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Abstract

The aim of this paper is to prove the existence of extension operators for SBV functions from pe-
riodically perforated domains. This result will be the fundamental tool to prove the compactness
in a non coercive homogenization problem.

Le but de cet article est de prouver l’existence d’opérateurs de prolongation pour des fonctions
en SBV définies sur des domaines périodiquement perforés. Ce résultat sera l’outil fondamental
pour prouver la compacité dans un problème non coercitif d’homogénéisation.
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1. Introduction

In this paper we show the existence of an extension operator for special functions of bounded
variation with a careful energy estimate. Our main motivation comes from the study of effective
properties of elastic porous media where fractures are allowed. More precisely, we are interested
in the asymptotic behaviour of the minimisers of the energy associated to a displacement in a
periodically perforated brittle body, as the size ε of the microstructure vanishes.

1.1. Classical Results
The analogous of this problem in the absence of fracture (i.e., in the Sobolev setting) has been

extensively studied and it is one of the most classical examples in Homogenization Theory. We
briefly recall the expression of the elastic energy in the Sobolev case.

Let E ⊂ Rn be a periodic, open and connected set with Lipschitz boundary. For a bounded
open set Ω ⊂ Rn let Ω(ε) := Ω ∩ (εE), where ε > 0. The set Ω(ε) describes a perforated body
with holes of size of order ε (see Figure 1).

In the context of linearised elasticity, in the case of generalised antiplanar shear, the classical
expression for the energy associated to a (scalar) displacement u of the elastic body filling the
region Ω(ε) is given by

Fεel(u,Ω) :=


∫

Ω(ε)

|∇u|2dx if u|Ω(ε)
∈ H1(Ω(ε)),

+∞ otherwise in L2(Ω).
(1.1)
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Figure 1: The perforated set Ω(ε), in the case n = 2.

The goal of Homogenization Theory is to provide a good description of the overall properties of
the perforated domain for small ε via a simpler functional, independent of ε, which is obtained
from the family (Fεel) through a limit procedure. This is often done by means of Γ-convergence, a
variational convergence that enjoys the following stability property for the minima. If the family
(Fεel) is equicoercive, that is if every sequence (uε) with energy Fεel(uε) uniformly bounded in ε is
compact, then minimisers of Fεel converge to a minimum point of the Γ-limit.

What makes the problem (1.1) complicated is the lack of coerciveness of the functionals Fεel,
due to the presence of the holes. Indeed, for a sequence (uε) with bounded energy Fεel(uε), one
cannot immediately obtain a uniform bound of the L2-norm of the gradients in the whole of Ω, as
there is no control on the behaviour of the sequence in the set Ω \ Ω(ε). Only in the special case
where (uε) satisfies homogeneous boundary conditions on ∂Ω(ε), one can trivially extend each uε

to zero in Ω \ Ω(ε), so that ∫
Ω

|∇uε|2dx = Fεel(uε,Ω),

giving the required bound for the gradients in Ω, and therefore compactness for (uε). Otherwise,
in the general case there is no obvious way to provide an extension from Ω(ε) to Ω preserving the
control on the L2-norm of the gradients. We notice that, instead of considering the problem in
Ω(ε), one could focus on a single periodicity cell. Indeed, to solve the problem it is sufficient to
construct an extension satisfying the required estimate for the gradients in a fixed periodicity cell,
in a way that does not depend on ε.

More in general, given an open connected set D with Lipschitz boundary, and an open and
bounded set A, what is needed is the existence of an extension operator L : H1(D)→ H1(A) such
that, for every u ∈ H1(D), Lu = u a.e. in A ∩D and∫

A

|∇(Lu)|2dx ≤ c
∫
D

|∇u|2dx (1.2)

for some constant c depending only on the dimension n and on the sets D and A, and invariant
under dilations. The well-known extension results in Sobolev spaces (see [2] for instance) are not
the appropriate tool to solve this difficulty. Indeed, they usually provide only an estimate of the
H1-norm of the extended function in terms of the whole H1-norm of the original function.

Estimate (1.2) was firstly proved in 1977 by Tartar (see [22] and [9]), with a clever use of the
classical Poincaré-Wirtinger inequality. For the extension result in its most general form and an
application to the homogenization of (1.1) we refer to [1] (see also [20] for the special case of εE
disconnecting Ω).

1.2. The SBV case
The main feature of the present situation is that we model a porous media where fractures

can occur, and therefore deformations are allowed to have discontinuities. The classical functional
setting for problems of this kind is the space of Special functions of Bounded Variations (see
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[5]), SBV in short. We will assume, following Griffith’s model for brittle fractures (see [19]),
that the energy needed to create a crack is proportional to its length. Thus, the total energy
associated to a displacement u of a brittle elastic body filling an open bounded region U ⊂ Rn is
the Mumford-Shah functional (see [21]), defined as

MS(u, U) :=
∫
U

|∇u|2 dx+Hn−1(Su ∩ U).

Here ∇u and Su denote the absolutely continuous part of the gradient and the jump set of u,
respectively, while Hn−1 stands for the (n− 1)-dimensional Hausdorff measure.

In the SBV setting, instead of the energy functionals in (1.1), it is therefore natural to consider

Fε(u,Ω) :=

MS(u,Ω(ε)) if u|Ω(ε)
∈ L∞(Ω(ε)) ∩ SBV 2(Ω(ε)),

+∞ otherwise in L2(Ω),
(1.3)

where Ω and Ω(ε) are defined as above (see Section 2 for the definition of the space SBV 2). The
restriction of the functional to bounded functions is done for technical reasons.

Our goal is to study the asymptotic behaviour of the family (Fε) as ε→ 0 via Γ-convergence
(see [11]). To this aim, we need the analogue in the SBV framework of (1.2) and of the general
extension estimates obtained in [1]. This is provided by the following theorem, that is the main
result of the paper.

Theorem 1.1. Let D, A be open subsets of Rn. Assume that A is bounded and that D is connected
and has Lipschitz boundary. Then there exists an extension operator L : SBV 2(D) ∩ L∞(D) →
SBV 2(A) ∩ L∞(A) and a constant c = c(n,D,A) > 0 such that

(i) Lu = u a.e. in A ∩D,
(ii) ||Lu||L∞(A) ≤ ||u||L∞(D),

(iii) MS(Lu,A) ≤ cMS(u,D), (1.4)

for every u ∈ SBV 2(D) ∩ L∞(D). The constant c is invariant under translations and dilations.

We want to underline that in general one cannot replace condition (iii) in the theorem above with
an estimate involving only the (absolutely continuous part of the) gradients, like (1.2). Indeed,
the classical Poincaré-Wirtinger inequality, which was the crucial argument to prove (1.2), does
not hold true in the SBV setting. This is because it is possible to construct non constant SBV
functions whose absolutely continuous gradient is zero almost everywhere. On the other hand,
the available version in SBV of the Poincaré-Wirtinger inequality (see [14]) does not lead directly
to (iii). Let us explain the main idea of the present work in the following simplified version of
Theorem 1.1.

Theorem 1.2. Let D,A ⊂ Rn be bounded open sets with Lipschitz boundary and assume that D
is connected, D ⊂ A and A \D ⊂⊂ A. Then there exists an extension operator L : SBV 2(D) ∩
L∞(D)→ SBV 2(A) ∩ L∞(A) and a constant c = c(n,D,A) > 0 such that

(i) Lu = u a.e. in D,

(ii) ||Lu||L∞(A) ≤ ||u||L∞(D),

(iii) MS(Lu,A) ≤ cMS(u,D), (1.5)

for every u ∈ SBV 2(D) ∩ L∞(D). The constant c is invariant under translations and dilations.

We want to emphasize that without the assumption that the set D is connected both Theorem
1.1 and its simplified version Theorem 1.2 do not hold. Indeed, for every r > 0 let Br(0) denote
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the open n-dimensional ball of Rn centered at the origin with radius r. If we choose A = B2(0)
and D = A \ ∂B1(0), the function

u(x) :=

{
0 if x ∈ B1(0)
1 if x ∈ B2(0) \B1(0)

belongs to SBV 2(D) ∩ L∞(D) and satisfies MS(u,D) = 0. Nevertheless, it is clear that there
exists no extension Lu in A satisfying the requirement (iii) of the theorems.

To prove Theorem 1.2, we first consider a local minimiser of MS, that is a solution v̂ of the
following problem:

min
{
MS(w,D ∪W ) : w ∈ SBV 2(D ∪W ), w = u a.e. in D

}
,

where W ⊂⊂ A is a sufficiently small neighbourhood of ∂D ∩A (see Fig. 2).

Figure 2: The set A; the set D; the neighbourhood W .

Then, we carry out a delicate analysis of the behaviour of the function v̂ in the set W . More
precisely, we define the extension Lu in A\D modifying the function v̂ in different ways, according
to the measure of the set Sv̂ ∩ (W \D).

If this measure is large enough, then we consider Lu defined as v̂ in D ∪W and zero in the
remaining part of A. In this way we have essentially increased the energy in the surface term
only, of an amount that is comparable to the measure of Su ∩D. This guarantees that properties
(i)–(iii) are satisfied in this case.

On the other hand, if Hn−1
(
Sv̂ ∩ (W \D)

)
is small, then we may use the elimination property

proved in [14, 12] to detect a subset ∆ of W \ D where the function v̂ has no jump (see also
Theorem 2.5). This allows us to apply the extension property proved in the Sobolev setting in
each connected component of ∆.

As already mentioned, Theorem 1.1 finds an application in the study of the asymptotic be-
haviour of the functionals Fε defined in (1.3), as made precise by the following theorem.

Theorem 1.3. Let E be a periodic, connected, open subset of Rn, with Lipschitz boundary, let
ε > 0, and set Eε := εE. Given a bounded open set Ω ⊂ Rn, set Ω(ε) := Ω ∩ Eε. Then, there
exists an extension operator T ε : SBV 2(Ω(ε)) ∩ L∞(Ω(ε)) → SBV 2(Ω) ∩ L∞(Ω) and a constant
k0 > 0, depending on E and n, but not on ε and Ω, such that

• T εu = u a.e. in Ω(ε),
• ||T εu||L∞(Ω) ≤ ||u||L∞(Ω(ε)),

• MS(T εu,Ω) ≤ k0

(
MS(u,Ω(ε)) +Hn−1(∂Ω)

)
for every u ∈ SBV 2(Ω(ε)) ∩ L∞(Ω(ε)).
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This means that we can fill the holes of Ω(ε) by means of an extension of u, whose Mumford-
Shah energy is kept bounded by k0

(
MS(u,Ω(ε)) +Hn−1(∂Ω)

)
, where the constant k0 = k0 (n,E)

depends on n, and E, but is independent of Ω, ε and u. This is the key estimate to prove
compactness of minimising sequences for (Fε), and to identify a class of functions where the Γ-
limit is finite. Within this class, we give a more explicit expression for the Γ-limit, characterizing
the volume and the surface densities by means of two separate homogenization formulas (see
Theorem 7.2).

For completeness we mention that a previous work (see [15]) shows that a very different sit-
uation occurs when the homogeneous Neumann boundary conditions on ∂Ω(ε) are replaced by
homogeneous Dirichlet boundary conditions. In particular, in this case an extension theorem is
not needed, since every function u ∈ SBV 2(Ω(ε)) ∩L∞(Ω(ε)) admits a natural extension by zero
to the whole Ω, as already observed for the Sobolev setting.

We finally remark that the same homogenization result has been independently obtained in the
recent paper [16], where the lack of coerciveness has been solved in an alternative way, bypassing
the construction of an extension operator. In the quoted paper the authors first truncate the
function around each perforation, and then extend the truncated function inside the hole using
standard cut-off techniques. Strictly speaking, the function obtained in this way is not an exten-
sion. Nevertheless, it coincides with the original function in a set that is sufficiently large for the
purpose of proving compactness of minimising sequences. Indeed, the authors are able to obtain
a good control of the total energy, providing suitable Poincaré-type inequalities in SBV .

The plan of the paper is the following. In Section 2 we recall the basic properties of special
functions with bounded variation and the extension results available in the Sobolev setting. In
order to simplify the exposition, in Sections 3 and 4 we focus on the case in which the set A \D,
where the extension has to be performed, is compactly contained in A. More precisely, in Section
3 we prove Theorem 1.2, while Section 4 is devoted to the corresponding simplified version of
Theorem 1.3 (see Theorem 4.1). Then, we face the general case, proving Theorem 1.1 and Theorem
1.3 in Sections 5 and 6, respectively. In Section 7 we study the Γ-limit of the sequence of functionals
(1.3). Finally, we postpone some technical lemmas in the Appendix.

2. Preliminaries

Let us give some definitions and results that will be widely used throughout the paper.
We denote with Q the unit cube in Rn, i.e. Q =

(
− 1

2 ,
1
2

)n, while (ei)i=1,...,n stands for the
canonical basis of Rn. We use the following compact notation for the opposite hyperfaces of the
cube:

∂Q±,i := ∂Q ∩
{
xi = ±1

2

}
i = 1, . . . , n.

We say that a set E ⊂ Rn is periodic if E + ei = E for every i = 1, . . . , n.
Moreover, we say that an open set E ⊂ Rn has a Lipschitz boundary at a point x ∈ ∂E

(or equivalently, that ∂E is locally Lipschitz at x) if there exist an orthogonal coordinate system
(y1, . . . , yn), a coordinate rectangle R = (a1, b1)× . . .×(an, bn) containing x, and a Lipschitz func-
tion Ψ : (a1, b1)× . . .×(an−1, bn−1)→ (an, bn) such that E ∩R = {y ∈ R : yn < Ψ(y1, . . . , yn−1)}.
If this property holds true for every x ∈ ∂E with the same Lipschitz constant, we say that E has
Lipschitz boundary (or equivalently, that ∂E is Lipschitz).

We will denote with Mn the set of all the n×n matrices with real entries. For the identity map
we use the notation Id, i.e., Id(x) = x for every x ∈ Rn. For an open set A, C∞0 (A) denotes the
class of C∞ functions with compact support in A. Finally, intA is the interior of a set A ⊂ Rn.

We recall now some properties of rectifiable sets and of the space SBV of special functions
with bounded variation. We refer the reader to [5] for a complete treatment of these subjects.

A set Γ ⊂ Rn is rectifiable if there exist N0 ⊂ Γ with Hn−1(N0) = 0, and a sequence (Mi)i∈N
of C1-submanifolds of Rn such that

Γ \N0 ⊂
⋃
i∈N

Mi.
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Let x ∈ Γ \N0, and let i ∈ N such that x ∈Mi. We define the normal to Γ at x as the normal
νMi

(x) to Mi at x. It turns out that the normal is well defined (up to the sign) for Hn−1-a.e.
x ∈ Γ.

Let U ⊂ Rn be an open bounded set with Lipschitz boundary. We define SBV (U) as the set
of functions u ∈ L1(U) such that the distributional derivative Du is a Radon measure which, for
every open set A ⊂ U , can be represented as

Du(A) =
∫
A

∇u dx+
∫
A∩Su

[u](x) νu(x) dHn−1(x),

where ∇u is the approximate differential of u, Su is the set of jump of u (which is a rectifiable
set), νu(x) is the normal to Su at x, and [u](x) is the jump of u at x.
For every p ∈ (1,+∞) we set

SBV p(U) =
{
u ∈ SBV (U) : ∇u ∈ Lp(U ; Rn),Hn−1(Su) < +∞

}
.

If u ∈ SBV (U) and Γ ⊂ U is rectifiable and oriented by a normal vector field ν, then we can
define the traces u+ and u− of u ∈ SBV (U) on Γ, which are characterised by the relations

lim
r→0

1
rn

∫
U∩B±r (x)

|u(y)− u±(x)| dy = 0 for Hn−1 − a.e. x ∈ Γ,

where B±r (x) := {y ∈ Br(x) : (y − x) · ν ≷ 0}.
The following extension theorems are the Sobolev versions of Theorem 1.1 and Theorem 1.3,

respectively (see [1, Lemma 2.6] and [1, Theorem 2.1]).

Theorem 2.1. Let D, A be open subsets of Rn. Assume that A is bounded and that D is connected
and has Lipschitz boundary at each point of ∂D ∩ Ā. Then, there exists a linear and continuous
operator τ : H1(D)→ H1(A) such that, for every u ∈ H1(D)

τu = u a.e. in A ∩D,∫
A

|τu|2dx ≤ k1

∫
D

|u|2dx,∫
A

|∇(τu)|2dx ≤ k2

∫
D

|∇u|2dx, (2.1)

where k1 = k1(n,D,A) and k2 = k2(n,D,A) are positive constants depending only on n, D, and
A.

Theorem 2.2. Let E be a periodic, connected, open subset of Rn, with Lipschitz boundary, let
ε > 0, and set Eε := εE. Given a bounded open set Ω ⊂ Rn, set Ω(ε) := Ω ∩ Eε. Then, there
exists a linear and continuous extension operator τε : H1(Ω(ε)) → H1

loc(Ω) and three constants
k3, k4, k5 > 0 depending on E and n, but not on ε and Ω, such that

τεu =u a.e. in Ω(ε),∫
Ωεk3

|τεu|2dx ≤ k4

∫
Ω(ε)

|u|2dx,∫
Ωεk3

|∇(τεu)|2dx ≤ k5

∫
Ω(ε)

|∇u|2dx,

for every u ∈ H1(Ω(ε)). Here we used the notation Ωεk3 := {x ∈ Ω : dist(x, ∂Ω) > εk3}.

We give now the definition of a local minimiser for the Mumford-Shah functional. We recall
that for an open set U ⊂ Rn and for w ∈ SBV 2(U)

MS(w,U) =
∫
U

|∇w|2dx+Hn−1(Sw ∩ U). (2.2)

6



Definition 2.3. Let Ω ⊂ Rn be open. We say that w ∈ SBV 2(Ω) is a local minimiser for the
functional MS(·,Ω) if MS(w,A) ≤MS(v,A) for every open set A ⊂⊂ Ω, whenever v ∈ SBV 2(Ω)
and {v 6= w} ⊂⊂ A ⊂⊂ Ω.

Next theorem provides an estimate of the measure of the jump set for a local minimiser of the
Mumford-Shah functional (see [5, Theorem 7.21] and [14]).

Theorem 2.4 (Density lower bound). There exists a strictly positive dimensional constant ϑ0 =
ϑ0(n) with the property that if u ∈ SBV 2(Ω) is a local minimiser for the functional MS(·,Ω)
defined in (2.2) for an open set Ω ⊂ Rn, n ≥ 2, then

Hn−1(Su ∩B%(x)) > ϑ0%
n−1

for every ball B%(x) ⊂ Ω with centre x ∈ Su and radius % > 0.

An equivalent but more appealing formulation of the previous theorem is the following elimi-
nation property (see [12]).

Theorem 2.5 (Elimination property). Let Ω ⊂ Rn be open. There exists a strictly positive
dimensional constant β = β(n) independent of Ω such that, if u ∈ SBV 2(Ω) is a local minimiser
for the functional MS(·,Ω) defined in (2.2) and B%(x0) ⊂ Ω is any ball with centre x0 ∈ Ω with

Hn−1(Su ∩B%(x0)) < β%n−1,

then Su ∩B%/2(x0) = ∅.

We state now a theorem which provides an approximation result for SBV functions, with
the property that the value of the Mumford-Shah functional along the approximating sequence
converges to the value of the Mumford-Shah functional on the limit function. For the proof we
refer to [10].

Theorem 2.6. Let Ω ⊂ Rn be open. Assume that ∂Ω is locally Lipschitz and let u ∈ SBV 2(Ω).
Then there exists a sequence (uh) ⊂ SBV 2(Ω) such that for every h ∈ N

(i) Suh is essentially closed;
(ii) S̄uh is a polyhedral set;

(iii) uh ∈W k,∞(Ω \ S̄uh) for every k ∈ N;

and such that (uh) approximates u in the following sense:

(iv) uh → u strongly in L2(Ω),

(v) ∇uh → ∇u strongly in L2(Ω),

(vi) Hn−1(Suh)→ Hn−1(Su).

3. Compactly contained hole: extension for a fixed domain

In this section we prove Theorem 1.2. This is a simplified version of Theorem 1.1, under the
additional assumption that the set A \D, where the extension has to be performed, is compactly
contained in A (see Fig. 2a) and 2b)). In this way, it will be possible to highlight the main ideas
of the present work, without facing the further difficulties of the general case, that will be treated
in Section 5.

In order to prove the extension result we need to define, for every open set, a reflection map
with respect to bounded Lipschitz subsets of the boundary, as made clear in the following theorem.

Theorem 3.1. Let D ⊂ Rn be an open set, and assume that Λ ⊂ ∂D is a bounded, relatively
open, nonempty Lipschitz set, with Λ ⊂⊂ {x ∈ ∂D : ∂D has Lipschitz boundary at x}. Then,
there exists a bounded open set W ⊂ Rn with Lipschitz boundary, such that Λ = W ∩ ∂D, and a
bilipschitz map φ : W →W with φ2 = Id, φ|Λ = Id and φ(W±) = W∓, where W+ := W ∩D and
W− := W ∩ (Rn \D).
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Figure 3: The sets W+, W−, Λ and the bilipschitz map φ.

A pictorial idea of the previously stated reflection result is illustrated in Figure 3.

Proof. Since Λ is Lipschitz and compact, we can find a finite open cover U1, . . . , Um of Λ such
that we can associate to every Uj a vector u0

j ∈ Rn and a parameter ηj ∈ (0, 1] with the following
property. If x ∈ Λ ∩ Uj for some j, then for every t ∈ (0, 1] and for every uj ∈ Rn such that
|uj − u0

j | < ηj it turns out that x+ t uj ∈ D and x− t uj ∈ Rn \D.
Set η := minj ηj . Now, for every index j we fix an open set Vj ⊂⊂ Uj such that V1, . . . , Vm

is still a covering of Λ. Let (ψj)j=1,...,m be a partition of unity for Λ subordinate to (Vj)j=1,...,m,
i.e.,

ψj ∈ C∞0 (Rn), supp ψj ⊂ Vj , 0 ≤ ψj ≤ 1 in Rn,
m∑
j=1

ψj = 1 on Λ.

Let us fix α0 > 0 so that for every collection of vectors {u1, . . . , um} satisfying |ui − u0
i | < η for

every i, we have

α0

m∑
i=1

|ui| < dist(Vj , ∂Uj) for j = 1, . . . ,m.

Let us define Bmη (u0) := {u = (u1, . . . , um) ∈ (Rn)m : |ui − u0
i | < η for every i}. For every

α ∈ [−α0, α0] and for every u ∈ Bmη (u0), we define the C∞ function rαu : Rn → Rn as

rαu (x) := x+ α
m∑
j=1

ψj(x)uj .

It turns out that, by construction, rαu−Id has compact support and rαu−Id→ 0 in C∞0 (Rn; Rn) as
α→ 0. Let us set Ψu(x) :=

∑m
j=1 ψj(x)uj and Ψ0(x) :=

∑m
j=1 ψj(x)u0

j . Following the argument
used in [13, Proposition 1.2], it is possible to show that, for every x ∈ Λ, we have that for every
u ∈ Bmη (u0), x+ αΨu(x) ∈ D if 0 < α ≤ α0 and x+ αΨu(x) ∈ Rn \D if −α0 ≤ α < 0.

We claim that there exists η0 ∈ (0, η] such that for every x ∈ Λ we have the following property:

|v −Ψ0(x)| < η0 ⇒

{
x+ α v ∈ D if 0 < α ≤ α0,

x+ α v ∈ Rn \D if − α0 ≤ α < 0. (3.1)

We notice that in order to obtain (3.1) it is sufficient to prove that

if v satisfies |v −Ψ0(x)| < η0, then v = Ψu(x) for some u ∈ Bmη (u0). (3.2)

Let us show (3.2). Let us fix x ∈ Λ; we define the linear map Ix :
(
Rn
)m → Rn as

u = (u1, . . . , um) 7→ Ix(u) := Ψu(x) =
m∑
j=1

ψj(x)uj .

Since x ∈ Λ, we have that
∑
j ψj(x) = 1. Hence, there exists ı̄ ∈ {1, . . . ,m} such that ψı̄(x) ≥ 1

m .
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We claim that Ix(Bmη (u0)) contains a neighbourhood of Ix(u0). First of all, let us notice that

Ix(Bmη (u0)) = Ix
(
Bη(u0

1)× · · · ×Bη(u0
m)
)
⊇ A, (3.3)

where A := Ix
(
{u0

1} × · · · × {u0
ı̄−1} × Bη(u0

ı̄ ) × {u0
ı̄+1} × · · · × {u0

m}
)
. Easy computations show

that {
y − Ix(u0) : y ∈ A

}
= Bη ψı̄(x)(0).

Therefore we can rewrite A as

A = Ix(u0) +Bη ψı̄(x)(0) = Bη ψı̄(x)(Ix(u0)) ⊇ B η
m

(Ix(u0)). (3.4)

The same argument can be repeated for every x ∈ Λ.
Let us now show that (3.2) holds true with η0 := η

m . Let x ∈ Λ and v ∈ Rn such that
|v − Ψ0(x)| < η0, i.e., v ∈ Bη0(Ψ0(x)) = Bη0(Ix(u0)). From (3.3) and (3.4) we have that
v ∈ A ⊂ Ix(Bmη (u0)), hence there exists u ∈ Bmη (u0) such that v = Ix(u) = Ψu(x). This proves
(3.2).

For every x0 ∈ Λ let us consider the following Cauchy problem:{
ẋ(t) = Ψ0(x(t)),
x(0) = x0.

(3.5)

We denote by (x0, t) 7→ Φ(x0, t) the flow associated to (3.5). Using (3.1) and the compactness of Λ,
we have that there exists t0 > 0, independent of x0 ∈ Λ, such that {Φ(x0, t) : t ∈ (0, t0)} ⊂ D and
{Φ(x0,−t) : t ∈ (0, t0)} ⊂ Rn \D. Clearly, the restriction Φ|Λ×(−t0,t0) is bijective. In particular
we have that {Φ(x0, 0) : x0 ∈ Λ} = Λ. Now we define W,W+,W− as

W :=
{

Φ(x0, t) : (x0, t) ∈ Λ× (−t0, t0)
}

(3.6)

W+ :=W ∩D =
{

Φ(x0, t) : (x0, t) ∈ Λ× (0, t0)
}
, (3.7)

W− :=W ∩ (Rn \D) =
{

Φ(x0, t) : (x0, t) ∈ Λ× (−t0, 0)
}
. (3.8)

Using classical properties of the flow, and the fact that Λ is Lipschitz, it is possible to show that
the map Φ|Λ×(−t0,t0) : Λ× (−t0, t0)→W is bilipschitz.

We define φ : W → W in the following way. Let x ∈ W . Then, by definition of W , there
exists a pair (x0, t) ∈ Λ× (−t0, t0) such that x = Φ(x0, t). We set φ(x) := Φ(x0,−t). This map is
bijective and bilipschitz, and satisfies the required properties. Hence the theorem is proved.

In the periodic case, the previous theorem can be modified in the following way.

Corollary 3.2. Let E ⊂ Rn be a periodic open connected set with Lipschitz boundary. Then, there
exists a periodic neighbourhood W of ∂E with Lipschitz boundary, and a bilipschitz periodic map
φ : W →W such that φ|∂E = Id and φ(W±) = W∓, where W+ := W∩E and W− := W∩(Rn\E).

Proof. We repeat the proof of Theorem 3.1, with D = E and Λ = ∂E ∩ Q. We observe that,
due to the periodicity of E, the open covering U1, . . . , Um of Λ and the vectors u0

1, . . . , u
0
m can be

chosen to be periodic, in the following sense.
If j ∈ {1, . . . ,m} and i ∈ {1, . . . , n} are such that Uj ∩ ∂Q+,i 6= ∅, then there exists k ∈

{1, . . . ,m} such that Uk = Uj + ei and u0
j = u0

k. Similarly, If j ∈ {1, . . . ,m} and i ∈ {1, . . . , n} are
such that Uj ∩ ∂Q−,i 6= ∅, then there exists k ∈ {1, . . . ,m} such that Uk = Uj − ei and u0

j = u0
k.

By the previous argument, proceeding as in the proof of Theorem 3.1, it is possible to construct
a vector field Ψ0 : Rn → Rn such that Ψ0

|∂Q+,i = Ψ0
|∂Q−,i for every i = 1, . . . , n. Therefore

without loss of generality we can assume that Ψ0 is Lipschitz and periodic. Indeed, we can
otherwise replace it with the Lipschitz periodic extension of Ψ0

|Q.
As in the proof of Theorem 3.1, for every x0 ∈ ∂E ∩Q we consider the Cauchy problem (3.5)

and we denote with Φ(x0, t) the associate flow. Then we define a positive real number t0, the set

K := {Φ(x0, t) : (x0, t) ∈ ∂E ∩Q× (−t0, t0)},
9



and a periodic bilipschitz map φ̂ : K → K such that φ̂|∂E∩Q = Id. Moreover, K and φ̂ can be
extended by periodicity, so that the set

W := int

( ⋃
h∈Zn

(K + h)

)

and the function φ : W → W defined as φ(x) := h + φ̂(x − h) for x ∈ (K + h) and h ∈ Zn have
the required properties.

We can now prove Theorem 1.2.

Proof of Theorem 1.2. Let u ∈ SBV 2(D) ∩ L∞(D).
By Theorem 3.1 applied to Λ = ∂D ∩ A, we can find an open set W containing ∂D ∩ A, and

a bilipschitz map φ : W → W such that φ|∂D∩A = Id and φ(W±) = W∓, where W+ = W ∩D
and W− = W ∩ (Rn \ D). Without loss of generality, we can assume W ⊂⊂ A. We define
v : D ∪W → R as

v(x) :=

{
u(x) if x ∈ D,

u(φ(x)) if x ∈W−.

It turns out that v ∈ SBV 2(D ∪W ) and that the following estimate holds true:

MS(v,D ∪W ) ≤ (1 + C1)MS(u,D), (3.9)

where, setting ψ := φ−1, the constant C1 = C1(n,D,A) is given by

C1 := ‖ det∇ψ (∇ψ)−T ‖L∞(W ;Mn). (3.10)

For the rigorous proof of (3.9) we refer to Theorem 8.1 in the Appendix.
Now, let us consider a solution v̂ of the following problem:

min
{∫

D∪W
|∇w|2dx+Hn−1(Sw) : w ∈ SBV 2(D ∪W ), w = u a.e. in D

}
.

By definition of v̂ and using (3.9), we have that v̂ = u a.e. in D and

MS(v̂, D ∪W ) ≤MS(v,D ∪W ) ≤ (1 + C1)MS(u,D). (3.11)

By a truncation argument, it follows that ||v̂||L∞(D∪W ) = ||u||L∞(D).
Let us analyze more carefully the structure of W . By (3.6), (3.7) and (3.8), we have

W =
{

Φ(x0, t) : (x0, t) ∈ (∂D ∩A)× (−t0, t0)
}
,

W+ =W ∩D =
{

Φ(x0, t) : (x0, t) ∈ (∂D ∩A)× (0, t0)
}
,

W− =W ∩ (Rn \D) =
{

Φ(x0, t) : (x0, t) ∈ (∂D ∩A)× (−t0, 0)
}
,

where the function (x0, t) 7→ Φ(x0, t) is the flux associated to problem (3.5). Now we set

Γ := {Φ(x0,−t0/2) : x0 ∈ ∂D ∩A} ⊂W−.

For every z ∈ Γ let %(z) be defined as %(z) := sup
{
% > 0 : B%(z) ⊂W−

}
, and let γ be the positive

constant given by

γ :=
1
2

inf
z∈Γ

%(z).

The situation is shown in Fig. 4.
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Figure 4: A point z ∈ Γ and the ball Bγ(z). Here A,D and W are those shown in Figure 2.

Let ω > 0 be defined as ω := β γn−1, where β > 0 is the constant given by the Elimination
Theorem 2.5. In order to construct the required extension, we need to distinguish two cases, that
will be treated in a different way.
First case: large jump set
We assume that Hn−1(Sv̂ ∩W−) ≥ ω. Let us define Lu as

(Lu)(x) :=

{
v̂(x) if x ∈ D ∪W,
0 if x ∈ A \ (D ∪W ).

(3.12)

It turns out that Lu ∈ SBV 2(A). Moreover, using (3.11) we have

MS(Lu,A) ≤MS(v̂, D ∪W ) +Hn−1(∂W \D)
= MS(v̂, D ∪W ) + C2 ω

≤MS(v̂, D ∪W ) + C2 Hn−1(Sv̂ ∩W−)
≤ max{1, C2}MS(v̂, D ∪W )
≤ (1 + C1) max{1, C2}MS(u,D), (3.13)

where C2 = C2(n,D,A) is the positive constant given by

C2 :=
Hn−1(∂W \D)

ω
.

Second case: small jump set
We assume that Hn−1(Sv̂ ∩W−) < ω. Let us fix z ∈ Γ and let us consider the ball Bγ(z) ⊂W−.
Clearly, Hn−1(Sv̂ ∩Bγ(z)) ≤ Hn−1(Sv̂ ∩W−) < ω. By our definition of ω, this implies that

Hn−1(Sv̂ ∩Bγ(z)) < β γn−1.

Hence, by Theorem 2.5 we have that Sv̂ ∩ Bγ/2(z) = ∅ (see Fig. 5)). The same argument can be
repeated for every z ∈ Γ. Therefore, we deduce that the set ∆ ⊂W− defined as

∆ :=
⋃
z∈Γ

Bγ/2(z)

does not intersect the jump set of v̂ (see Fig. 6)).
Without loss of generality, we can assume ∆ connected, otherwise the same argument can be

repeated for every connected component of ∆. We observe that ∆ disconnects A \ D. Indeed,
we can write (A \ D) \ ∆ = U ′ ∪ U ′′, where U ′ and U ′′ are open, connected disjoint sets, with
∂D ∩ ∂U ′ 6= ∅. Now, let us define Lu as

(Lu)(x) :=

{
v̂(x) if x ∈ A \ (∆ ∪ U ′′),
(τ v̂)(x) if x ∈ (∆ ∪ U ′′),

(3.14)
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Figure 5: The ball B γ
2

(z). Figure 6: The sets ∆, U ′ and U ′′.

where τ denotes the extension operator from H1(∆) to H1(∆∪U ′′) provided by Theorem 2.1. By
relation (2.1), we have that ∫

∆∪U ′′
|∇(τ v̂)|2dx ≤ k2

∫
∆

|∇v̂|2dx, (3.15)

where k2 = k2(n,∆,∆ ∪ U ′′). Furthermore, up to truncation, we can always assume that the L∞

bound is preserved. Then, it turns out that Lu ∈ SBV 2(A), Lu = u a.e. in D and ||Lu||L∞(A) =
||u||L∞(D). By (3.15), we have

MS(Lu,A) = MS(v̂, D ∪ U ′ ∪∆) +
∫
U ′′
|∇(τ v̂)|2dx

≤MS(v̂, D ∪W ) + k2MS(v̂,∆)
≤ max{1, k2}MS(v̂, D ∪W )
≤ (1 + C1) max{1, k2}MS(u,D), (3.16)

where in the last inequality we used (3.11).
Estimate in the general case.
The function Lu defined in (3.12) and (3.14) respectively clearly satisfies properties (i) and (ii) of
Theorem 1.2. By (3.13) and (3.16), estimate (1.5) holds true setting

c(n,D,A) := (1 + C1) max{1, C2, k2}.

The arguments used in the proof are clearly invariant under translations. Thus, it remains
to prove that the constant c is invariant under dilations. Let w ∈ SBV 2(D) ∩ L∞(D) and let
λ > 0. We define the function wλ : λD → R as wλ(x) :=

√
λw(xλ ) for every x ∈ λD. Let

Lw ∈ SBV 2(A) ∩ L∞(A) denote the extension provided by the theorem just proved. Then, we
can define an extension operator Lλ from SBV 2(λD) ∩ L∞(λD) to SBV 2(λA) ∩ L∞(λA) as

(Lλwλ)(x) :=
√
λ (Lw)

(x
λ

)
for every x ∈ λA.

This concludes the proof, since

MS(Lλwλ, λA) = λn−1MS(Lw,A) ≤ c λn−1MS(w,D) = cMS(wλ, λD).

4. Compactly contained hole: ε-periodic extension

In this section we prove a simplified version of Theorem 1.3. We will consider the case in which
the set E is obtained removing from the unit square a compactly contained hole and repeating
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this construction by periodicity. More precisely, let F ⊂⊂ Q be an open Lipschitz set (see Figure
1 where, for simplicity, F is a cube and F and Q are concentric). We assume that E is given by

E := Rn \
⋃
h∈Zn

(F + h). (4.1)

We state now the main result of this section.

Theorem 4.1. Fix ε > 0. Let Ω ⊂ Rn be a bounded open set with Lipschitz boundary, and let
E ⊂ Rn the periodic set defined as in (4.1). Set Eε := εE and Ω(ε) := Ω ∩Eε. Then there exists
an extension operator T ε : SBV 2(Ω(ε)) ∩ L∞(Ω(ε))→ SBV 2(Ω) ∩ L∞(Ω) and a constant k0 > 0
depending on E and n, but not on ε and Ω, such that

• T εu = u a.e. in Ω(ε),
• ||T εu||L∞(Ω) ≤ ||u||L∞(Ω(ε)),

• MS(T εu,Ω) ≤ k0

(
MS(u,Ω(ε)) +Hn−1(∂Ω)

)
for every u ∈ SBV 2(Ω(ε)) ∩ L∞(Ω(ε)).

Proof. Let u ∈ SBV 2(Ω(ε)) ∩ L∞(Ω(ε)). Let Zε be the set of vectors h ∈ Zn such that the
ε-homothetic of the domain h + Q has a nonempty intersection with Ω, and let us introduce an
ordering of its elements. More precisely, we set

Zε := {h ∈ Zn : ε(h+Q) ∩ Ω 6= ∅} = {h1, h2, . . . , hN(ε)}, (4.2)

where with N(ε) ∈ N we denoted the cardinality of Zε. For shortening the notation, we set

Qk := hk +Q, Qεk := εQk k = 1, . . . , N(ε), (4.3)

and

ΩQ(ε) := int

(
N(ε)⋃
k=1

Qεk

)
, (4.4)

where “int” stands for the interior of the set in brackets. We define ũ : Eε → R as

ũ :=

{
u in Ω(ε)
0 in Eε \ Ω(ε).

Clearly, the function ũ satisfies ũ = u a.e. in Ω(ε), ||ũ||L∞(Eε) ≤ ||u||L∞(Ω(ε)), and

MS(ũ, Eε) ≤MS(u,Ω(ε)) +Hn−1(∂Ω). (4.5)

Notice that we can write

MS(ũ, Eε) =
N(ε)∑
k=1

MS(ũ, Qεk ∩ Eε) +Hn−1

(
Sũ ∩ Eε ∩

(
N(ε)⋃
k=1

∂Qεk

))
. (4.6)

Let us denote with Lεk : SBV 2(Qεk ∩ Eε) ∩ L∞(Qεk ∩ Eε) → SBV 2(Qεk) ∩ L∞(Qεk) the extension
operator provided by Theorem 1.2, with k = 1, . . . , N(ε), and we define vε ∈ SBV 2(ΩQ(ε)) ∩
L∞(ΩQ(ε)) as

vε(x) := (Lεkũ)(x) if x ∈ Qεk, k ∈ {1, . . . , N(ε)}.

We have that for every k = 1, . . . , N(ε)

• vε = ũ a.e. in Qεk ∩ Eε,
• ‖vε‖L∞(Qεk) ≤ ‖ũ‖L∞(Qεk∩Eε),

• MS(vε, Qεk) ≤ cMS(ũ, Qεk ∩ Eε). (4.7)
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Since the constant provided by the theorem is invariant under translations and homotheties,
c = c(n,E,Q) is independent of k and ε. Then, using (4.6) and (4.7), we get

MS(vε,ΩQ(ε)) =
N(ε)∑
k=1

MS(vε, Qεk) +Hn−1

(
Svε ∩ Eε ∩

(
N(ε)⋃
k=1

∂Qεk

))

≤ c
N(ε)∑
k=1

MS(ũ, Qεk ∩ Eε) +Hn−1

(
Sũ ∩ Eε ∩

(
N(ε)⋃
k=1

∂Qεk

))
≤ k0MS(ũ, Eε),

where k0 := max{c, 1}. Combining the previous expression with (4.5) we have

MS(vε,ΩQ(ε)) ≤ k0

(
MS(u,Ω(ε)) +Hn−1(∂Ω)

)
,

therefore the claim follows defining T εu := vε|Ω.

5. General connected sets: extension for a fixed domain

In this section we prove Theorem 1.1. Apart from some technical difficulties, the strategy of
the proof remains the same as in Theorem 1.2. First, we need to state two lemmas that follow,
up to some slight variations, from [1, Lemma 2.2] and from [1, Lemma 2.3], respectively.

Lemma 5.1. Let P , ω, ω′ be open subsets of Rn. Assume that ω, ω′ are bounded, with ω ⊂⊂ ω′
and that P has Lipschitz boundary at each point of ∂P ∩ ω. Then the number of connected
components of P ∩ ω′ that intersect P ∩ ω is finite.

We notice that Lemma 5.1 implies in particular that if infinitely many connected components
of P accumulate on a point z ∈ ∂P , then the boundary of P at z is not Lipschitz.

We will apply the previous result in the proof Theorem 1.1 with P = Rn \D and ω = A, to
conclude that the number of holes to “fill” (i.e., the holes of D that intersect A) is necessarily
finite. The latter conclusion could be misleading, as it seems to suggest that the proof of Theorem
1.1 follows by simply applying Theorem 1.2 a finite number of times, one for each hole. This is
true, however, only if every hole that has to be filled is “well contained” in D, that is, only if
every hole belongs to a bounded connected component of Rn \D. Indeed, in this special case, we
can “surround” each hole with a stripe all contained in D, and then apply Theorem 1.1. Anyway,
there may be holes that do not satisfy this property (see for instance Figure 7, where U4 belongs
to an unbounded connected component of Rn \D).

Lemma 5.2. Let D be a connected open subset of Rn, with Lipschitz boundary, and let A ⊂ Rn
be open and bounded, with A ∩D 6= ∅. Then, there exists k ∈ N, k ≥ 2, such that A ⊂⊂ kQ and
A ∩D is contained in a single connected component of kQ ∩D.

Proof of Theorem 1.1. Since in the case A ∩D = ∅ the function u can be trivially extended from
D to A setting Lu ≡ 0 in A, we can assume from now on that A ∩ D 6= ∅. Let k be given by
Lemma 5.2; applying Lemma 5.1 with P = Rn \D, ω = A and ω′ = (k + 1)Q, we have that the
number of connected components of (Rn \D) ∩ ((k + 1)Q) that intersect A is finite, say M ∈ N.
Let us denote these connected components by U1, . . . , UM . The situation is described in Figure 7.

Notice that, since A ⊂⊂ kQ, then δ := dist(A, ∂(kQ)) > 0. We want to extend the function
u to the sets U1 ∩A, . . . , UM ∩A, in such a way that conditions (i), (ii) and (iii) of Theorem 1.1
are satisfied.

Let W,W±, Φ, φ and t0 be those defined in the proof of Lemma 3.1 with

Λ :=
M⋃
i=1

Λi, where Λi := ∂Ui ∩ ∂D, for i = 1, . . . ,M.

14



Figure 7: The set D; the set A (here k = 2); the sets Ui’s (notice that M = 4).

Let us define the sets

Θ1 :=
M⋃
i=1

Θi
1, , Θ2 :=

M⋃
i=1

Θi
2,

where, for i = 1, . . . ,M ,

Θi
1 := Λi ∩ ∂(kQ), Θi

2 := Λi ∩ ∂((k + 1)Q).

• Possible restriction of the interval [−t0, t0].
In the case Θ2 6= ∅ we restrict the interval [−t0, t0] to some [−η, η], with η ∈ (0, t0], to guarantee
that the image under the map Φ of an η-neighbourhood of Θ1 is well separated by ∂A. More
precisely, we proceed in the following way.

If Θ2 = ∅ we just set η := t0. If instead Θ2 6= ∅, we have also Θ1 6= ∅. Then, for every x0 ∈ Θ1,
x0 = Φ(x0, 0) and dist(x0, ∂A) ≥ δ. Since (x, t) 7→ Φ(x, t) is uniformly continuous in the compact
set Θ1 × [−t0, t0], and x 7→ dist(x, ∂A) is continuous (in fact Lipschitz), there exists η ∈ (0, t0]
such that

dist(Φ(x0, t), ∂A) > δ/2 for every (x0, t) ∈ Θ1 × [−η, η],

i.e.,
dist

(
Φ
(
Θ1 × [−η, η]

)
, ∂A

)
> δ/2.

Notice that, since Θ1 ∩Θ2 = ∅, the sets Θ1 × [−η, η] and Θ2 × [−η, η] are mapped by the flow Φ
into two “parallel” (in the sense of the flow Φ) disjoint sets Φ(Θ1 × [−η, η]) and Φ(Θ2 × [−η, η]).
Thus,

dist
(

Φ(Θ1 × [−η, η]),Φ(Θ2 × [−η, η])
)
> 0. (5.1)

• Definition of an auxiliary minimum problem.
We define the following subsets of W

W∗ := Φ(Λ× (−η, η)), W+
∗ := Φ(Λ× (0, η)), W−∗ := Φ(Λ× (−η, 0)).

Without loss of generality, we assume that W∗ ⊂ (k + 2)Q. This will be useful in order to prove
Theorem 1.3. Notice that W∗ ⊂W , and that φ(W−∗ ) = W+

∗ .
Now we define v : D ∪W∗ → R as

v(x) =

{
u(x) if x ∈ D,

u(φ(x)) if x ∈W−∗ .

It turns out that v ∈ SBV 2(D ∪W∗) and

MS(v,D ∪W∗) ≤ (1 + C1)MS(u,D), (5.2)
15



where, setting ψ := φ−1, C1 = C1(n,D,A) is given by (see Theorem 8.1)

C1 := ‖ det∇ψ (∇ψ)−T ‖L∞(W∗;Mn). (5.3)

Let us consider a solution v̂ of the following problem:

min
{∫

D∪W∗
|∇w|2dx+Hn−1(Sw) : w ∈ SBV 2(D ∪W∗), w = u a.e. in D

}
.

Using the definition of v̂ and the estimate (5.2), we have v̂ = u a.e. in D and

MS(v̂, D ∪W∗) ≤MS(v,D ∪W∗) ≤ (1 + C1)MS(u,D). (5.4)

By a truncation argument, we can choose v̂ such that ||v̂||L∞(D∪W∗) ≤ ||u||L∞(D).
Now, for every i = 1, . . . ,M , we denote with Γi the connected component of Φ(Λi,−η/2)∩kQ

intersecting A. We notice that Γi ⊂W−∗ , for i = 1, . . . ,M . Then we set

Γ :=
M⋃
i=1

Γi ⊂W−∗ . (5.5)

For every z ∈ Γ, let %(z) be defined as %(z) := sup {% ∈ (0, µ) : B%(z) ⊂W−∗ }, where

µ :=


δ

2
if Θ2 6= ∅,

+∞ otherwise,

and let γ be given by γ := 1
2 inf{%(z) : z ∈ Γ}. Thanks to (5.1), we have γ > 0.

In the case Θ2 6= ∅ we require γ < δ/2 since, as will be clear in the sequel, we need to disconnect
the sets Ui ∩ kQ (for i = 1, . . . ,M), by covering Γ with balls of radius γ

2 .
Let ω > 0 be defined as ω := β γn−1, where β > 0 is the constant given by the Elimination

Theorem 2.5. In order to construct the required extension, we need to distinguish two cases, that
will be treated in a different way.

First case: large jump set
We assume that Hn−1(Sv̂ ∩W−∗ ) ≥ ω. Let us define Lu as

(Lu)(x) :=

{
v̂(x) if x ∈ A ∩ (D ∪W∗),
0 if x ∈ A \ (D ∪W∗).

(5.6)

It turns out that Lu ∈ SBV 2(A) and, by construction, ||Lu||L∞(A) ≤ ||v̂||L∞(D∪W∗) = ||u||L∞(D).
Moreover, using relations (5.4) and (5.9),

MS(Lu,A) ≤MS(v̂, A ∩ (D ∪W∗)) +Hn−1(∂W∗ \D)
≤MS(v̂, D ∪W∗) + C2 ω

≤ MS(v̂, D ∪W∗) + C2Hn−1(Sv̂ ∩W−∗ )
≤ max{1, C2}MS(v̂, D ∪W∗)
≤ (1 + C1) max{1, C2}MS(u,D), (5.7)

where we set

C2 :=
Hn−1(∂W∗ \D)

ω
.

Second case: small jump set
We assume that Hn−1(Sv̂ ∩W−∗ ) < ω. Let us fix i ∈ {1, . . . ,M} and z ∈ Γi, and let us consider
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the ball Bγ(z) ⊂W−∗ . Clearly, Hn−1(Sv̂ ∩Bγ(z)) ≤ Hn−1(Sv̂ ∩W−∗ ) < ω. By our definition of ω,
this implies that

Hn−1(Sv̂ ∩Bγ(z)) < β γn−1.

Hence, by Theorem (2.5) we have that Sv̂ ∩Bγ/2(z) = ∅. The same argument can be repeated for
every z ∈ Γi. Therefore we deduce that, for every i = 1, . . . ,M , the set ∆i defined as

∆i :=
⋃
z∈Γi

Bγ/2(z) ⊂W−∗

does not intersect the jump set of v̂. Moreover, by definition, ∆i is Lipschitz, connected, and
disconnects the set Ui∩kQ. Indeed, for every i = 1, . . . ,M , we can write (Ui∩kQ)\∆i = U ′i ∪U ′′i ,
where U ′i and U ′′i are open, disjoint, and ∂D ∩ ∂U ′i 6= ∅.

The situation is illustrated in Figure 8, where for simplicity we focused on the set U4 of the
previous Figure 7. Then, we define

Figure 8: In this figure we present a step-by-step construction of the set ∆4.

∆ :=
M⋃
i=1

∆i.

Notice that, by construction, ∆1, . . . ,∆M are the connected components of the set ∆. We underline
that this fact is crucial in order to get the desired extension, since we are going to apply M times
Theorem 2.1, by extending the function u from the sets ∆i.
Now, let us define the function Lu as

(Lu)(x) :=

{
v̂(x) if x ∈ A \ U ′′i for i = 1, . . . ,M,

(τiv̂)(x) if x ∈ A ∩ U ′′i for i = 1, . . . ,M,
(5.8)

where, for every i = 1, . . . ,M , τi denotes the extension operator provided by Theorem 2.1 from
H1(∆i) to H1 (∆i ∪ (∂∆i ∩ ∂U ′′i ) ∪ U ′′i ). By (2.1), we have that for every i = 1, . . . ,M∫

∆i∪(∂∆i∩∂U ′′i )∪U ′′i
|∇(τiv̂)|2dx ≤ K2

∫
∆i

|∇v̂|2dx, (5.9)

where we set
K2 := max

i=1,...,M
{k2(n,∆i,∆i ∪ (∂∆i ∩ ∂U ′′i ) ∪ U ′′i )} . (5.10)

Furthermore, up to truncation, we can always assume that the L∞ bound is preserved. Then,
Lu ∈ SBV 2(A), Lu = u a.e. on A ∩D and ||Lu||L∞(A) ≤ ||u||L∞(D).

To conclude the proof of the theorem in the case of a small jump set it remains to estimate
the Mumford-Shah functional of the extended function Lu on A in terms of the function u on D.
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By (5.4) and (5.9),

MS(Lu,A) = MS

(
v̂,

M⋃
i=1

(A \ U ′′i )

)
+

M∑
i=1

∫
A∩U ′′i

|∇(τiv̂)|2dx

≤MS(v̂, D ∪W∗) +K2

M∑
i=1

MS(v̂,∆i)

≤ max{1,K2}MS(v̂, D ∪W∗)
≤ (1 + C1) max{1,K2}MS(u,D). (5.11)

Estimate in the general case.
The function Lu defined in (5.6) and (5.8) clearly satisfies properties (i) and (ii) of Theorem 1.1.
By (5.7) and (5.11), we obtain (1.4) setting

c(n,D,A) := (1 + C1) max{1, C2,K2}.

The invariance of the constant c under translations and homotheties follows as in the proof of
Theorem 1.2.

6. General connected domains: ε-periodic extension

We now prove Theorem 1.3, stated in the Introduction. For a pictorial idea of the set E, see
Figure 9.

Figure 9: A periodic connected set with its periodicity cell. Notice that E ∩ Q is not connected and that, in this
case, k = 2.

Proof. Following closely the proof of Theorem 4.1, we define Zε, Qk, Qεk and ΩQ(ε) as in (4.2),
(4.3) and (4.4), respectively. From now on, we will consider the positive constants

M, k, ω, C1, K2, C2,

the sets
W∗, W+

∗ , W−∗ , Γ, ∆, ∆1, . . . ,∆M , U ′′1 , . . . , U
′′
M ,

and the bilipschitz function φ : W∗ → W∗ defined in the proof of Theorem 1.1, with D = E and
A = Q. We introduce also the sets

W∗ :=
N(ε)⋃
k=1

(hk +W∗), W±∗ :=
N(ε)⋃
k=1

(hk +W±∗ ),
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and the function φε : εW∗ −→ εW∗ given by

φε(y) := εφ

(
y − εhk

ε

)
+ εhk y ∈ ε(hk +W∗), k = 1, . . . N(ε).

By Corollary 3.2, the setsW∗,W±∗ are Lipschitz, and the function φε is well defined and bilipschitz.
Setting ψ := φ−1 and ψε := (φε)−1, we have

ψε(z) = εψ

(
z − εhk

ε

)
+ εhk

for every z ∈ ε(hk +W∗). Notice that

(∇zψε)(z) = (∇ψ)
(
z − εhk

ε

)
z ∈ ε(hk +W∗), k = 1, . . . N(ε), (6.1)

where ∇z denotes the gradient with respect to the variable z. Let ũ : Eε → R be defined as

ũ :=

{
u in Ω(ε),
0 in Eε \ Ω(ε).

Clearly the function ũ satisfies ũ = u in Ω(ε), ||ũ||L∞(Eε) = ||u||L∞(Ω(ε)), and

MS(ũ, Eε) ≤MS(u,Ω(ε)) +Hn−1(∂Ω). (6.2)

We define the extension v : Eε ∪ εW∗ → R as

v(x) :=

{
ũ(x) if x ∈ Eε,
ũ
(
φε(x)

)
if x ∈ εW−∗ .

It turns out that v ∈ SBV 2(Eε ∪ εW∗); moreover, by Theorem 8.1 and using (6.2),

MS(v,Eε ∪ εW∗) ≤ (1 + C1)MS(ũ, Eε) ≤ (1 + C1)
(
MS(u,Ω(ε)) +Hn−1(∂Ω)

)
, (6.3)

where, thanks to (6.1), the constant C1 is independent of ε and is given by

C1 = ‖ det∇ψ (∇ψ)−T ‖L∞(W∗;Mn) = ‖det(∇zψε) (∇zψε)−T ‖L∞(εW∗;Mn).

Consider now a solution v̂ε to the minimum problem

min
{∫

Eε∪εW∗
|∇w|2dx+Hn−1(Sw) : w ∈ SBV 2 (Eε ∪ εW∗) , w = ũ a.e. in Eε

}
.

As in the proof of Theorem 1.1, we get that ||v̂ε||L∞(Eε∪εW∗) = ||u||L∞(Ω(ε)). Moreover, since v is
a competitor for the minimum problem defining v̂ε, using (6.3) we have

MS(v,Eε ∪ εW∗) ≤MS(v̂ε, Eε ∪ εW∗) ≤ (1 + C1)MS(ũ, Eε)

≤ (1 + C1)
(
MS(u,Ω(ε)) +Hn−1(∂Ω)

)
. (6.4)

In order to construct the required extension, we divide the cubes into two groups, that will be
treated in a different way. More precisely, we enumerate the vectors h1, . . . , hN(ε) as follows:

Hn−1
(
ε(hk +W−∗ ) ∩ Sv̂ε

)
≥ ω εn−1 k = 1, . . . , N1(ε), (6.5)

where N1(ε) ∈ {0, 1, . . . , N(ε)}, and

Hn−1
(
ε(hk +W−∗ ) ∩ Sv̂ε

)
< ω εn−1 k = N1(ε) + 1, . . . , N(ε). (6.6)
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First case: large jump set.
We start proving a bound for the number N1(ε) of cubes with large jump set, showing that they
cannot be “too many” as ε approaches zero. Indeed, by (6.4) we have

MS(ũ, Eε) ≥ 1
(1 + C1)

MS(v̂ε, Eε ∪ εW∗) ≥
1

(1 + C1)
MS(v̂ε, εW∗)

≥ 1
(1 + C1)C3

N(ε)∑
k=1

MS
(
v̂ε, ε(hk +W∗) ∩ Sv̂ε

)
≥ 1

(1 + C1)C3

N1(ε)∑
k=1

Hn−1
(
ε(hk +W−∗ ) ∩ Sv̂ε

)
≥ N1(ε)ω εn−1

(1 + C1)C3
,

where, recalling that W∗ ⊂ (k + 2)Q, we denoted with C3 = C3(n,k) the smallest integer such
that each point x ∈ Rn is contained in at most C3 different cubes of the form (h+ (k + 2)Q)h∈Zn .
From the previous estimate it follows that

N1(ε) ≤ (1 + C1)C3

ω εn−1
MS(ũ, Eε). (6.7)

Second case: small jump set.
Once again, following the proof of Theorem 1.1, and defining

F :=
N(ε)⋃

k=N1(ε)+1

(hk + ∆), F ε := εF,

we have that Sv̂ε ∩ F ε = ∅. Notice that, arguing as it has been done to prove Corollary 3.2, one
can show that F is Lipschitz. We also set

G :=
N(ε)⋃

k=N1(ε)+1

M⋃
j=1

(hk + U ′′j ), Gε := εG.

Next lemma, whose proof is postponed to the Appendix, gives the correct estimate for the cubes
with “small jump set”.

Lemma 6.1. There exists an extension operator Jε : H1(F ε) → H1 (F ε ∪Gε) and a constant
C4 = C4(n,E), independent of ε and Ω, such that, for every w ∈ H1(F ε),

• Jεw = w a.e. in F ε,

• ‖Jεw‖L∞(F ε∪Gε) = ‖w‖L∞(F ε),

• the following estimate holds true:∫
F ε∪Gε

|∇(Jεw)|2dx ≤ C4

∫
F ε
|∇w|2dx.

Estimate in the general case.
Let us denote with Lεk : SBV 2(Qεk ∩ Eε) ∩ L∞(Qεk ∩ Eε) → SBV 2(Qεk) ∩ L∞(Qεk) the extension
operator provided by Theorem 1.1, with k = 1, . . . , N1(ε).

We define the function vε : ΩQ(ε)→ R as

vε(x) :=


(Lεkũ)(x) if x ∈ Qεk, k = 1, . . . , N1(ε),

(Jεv̂ε)(x) if x ∈ F ε ∪Gε,
v̂ε(x) otherwise in ΩQ(ε).
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Notice that vε = v̂ε = ũ = u a.e. in Ω(ε) and ‖vε‖L∞ΩQ(ε)) = ‖u‖L∞(Ω(ε)). Moreover,

MS(vε, Qεk) ≤ cMS(ũ, Qεk ∩ Eε) k = 1, . . . , N(ε). (6.8)

Recalling that the constant provided by Theorem 1.1 is invariant under translations and dilations,
c = c(n,E,Q) is independent of k and ε. We notice that the function vε can possibly jump
along the boundaries of the cubes Qεk, for k = 1, . . . , N1(ε), and this contribution is controlled by
N1(ε)εn−1. Therefore we have, by (6.2), (6.4), (6.7) and (6.8),

MS(vε,ΩQ(ε)) ≤
N1(ε)∑
k=1

MS(Lεkũ, Q
ε
k) +N1(ε)εn−1 +MS(Jεv̂ε, F ε ∪Gε) +MS(v̂ε, Eε ∪ εW∗)

≤ c

N1(ε)∑
k=1

MS(ũ, Qεk ∩ Eε) +
(1 + C1)C3

ω
MS(ũ, Eε) + C4MS(v̂ε, F ε) +MS(v̂ε, Eε ∪ εW∗)

≤ k0MS(ũ, Eε) ≤ k0

(
MS(u,Ω(ε)) +Hn−1(∂Ω)

)
,

where

k0 := c+ (1 + C1)
(
C3

ω
+ C4 + 1

)
.

Therefore, the claim follows setting T εu := vε|Ω.

7. Homogenization of Neumann problems

In this section we consider an application of the extension property to a non coercive homogeniza-
tion problem. The starting point is the energy associated to a function u ∈ SBV 2(Ω) ∩ L2(Ω),
i.e.,

Fε(u) :=
∫

Ω(ε)

|∇u|2dx+Hn−1(Ω(ε) ∩ Su), (7.1)

where Ω(ε) := Ω∩εE, and E is an open connected periodic subset of Rn with Lipschitz boundary.
Notice that we can rewrite the functional Fε as

Fε(u) =
∫

Ω

a
(x
ε

)
|∇u|2dx+

∫
Su

a
(x
ε

)
dHn−1(x),

where a is a Q-periodic function given by

a(y) =

{
1 in E,

0 in Rn \ E.

7.1. Compactness
In this subsection we prove a compactness result for a sequence having equibounded energy

Fε.

Theorem 7.1. Let (uε) ⊂ SBV 2(Ω) ∩ L∞(Ω) be a sequence satisfying the following bounds:

||uε||L∞(Ω(ε)) ≤ c and Fε(uε) ≤ c < +∞,

where c > 0 is a constant independent of ε. Then there exist a sequence (ũε) ⊂ SBV 2(Ω)∩L∞(Ω)
and a function u ∈ SBV 2(Ω) ∩ L∞(Ω) such that ũε = uε a.e. in Ω(ε) for every ε and (ũε)
converges to u weakly∗ in BV (Ω).

Proof. Let us define ũε := T εuε, where T ε is the extension operator defined in Theorem 1.3. Then,
from the assumptions on the sequence (uε) and using the properties of T ε we obtain

||ũε||L∞(Ω) ≤ c and MS(ũε,Ω) ≤ c < +∞.

Hence, by Ambrosio’s compactness Theorem we have directly the claim.
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7.2. Integral representation
The present subsection is devoted to the identification of the Γ-limit of the sequence (Fε) with

respect to the strong convergence in L2(Ω).
Let us define for u ∈ SBV 2(Ω) ∩ L2(Ω) the functional Fhom as

Fhom(u) :=
∫

Ω

fhom(∇u) dx+
∫
Su

ϕ(νu) dHn−1. (7.2)

The limit densities fhom : Rn → [0,+∞] and ϕ : Sn−1 → [0,+∞] are characterised by means of
homogenization formulas, as shown in the following lines. For the density of the volume term we
have:

fhom(ξ) := min
{∫

Q

a(y)| ξ +∇w(y)|2dy : w ∈ H1
#(Q)

}
, (7.3)

where H1
#(Q) denotes the space of H1(Q) functions with periodic boundary values on ∂Q. To

characterise the density of the surface term in the functional we need some preliminary definitions.
Let Qν be any unit cube in Rn with centre at the origin and one face orthogonal to ν, and set

w1,ν(x) :=

{
1 if 〈x, ν〉 ≥ 0,
0 if 〈x, ν〉 < 0.

For every λ > 0 and ν ∈ Sn−1 we denote with Pλ,ν the class of partitions of λQν , i.e.,

Pλ,ν :=
{
w ∈ SBV (λQν) : ∇w = 0 a.e., w = w1,ν on ∂λQν

}
. (7.4)

The surface density ϕ in (7.2) is characterised by the following minimisation problem:

ϕ(ν) := lim
λ→+∞

1
λn−1

min
{∫

Sw

a(y) dHn−1 : w ∈ Pλ,ν
}
. (7.5)

Theorem 7.2. The family (Fε) Γ-converges with respect to the strong topology of L2(Ω) to the
functional Fhom introduced in (7.2). More precisely for every u ∈ SBV 2(Ω)∩L2(Ω) the following
properties are satisfied:

(i) for every (uε) ⊂ SBV 2(Ω) ∩ L2(Ω) converging to u strongly in L2(Ω)

Fhom(u) ≤ lim inf
ε→0

Fε(uε),

(ii) there exists a sequence (uε) ⊂ SBV 2(Ω)∩L2(Ω) converging to u strongly in L2(Ω) such that

Fhom(u) ≥ lim sup
ε→0

Fε(uε).

For the proof of Theorem 7.2 we rely on [8, Theorem 2.3]. Due to the lack of coerciveness, we
cannot apply the results in [8] directly to the functionals Fε. So we first modify the sequence to
get the coerciveness we need, and then we obtain the stated Γ-convergence by approximation.

Let us define for η > 0 the approximating functionals Fεη : SBV 2(Ω) ∩ L2(Ω)→ [0,+∞) as

Fεη(u) =
∫

Ω

aη

(x
ε

)
|∇u|2dx+

∫
Su

aη

(x
ε

)
dHn−1,

where aη is a Q-periodic function given by

aη(y) =

{
1 if y ∈ E,
η if y ∈ Rn \ E.
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Theorem 7.3. The family (Fεη) Γ-converges with respect to the strong topology of L2(Ω) to the
functional Fhomη : SBV 2(Ω) ∩ L2(Ω)→ [0,+∞) defined as

Fhomη (u) :=
∫

Ω

fhomη (∇u) dx+
∫
Su

ϕη(νu) dHn−1.

The limit densities fhomη : Rn → [0,+∞] and ϕη : Sn−1 → [0,+∞] are identified by means of the
following homogenization formulas:

fhomη (ξ) := min
{∫

Q

aη(y)| ξ +∇w(y)|2dy : w ∈ H1
#(Q)

}
, (7.6)

ϕη(ν) := lim
λ→+∞

1
λn−1

min
{∫

Sw

aη(y) dHn−1 : w ∈ Pλ,ν
}
, (7.7)

where H1
#(Q) and Pλ,ν are defined as above.

Proof. The functionals Fεη satisfy all the assumptions required in order to apply [8, Theorem 2.3]
and hence the thesis follows directly.

Now we are ready to give the proof of Theorem 7.2.

Proof of Theorem 7.2. We split the proof into three steps.
First step: approximation. It turns out that for every u ∈ SBV 2(Ω) ∩ L2(Ω)

Fhom(u) = inf
η>0
Fhomη (u) = lim

η→0+
Fhomη (u). (7.8)

Indeed, since aη ↓ a pointwise as η → 0+, one has

fhom(ξ) = inf
η>0

fhomη (ξ) = lim
η→0+

fhomη (ξ). (7.9)

For the surface integral one can proceed as follows. Since (ϕη) is decreasing and ϕη ≥ ϕ for every
η > 0, taking the limit as η goes to zero we have directly

ϕ(ν) ≤ inf
η>0

ϕη(ν) = lim
η→0+

ϕη(ν)

for every ν ∈ Sn−1.
On the other hand, for every w ∈ Pλ,ν and for λ > 0 and ν ∈ Sn−1, the following estimate

holds true:

1
λn−1

∫
Sw∩λQν

aη(y) dHn−1 ≤ 1
λn−1

∫
Sw∩λQν

a(y) dHn−1 +
η

λn−1
Hn−1(Sw ∩ λQν). (7.10)

Let ŵ ∈ Pλ,ν be a minimiser of the cell problem (7.5) for a fixed λ (to shorten the notation
we do not make explicit the dependence of ŵ on λ and ν). In virtue of the boundary conditions
contained in the definition of Pλ,ν , we can assume ||ŵ||L∞ ≤ 1. Moreover, since the function w1,ν

is an admissible competitor in (7.5) the following bound is satisfied:

1
λn−1

∫
S bw∩λQν

a(y) dHn−1 ≤ 1
λn−1

∫
Sw1,ν∩λQν

a(y) dHn−1 ≤ 1
λn−1

Hn−1(Sw1,ν ∩ λQν) ≤ 1.

(7.11)
Moreover, by (7.10) we have in particular that

1
λn−1

∫
S bw∩λQν

aη(y) dHn−1 ≤ 1
λn−1

∫
S bw∩λQν

a(y) dHn−1 +
η

λn−1
Hn−1(S bw ∩ λQν). (7.12)
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Notice that, from the definition of the class Pλ,ν (see (7.4)), we can rewrite∫
S bw∩λQν

a(y) dHn−1 = MS(ŵ, λQν ∩ E). (7.13)

In order to estimate the right-hand side of (7.12) we apply Theorem 1.3 to the restriction of the
function ŵ to λQν ∩ E in the following way.

We define the function wλ(y) := (1/
√
λ)ŵ(λy). By Theorem 1.3 the function wλ |

Qν∩
(

1
λE
)

admits an extension T
1
λwλ |

Qν∩
(

1
λE
) to the whole Qν satisfying

MS

(
T

1
λwλ |

Qν∩
(

1
λE
), Qν) ≤ k0

(
MS

(
wλ, Qν ∩

(
1
λE
))

+Hn−1(∂Qν)
)
. (7.14)

At this point, for x ∈ λQν , we can define w̃λ as

w̃λ(x) :=
√
λ (T

1
λwλ |

Qν∩
(

1
λE
))(x

λ

)
,

and from (7.14) we have directly the estimate

MS(w̃λ, λQν) = λn−1MS(T
1
λwλ |

Qν∩
(

1
λE
), Qν)

≤ λn−1k0

(
MS

(
wλ, Qν ∩

(
1
λE
))

+Hn−1(∂Qν)
)

= k0

(
MS(ŵ, λQν ∩ E) +Hn−1(∂λQν)

)
.

This implies in particular that

Hn−1(S ewλ ∩ λQν) ≤ k0

∫
S bw∩λQν

a(y) dHn−1 + k0λ
n−1,

where we used (7.13). The previous estimate and (7.11) imply that

1
λn−1

Hn−1(S ewλ ∩ λQν) ≤ 2k0. (7.15)

Since ŵ = w̃λ a.e. in λQν ∩ E, it turns out that also the function w̃λ is a minimiser of the
cell problem (7.5). Therefore we can assume without loss of generality that (7.15) holds for the
function ŵ and we obtain from (7.10) and (7.12)

1
λn−1

min
w∈Pλ,ν

∫
Sw∩λQν

aη(y) dHn−1 ≤ 1
λn−1

min
w∈Pλ,ν

∫
Sw∩λQν

a(y) dHn−1 + 2k0η.

If we let λ→ +∞ and then η → 0+ we get

ϕ(ν) = inf
η>0

ϕη(ν) = lim
η→0+

ϕη(ν). (7.16)

Hence, from (7.9), (7.16) and monotone convergence we obtain (7.8).
Second step: liminf inequality (i). Let u ∈ SBV 2(Ω)∩L2(Ω) and let (uε) ⊂ SBV 2(Ω)∩L2(Ω)

be a sequence converging to u strongly in L2(Ω) and such that Fε(uε) ≤ c, where c is a constant
independent of ε. Let ` > 0 and define the truncated functions T`u :=

(
u ∧ `

)
∨ (−`), and T`uε,

for every ε > 0. Then clearly T`uε converges to T`u strongly in L2 and Fε(T`uε) ≤ c. For every
ε > 0 let us consider the restriction T`uε |Ωε of the function T`uε to the perforated set Ωε. Let
T ε (T`uε |Ωε) be the extension of T`uε |Ωε to the set Ω provided by Theorem 4.1. By property (iii)
of the quoted theorem it follows that

MS (T ε (T`uε |Ωε) ,Ω) ≤ k0

(
Fε (T`uε) +Hn−1(∂Ω)

)
. (7.17)
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We also notice that

Fεη (T ε (T`uε |Ωε)) ≤ Fε(T ε(T`uε |Ωε)) + ηMS (T ε(T`uε |Ωε),Ω)

= Fε (T`uε) + ηMS (T ε(T`uε |Ωε),Ω)

which implies, together with (7.17), that

Fεη (T ε (T`uε |Ωε)) ≤ (1 + η k0)Fε(T`uε) + η k0Hn−1(∂Ω). (7.18)

We notice that the sequence (T ε (T`uε |Ωε)) converges to T`u strongly in L2 as ε→ 0. Indeed, by
Ambrosio’s Compactness Theorem, there exists w ∈ SBV 2(Ω) ∩ L∞(Ω) such that (T ε (T`uε |Ωε))
converges to w weakly∗ in BV (Ω), and in particular strongly in L1(Ω). Moreover, from the
equiboundedness of the sequence (T ε (T`uε |Ωε)) in L∞ we have the convergence in L2. We claim
that w = T`u a.e. in Ω. This follows by the Riemann-Lebesgue Lemma, as

0 = lim
ε→0

∫
Ω

a
(x
ε

) ∣∣T ε (T`uε |Ωε)− T`uε
∣∣dx = ϑ

∫
Ω

|w − T`u| dx,

where ϑ > 0 is the weak-∗ limit of a( ·ε ) in L∞(Ω). From the previous expression we conclude
immediately that w = T`u a.e. on Ω. Therefore, from (7.18) and from Theorem 7.3 we get

Fhomη (T`u) ≤ lim inf
ε→0

Fεη (T ε (T`uε |Ωε)) ≤ (1 + η k0) lim inf
ε→0

Fε(T`uε) + η k0Hn−1(∂Ω),

that holds true for every η > 0 and ` > 0. If we now let η → 0+ in the previous expression,
recalling (7.8) we have

Fhom(T`u) = lim
η→0+

Fhomη (T`u) ≤ lim inf
ε→0

Fε(T`uε). (7.19)

Moreover, since Fε(T`uε) ≤ Fε(uε) for every ` > 0 and (T`u) converges to u strongly in L2 as
`→ +∞, (7.19) implies that

Fhom(u) ≤ lim inf
`→+∞

Fhom(T`u) ≤ lim inf
ε→0

Fε(uε),

where the first inequality follows by the lower semicontinuity of Fhom in L2.
Third step: limsup inequality (ii). In this case we simply use the trivial estimate

Fεη ≥ Fε. (7.20)

Indeed, let u ∈ SBV 2(Ω)∩L2(Ω) and let (uε) ⊂ SBV 2(Ω)∩L2(Ω) be a recovery sequence for the
functionals Fεη . Then

Fhomη (u) = lim sup
ε→0

Fεη(uε) ≥ lim sup
ε→0

Fε(uε).

This implies in particular that

Fhom(u) = inf
η>0
Fhomη (u) ≥ lim sup

ε→0
Fε(uε),

and therefore the proof is concluded.

7.3. Γ-convergence under Dirichlet conditions
This subsection is devoted to the proof of a result which is a version of Theorem 7.2 that takes

into account boundary data.
We need a preliminary observation concerning the approximating coercive functionals Fεη . First

of all let us fix ψ ∈ H1(Rn) and a set Ω̃ with Ω ⊂⊂ Ω̃.
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We define the densities fεη : Ω̃× Rn → [0,+∞] and gεη : Ω̃→ [0,+∞] as

fεη (x, ξ) :=

aη
(x
ε

)
|ξ|2 if x ∈ Ω,

|ξ|2 if x ∈ Ω̃ \ Ω,
gεη(x) :=

aη
(x
ε

)
if x ∈ Ω,

2 if x ∈ Ω̃ \ Ω.

Therefore we define the sequence of functionals F̃εη on SBV 2
(
Ω̃
)

as

F̃εη(u) :=
∫

eΩ f
ε
η (x,∇u) dx+

∫
Su

gεη(x) dHn−1.

Using Theorem 7.3, it is easy to verify that F̃εη Γ- converges with respect to the strong L2 topology
to F̃η, where

F̃η(u) :=
∫

eΩ fη(x,∇u) dx+
∫
Su

gη(x, νu) dHn−1,

and the limit densities fη and gη satisfy the relations

fη(x, ξ) =

{
fhomη (ξ) if x ∈ Ω,

|ξ|2 if x ∈ Ω̃ \ Ω,
gη(x, ν) =

ϕη(ν) if x ∈ Ω,

2 if x ∈ Ω̃ \ Ω,

fhomη and ϕη being defined in (7.6) and (7.7), respectively.

Lemma 7.4. The functionals F̃εη,ψ defined on SBV 2
(
Ω̃
)

as

F̃εη,ψ(u) :=

{
F̃εη(u) if u = ψ on Ω̃ \ Ω,
+∞ otherwise

Γ-converge with respect to the strong L2 topology to the functional F̃η,ψ given by

F̃η,ψ(u) :=

{
F̃η(u) if u = ψ on Ω̃ \ Ω,
+∞ otherwise.

Proof. We omit the proof, which can be directly obtained by [18, Lemma 7.1].

Using the same notation adopted so far, we can define the functionals F̃ε on SBV 2
(
Ω̃
)

as

F̃ε(u) :=
∫

eΩ f
ε(x,∇u) dx+

∫
Su

gε(x) dHn−1,

where fε : Ω̃× Rn → [0,+∞], gε : Ω̃→ [0,+∞] are given by

fε(x, ξ) :=

a
(x
ε

)
|ξ|2 if x ∈ Ω,

|ξ|2 if x ∈ Ω̃ \ Ω,
gε(x) :=

a
(x
ε

)
if x ∈ Ω,

2 if x ∈ Ω̃ \ Ω.

We can finally state the Γ-convergence result for the functionals F̃ε under Dirichlet boundary
conditions. Notice that F̃ε |SBV 2(Ω)= Fε |SBV 2(Ω), Fε being defined in (7.1).

Theorem 7.5. The functionals F̃εψ defined on SBV 2
(
Ω̃
)

as

F̃εψ(u) :=

{
F̃ε(u) if u = ψ on Ω̃ \ Ω,
+∞ otherwise
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Γ-converge with respect to the strong L2 topology to the functional F̃ψ given by

F̃ψ(u) :=

{
F̃(u) if u = ψ on Ω̃ \ Ω,
+∞ otherwise.

The limit functional F̃ is defined as

F̃(u) :=
∫

eΩ f(x,∇u) dx+
∫
Su

g(x, νu) dHn−1,

where the limit densities f : Ω̃× Rn → [0,+∞] and g : Ω̃× Sn−1 → [0,+∞] satisfy

f(x, ξ) =

{
fhom(ξ) if x ∈ Ω,

|ξ|2 if x ∈ Ω̃ \ Ω,
g(x, ν) =

ϕ(ν) if x ∈ Ω,

2 if x ∈ Ω̃ \ Ω,

fhom and ϕ being defined in (7.3) and (7.5), respectively.

Proof. The convergence is a direct consequence of Lemma 7.4 and Theorem 7.2.

8. Appendix

In this last section we prove some technical results that have been used in the paper.
First, we show in a rigorous way an integral estimate for the composition of an SBV function
with a bilipschitz map. This provides a stability result for the Mumford-Shah functional under
bilipschitz transformations of the domain. More precisely, we have the following theorem.

Theorem 8.1. Let W,W ′ be bounded open subsets of Rn with Lipschitz boundary, let φ : W ′ →
W be a bilipschitz function and let us set ψ := φ−1. For every u ∈ SBV 2(W ), let us define
the function v : W ′ → R as v(x) := u(φ(x)). Then, for every u ∈ SBV 2(W ) we have that
v ∈ SBV 2(W ′) and∫

W ′
|∇v|2dx+Hn−1(Sv) ≤ C1

(∫
W

|∇u|2dx+Hn−1(Su)
)
, (8.1)

where
C1 := ‖ det∇ψ (∇ψ)−T ‖L∞(W ;Mn). (8.2)

Proof. It is well known that the function v belongs to SBV (W ′) (see for example [5]). In order
to prove the estimate (8.1), we split the proof into two steps.

First step: approximation of u.
As first step we approximate u with more regular functions and we prove the claim for the ap-
proximating functions. More precisely, let (uh) be the sequence provided by Theorem 2.6, and set
vh := uh ◦ φ. We claim that relation (8.1) holds true for the functions vh, i.e. that∫

W ′
|∇vh|2dy +Hn−1(Svh) ≤ C1

(∫
W

|∇uh|2dx+Hn−1(Suh)
)

h ∈ N, (8.3)

where C1 is defined in (8.2). Let us set ψ := φ−1. By property (iii) of Theorem 2.6 we can apply
the standard chain rule and we get

∇vh = (∇φ)T (∇uh ◦ φ) Ln-a.e. on W ′ \ ψ(S̄uh),

that is, since ψ maps Ln-negligible sets into Ln-negligible sets,

∇vh = (∇φ)T (∇uh ◦ φ) Ln-a.e. on W ′. (8.4)
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Notice that, from the fact that (φ ◦ ψ)(x) = x for every x ∈W , we get

(∇φ ◦ ψ)∇ψ = Id⇐⇒ (∇φ ◦ ψ) = (∇ψ)−1.

Using last relation, (8.4) and the change of variables formula for integrals we have∫
W ′
|∇vh|2dy =

∫
ψ(W )

|(∇φ)T (∇uh ◦ φ)|2dy =
∫
W

|det∇ψ (∇φ ◦ ψ)T∇uh|2dx

=
∫
W

|det∇ψ (∇ψ)−T ∇uh|2dx ≤ C1

∫
W

|∇uh|2dx. (8.5)

To estimate the measure of the jump set of vh, we use the generalized area formula (see [5, Theorem
2.91]). Since Svh = ψ(Suh), we obtain

Hn−1(Svh) =
∫
ψ(Suh )

1 dHn−1 =
∫
Suh

|det∇ψ (∇ψ)−T [νh]| dHn−1 ≤ C1Hn−1(Suh), (8.6)

where νh denotes the normal to Suh . Therefore (8.3) follows from (8.5) and (8.6).
Second step: limit estimate.

It remains to pass to the limit in (8.3) as h → +∞. For the right-hand side the convergence is
given by property (v) of Theorem 2.6. So we reduced to prove the following result:∫

W ′
|∇v|2dy +Hn−1(Sv) ≤ lim inf

h→+∞

(∫
W ′
|∇vh|2dy +Hn−1(Svh)

)
. (8.7)

The lack of a uniform L∞ bound for the sequence (vh) forces us to use a truncation argument in
order to apply Ambrosio’s compactness theorem. Hence, let M > 0 and define vMh := (vh ∧M) ∨
(−M); clearly, vMh → vM := (v ∧M) ∨ (−M) strongly in L2(W ′) as h → +∞. By Ambrosio’s
compactness theorem we have that vMh ⇀ vM weakly∗ in BV (W ′). At this point, by Ambrosio’s
lower semicontinuity theorem we obtain the following inequality:∫

W ′
|∇vM |2dy +Hn−1(SvM ) ≤ lim inf

h→+∞

(∫
W ′
|∇vMh |2dy +Hn−1(SvMh )

)
. (8.8)

It is immediate to notice that∫
W ′
|∇vMh |2dy +Hn−1(SvMh ) ≤

∫
W ′
|∇vh|2dy +Hn−1(Svh).

Therefore, using last relation we can pass to the liminf as h→ +∞ in (8.8) and∫
W ′
|∇vM |2dy +Hn−1(SvM ) ≤ lim inf

h→+∞

(∫
W ′
|∇vh|2dy +Hn−1(Svh)

)
. (8.9)

Now we let M tend to +∞ in order to pass from (8.9) to (8.7). We treat separately the volume
term and the surface integral in the left-hand side of (8.9). For the jump set we simply notice
that, being M 7→ SvM an increasing function and Sv = ∪MSvM , we have the convergence

Hn−1(Sv) = lim
M→+∞

Hn−1(SvM ).

For the volume integral we point out that, from the chain rule formula in BV , we can write the
explicit expression of the absolutely continuous gradient of the truncated function vM as

∇vM =

{
∇v if |v| < M,

0 otherwise.

At this point, by Lebesgue dominated convergence theorem we get∫
W ′
|∇v|2dy = lim

M→+∞

∫
W ′
|∇vM |2dy,

and the proof is concluded.
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Proof of Lemma 6.1. Let v : F → R be defined as v(y) := w(εy); we will prove the existence of
an extension ṽ ∈ H1(F ∪ (∂F ∩ ∂G) ∪G) for the rescaled function v, satisfying∫

F∪(∂F∩∂G)∪G
|∇ṽ|2dx ≤ C4

∫
F

|∇v|2dx, (8.10)

where C4 = C4(n,E) is a positive constant independent of ε and Ω. From this the conclusion will
follow by rescaling back the function ṽ, i.e., setting (Jεw)(x) := ṽ(ε−1x). Let us prove (8.10).

Without loss of generality, we assume that F has only one connected component. In this case,
also G is connected. By definition of F and G, up to a possible change in the enumeration of the
vectors hk’s, there exists an integer ` ∈ N (depending on ε) such that

F =
⋃̀
k=1

(
hk + ∆i1(k) ∪ . . . ∪∆ipk (k)

)
and G =

⋃̀
k=1

(
hk + U ′′i1(k) ∪ . . . ∪ U

′′
ipk (k)

)
,

where pk ∈ {1, . . . ,M} and 1 ≤ i1(k) < . . . < ipk(k) ≤M for every k = 1, . . . , `.
We will adapt to the present situation the proof of [1, Lemma 2.7]. For every i = 1, . . . ,M , let

us consider a nonnegative function ϕi ∈ C∞0 (Rn) such that

• supp ϕi ⊂⊂ (k + 1)Q \
(⋃

j 6=i ∆j ∪ U ′′j
)

• ϕi > 0 in (k + 1)Q ∩
(
∆i ∪ (∂∆ ∩ ∂U ′′j ) ∪ U ′′i

)
.

We construct a partition of unity {ψkj }
k=1,...,`
j=i1(k),...,ipk (k) associated to the family of open sets {hk +

(k + 1)Q ∩
(
∆j ∪ (∂∆ ∩ ∂U ′′j ) ∪ U ′′j

)
}k=1,...,`
j=i1(k),...,ipk(k)

by defining

ψkj (x) :=
ϕj(x− hk)∑̀

r=1

ipr (r)∑
i=i1(r)

ϕi(x− hr)

, for every x ∈ Rn.

This implies in particular that

∑̀
k=1

ipk (k)∑
j=i1(k)

ψkj (x) = 1 for every x ∈ F1 ∪G1. (8.11)

Let C5 = C5(n,E) be a positive constant such that

|ψkj (x)|+ |∇ψkj (x)| ≤ C5, for every k, j, for every x ∈ Rn.

For every k = 1, . . . , ` and j = i1(k), . . . , ipk(k), let us denote with τj,k the extension operator
provided by Theorem 2.1 from H1(hk + ∆j) to H1

(
hk + ∆j ∪ (∂∆j ∩ ∂U ′′j ) ∪ U ′′j

)
.

By (2.1), using the invariance of the constant k2 under translations, we have that for every
k = 1, . . . , ` and j = i1(k), . . . , ipk(k)∫

hk+∆j∪(∂∆j∩∂U ′′j )∪U ′′j
|∇(τj,kv)|2dx ≤ K2

∫
hk+∆j

|∇v|2dx, (8.12)

where, in analogy with (5.10), we set K2 := maxi=1,...,M

{
k2(n,∆j , U

′′
j )
}

. We define now

ṽ(x) :=
∑̀
r=1

ipr (r)∑
j=i1(r)

ψrj (x)(τj,rv)(x) for every x ∈ F ∪G.

29



In order to show the estimate for the L2-norm of the gradient, let us fix s ∈ {1, . . . , `} (i.e., we
fix a cube) and k ∈ {i1(s), . . . , ips(s)} (i.e., we fix the connected component of ∆ in the cube).
Moreover, let I(B) be defined as

I(B) := {α ∈ Zn : (α+ (k + 1)Q) ∩B 6= ∅},

for every open set B. We have∫
hs+(∆k∪U ′′k )

|∇ṽ|2dx ≤ 2
∫
hs+(∆k∪U ′′k )

∣∣∣∣∣ ∑
hr∈I((k+1)Qs)
r=1,...,`

ipr (r)∑
j=i1(r)

ψrj∇(τj,rv)

∣∣∣∣∣
2

dx

+ 2
∫
hs+(∆k∪U ′′k )

∣∣∣∣∣ ∑
hr∈I((k+1)Qs)
r=1,...,`

ipr (r)∑
j=i1(r)

∇ψrj (τj,rv)

∣∣∣∣∣
2

dx, (8.13)

where we used the fact that hs + (∆k ∪U ′′k ) ⊂ (k + 1)Qs. Let N denote the cardinality of the set
I((k + 1)Qs). Concerning the first term in the right-hand side of (8.13) we have, using (8.12),∫
hs+(∆k∪U ′′k )

∣∣∣∣∣ ∑
hr∈I((k+1)Qs)
r=1,...,`

ipr (r)∑
j=i1(r)

ψrj∇(τj,rv)

∣∣∣∣∣
2

dx ≤ N
∑

hr∈I((k+1)Qs)
r=1,...,`

∫
hs+(∆k∪U ′′k )

∣∣∣∣∣
ipr (r)∑
j=i1(r)

ψrj∇(τj,rv)

∣∣∣∣∣
2

dx

≤ NM
∑

hr∈I((k+1)Qs)
r=1,...,`

ipr (r)∑
j=i1(r)

∫
(hs+(∆k∪U ′′k ))∩((k+1)Qr\

S
i6=j(hr+(∆i∪U ′′i )))

∣∣ψrj∇(τj,rv)
∣∣2dx

= NM
∑

hr∈I((k+1)Qs)
r=1,...,`

ipr (r)∑
j=i1(r)

∫
(hs+(∆k∪U ′′k ))∩(hr+(∆j∪U ′′j ))

∣∣ψrj∇(τj,rv)
∣∣2dx,

where we used the definition of ψrj and the fact that

(hs + (∆k ∪ U ′′k )) ∩ (k + 1)Qr ⊂ (hs + (∆k ∪ U ′′k )) ∩
(⋃

i

(
hr + (∆i ∪ U ′′i )

))
. (8.14)

Now, applying (8.12), from the previous chain of inequalities we obtain∫
hs+(∆k∪U ′′k )

∣∣∣∣∣ ∑
hr∈I((k+1)Qs)
r=1,...,`

ipr (r)∑
j=i1(r)

ψrj∇(τj,rv)

∣∣∣∣∣
2

dx ≤ NMK2

∑
r∈I((k+1)Qs)
r=1,...,`

ipr (r)∑
j=i1(r)

∫
hr+∆j

|∇v|2dx

≤ NM2K2

∑
hr∈I((k+1)Qs)
r=1,...,`

∫
hr+∆i1(r)∪...∪∆ipr (r)

|∇v|2dx ≤ NM2K2

∑
hr∈I((k+1)Qs)
r=1,...,`

∫
pQs∩F

|∇v|2dx

≤ N2M2K2

∫
pQs∩F

|∇v|2dx, (8.15)

where p = p(n,k) ∈ N is the smallest integer such that
⋃
hr∈I((k+1)Qs)

(k+1)Qr ⊆ pQs. Summing
up relation (8.15) with respect to s and k:

∑̀
s=1

ips (s)∑
k=i1(s)

∫
hs+(∆k∪U ′′k )

∣∣∣∣∣ ∑
hr∈I((k+1)Qs)
r=1,...,`

ipr (r)∑
j=i1(r)

ψrj∇(τj,rv)

∣∣∣∣∣
2

dx ≤ N2M2K2

∑̀
s=1

ips (s)∑
k=i1(s)

∫
pQs∩F

|∇v|2dx

≤ N2M3K2

∑̀
s=1

∫
pQs∩F

|∇v|2dx ≤ C6N
2M3K2

∫
F

|∇v|2dx, (8.16)
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where C6 = C6(n,k) is a constant depending only on k and n, such that each point x ∈ Rn is
contained in at most C6 cubes of the form (h+ pQ)h∈Zn .
Let now study the second term of (8.13). From the fact that, by (8.11),

∑
hr∈I((k+1)Qs)
r=1,...,`

ipr (r)∑
j=i1(r)

∇ψrj (x) = 0 for every x ∈ F ∪G,

we have ∑
hr∈I((k+1)Qs)
r=1,...,`

ipr (r)∑
j=i1(r)

∇ψrj (τj,rv) =
∑

hr∈I((k+1)Qs)
r=1,...,`

ipr (r)∑
j=i1(r)

∇ψrj (τj,rv − τk,sv) a.e. in F ∪G.

Then last relation, together with (8.14), implies∫
hs+(∆k∪U ′′k )

∣∣∣∣∣ ∑
hr∈I((k+1)Qs)
r=1,...,`

ipr (r)∑
j=i1(r)

∇ψrj (τj,rv)

∣∣∣∣∣
2

dx

≤ N
∑

hr∈I((k+1)Qs)
r=1,...,`

∫
hs+(∆k∪U ′′k )

∣∣∣∣∣
ipr (r)∑
j=i1(r)

∇ψrj (τj,rv − τk,sv)

∣∣∣∣∣
2

dx

≤ NM
∑

hr∈I((k+1)Qs)
r=1,...,`

ipr (r)∑
j=i1(r)

∫
(hs+(∆k∪U ′′k ))∩(hr+(∆j∪U ′′j ))

∣∣∇ψrj (τj,rv − τk,sv)
∣∣2 dx

≤ NMC2
5

∑
hr∈I((k+1)Qs)
r=1,...,`

ipr (r)∑
j=i1(r)

∫
(hs+(∆k∪U ′′k ))∩(hr+(∆j∪U ′′j ))

|τj,rv − τk,sv|2dx.

Notice that, if (hs + ∆k) ∩ (hr + ∆j) 6= ∅, then τj,rv − τk,sv = 0 a.e. in (hs + ∆k) ∩ (hr + ∆j).
Thus, by Poincaré inequality in (hs+(∆k ∪U ′′k ))∩ (hr +(∆j ∪U ′′j )), and summing up last relation
with respect to s and k, we get

∑̀
s=1

ips (s)∑
k=i1(s)

∫
hs+(∆k∪U ′′k )

∣∣∣∣∣ ∑
hr∈I((k+1)Qs)
r=1,...,`

ipr (r)∑
j=i1(r)

(τj,rv)∇ψrj

∣∣∣∣∣
2

dx

≤ NMC2
5CP

∑̀
s=1

ips (s)∑
k=i1(s)

∑
hr∈I((k+1)Qs)
r=1,...,`

ipr (r)∑
j=i1(r)

∫
(hs+(∆k∪U ′′k ))∩(hr+(∆j∪U ′′j ))

|∇(τj,rv)−∇(τk,sv)|2dx

≤ 2NMC2
5CPK2

∑̀
s=1

ips (s)∑
k=i1(s)

∑
hr∈I((k+1)Qs)
r=1,...,`

ipr (r)∑
j=i1(r)

[∫
hs+∆k

|∇v|2 dx+
∫
hr+∆j

|∇v|2 dx

]
, (8.17)

where the constant CP = CP (n,E) does not depend on s, k, r and j.
Regarding the first term in the right-hand side of (8.17), we have

∑̀
s=1

ips (s)∑
k=i1(s)

∑
hr∈I((k+1)Qs)
r=1,...,`

ipr (r)∑
j=i1(r)

∫
hs+∆k

|∇v|2dx ≤ NM
∑̀
s=1

ips (s)∑
k=i1(s)

∫
hs+∆k

|∇v|2dx

≤ NM2
∑̀
s=1

∫
hs+∆i1(s)∪...∪∆ips (s)

|∇v|2dx ≤ NM2C7

∫
F

|∇v|2dx, (8.18)
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where C7 = C7(n,k) is a constant depending only on k and n, such that each point x ∈ Rn is
contained in at most C7 different cubes of the form (h+ (k + 1)Q)h∈Zn .

Similarly, for the last term in the right-hand side of (8.17) we have

∑̀
s=1

ips (s)∑
k=i1(s)

∑
hr∈I((k+1)Qs)
r=1,...,`

ipr (r)∑
j=i1(r)

∫
hr+∆j

|∇v|2dx ≤M
∑̀
s=1

∑
hr∈I((k+1)Qs)
r=1,...,`

ipr (r)∑
j=i1(r)

∫
hr+∆j

|∇v|2dx

≤M2
∑̀
s=1

∑
hr∈I((k+1)Qs)
r=1,...,`

∫
hr+∆i1(r)∪...∪∆ipr (r)

|∇v|2dx ≤M2
∑̀
s=1

∑
hr∈I((k+1)Qs)
r=1,...,`

∫
pQs∩F

|∇v|2dx

≤M3
∑̀
s=1

∫
pQs∩F

|∇v|2dx ≤M3C6

∫
F

|∇v|2dx. (8.19)

Collecting relations (8.13), (8.16), (8.18) and (8.19) we get the conclusion.
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[22] Tartar L.: Cours Peccot au Collège de France, Paris, 1977 (unpublished).

33


