 Ct
2¥2g(t) [T 1 y)
i=2
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The conclusion then follows using the fact that
ﬁ(l + %) < exp(Ct) forall m € N,.
i=1
Coming back to h, we obtain
h(s) < g(s) < 2" exp(Ct)g(t) = 2"~ exp(C1) (h(t) + D/C),
and the proof is complete. O

Notice that whereas Lemma 4 was appropriate for balls of radius of the order of
1/|loge|, Lemma A.6 is only appropriate for balls of radius larger than O(e*/(N=1).
This is caused by the oscillation term or order £*/r¥ 1. Fortunately, these two condi-
tions complement perfectly to obtain Proposition 2.

Proof of Proposition 2. We first consider the case
Or < p:= (logel(coo + 1)) ' < 1/2,
the other ones being easier to treat. Using Lemma 4, we deduce that
E.(6r) < O(E:(p) + Ao[logel’e?). (A-22)
Next, using Lemma A.6 and the definition of p,

€ |oge|

E.(p) < B.(p) < C(E.(r/2) + + Ao[loge[*e?)

< C(2VN72E.(r) + e%loge|N (coo + 1)V 4+ Aglloge|e?).

(A-23)

It suffices then to take 8 = «/2 and combining (A-22) and (A-23) we get the desired
estimate (23). In the case 6r > p (resp. r < p), it suffices to use Lemma A.6 (resp.
Lemma 4) to obtain directly (23). This finishes the proof. O

Proof of Theorem 2.
Through a scaling, we first show that we can assume without loss of generality that
2o =0, r =1 and Ay < 1. Indeed, let

u(z) == we(r(z — xp)),
then u satisfies the equation
1 . - 3 -
Au + gu(l — [ul?) = ié - Vullogé| + d|log &[*u (A-24)
on B(0,2), where & := ¢/r, ¢(x) := &(r(z — zo))r|loge|/|logé|, and d( ) == d(r(z —
C,

d
zo))r?|logel?/|logl?. Since r > /g, we have |loge| < 2|logé| so that Ag(¢,d) < 1. We
conclude noticing that E. (w., zo,7) = Ez(u,0,1).
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From now on, we thus assume that o = 0, » = 1 and Ay < 1. For the ease of
presentation, we follow closely the lines of [10]. Let 0 < § < 1/32 a constant to be
determined later (and depending only on N), in the sequel we will denote by C generic
constants not depending on the choice of 4.

Part A: Choosing a “good” radius.

Lemma A.8. Assume that 0 < & < 62N=V/® Then there exists some constant C > 0
and a radius ro € (¥/®N=D 1) such that

1 (a. — |w]?)?
—— [ = < O(nllogd| + £P),
* ri 2 ~/BT0 2e2 < C(nflog] +&7)

o E.(rg) — 2V72E (0ro) < C(n|logd| + £°).

Proof. We will essentially make use of (A-14) together with a covering argument. First

notice that N

B
NI <e” for r>ry.

ro > e¥CN=2 implies
Hence, from (A-14) and following the lines of Lemma A.6 we obtain

4By — A

- < CE.(2r) + C<P, (A-25)

where

owl> 1 (ac(z) — |w|?)?

Ar) = er_Q /1215/63”

From (A-25) and the monotonicity formula of Proposition 2 we thus infer that

1/4 B
/ A(r) + CE.(2r) + CeP dr < C(n|loge| + 7). (A-26)

a/(2N—-2)

Let k be the greatest integer such that e®/@¥=2)(2)"% < 1 and define the intervals

0, 5. .
gy= (e ey agisr
Clearly, these intervals are disjoint and U¥_, I; C (¢*/¥~2) 1) Since
-
- llog 6|
we deduce form (A-26) that there exists some jy € {1,---,k} such that
/ A(r) + CE.(2r) + C8 dr < C(n|log | + £%). (A-27)
I

Jo
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In particular, by the mean-value formula there exists some

1 0, _. N
—po/(2N=2)Z\=j _a/(2N-=2)(Z\—j
e (R Gy, soen-agy)
such that . (a.(z) — [w]?)?
Az \T) — |W
d < logd| +£°
T f, e < Clollogd| £ <)

which establishes the first claim. Notice that gro € Iy, hence

EE(T()) — 2N_2E5(67'0) S EE(’I"()) — Eg(g’l“())

< | A(r)+CE.(2r) + CeP dr (A-28)

< C(nllogd| + &P).

Nl

The lemma, is proved. C

Part B: 4-Energy decay.

In this second part, we present an estimate valid for any solution u of (124) with Ay < 1.
We will apply it later in Part C to an appropriate dilation of w. Let 0 < v < 1/8 be
constant to be determined later.

Lemma A.9. There exist constants exy > 0 (depending only on v and N) and C > 0
such that for any 0 < & < ex and any solution u of (124) on B(0,2) for some ¢ and
d satisfying Ao(C,d) < 1 we have :

112)2
) <o (et ea ot [ im0
1
_ag [ (e —ul)? g
()
Proof. The starting point is the identity
4u?|Vul? = 4lu x Vu|*> + | V]u*?, (A-29)

which holds for any map from RY to R¥; in the special case where k = 2, |u(zo)| # 0,
we may write near xg

u(z) = pexp(ip),
and then
u x Vu = p*Vo,

i.e. u X Vu plays the role of the gradient of the phase. The advantage of the form
(A-29) is that u x Vu is always globally well defined, while the phase need not to be
well-defined when u vanishes somewhere.

49



Since u is a solution on B(0,2), we infer from Lemma 3 that there exists ey
depending only on N and v and C' > 0 such that if 0 < € < ey then

C
lulloe <1+7/2, |Vullw < = in B(0,1). (A-30)
By the mean-value inequality, we may find some r; € [%, é] such that

/6 \vu|2§32/ Vul?,

(A-31)
f, (o= <2 [ (o~ 2
0By,

We divide the estimate in several steps.

Step 1: Hodge-de Rham decomposition of u X Vu.

Observe that since u is a solution of (124),

d*(u x du) = u x Au = (u,¢- Vu)|loge|

(A-32)

= d" ((Ju]? = 1)Sei(x)da; loge] )
Let & be the solution of the auxiliary Neumann problem
AE=0 in B,
% — gy x 2 _ (Juf> — 1) fi|loge| on OB,,.

on on

Notice that £ exists since div(u x Vu — (Ju|?> — 1)c]loge|) = 0 implies by integration
Jos, (w x Vu — (lu? —1)cllogel) - n = 0. Moreover, we have

/B ver < [ 19uP+ oeiogel? [ w < C(E.(1) + &),
Since £ is harmonic on B,,, we have by standard elliptic estimates, for 0 < § < rq,

/BJ V¢ < CaN/B (VE2 < CON(E.(1) + £°). (A-33)

1

By construction we verify that
d*[(u x du) — ([u]* — 1)Xc;(x)dz;|loge| — dé)1p, ] =0 in D'(RY),

where 1, denotes the characteristic function of the set A. By classical Hodge theory

(see [10] Proposition A.7) there exists some 2-form ¢ on RY such that ¢ € H._ (RY)
and

d*¢o = (u x du — (|u]* = 1)Xc;(x)dz;|loge| — d&) 1, in D'(RY),  (A-34)

dp=0 inD'(RV), (A-35)

IVl < C (Belr) + [ VEllza,,)) (A-36)

lo(z)| - |z|¥~! tends to zero at infinity. (A-37)
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We therefore have

u x du = d*p + dé + (|u]* = 1)Cci(z)dz;|loge|  in B, .

(A-38)

In order to bound the L2-norm of u x du on B;, we turn next to estimates for d*y.

Step 2: Improved estimates for V¢ on By.
Let f: Rt — (1, =) be any smooth function such that

? 1y

fy=1 ift>1—x
FO =1 ift<1-2y
|f'(t)] <4 for any t € R .

Define on RY the function 7 by

(a) = {f (lu(@))) i B,

1 outside,
so that, taking (A-30) into account,
0<7-1<4y inR".

Notice that
F(luu x du = f(jul)u x d(f(|u])w),

hence
d(tu x du) = d(f*(Jul)u x du) = d(f(|u|)u x d(f(ju])u)) in B,,,
ie.
d(tu x du) =Y 2(f(Ju)u)g, x (f (Ju])u)q,dz; A da;.
1<j

Now we turn to ¢. We have

~Ap = dd*p = d(1p, Tu x du) — d(15,,d¢) — d(15,, (lul* — 1)
Scidzillogel) + d(1p,, (1 - 7)ux du)  in D'(RY)
= W1 +UJ2+UJ3+UJ4+W5,

where
wi = 1p, d(Tu x du) = 15, 3;;2(f (Jul)u)e, ¥ (f(Ju])u)s;dz; A dz;
wy = 0gp,, f(|lul)u x du Adr, (r=|z|),
w3 = —d(lBrldf) = 0pp,, dr A d§,
Wy = —d(lBT1 (|u|? — 1)Ceidz;|logel),
d(1p, (1 — T)u X du).

Ws

o1

(A-39)



Here o5p, stands for the surface measure on 0B,,. Set ¢; := G * w;, where G(z) :=
cn|z|? Y is the fundamental solution of —A in RY. Since ¢ tends to zero at infinity
by (A-37) and each ¢; tends to zero at infinity (because each w; has compact support),
we conclude that 5
Y= Z ©i -
i=1

We now proceed to estimate separately each ;.

Estimate for ¢5. We have
2 2 2
/RN Vsl? < Oy /B V2. (A-40)

Indeed, we have
—Aps = ws = d(1p,, (1 — 7)u x du).

Multiplying by @5 and integrating we obtain

/RN Vs < NI = Tllzeo ) lull oo ) | Vul 2 [ Vs L2,

and thus
L, I9esf? < ColIVullzaoy IV gsllzan),

by (A-30) and (A-39), which yields the result.
Estimate for ¢4. We have

1 _ _ 2\2
/ IV, |2<0/ ﬂ_c(/ M_,_gﬂ)_ (A-41)
B1
Indeed, we have

—AQD4 =Wy = _d(lBrl (|u|2 — 1)ECZd$Z|10gE|)

Multiplying by ¢4 and integrating we obtain

2 < )] (1= Jul*)? 1/2
[ [Vl < efloge] - IIC*IILoo(Bl)(/J_E}1 ——2 ) "lIVedlze,
which yields the result since Ay < 1.
Estimate for 3. We have
[, Vsl < C8¥(B.(1) +€°). (A-42)

Indeed, we have
—Ap3 =wz = —d(lBrldf)-
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Multiplying by ¢3 and integrating we obtain

L Vsl < IVEllaqm IV gl 2

Since (3 is harmonic on B,, (r; > 1/16), we also have
||V<P3||L°°(Bg1_2) < ClIVeslle(s,,)
so that (6 <1/32)

[ Vsl < O8N |IVEllags,,y < COV(EL(1) + 7).
3

Estimate for ;. We have
[ e <ost [ vur (A-43)
B(; B

Indeed, we have
—Apy = wy = o, f(lu)u x duAdr.

By standard elliptic estimates for harmonic functions with measure data it holds

IV6sllimanjoay < Cllwall < C(f [Tuf?)2

71

so that using (A-31) we finally obtain
/ Va2 < caN/ V2.
Bs B

Estimate for ;. We start with the crucial observation that

(ac — |uf?)?

wi| < Cy72 = in B;. (A-44)

Indeed, we have to distinguish the two regions
Vy={z e By fu(@)|>1-7}, W,={z€By; u(z) <1-1}.
Recall that

wi = 1p, d(tu x du) = 1g, > 2(f(Ju])u)s;, x (f(lu])u)s;dz; A da;.
i<j
On V, we have f(|u(z)|) = m and therefore

(f(uDw)e, x (f(lul)u)e; =0,  fori#j.
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On W, we have, by (A-30)

C
|(f([ul)u)e;| < —,
€
so that o c o (1 — [uf?)?
—2_2 —2 2 _9 u
lelss—QSE—ﬂ 7 < 37 (1—ul)* <Cy o
Decreasing ¢y if necessary, we have
(1= Juf)? < 2(a: — [ul)*  on W,,
which yields (A-44).
The final crucial estimate is
¢ 8
o1l poo@myy < ¥(EE(O, 1) +¢€”). (A-45)
Indeed,
CN CN
-/ = dy = / S\ B— dy,
o) = [ W= [ )y
so that

C (a(E — |u(y)|2)2
oi(z)] < — dy.
| 1( )| - 72 /3,1 82|.T—y|N_2 Y

Assume |z| <7 < 1/8. Since B,, C Bi () we have

o1 ()] < Q/Bl(w (a. — ‘U(y)|2)2dy.

V2 ) Xz —y|N2

Next, we observe that

o 212 1y — )
ARSI Sy S Wy gy T
By (z) €|z —y|N—2 o rN=2 Jag, g2

%
1 (a—[uP?)? 1 (ae—[uP)? ]
= (N -2 /4 / / . (A-46
( ) o rN-1 /g, g2 dr+ rN=2 /g g2 dr o ( )

Using the monotonicity formulae (A-8) when r € (0,1/|loge|) and (A-14) when r €
(1/loge|,1/4), together with the estimates in Lemmas 4 and A.6, we thus infer that

(as - |U(y)|2)2 ~ 1 8 ;
d < Eg N S EE ,1 , A_47
/Bw) sy — gz WS OB, 5) +7) < CE0,1) + &) (A-47)

since B(z,3) C B(0,1). Hence for every z € B;,

lp1(z)] < CY2(E.(0,1) + &°).
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Recall that A¢; = 0 outside B,,, so that by the maximum principle

lorll @y = llorllze(s,,) < Cv2(E:(0,1) + &%),

which is (A-45).
Going back to the equation
—Ap; =w; in RV,

we conclude

2
L Vil < lleallzogny [ o,

71

so that
/ Vo2 < Oy / A(EE(O, 1) +&P). (A-48)
We gather now the different estimates for ¢q, - , @5 to obtain
212
[ vek<o(eras eyt [ Lot m
a, — |ul?)?
+7_4(/ ¢ + 5’3)> . (A-49)
B €
Step 3: Improved estimates for V(|u|?) on B;.
The equation for |u|? reads
2
A(ul?) + Q(Lw 2|Vu|* + 2|loge|(ic- Vu, u).
Multiplying by a. — |u|> and integrating on B,, we obtain
2
o 2
+ (a. — \UJ\?)ﬂ +/ V|ul?- Va,
0B, on By,

+/B 2\logel (i@ Vu, u)(ae — [uf?). (A-50)

From (A-31) we deduce

Oluf?
— 2—
4&5% u) %

< Ce (/B wyﬂ (/B |Vu|2>1/2. (A-51)
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We also have

IR

112)2
cof pmsor], b
Wv2 ¢ (A-52)
\UI).

<ny/ Vul> + Cy~ /

On the other hand,

‘/ 2[loge|(ic - Vu,u)(a. — |ul?)
By,

< Celloge| </1(a5 ) ) (/ \Vu|> , (A-53)

and

‘/ Vl|ul?- Va,
By,

1
< —/ IV [uf2[2 + 264|10g5|4/ IVd|2. (A-54)
2 B,,‘1 B'rl
Inserting (A-51),(A-52),(A-53) and (A-54) in (A-50) we finally obtain the estimate
| ver<c ( * [ vl / ‘“‘ +aﬂ> . (A-55)
B,

Step 4: Proof of Lemma A.9 completed.

Recall that
Au?|Vul? = 4ju x Vul*> + |V]u*?,

and thus
(3+a.)|Vul> = 4|lu x Vul]® + |V|ul*]> + 4(a. — |ul?)|Vu|?
<8(|Vel* + [VEP + (1 = [u*)*[Zei(w)dail*[loge|?)
+[VIul*[* + 4(a. — |uf*)[Vul?,
by (A-38). Combining (A-49), (A-33), (A-55), (A-52) and the easy estimate

IUI )?

[, (= [P |Se () log e < O(e? logel / +e%),

we finally obtain

IUI )?

<o (et ed oot [ 2 mq)

which is the desired estimate. This ends the proof. O
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Part C: Proof of Theorem 2 completed.

Remember that we are concerned with a solution w of (124) with Ay < 1 on B
satisfying the estimate

E.(w,0,1) < nlloge|. (A-56)
Recall also that in Part A we have exhibited some 7y € (/=2 1), such that
1 (a: — Jw]?)?
—— — < 1 g A-57
w7, g < Clallogd] + &), (A-57)
E.(ro) — 2N 2E.(0r0) < C(nllogd| + ), (A-58)

where ¢ is fixed but to be determined later. The function u(z) := w(roz) defined on
B satisfies the equation

1 ~
Au+ Zu(l = [uf?) = i& - Vullogé| + d|logé[*u,
)

where & := /1y and Ag(é, cZ) < 1. Since 7y > €*/®N=2) we have € < €'/2. By scaling
we also have the identities

Eé'(uaoa 1) = S(waoar())a
1

E:(u,0,0) = mEs(w, 0,6ry) = 52’NE~’E(w, 0, dro),
0

/(a5—|u|2)2: 1 / (ac — |w[*)”
B £2 N g2 '

70

and

We now apply Lemma A.9 to u, and using the previous identities we find

1

1
EE S <C 2 6N —4 /
T(])V—2 (6r0) < C((v* + + T(])V—Z By, £2

Using (A-57) and (A-58) we obtain
E;(ro) < 2V 2E,(8r0) + C(n[log | +&°)
< C6"7 (v + v (nllog 8| + £°)) Ex(ro) + C*Ex(ro)
+ Cy *(n|log 8| + 7).
We now fix the values of 0 and 7. First, choose § small enough so that
Cs* < 1/4.
Next, choose v small enough so that

CsN 2% < 1/4.
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There exist also ey and 7y such that if ¢ < ex and n < ny we have
CsN 2y 4 (n|logd| + £°) < 1/4.
Hence,
E.(r)) < Cy 4(n|logd| + &%) fore<en, n<nn. (A-59)
Using the monotonicity formula of Proposition 2, we thus obtain
& [ = P2 < Ol [ (0= PP+ 03%) < O(EL(e) + A%%)
< C(E.(ro) + Age’) < Oy (nllog é| + AZe®).
The conclusion then follows form the next lemma taken from [10]. O
Lemma A.10. Let w be a solution of (124) on By. Then
1 1/(N+2)
- <C (5 [ a-lwp?)

Proof. Set k = |w(0)| and assume that & < 1 (otherwise there is nothing to be proved).
By (A-30) we have

C k
_ - <1-——
wiz) - w(0)| < S| 12,

provided |z| < 6(;—6’“) = \. Therefore |w(z)| < 1£% on B,. We distinguish two cases.
Case 1: A <e. Then

[ a—lwPy< [ (w2
By B
On the other hand

[a=twfy > [ =l > G5B = CeMa - b

by definition of A. Consequently

C
-0V [ =2

and the conclusion follows.
Case 2: )\ > ¢. Then

w) < 28 B,
and )
fa-wer= (50 18
Therefore c
- <@k <5 [0l
and the lemma is proved. O
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Corollary A.1. Let 0 < 0 < 1 and the corresponding n > 0 and 9 > 0 given by
Theorem 2. Let xg € 2 and r > 0 such that B(xg,2r) C Q and 4/ <1 < 4/(1+ Ay).
Then for all € < o, if w is a solution of (124) in Q and

E‘s(xo, r) < 4> Nplloge| (A-60)

then
11— |w(z)||<o  forallxz € B(xgy,3r/4). (A-61)

Proof. If x € B(x,3r/4), then B(x,r/4) C B(xg,r) so that

~ 1 ~
E.(z,7/4) = 4N_2TN—_2E€(3:,7“/4) < ANT2E (39, 7) < n|logel,

and the conclusion follows by Theorem 2. O

Concerning the asymptotic of the potential part in the energy, namely

/ (ac(z) — Jw]*)?

g2 ’

it is tempting to believe that it remains bounded as ¢ — 0 (at least away from the
boundary). We have no proof of that fact, however the following Proposition holds.

Proposition A.1. Let K C Q be a compact subset and w a solution of (A.1) satisfying
(24). Then,

/K (ag(x); W < 0r(e)poge], (A-62)

where r(e) — 0 as € = 0 and C' depends only on Mj.

Proof. Let p := |w|. If w verifies (124) then p verifies
2 -
—Ap* +2|Vuw|? = 6—2,02(a5 —p?) — (w,ic- Vw)|loge]. (A-63)

Let 0 < 0 < 3. Define 4 := {z € K, p(z) > 1 — o}, and p := max(p,1 — o), s0
that p = p on A. Let also ¢ € D(Q) such that 0 < ( < 1on Q,( =1 on K, and
|V¢| < C, where C depends only on K. Multiplying equation (A-63) by ((p* — 1)
(which is compactly supported in €2), and integrating over {2 we obtain

/§2Vp2vlj2g+/ﬂzp(l_pZ)(l_ﬁQ)C:/Q(l_ﬁQ)‘VwF

82
+ [ VAve— ) + [ 2pllogeld(x) (1 - )¢

4 /Q(w,ié'- Vuw)(p* — 1) |loge].
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It follows that

20(1 — p?)(1 — p?
/Q p( 062)(1 p)CpZVﬁQ

< 20/ |Vw|2+00/ IVpllae — p?| + CAoMoe|loge|?
Q Q

2 2 (a. — p*)? 2
< 20/ \Vw|” + Co / Vol +/ ———| + CAgMyel|logel”,
Q Q o 4e?
hence, since p > 1/2 and ( =1 on A, we obtain

@@=’ ook C'AgMye|log £|2 A-64
; o < CoE.(w) 4+ CAgMye|logel”. (A-64)

Define also B := K \ A. We claim that

(ac — :02)2
/B - < (A-65)
where C' depends only on o, My and K. The proof of (A-65) follows from Theorem
2, the monotonicity formula in Lemma 4 and Besicovitch covering theorem, following
the same outlines as the proof of Proposition 1 in [10]. Indeed, only the afore men-
tioned ingredients are used and hence the proof there applies also to our equation|. In
particular, we infer from (A-65) that there exists £, > 0 such that

_2\2
[ 42 < jogel, (A-66)

for all 0 < ¢ < &,, where ¢, depends only on o, My and K. Combining (A-64) and
(A-66) we finally obtain

< Colloge| for 0 < e < g,.

/ (as(2) — [w]*)?

g2

Clearly we can assume that the mapping ¢ : 0 — &, is strictly increasing. The function
r :=t ! fulfills the statement of the proposition, so that the proof is complete. O
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Appendix B : Properties of the concentration set X,

Recall that
Y, ={r€Q,0,(u,2x)>0.

The purpose of this section is to describe and prove the properties of X, stated in
Theorem 3. We first have

Lemma B.11. There exists ng > 0 such that if vo € X, then
O, (s Zo) > Mo -

Proof. Let o0 > 0 to be determined later, and let n > 0 and ¢ > 0 be the corresponding

constants provided by Theorem 2. Set
=4% N n.

Assume by contradiction that
O, (mo) < 4>~ M. (B-1)

Then for each 79 > 0 there exists 0 < r < 7y such that B(zp,2r) C Q and &; <
min(eg, 72/16) such that

E.(zo,7) < 427Np|loge| Ve < ¢g;. (B-2)
From Corollary A.1 we thus infer that
1 —|w(x)|| <o  Vze B(xg,3r/4).

We write
w(z) = p(z) exp(ip(z)) in B(xg,3r/4).
The phase ¢ satisfies the equation

1
—Ap = —div((1 — p*)Vy) + 5|1oga|5- V(p* =1)  in B(xg,3r/4). (B-3)

Let ¢ be the harmonic function defined on B(xg, 3r/4) such that $ = ¢ on the bound-
ary of B(xg,3r/4). In particular, we have

/ Ve < | Wk
B(zo,3r/4) B(zo,3r/4)

and for all § > 0,

/ Ve <cs® [ veP<os [ Vel (B4)
B(xz0,03r/4) B(z0,3r/4) B(z0,3r/4)

Multiplying equation (B-3) by ¢ — ¢ and integrating over B(z,3r/4) we obtain,
similarly as in the proof of Theorem 2,

/ V(o — @)* < C(o+ Aoelloge|) B (zg, 3r/4). (B-5)
B(xz0,03r/4)
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Combining (B-4) and (B-5) we finally obtain
/ Vol2 < C(6Y + o + Agelloge|) E. (w0, 3r/4). (B-6)
B(z,03r/4)

Concerning the modulus, let &, € D(B(xg, 3r/4),[0,1]) such that £ = 1 on B(x, 3r/8)
and |V¢,| < C/r, multiplying the equation

]_ -
—Dp+p|Vol = pla. — p*) + [loge|p- Vi

by &.(1 — p) and integrating over B(xg, 3r/4) we obtain

(a: — p*)?
/ Vo]? +—— < Ca/ Vw|?
B(z0,3r/8) € B(zo,3r/4) (B-7)

+ C;EE(LEO, 3r/4) + CAe|logel?.

Hence, since r > 44/, from (B-6) and (B-7) we have

Aoelogel|?

E.(z0,03r/4) < C(6% + 6>V (0 + Agelloge| 4+ €'/?)E.(zo,7) + C o2

(B-8)

Now choose § such that C§? < 1/4 and then o such that C6?2 Vo < 1/4. Letting ¢
tend to zero in the previous inequality keeping r fixed yields

pa(B(x0,037/4) _ 1 p(B(2o,7))
(03r/H)N-2  — 2  pN-2

(B-9)
Since r < ry, and ry was arbitrary small, we infer taking a sequence ry — 0 that
1
9*(.’130) S 56*(370), i.e. 6*(370) =0.

This contradicts the definition of ¥, and the proof is complete. O
Lemma B.12. X, is closed in €.

Proof. 1t follows directly from the upper-semicontinuity of ©,, the lower density. [

Lemma B.13. (Uniform convergence away from X,) Let K C Q\ X, be any
compact subset. For any o > 0, there exists € > 0 depending only on K and o such
that, 1f 0 < € < éps, then

N—|w|| <o on K .
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Proof. Let 0 > 0 and the corresponding n > 0 and ¢y > 0 given by Theorem 2. For
each z € K, we deduce from Lemma B.11 that there exists r(z) > 0 and £(z) > 0
such that

E.(x,7(z)) < 4% Vplloge] Ve < g(x).

Let zq,--- ,z; be such that

K C Uf B(xy,r(:)/2)
and let & := min(eg, e(x1), -+ ,&(xg)). From Corollary A.1, it follows that for ¢ < ¢,

1 —|w|| <o on B(z;,r(z;)/2) Vi=1---k.
This proves the Lemma. O
Lemma B.14. (Structure of u,) We have
e = g()HY + h(2)HVN2LY,,

where g and h are locally bounded on ) and h verifies

pa(B(, 7))

no < O,(z) < h(z) < O*(z) = limsup o

r—0

< c(z) M, .

Proof. Since ¥, is closed in €2 and hence measurable, we have
P = ps 3, 4+ 1 L(Q\ X,).

As in [10] Theorem VIII.1, we infer from Corollary A.1 that HV~2(3,) < CM,. It also
follows from the monotonicity formula of Proposition 2 that for all x € €2,

. . «(B(x,r
O*(x) :== 111:1_%11)% < CMy.

Using the Radon-Nikodym theorem, we thus obtain

LY, = h(z) - HVN2LY (B-10)

ws
for some O, < h < ©*. We will prove that in fact ©, = ©*.

Now, let 2o € 2\ X, and 7 > 0 such that B(xz,2r) C @\ 3,. By Lemma B.13, we
know that
0= |1 — |W|| oo Broay = 0(1) ase —0.

The same computation as in Lemma B.11 (see (B-8)) shows that for each 0 < 6 < 1/2,

E.(x0,03r/4) < C(6N 4+ 0 4 Agelloge| + /) E.(xo,7) + CAgellogel|?, (B-11)
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but now we know that o = o(¢) = o(1). Hence, dividing both sides by [loge| and
sending € to zero we obtain

px (B (20, 637/4)) < O™ 1, (B(wo,7)).

This implies that p,L_(Q2\ X,) is absolutely continuous with respect to the Lebesgue
measure, and using the Radon-Nikodym theorem once more we finally deduce that

o = g(z) - HY + h(z) - HV LY, (B-12)
for some locally bounded function g. O

Lemma B.15. We have
g(z) = |Vh.(2)| a.e. in €,
where h, is some harmonic function.

Proof. The argument is similar to the one carried out in [12] for Theorem A, statement
iv). Since the proof is rather lenghty we briefly sketch the main steps.

First, one has to prove that, if |w.| > 1 — 0y on some ball B(xg, R) (where og is
some suitable constant), then

3R

|Vw,|? ~ |V, |? on B(zy, T) ,

where ¢, is harmonic and verifies

Vo |* < Cy/M|logel .

Pe
|loge|
which is thus harmonic on B(z, 3R/4).

A second important step is to prove that h, is globally well-defined and harmonic
on 2. Here the argument is readily the same as in [12]. O

Then

Ah*’

Proof of the curvature equation and the rectifiability of X,,.
Let X € D(Q,RY) be a smooth vector field and

1 1
e.(w) == §|Vw|2 + 4—52(% — |w[?)2.

We have
/es(w)div)? = —/ Ve (w) - X
Q

. _ (B13)
- —/ (IVwf?) + 55(a. = [w)(~2wVw + Va,) - X,
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and

ow Ow 0X' Pw ow  Owd*w
/ Z ox; 8—%8—3:] _/ Z 0z,;0x; ax] * on; ox; 83: )X
= — [ Vu- Xaw- /Zaxz

:—/Vw XAw — / V(| Vuw|?)

X (B-14)

83:J

Since w is a solution of (124), we deduce from (B-13) and (B-14) that

( ow 3w> 0X'

v 33:,33:] 0z

o 1 1 N
/ (V- X) (Aw + —u(o. - \w|2)) + 5 — wP)loge?Vd - X

[loge|

~ Tloge]
= /(Vw ,i¢ - Vw) +/ — |w[?)[loge|Vd - X

(B-15)

= —/(* (ENA*Jw), / — |w[?)[loge|Vd - X.
Q

oz? — 1 <(w)5ij awaw)

lloge| Oz; 0z;

Notice that o/ is a symmetric matrix with trace larger than (N — 2)u., and a little
linear algebra shows that its eigenvalues are less or equal to .. Moreover,

Set

|| < N (B-16)
Going if necessary to a subsequence, we may thus assume that
ol — ol in the sense of measures.
In view of (B-16) we have || < Ny, therefore we may write
o (z) = AY(x)p, for p, a.e. x € Q,

where the matrix AY(x) is symmetric, with trace equal to N — 2 and eigenvalues less
or equal to one [The fact that the trace is equal to N — 2 and not just less than N — 2
follows from Proposition A.1]. From (B-16) we also have

A > —N§Y for p, a.e. z € Q. (B-17)

Notice that

]_ —
|/ 5(615 — |w[*)loge|Vd - X| < CAgelloge] =+ 0 ase — 0,
Q
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so that passing to the limit in (B-15) we obtain

o 9Xi .
[ 49@) % dpa(a) = — [ {x (@) A #d . (2)), X)
0 0z 0
dJ (B-18)
= _/Q<* <c/\ *du*> , X) dps ()
We decompose the r.h.s. of (B-18) as
). ¢ N &
/ AV (2) S dp () = / A (2) = dp,(2) LT,
Q l‘j Q :cj (B—19)
[ (g, om0
Q 2 Y Oz 0x;) Ox;

Since h, is harmonic, the last term in (B-19) vanishes. Hence, the support of J,
being included in ¥, using (B-12) we obtain that

Aﬁ%mgwm@L%=—L@GA%%»XMM@L%- (B-20)

] *

Since X was arbitrary, the previous equality means in particular that the generalized
(N — 2)-varifold (see [5])

V1= 0 i () e L3 ()
has a first variation. From Step 1 and [5] Theorem 3.8 ¢) we thus infer that V is indeed

a real rectifiable (IV — 2)-varifold. In particular, the geometrical support X, of 1, L%,
is rectifiable. From the rectifiability of X,, we deduce that

O.(z) = ©*(2) ps-ace. xin X,

so that
e = g(z) - HY + O,(z) - HV 2LY,,
and

V(¥,0,)=V.
Equation (B-20) then precisely states that V(X,,©,) satisfies the mean curvature
equation

H(z) =« (é’(x) A * ;l,i’:

The proof of Theorem 3 is now complete. O

) for p,-a.e. z in 3,,.
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Appendix C : Compactness

If some additional conditions are imposed on the boundary data, we may then obtain
compactness properties for w,. In this part, we will assume

| ew) <My and  [[wllmizon < Mo (C-1)

[There are however many variants of condition (C-1), see [7, 11] ].

Proposition C.2. Let 1 <p < % There exists a constant C > 0 depending on p,
My, Ao and Q but independent of € such that if w is a solution of (124) satisfying (24)
and (C-1) then
/ Vuwl? < C.
Q

Proof. We follow the lines of [7, 11]. Let p := |w|. From the identity
P’ |Vw|* = p*|Vp|* + |w x Vwl?,
and the inequality |Vw| > |Vpl|, we deduce that

[Vwl? = [Vpl* + |lw x Vul* + (1 = [w*)(|[Vw]* = [Vp[*)
< Vo2 + |w x Vw* + |a. — |w]?||[Vw|* + Age?[loge||[Vw|? (C-2)
< |Vpl? + |w x Vw|? + (V2 + Age?[loge|)e. (w).

Hence, since (24) is satisfied,

D p p -
[ 1vw §C’[/Q\V,o|+/n\waw|+1, (C-3)

where C' depends only on p, Ay, My and Q.
Step 1: Estimates for the modulus. Notice that p satisfies the equation

2
—Ap® +2|Vuw|? = 6—2,02(@6 —p?) = (w,i¢- Vw)|loge. (C-4)
Let us introduce the set
A={z e, p(z)>1—¢e/?}

and the function
p= max{p, 1- ‘51/2} )
sothat p=ponAand 0<1—p<e'/?in Q.
Next let ¢, be a function in D(2) such that 0 < (, <1lon, =1on Q. ={z €
Q, dist (z,09) > €'/?}, and |V(,| < Ce™'/?, where C depends only on Q.
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By multiplying equation (C-4) by (.(p* — 1) (which is compactly supported in ),
and integrating over ) we obtain

2p(1 — p*)(1 — p?
[vovic s [P [0 v

+ [ VerVe(i - ) + [ 20llogefd(@)(1 - 7).

+ /Q(w,z'é’- Vw)(p® - 1)¢[logel.

It follows that on the set A, = Q. N A we have
| vk =] g
A Ae
C
< 2172 /Q (Vw|? + i /Q \Vp|la. — p*| + CAgMyel|logel?
1/2 2 1/2 2 (a. — p*)° 2
<2 /Q |\Vw|* + Ce /Q |Vpl|* + /Q e + CAgMoellogel?,
hence, since p > 1 — €'/ on A,, we have, for £ < 1/4,
Vo2 <4 | VP < Ce?E. (w) + CAgMpelloge|? < C. C-5
A A
Set W, =Q\ Q., B=Q\ A, so that

Q=BUA. UW..

From (24) we deduce [5(1 — p?)? < 4Mye?|loge| and hence, since (1 — p) > €'/ on B,
it follows |B| < 4Mje|loge|. Thus

/2
10 < ([ 1Vp2) " B2 < Cllogep(elloge])' 2,
B Q

1.e.

/ IVl < Ce'?2|loge]. (C-6)
B
Finally, we turn to W,. Clearly, by construction |W,| < Ce'/2. Hence
NP2y 1/2-p/4 2
[vor < ([IVoR) T Wi < celrrlogep, (1)
We Q

Combining (C-5) with (C-6) and (C-7) we get the estimate for the modulus

[ ver<c, (C-8)

where C' does not depend on ¢.
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Step 2: Estimates for the pre Jacobian. Consider the Hodge - de Rham decom-
position of w x Vw :
w x Vw =dy + d* (C-9)

where the function ¢ satisfies ¢ = 0 on 0€) and the 2-form 1 satisfies diy = 0 on €2
and ¥t = 0 on 0N2. Applying respectively the operators d* and d to (C-9) we obtain
the equation for ¢ (resp. ) :

Ap =¢-V(Jw|*> = 1)|loge| inQ (C-10)
=0 on 0f)
and
A =2 in
Y Jw in (C-11)
Yr =0, (d*¢¥)r =(w X dw)T on 0.
From (24), (C-1), (C-11) and Proposition III.1 in [11] we infer that
/Q VY|P < C. (C-12)

Indeed, the estimate (C-12) is valid even without assuming that w is a solution of
(124) (see [11]). Notice however that the constant C' may depend on §2; in the proof
of Theorem 4 we will see how to use the extra information that w satisfies (124) to
obtain estimates independent of the domain.

Concerning ¢, multiplying equation (C-10) by ¢ and integrating over Q we get

1Vl = ltoge] [ divi((fw]* ~ 1))

= lloge| [ (lwf* —1)&- V¢
Q

C-13)
(1 —|wf?)? 1/2 211/2 (
< - @ @z
< Chelloge| (| ——52)"2(| 1V6[?)
< Cho(Mo + Defloge ([ [Vl?)2
so that
P < 2\p/2||1-P/2 <« -
el < ([ 1veryrEart <. (C-14)

where C' does not depend on &.
Combining (C-8), (C-12) and (C-14) we get the desired conclusion from (C-3). O

Proof of Theorem 4.

Recall that w, is a solution of (11) on II, such that (24) and (31) are satisfied. For
simplicity, we omit the subscripts € in the sequel, i.e. we set w = w..
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Step 1: Extracting the “bad” balls. From Theorem 2, we infer that there exists
1> 0 and Ry > 0 such that for each z € S,

E.(z, Ry) > n|loge]. (C-15)

It follows from Vitali’s covering theorem that there exist an at most countable family
of points (y;)ier in Se such that

Se C UierB(¥ie, 5Ry)
and
B(Yie, Ro) N B(yje, Ro) =0 if i # j.
We deduce from (24),(C-15) and the previous equality that
My

tI <l:=—.
n

We claim that there exists a constant 10 < k < C(4 ) (where C(f ) depends only on
#1) and g points z1.,- - , x4 € II,, (¢ <) such that, setting R := KRy,

Se C UL B(zie, R) and dist(z;e,z;.) > 10R if i # j.

Indeed, set Ry := 10R,. If dist(y;.,yj.) > 10R; there is nothing to prove. If not,
consider the equivalence relation

Yie ~ Yje if diSt(yi,sayj,s) < 10R1;

and denote C;, j € J the different equivalence classes. We define B(z;, R, ;) for each
j € J as the smallest ball such that

in,sECjB(yi,Ea Rl) - B(Zjv RZ,J'):

and we set Ry := max; Ry ;. If dist(zj., 2k:) > 10R, for each j # k we are done,
otherwise we repeat inductively the previous growing argument. Since at each step,
the number of equivalence classes decreases at least by one, the process finishes after
at most § I steps.

Step 2: Choosing a good unfolding of the torus. Since (24) and (31) are
satisfied, we infer from Lemma 2.1 that there exists a good unfolding of the torus II,

such that N-1 s
gN~—
[ entw) < 2 Mollosel (C-16)
00, n
where C' does not depend on n or . In particular, ||w||g1(sq,) is uniformly bounded.
Step 3: Uniform W estimates. Let 29 € 2, and 1 < p < %= be given.
As in the proof of Proposition C.2 (C-3) we obtain

/ Vul? < C
B(zo,1)

/ |vp\p+/ w x Vwl’ +1] (C-17)
B(zo,1) B(zo,1)
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where p := |w| and C depends only on p, Ay and M.
The estimate for the modulus is also obtained as in Proposition C.2 replacing 2 by
B(zo,1); we have

/ Vol <G, (C-18)
B(zo,1)

where C' does not depend on n or .
Consider the Hodge - de Rham decomposition of w x Vw in €, :

w X Vw = dp + d* (C-19)

where the function ¢ satisfies ¢ = 0 on 0€2,, and the 2-form v satisfies dip = 0 on €2,
and ¢t = 0 on 052,. Applying respectively the operators d* and d to (C-19) we obtain
the equation for ¢ (resp. ) :

—Ap = c(e)a%l(\wP —1)|loge| in Q, (C-20)
=0 on 0%,
and
V= N (C-21)
Y1 =0, (dY)r=(wxdw)r on 0,
Still the estimate for ¢ follows as in Proposition C.2, we obtain
VolP <C, C-22
/B(mo,l) [VelP < (C-22)

where C' does not depend on n or ¢ (and C — 0 as € — 0).

The estimate for v is more delicate since the embedding constants used in the proof
of Proposition C.2 heavily depends on n. We will overcome this difficulty by taking
advantage of the confinement of Jw described in Step 1. Let w be defined by

() = {Qw(x) if lw(z)| < 1/2,
WD w(w)| > 1/2.

Notice that E.(w) < 4M;|loge| and that J is supported in S.. We also define, for
1 <4 < gq, the two forms
w; = 2JWL_B(z;., R).

Let 1y, be the solution of the problem

{_A¢O,i =w; inf{,

C-23
o =0 on 05, ( )

(note the different kind of boundary conditions here). Let 1); be the solution of

(C-24)

—Atpy = 2(Jw — Jb) in Q,
(1) =0, (d*o)T =0 on 09,

71



and 1), the solution of

{—A@ =0 in Q, (C-25)
(o)T =0, (d* o)t = (w X dw)T — X {1 (d*p ;)T on 09,.
Clearly,
Y= iwo,i + Y1+ 1.
We also set :
Uj = B(20,1) N (U \ B(is,2R))  and Uy := B(z;,2R).

Estimate for ;. From the Green formula

vnie) = [ (wila), Ga (a,0)) dy (C-26)
we deduce that

1%0,illcr sy < C(k)||lwillico.n iy < C(k). (C-27)

Indeed, for any z in U} and y € supp(w;) one has
min(dist(z, 082, ), dist(y, 082, ), dist(z, y)) > R,

so that (C-27) follows from standard estimates on the Green functions (which is even
explicit in the case of the cube 2,).
For U3, consider the solution g ; of

—Atpy; = w; in B(wi.,3R) 29
Yoi=0  on 0B(z;.,3R).
Following the lines of Proposition C.2 we obtain
/B(;u ) ‘V&O,ﬂp < C’(R)||w,-||[co,a]* < C(R, MO) (0_29)

On the other hand, for z € U we have

12’0,1‘(35) - ¢’0,i($) = /

supp(w;)

(@i(), [Rba,. 30 (2, 9) = Ra, (z,9)]) dy

where Rq, stands for the regular part of the green function Gg, and similarly for
B(z;.,3R). Note that for all z € Uj and for all y € supp(w;),

min(d(z, 9), d(y, 02n), d(z, 0B(wie, 3R)), d(y, 0B(wi., 3R))) > R,
so that again using standard estimates

10 — Yollerwg) < CR)lwillicoar < C(R, Mo). (C-30)
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Combining (C-27), (C-29) and (C-30) we obtain
/ (Vb < C
B(J;o,l)

where C' does not depend on n or .
Estimate for ;. From standard elliptic estimates we have

lerllwoany < CllTw = Tl 1 gy (C-31)

where C' does not depend on n (indeed the previous inequality is invariant under
scaling of the domain and of the corresponding equation). On the other hand,

[Jw = Jw|[jy1e g,y = ., Sup / (Jw = Jw), h),
heEW (9, A2RN)[|hfj=1 /
and
/ (Jw — Jid), h) :/ (w X dw — & x db, d*R)
n n ) 1 (0'32)
< C(/ IVh|)E - (/ w x dw — @ x dib[P)?.
Qn Qn
On §,,
lwx dw —w x dw| < Clw| - |[Vw|
so that since |S.| < Ce?|loge],
([ o dw = x da?)s < O([ [Vl ( [ wl)?
Se Se Se
< Clloge|'/?(*[log )",
where s := 2p/(2 — p) > 2. Outside S., we have
w|* — 1
lw X dw —w X dw| = PE w % dw| < 4|(lw|? = 1)| - |[Vw|
so that
1 1 1
xd—~xd~f’z<0/ v%-/ 2 —1)%)s
(/Qn\se jw X dw —w x dw|’)» < C( nn\sa| w|%)7 - ( Qn\sg(|w| )°)
] (lwP = 1)2s
< Ce**lloge|'/%( /Qn\ e (C-33)
< Ce%|loge|Y?|loge|/®
<C.

Combining these two estimates with (C-31) we thus obtain

[ vwr<c,
B(zo,1)
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where C does not depend on n or «.
Estimate for v,. We deduce from Step 2 that

[ (w x dw)TlL2(80,) < C.
On the other hand, since dist(9€2,, supp(w;)) > R we have

I Vtbo,il| Lo (a02,) < C

(this again follows from standard estimates on the Green function for the cube ).
Since v is harmonic on €2,, we thus obtain

2ller(Bzo,1)) < C

where C depends on £ but not on n or ¢.
Combining the estimates for )y ,, 11 and 1o with (C-17) and (C-18) we conclude
that
[ vep<c (C-34)
B(xzo,1)

This establishes claim i) of the Theorem.

Next, we prove estimate ii) of the Theorem, i.e. provide uniform energy bounds away
from the bad balls. Here, we will work directly on II,, (as a manifold). Therefore, the
Hodge - de Rham decomposition will involve also harmonic forms. The next step will
be useful to control these forms.

Step 4: Degree estimate. Since |w| > 1 out of S., we may write w(z) =

p(z) exp(ip(x)) out of S, where p(x) € S'. Moreover, since

Q== 0, \ UL, B(zi, R)

is simply connected, the phase ¢(z) can be lifted as a function form Q,, to R. If the
coordinates (o, - -+ ,yn) are such that

[_n: n] X (y2, e :yN) N nglB(mi,E) R) = @
then the degree of the map s +— (s, Y2, ,Yn), i.€.

d = deg(s — ¢(s,y2,- "+ ,Yn))-

is well defined. Clearly it follows from the invariance of the degree under homotopy
that d does not depend on the particular choice of an admissible (ya, -+, yn).

We claim that d = 0 (an elementary way to rephrase this is that the lifted phase ¢
takes the same values on opposite faces of €2,).

Indeed, from Step 1 we infer that the set of admissible (s, - - ,yn) € [-n,n]V~! has
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measure larger than n’¥~! for n sufficiently large (and thus e sufficiently small).
On the other hand, if d # 0 we obtain for each admissible (ys, -+ ,yn),

/n|vw(8ay2a"' ayN)|2dS Z Z/n |a—;’1(81y2:'“ ayN)|2dS

2

1 27 T
> - (2)2 = —
2 (5 = o
so that using Fubini’s theorem,
/ Vw]?* > anlW—Q = 7r—2nN*2 > 2(My + 1)1
> = > 0 ogel.
Qn, 2n 2

This contradicts hypothesis (24) and proves the claim. Obviously the corresponding
degree computed with respect to the other coordinates is also zero.

Step 5: Local uniform energy estimates. Let x € 2, and » > 0 such that
B(z,r) C Q,\ Se. As in the previous step, we write w(z) = p(z) exp(ip(z)) in B(z,r),
and we have

. )
div(p’Vp) = clloge|—(p" = 1).
8x1

Let ¢ be the solution of

{c}iv(pQng) = clloge|z2-(p* — 1), in B(z,r) (C-35)
=0 on 0B(z, 7).
Multiplying (C-35) by ¢ and integrating by parts leads to

/B oy [V < Clloge| < O (C-36)
On the other hand, ¢ := ¢ — ¢ satisfies

div(p*’Vp) =0 on B(x,r). (C-37)

Since ¢ is defined up to a constant multiple of 27, we may assume without loss of

generality that
1

|B($, ’I”)‘ B(z,r)

Combining (C-37) with (C-38) and the W,.” estimates in Step 4 we obtain, using
standard elliptic regularity theory

5 € [0,2m). (C-38)

/ VeI’ < ¢, (C-39)
B(z,r/2)

so that finally using (C-36)
Vo2 < C. C-40
Joo |90 < (C-40)
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Next, let £ € D(B(xz,7r/2)), 0 <& <1, such that £ =1 on B(z,r/4). Multiplying the
equation

1 0y
Ap = plVel* + 5p(1 = p*) = —clloge|p—, (C-41)
9 8.’131

by (1 — p?)&% and integrating by parts we obtain

(1—p?)?
82

9y
2\ ¢2 2 oY Ipe) ]
+ /B(;c,r/2) p(L = p )&Vl c\logs\paxl(l p?)E2. (C-42)

2p|Vp|?€% + :/ 26(1 — pH)Vp- VE
/B(:c,r/Q) p| ,0| P B(z,r/2) ( )

On the other hand, we have

1
2 . < 2¢2 1 / 1— 272 9
/B(w,r/2) 21 =p)Vp-VE< 10 /B(sv,r/2) Vplem 10 B(w,r/Q)( PYIVEL,

and from (C-40),
/ p(1 = p)EVp? <C
B(z,r/2)

and

dyp
1 . 1 - 2\ 2
/B(w/m cllogelpg ~(1 - p*)¢

<off ey LM e <c
- B(z,r/2) B(z,r/2) g2 -

Hence, from (C-42) and since p > 1/2 on B(z,r),

1— p2)2
Vpl|? a—py < C, C-43
/I3(w,r/4) | p‘ + 4e? - ( )
which, combined with (C-40) leads to

/ e.(w) < C. (C-44)
B(z,r/4)

Step 6: Proof of estimate ii).
In order to conclude the proof of Theorem 4 it remains to show that

/ e.(w) < C.
Qn\U?:IB(xi,E,R)

As in Proposition C.2, we have

IVwl? < C(1 +/ Vo2 + [w x dwl?). (C-45)

/Hn\U?_lB(zi,E,R) Hn\Ug:IB(zi,E,R)
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Here we consider the Hodge - de Rham decomposition of wx Vw in II,, (as a manifold) :

N
wx Vw=dp+dy+ > oda (C-46)

i=1

where the 2-form 1) satisfies diy = 0 on II,,, each «; is a real number and the dzx;
represent the canonical harmonic 1-forms on II,,. Applying respectively the operators
d* and d to (C-46) we obtain the equation for ¢ (resp. %) :

—Ap = cfe) 2

0—351(/)2 —1)|loge| inII, (C-47)

and
—AY =2Jw in II,. (C-48)

Still the estimate for ¢ follows as in Proposition C.2 (C-13), we obtain
/ Vel? <C, (C-49)
Iy
where C does not depend on n or ¢ (and C' — 0 as € — 0).

The estimate for ¢/ has to be slightly adapted with respect to Step 3.
Let w be defined by

w(x) if v € UL, B(w;., &),
B(z) =1 (5 — Qulz)+ B - ) uUY  if s:=dist(z, Uizi) € (4, 2F),
‘ZES& otherwise.

Notice that E. () < CMy|loge| and that Jw is supported in the set Uj_, B(z; ., 3R/4).
We also have
wXdw=wxdbd onU_, Bz, R/2). (C-50)

We also define, for 1 <7 < g, the two forms
w; = 2JwL_B(z;.,3R/4),
and denote by 1p; the Newtonian potential of w; on II,, (i.e. 1o, := G, * w; where

G, is the Green function on II,.) Similarly, ¢; denotes the Newtonian potential of
2(Jw — Jw) on II,,. Clearly,

ww=éw¢m+ww.

We claim that

Vb i(z)] < C’(dist(x,x,-,s))I’N Vz €Il, \ B(zi., R), (C-51)
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where C' does not depend on 7 or ¢. Indeed, this is a direct consequence of the formula

oG

V%,z‘(l“) Z/ 8—y(x’y)wi(y) dy,

n

of the [C%]* uniform bound on w;, and of classical estimates on G,,.
Hence, since N > 3, we obtain

/ Vg2 < Clz22N dz < C. (C-52)
Hn\nglB(:ci,E,R) RN\ B(0,R)

We turn next to the estimate for ;. We have

|V 2,y < C sup ){/n(Jw — Jw, h), /Hn IVh|? = 1},

hEC™(IT,, ,A2RN

On the other hand, taking (C-50) into account,
/ (Jw — J, ) =/ (w X dw — @ x did, d*h) :/ (w X dw — @ x di, d*h)
n n HTL
where T1,, := II,, \ UL, B(z;., R/2). Notice that |w| > 1/2 in TI,,, hence

/ (w x dw — @ x did,d*h) < C||p? 1||Loo(ﬁn)(/~ ‘Vw‘2)1/2(/~ VAP
n fl, i,
From Theorem 3 we know that |w| uniformly converges to 1 on II, (and actually

uniformly with respect to n as can be seen examining Step 2 of the proof of Theorem
3). Hence, we obtain

1991l < CA+1(0) [ [Vwl?) (C-53)

where 7(¢) — 0 as ¢ — 0, uniformly in n. Finally, we turn to the components of the
harmonic forms.
We claim that

< .
i < L, [?

Indeed, since
1

“ =P

/H (w x dw, dz;), (C-54)

it suffices to prove that
<C.

/ (w x dw, dz;)

Let R' € [R/2,R] and IT/, := TI,, \ UL, B(z;., R'). The phase ¢ of w is well defined

in II'; we extend it as a continuous function ¢’ on II, by considering its harmonic
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extension inside each ball B(z;., R'). We have

dp
« dw, dz; +/ 2 9%
/LJLIB(zi,E,R')(w 1, i) ‘ﬁgp@xl

< 2 _
<c )|Vw\+c‘/m(p 1)\V<p|‘

O) B(CL‘i,E,R’
!
+ / . V']
Uile(l'i,a,R’)

<

/ (w x dw, dx;)

n

+C

- !
o

/ V| < C.
nglB(.’Ei,E,R’)

An averaging argument shows that there exists R’ € [R/2, R| such that

Vo' <C’/ Vo' [2)1/2
/ N\ 2y PN \ o

<c(f V)2
Ul B(zi,e,R)NII,

From Step 3 we infer that

so that using Step 5,
/ Vy'| < C.
ul_.B

=1 (Ii,a;R’)
We also have,
< Celloge| < C

[, ive

and by virtue of Step 4,
oy’

= 0.
I, 0T

This proves the claim. Coming back to w X dw, we obtain combining (C-47),(C-52),
(C-53) and the previous claim,

dw|*> < C(1 / 2 s
/Hn\ug_1B(mi,5,R) ‘w X w‘ — ( +T(E) ﬁn ‘V’w‘ )’ ( )

where r(¢) — 0 when ¢ — 0, uniformly in n. .
We still need the estimate for the modulus. Let £ € D(I1,,), 0 < ¢ < 1, such that
¢£=1onll, \ UL, B(z;., R). Multiplying the equation

1 (6%
Ap = plVel2 + = p(1 — p?) = —clloge|p2L.,
p=pIVel"+ 5p(1 =) 0|0gf€|p6$1
by (1 — p?)&? and integrating by parts we obtain
1 p2)2

(

[ 200 +p = [ 26(1- ) V- Ve

g2 i,

0
+ [ p(1= IV — cllogelps (1 - )R (C-56)
11, X1
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Arguing as in Step 5, we deduce from (C-56) that

Vol + w < C(1+r(e) /H Vuw|?), (C-57)

/Hn\ugle(;vi,E,R) 4e

where r(¢) — 0 when ¢ — 0, uniformly in n.
We can now complete the proof. Adding (C-55) to (C-57) we obtain, using (C-45)
and Step 5,

/ ee(w) < CL+7(E) [ [TuwP)
M \U7_, B(z;,c,R) 1L,

<o +r(s)/ Vwl?).

M \Ui_; B(@ie,R)

For ¢ < g sufficiently small, Cr(¢) < 3, which yields the desired estimate

e.(w) < C.

/H"\Ug=1 B(;Ci,s ,R)

For ¢ > gy the previous inequality is clearly also verified, and the proof is complete.
O
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