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Abstract. We study the asymptotic behaviour of dilute spin lattice energies by exhibiting a
continuous interfacial limit energy computed using the notion of Γ-convergence and techniques
mixing Geometric Measure Theory and Percolation while scaling to zero the lattice spacing. The
limit is not trivial above a percolation threshold. Since the lattice energies are not equi-coercive a
suitable notion of limit magnetization must be defined, which can be characterized by two phases
separated by an interface. The macroscopic surface tension at this interface is characterized through
a first-passage percolation formula, which highlights interesting connections between variational
problems and percolation issues. A companion result on the asymptotic description on energies
defined on paths in a dilute environment is also given.
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1 Introduction

The study of continuous limits of spin systems in a variational setting (Γ-convergence) is linked to
recent progress in the understanding of phase segregation and the validity of the Wulff construction
for Ising-type models through a L1 approach (see, e.g., [1, 4, 5, 6, 7, 8, 15, 16, 17]). The advantage
of this approach is in that it can be implemented in high dimension, even though it provides only
L1 estimates, contrary to other approaches giving sharper controls of the phase boundaries but
limited to two dimensions (see eg. [19, 23, 24, 25, 29, 30]).

The variational counterpart (as a zero-temperature approximation) of the L1 approach is the
asymptotic analysis of some lattice energies, which shows phase segregation through the description
of their Γ-limit as a surface energy between two phases and the identification of a surface tension
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between such phases. In the case of dilute spin systems the energy under examination is of the form

−
∑
ij

σωijuiuj ,

where ui ∈ {±1} is a spin variable indexed on the lattice Zd, the sum runs on nearest neighbors in
a given portion D ∩ Zd of Zd, the coefficients σωij depend on the realization ω of an i.i.d. random
variable, and

σωij =
{

1 with probability p
0 with probability 1− p ,

with p ∈ [0, 1] fixed. In order to describe the behaviour as the size of D diverges we introduce
a scaled problem, as is customary in the passage from lattice systems to continuous variational
problems, in which, on the contrary, D is kept fixed, but scaled energies are defined as follows. A
small parameter ε > 0 is introduced, the lattice is scaled accordingly to εZd, and the energies are
scaled (after adding proper random constants and multiplying by 2) to∑

ij

εd−1σωij(ui − uj)2 .

Note that considering (ui−uj)2 in place of −uiuj is merely technical and amounts to the translation
of the energies so that uniform states (which are pointwise minimizers of the ‘integrand’) have zero
energy; moreover, the ‘surface scaling’ εd−1 is driven by the knowledge that for p = 1 (i.e., for
ferromagnetic interactions) the Γ-limit with that scaling is not trivial (as shown e.g. by Alicandro,
Braides and Cicalese [2]). After this scaling, the sum is taken on nearest neighbors in D∩ εZd, and
the normalization allows also to consider D = Zd .

The corse graining of these energies corresponds to a general approach in the theory of Γ-
convergence for lattice system where the discrete functions u = {ui} are identified with their
piecewise-constant extensions, and the scaled lattice energies with energies on the continuum whose
asymptotic behaviour is described by taking L1-limits in the u variable and applying a mesoscopic
homogenization process to the energies. The comparison with the case p = 1 ensures that the limit
is finite (but possibly trivial) on u with ∂{u = 1} of finite area in D. A general theory for interfacial
energies by Ambrosio and Braides [3] suggests the identification with functionals of the form∫

D∩∂{u=1}
ϕ(x, ν)dHd−1 ,

with ν the normal to ∂{u = 1}. In the dilute case, however, neither the existence of an average
macroscopic magnetization (the L1 limit of the u) nor the definition of a limit surface tension follow
from this general theory. They can instead be translated in almost-sure properties of the corre-
sponding Bernoulli bond percolation model, and completely described in dimension two. Below the
percolation threshold the energy is indeed trivial (the Γ-limit identically vanishing on its domain),
since interfaces with zero energy are asymptotically L1-dense. Above the percolation threshold
instead the coarse graining leads first to showing that indeed we may define a limit magnetization
u taking values in {±1}. This u is obtained as a L1-limit on the scaled infinite strong cluster, thus
neglecting the values ui on nodes i isolated from that cluster. It must be noted that this limit
variable can be alternatively thought as a renormalization of the ‘effective magnetization’ (the one
obtained by local averages; i.e., as the weak L1 limit of the spins on the scaled lattices). This effec-
tive magnetization does not take only the values ±1 but may take all values u with |u| ∈ [meff , 1],
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where meff is the limit (almost sure) deterministic average (depending only on p) of the function
taking the value 1 on points connected to the strong cluster, and −1 elsewhere. The surface tension
is obtained by optimizing the almost sure contribution of the interfaces, and showing that it can
be expressed as a first-passage percolation problem, so that the limit is of the form∫

D∩∂{u=1}
ϕp(ν)dH1 .

This type of variational percolation result can be linked to an earlier paper by the authors [13] where
discrete fracture is studied and linked to large deviations for the chemical distance in supercritical
Bernoulli percolation, thus showing a stimulating interaction between Variational Calculus and
Percolation theory.

The paper is organized as follows. After briefly setting notation in Section 2, in Section 3.1
we prove some asymptotic properties of connected subsets of points in the underlying percolation
model, and deduce the coerciveness of energies in the supercritical case p > 1/2. The convergence
theorem is then proved in Section 3.2 by a blow-up argument, which corresponds to a coarse
graining at the interfaces, which uses geometric measure theoretical properties and the description
of (optimal) interfaces through a first-passage percolation formula. Section 4 deals briefly with the
subcritical and critical regimes. Finally, in Section 5 we give a ‘dual’ result for the asymptotic
behaviour of paths whose energy is the counterpart of the interfacial energy above. We give an
almost-sure representation for the limit as an integral on continuous paths of the form∫ L

0

ψp(γ′) dt

for all 0 < p < 1. The shape of ψp is linked to properties of first-passage percolation in the
supercritical case and of the chemical distance in supercritical Bernoulli percolation in the subcritical
regime.

2 Setting of the problem

We use the notation for bond-percolation problems in [13] Section 2.4, and introduce coefficients

σωẑ =
{

1 if ξẑ(ω) = 1
0 otherwise,

where

ξẑ =
{

0 (‘weak’) with probability 1− p,
1 (‘strong’) with probability p (1)

We also write σωẑ = σωij , after identifying each ẑ with a pair of nearest neighbours in Z2.
Correspondingly, we consider the energies

Eωε (u) =
1
8

∑
i,j∈Dε

ε σωij(ui − uj)2

defined on u : Dε → {±1}, where we use the notation Dε = D ∩ εZ2, and D is an open subset of
R2. The factor 8 is a normalization factor due to the fact that each bond is accounted for twice
and (ui − uj)2 ∈ {0, 4}.
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The case p = 1 corresponds to a ferromagnetic spin system, which can be described approxi-
mately as ε→ 0 by the anisotropic perimeter energy (see [2])

F 1(u) =
∫
∂∗{u=1}∩D

‖νu‖1dH1

defined on u ∈ BV (D; {±1}) (∂∗{u = 1} denotes the measure-theoretical reduced boundary of the
set of finite perimeter {u = 1} and νu its inner normal; see e.g. [9]). In this approximation we
identify each function u : Dε → {±1} with the set A =

⋃
{εi+εQ : i ∈ Dε : ui = 1} or the function

u ∈ BV (D; {±1}) given by u = 2χA − 1.

3 The supercritical regime: p > 1/2

If p > 1/2 the strong cluster is denoted by Sω. We define

Zω = {i ∈ Z2 : ∃j ∈ Z2 such that ẑ(i, j) ∈ Sω}

and
W =Wω =

⋃{
i+Q : i ∈ Zω},

where Q denotes the coordinate (semi-open) unit square in R2 centered in 0.
We will use the following terminology:
• a path of points in Z2 is a finite or infinite sequence {ik : k = 0, 1, . . .} such that |ik− ik+1| = 1

for all k = 0, 1, . . .
• the boundary of a set I ⊂ Z2 is {i ∈ I : ∃j ∈ Z2 \ I : |i− j| = 1};
• the interior of a bounded set I ⊂ Z2 is the set of points i such that there is no unbounded

path with starting point i (i.e., such that i0 = i) not intersecting the boundary of I. Note that the
interior of I may contain also points not in I;
• the size of a bounded subset I ⊂ Z2 is the cardinality of its interior.
Note that the definition of “interior” of a discrete set I given here (the reader will excuse

the abuse of notation with the topological notion) corresponds to the complement of the infinite
connected component of Z2 not containing I. Loosely speaking, it is the portion of lattice enclosed
by the “external boundary” of I.

3.1 Definition of the convergence of spins and compactness

Lemma 3.1. Let D be a bounded Lipschitz open set. For a set of ω of full probability, if (uε) is a
sequence such that supεEωε (uε) < +∞, then there exists a sequence (ũε) such that Eωε (ũε) ≤ Eωε (uε),

‖(uε − ũε)χD∩εW‖L1(D) = o(1) (2)

as ε → 0, and there are no connected components of the sets {i : ũε = 1} and {i : ũε = −1} with
size not exceeding 1/ε.

Proof. We extend each function as uε = 1 on Z2 \Dε.
We first consider all the connected components of the complement of Zω. If uε = 1 identically

on the boundary of one such component we set ũε = 1 on its interior. In the remaining cases, we set
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ũε = −1 if uε = −1 on the boundary. With this operation we do not change the value of uε on Zω
and we have Eωε (ũε) ≤ Eωε (uε). We can therefore assume from the beginning that uε is constant
on each such connected component.

We can now subdivide Z2 into connected components (Iε,+m )m∈M+
ε

and (Iε,−m )m∈M−ε defined as
the maximal connected components where uε = 1 and uε = −1, respectively.

Note that we have ∑
i,j:i∈Iε,+m

σωij(ui − uj)2 ≥ 1,
∑

i,j:i∈Iε,−m

σωij(ui − uj)2 ≥ 1 (3)

for all m since otherwise we would have σωij = 0 identically on the boundary of such connected
components, which contradicts the construction above. We then have

#M+
ε ≤

C

ε
, #M−ε ≤

C

ε
, (4)

where #M+
ε and #M−ε are the number of maximal connected components of the set where uε = 1

and uε = −1, respectively.
We fix δ > 0 and consider a component Iε,−m with interior of size not more than ε−1+δ. We

denote by M−ε (δ) ⊂ M−ε the set of the corresponding indices m. If we identify each Iε,−m with a
subset of R2, as usual taking the union of the corresponding ε-squares, we estimate the measure of
Iε,−m by

|Iε,−m | ≤ ε2 · ε−1+δ = ε1+δ

The total volume of such components is then∣∣∣⋃{Iε,−m : m ∈M−ε (δ)}
∣∣∣ ≤ C

ε
ε1+δ = Cεδ

by (4). We can then set ũε = 1 on the interior of this sets. This change is compatible with (2) and
decreases the energy. We may repeat the corresponding process with the components Iε,+m with
interior of size not exceeding ε−1+δ.

By what just proved, up to substituting uε with ũε we then may suppose that there is no
connected components of the sets {i : uε = 1} and {i : uε = −1} with size not exceeding ε−1+δ.

We consider now the components Iε,−m with interior of size in the interval (ε−1+δ, ε−1]. We
denote by N−ε (δ) ⊂ M−ε the set of the corresponding indices m. In particular each their measure
is greater than ε1+δ, so that their perimeter is then estimated as

H1(∂Iε,−m ) ≥ Cε(1+δ)/2.

Since the maximum size of a connected component with σωẑ = −1 is of order | log ε| (see e.g. [26])
then the number of ẑ along the boundary of Iε,−m such that σωẑ = 1 is at least

C
1

| log ε|2
1
ε
ε(1+δ)/2 = C

ε−
1
2 + δ

2

| log ε|2
.

We then deduce that the energy contribution of each such component is at least∑
i,j:i∈Iε,−m

εσωij(ui − uj)2 ≥ Cε ε
− 1

2 + δ
2

| log ε|2
= C

ε
1
2 + δ

2

| log ε|2
. (5)
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In particular, by the boundedness of the energy, we deduce that

#N−ε (δ) ≤ C| log ε|2ε− 1
2−

δ
2

The measure of each such Iε,−m is at most ε, so that the total measure of the union of these
components is ∣∣∣⋃{Iε,−m : m ∈ N−ε (δ)}

∣∣∣ ≤ C| log ε|2ε 1
2−

δ
2 = o(1).

We can therefore again change the value setting ũε = 1 in each Iε,−m , and reason similarly for the
analogous Iε,+m .

At the end of the process above we obtain a sequence (ũε) ∈ BV (D; {±1}) with the desired
properties.

Theorem 3.2 (percolation animal). For a set of ω of full probability, there exist a deterministic
positive constant α and ε0 = ε0(ω) > 0 such that for all connected sets contained in a cube {‖x‖1 ≤
M/ε} and of size larger than 1/

√
ε with ε < ε0, the proportion of strong links (such that σωij = 1)

in each such a set is at least α.

Proof. Denote n = b1/
√
εc, and let Z2 be the lattice dual to Z2. Our aim is to prove that almost

surely, for sufficiently large n, any connected subset of [−Mn2,Mn2]2 ∩ Z2 of size n contains at
least µn strong edges with a non-random µ = µ(p,M) > 0.

We begin by proving the result for probabilities p close enough to 1. First we recall the estimate
for the number of connected sets of size n in Z2 which contain the origin. It reads (see [21], p.81–82)

#{A ⊂ Z2 : |A|b = n, 0 ∈ A} ≤ (C)n,

#{A ⊂ Z2 : |A| = n, 0 ∈ A} ≤ (C)n,
(6)

where | · |b stands for the number of edges in a subset of Z2 and | · | for the number of vertices. For
a fixed set A with |A|b = n and any µ ∈ (0, 1), the probability that A contains less than µn strong
edges admits the upper bound

P{A contains less than µn strong edges} ≤ (1− p)(1−µ)n
n∑

k=b(1−µ)nc

(
k

n

)
≤ (1− p)(1−µ)n2n.

Denote by Gµ(n) the event

Gµ(n) = {there is a connected set A ⊂ [−Mn2,Mn2]2 of size n which contains less than µn strong edges}.

From the last two estimates we deduce the inequality

P{Gµ(n)} ≤ (Mn2)2(C)n2n(1− p)(1−µ)n (7)

Therefore, there is p0 = p0(µ) < 1 such that for all p ∈ (p0, 1) the inequality holds

P{Gµ(n)} ≤ C(M)(1/2)n. (8)

With the help of the Borel-Cantelli lemma this yields the desired statement for p ∈ (p0, 1).

In order to extend the result to all values of p > 1/2, we are going to use the renormalization
technique.

6



Remark 3.3. Consider in Z2 the set of pairs of adjacent vertices. We say that two pairs are
p-adjacent is they do not intersect and contain at least two vertices, one from the first pair and
another from the second one, which are adjacent. The sequence of pairs ζ1, . . . ζk forms a path if the
pairs {ζj}

∣∣k
j=1

do not intersect, and any two consecutive elements of the sequence are p-adjacent.
The set of pairs is said to be connected if they do not intersect, and for any two of them, say ζ1
and ζ2, there is a path consisting of elements of the set, which goes from ζ1 to ζ2.

To each pair in Z2 we assign a random variable which takes on the value ”strong” with proba-
bility p and ”weak” with probability 1− p. Moreover, we assume that these random variables are
independent for nonintersecting pairs.

In exactly the same way as above one can obtain an exponential estimate for the number of
connected animals of pairs consisting of n elements and containing zero. In fact, it is easy to verify
that this number does not exceed C2n4n with the same constant C as in (6). The estimate (7)
remains valid in the case of pairs for p sufficiently close to 1.

Now, consider the set of cubes QNy = Ny + [0, N − 1]2 with y ∈ Z2 and integer N > 1, and
denote RNy−,y+ =

(
Ny− + [0, N − 1]2

)
∪
(
Ny+ + [0, N − 1]2

)
= QNy− ∪Q

N
y+ with |y− − y+|1 = 1.

Proposition 3.4. For any p > pcr = 1/2 and any p1 < 1 there is N0 = N0(p, p1) > 0 such that for
each N > N0 and y−, y+ ∈ Z2 with |y− − y+|1 = 1 it holds

P
{

any connected subset A of RNy−,y+ with |A| ≥ N contains at least ons strong link
}
> p1. (9)

Proof. The statement of Proposition is a straightforward consequence of the exponential estimates
for the size of a weak cluster in the case p > pcr.

We proceed by applying the renormalization arguments. Given p > pcr = 1/2, we choose p1 < 1
and µ > 0 so that (8) holds, and then choose N such that (9) holds true. We then partition the big
cube [−Mn2,Mn2]2 into the cubes QNy , y ∈ [−Mn2/N,Mn2/N ]2 ∩ Zn, consider the pairs RNy−,y+

of such cubes, and introduce the connectedness relation for pairs {y−, y+} as in Remark 3.3.
Given a connected set A ⊂ Z2, we will say that a rectangle RNy−,y+ is good if it contains a

connected subset of A of size at least N .
Let A ⊂ [−Mn2,Mn2]2 be a connected set with |A| ≥ n. Our aim is to build a connected set

Ã of pairs of y such that
|Ã| ≥ νn/N2, ν > 0, (10)

and for each {y−, y+} ∈ Ã the rectangle RNy−,y+ is good. To this end we choose first an arbitrary
cube QNy0 having a nontrivial intersection with A. We denote by ∂y{y0} the set of y ∈ Z2 satisfying
the estimate |y − y0|∞ = 1, and

Q̂Ny0 =
⋃

y∈{y0}∪∂y{y0}

QNy .

We also denote

∂zQ̂Ny0 = {z ∈ Z2 : z 6∈ Q̂Ny0 , |z − z̃|1 = 1 for some z̃ ∈ Q̂Ny0}.

Similarly, for any set B ⊂ Z2 we denote

∂yB = {y ∈ Z2 \ B : |y − ỹ|∞ = 1 for some ỹ ∈ B}, Q̂NB =
⋃

y∈B∪∂yB

QNy .
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Since A is connected, for sufficiently large n there is a path starting inside QNy0 which belongs to

A and has a final point at ∂zQ̂Ny0 . It is then easy to conclude that at least one of the rectangles{
RNy−,y+ : y−, y+ ∈ ∂y{y0}, |y− − y+|1 = 1

}
is good. We denote the corresponding indices by

y−,1, y+,1 and set A1 = {y−,1, y+,1}, B1 = {y−,1} ∪ {y+,1}.
In the same way one can show that there is a pair y−,2, y+,2 ∈ ∂yB1, |y−,2 − y+,2|1 = 1, such

that the cube RNy2,−,y2,+ is good. We set A2 = {y2,−, y2,+} ∪ A1, B2 = {y2,−} ∪ {y2,+} ∪ B1.
At the next step we define

QA2 =
⋃
y∈A2

QNy , Q̂B2 =
⋃

y∈B2∪∂yB2

QNy

By the similar arguments, one of the rectangles
{
RNy−,y+ : y−, y+ ∈ ∂yB2, |y− − y+|1 = 1

}
is

good. We denote the corresponding indices by y3,−, y3,+ and set A3 = {y3,−, y3,+} ∪ A2, B3 =
{y3,−} ∪ {y3,+} ∪ B2.

Iterating this process we construct the sequence of connected sets of pairs {Am} with |Am| = m
and the sequence of connected sets {Bm} with |Bm| = 2m.

It is easy to see that |Bm ∪ ∂Bm| ≤ 10m. Therefore,∣∣∣ ⋃
y∈Am∪∂Am

QNy

∣∣∣ ≤ 10N2m.

Hence, we will be able to iterate the process until m ≥ n/(10N2). It remains to set ν = 1/10 and
Ã = Am with m = bn/(10N2)c, and (10) follows.

Since every good cube contains a strong edge with probability greater than p1, then for suffi-
ciently large n the number of strong edges in the set A is at least

µn

10N2
, as desired.

Lemma 3.5. For a set of ω of full probability, if supεEωε (uε) < +∞ and all connected components
of the sets {i : uε = 1} and {i : uε = −1} have size greater than 1/ε, then {uε = 1} has equi-bounded
perimeter in D, and in particular (uε) is pre-compact in the weak topology of BV (D; {±1}).

Proof. Each connected component of {i : uε = 1} and {i : uε = −1} has perimeter at least 1/
√
ε.

By Theorem 3.2 we then have

H1(∂{uε = 1}) ≤ C

α
Eε(uε) + CH1(∂D),

which proves the desired statement.

We can collect the previous lemmas in the following one, which will define the convergence with
respect to which energies Eωε are equi-coercive.

Lemma 3.6. Let D be a bounded Lipschitz open set. For a set of ω of full probability, if (uεj ) is
a sequence such that supj Eωεj (uεj ) < +∞, then there exists a function u ∈ BV (D, {±1}) and a
subsequence, still denoted by (uεj ), such that

lim
j
‖(uεj − u)χD∩εjW‖1 = 0. (11)
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Proof. It suffices to apply Lemma 3.5 to the sequence (ũεj ) obtained from Lemma 3.1. In this way
we have u ∈ BV (D, {±1}) such that, up to subsequences, ũεj → u in L1(D). We then get

lim
j
‖(uεj − u)χD∩(εjW)‖

L1 ≤ lim
j
‖(uεj − ũεj )χD∩(εjW)‖

L1 + lim
j
‖ũεj − u‖L1 = 0,

as desired.

By this last lemma, we can define a convergence for which the functionals Eε are equicoercive,
as

uε → u ⇐⇒ lim
ε→0
‖(uε − u)χD∩(εW)‖

L1 = 0 . (12)

3.2 Definition of surface tension and convergence of the energies

For any vector τ ∈ R2, m ∈ N and ω ∈ Σ we denote

ψω(x, y) = min

{
K∑
n=1

σωinin−1
: i0 = x, iK = y, K ∈ N

}
, (13)

where the minimum is taken over all paths joining x and y ∈ Z2. The following statement holds.

Lemma 3.7 (Garet-Marchand). For any τ ∈ R2 the following limit exists almost surely and does
not depend on ω

ψp(τ) = lim
m

1
m
ψω(0, bmτc), (14)

where bmτck = bmτkc is the integer part of the k-th component of mτ . Moreover, ψ defines a norm
in R2.

Our main result is the following. For the definition and properties of Γ-convergence we refer to
[10, 11, 12, 18].

Theorem 3.8. Let D be a bounded Lipschitz open set and p > 1/2, then P-almost surely there
exists the Γ-limit of Eωε with respect to the convergence in (12), it is deterministic, and is given by

Fp(u) =
∫
∂∗{u=1}∩D

ψp(ν) dH1 (15)

with domain BV (D; {±1}).

Proof. We begin with the proof of the lower bound (liminf inequality), and fix a family uε such that
uε → u as in (12), and lim infε→0E

ω
ε (uε) < +∞. By Lemmas 3.1 and 3.5 we can find ũε converging

weakly∗ in BV (D) to u and such that

lim inf
ε→0

Eωε (uε) ≥ lim inf
ε→0

Eωε (ũε).

Up to subsequences, we may suppose that such liminf is actually a limit.
For all ε we consider the set in the dual lattice εZ of εZ2 defined by

Sε =
{
εk : k =

i+ j

2
, εi, εj ∈ Dε, |i− j| = 1, ũε(εi) = 1, ũε(εj) = −1

}
9



and the measure
µε =

∑
εk∈Sε

εσωk δεk.

Note that Eωε (uε) = µε(D) so that the family of measures µε is equibounded. Hence, up to further
subsequences we can assume that µε converges weakly∗ to a finite measure µ.

Let A = {u = 1} and Aε = {uε = 1}. With fixed h ∈ N we can consider the collection Qh of
squares Qνρ(x) such that the following conditions are satisfied:

(i) x ∈ ∂∗A and ν = ν(x);

(ii)
∣∣∣(Qνρ(x) ∩A)4Πν(x)

∣∣∣ ≤ 1
h
ρ2, where Πν(x) = {y ∈ R2 : 〈y − x, ν〉 ≥ 0};

(iii)
∣∣∣µ(Qνρ(x))

ρ
− dµ

dH1 ∂∗A
(x)
∣∣∣ ≤ 1

h
;

(iv)
∣∣∣1
ρ

∫
Qνρ(x)∩∂∗A

ψp(ν(y))dH1(y)− ψp(ν(x))
∣∣∣≤ 1

h
;

(v) µ(Qνρ(x)) = µ(Qνρ(x)).
Note that for fixed x ∈ ∂∗A and for ρ small enough (ii) is satisfied by the definition of reduced

boundary (see [9]), (iii) follows from the Besicovitch Derivation Theorem provided that

dµ

dH1 ∂∗A
(x) < +∞;

(iv) holds by the same reason, and (v) is satisfied for almost all ρ > 0 since µ is a finite measure.
We deduce that Qh is a fine covering of the set

∂∗Aµ =
{
x ∈ ∂∗A :

dµ

dH1 ∂∗A
(x) < +∞

}
,

so that (by Morse’s lemma, see [28]) there exists a countable family of disjoint closed cubes
{Qνjρj (xj)} still covering ∂∗Aµ. Note that we have

H1(∂∗A \ ∂∗Aµ) = 0

since µ(∂∗A) < +∞.
We now fix one of such cubes Qνρ(x). Since |Aε4A| → 0, for ε small enough we have∣∣∣(Qνρ(x) ∩Aε)4Πν(x)

∣∣∣ ≤ 2
h
ρ2 (16)

by (ii) above.
For simplicity of notation we can suppose that ν = e2 and x = 0. With fixed δ < 1/2, from (16)

we have in particular∣∣∣((Qνρ(x) ∩Aε)4Πν(x)
)
∩
{
y : ρ

δ

2
≤ dist (y, ∂Qνρ(x)) ≤ ρδ

}∣∣∣ ≤ 2
h
ρ2 . (17)

We deduce that there exists
t ∈
[ρδ

2
, ρδ
]
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such that
H1
(

((Qνρ(x) ∩Aε)4Πν(x)) ∩ {y : dist (y, ∂Qνρ(x)) = t}
)
≤ 4
hδ
ρ. (18)

We can then define the subset A1
ε ⊂ Qνρ(x) by

A1
ε =

{
Aε on Qνρ−t(x)
Πν(x) otherwise. (19)

In this way the set A1
ε has the same trace as Πν(x) on ∂Qνρ(x) and

H1
(

(∂A1
ε \ ∂Aε) ∩Qνρ(x)

)
≤ 4
hδ
ρ+

δ

2
ρ. (20)

We can then find points xε, yε ∈ Z such that εxε, εyε ∈ ∂A1
ε and |εxε+ ρ

2e1| ≤ 2ε, |εyε− ρ
2e1| ≤ 2ε

(recall that ν = e2), and a path {kεn : 0 ≤ n ≤ Kε : k0 = xε, kKε = yε} in 1
ε (∂A1

ε ∩ Qνρ(x)) ∩ Z
joining xε to yε. By the estimate (20) we have

µε(Qνρ(x)) ≥
Kε∑
n=0

εσωkn −−
( 4
hδ

+
δ

2

)
ρ

≥ εψω(xε, yε)−
( 4
hδ

+
δ

2

)
ρ

Since |(yε − xε)− ρ
εe1| ≤ 4, by the arbitrariness of h and δ we then get

lim inf
ε→0

µε(Qνρ(x)) ≥ ρψp(e1) = ρψp(e2) = ρψp(ν).

By (iv) above we then have

lim inf
ε→0

µε(Qνρ(x)) ≥
∫
Qνρ(x)∩∂∗A

ψp(ν(y)) dH1(y)− 1
h
ρ,

and we finally deduce that

lim inf
ε→0

µε(D) ≥
∑
j

lim inf
ε→0

µε(Qνjρj (xj) ∩ ∂
∗A)

≥
∑
j

∫
Q
νj
ρj

(xj)∩∂∗A
ψp(ν(y)) dH1(y)− C

h

=
∫
D∩∂∗A

ψp(ν(y)) dH1(y)− C

h
,

which gives the liminf inequality.

The construction of a recovery sequence giving the upper bound can be performed just for
polyhedral sets, since they are dense in energy in the class of sets of finite perimeter. We only give
the construction when the set is of the form Πν(x) ∩D since it is easily generalized to each face of
a polyhedral boundary.
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It is no restriction to suppose that Πν(x) = Πν(0) =: Πν , that ν is a rational direction (i.e.,
there exits S such that Sν ∈ Z2), and that

H1(∂D ∩ ∂Πν) = 0, (21)

since also with these restrictions we obtain a dense class of sets. We will compute the Γ-limsup for
u = 2χΠν − 1.

We fix η > 0 and set Kη
ε = b ηSεc. We also consider M > 0 large enough so that D ⊂⊂ QνM (0).

We can therefore consider the points

xεj = jSKη
ε τ, j ∈ Z, |j| < M

η

with τ = ν⊥. For each such j we consider a path {kε,jn : 0 ≤ n ≤ Nε,j} joining xεj and xεj+1 such
that ∑

n

σωkn = ψω(xεj , x
ε
j+1),

and the resulting path γε obtained as the union of all these paths. Note that this final path is
included in the strip {x : |〈x, ν〉| ≤ η/ε} and, after identifying it with a curve in R2, for ε small
enough γε disconnects 1

εD. We can therefore consider D+
ε the maximal connected component of

1
εD \ γε containing D ∪ {〈x, ν〉 ≥ η/ε}, and define

uηε(εi) =
{

1 if i ∈ Z2 ∩D+
ε

−1 otherwise.

Note that
Eωε (uηε) = ψp(τ)H1(∂Πν ∩D) + o(1) +O(η)

as ε→ 0, and therefore, up to subsequences, there exists uη ∈ BV (D; {±1}) such that uηε → uη in
the sense of convergence (12).

Note that again the limit satisfies

S(uη) ⊂ D ∩ {x : |〈x, ν〉| ≤ η}; (22)

moreover, H1(S(uη)) ≤ C by Lemma 3.5. We have

F ′′ω (uη) := Γ- lim sup
ε→0+

Eωε (uη)

≤ lim sup
ε→0+

Eωε (uηε)

≤ ψp(τ)H1(∂Πν ∩D) +O(η).

By (22) we have that uη → u, and by the lower semicontinuity of the functional F ′′ω we deduce then
that

F ′′ω (u) ≤ lim inf
η→0+

F ′′ω (uη) ≤ ψp(τ)H1(∂Πν ∩D)

Eventually, we obtain the desired inequality recalling that H1
(
D ∩ ∂Πν

)
= H1

(
D ∩ ∂Πν

)
by (21).
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4 The subcritical and critical regimes: p ≤ 1/2

In this regime the overall behaviour is degenerate; furthermore, if p < 1/2 the Γ-limit degenerates
at all orders.

Theorem 4.1. Let D be a bounded Lipschitz set.
(i) (critical regime) if p = 1/2 then P-almost surely there exists the Γ-limit of Eωε with respect

to the weak L1 convergence. The limit functional is given by

F0(u) =
{

0 if ‖u‖
∞
≤ 1

+∞ otherwise.
(23)

(ii) (subcritical regime) if p < 1/2, then for all choices of scaling factors Cε > 0 P-almost surely
there exists the Γ-limit of CεEωε with respect to the weak L1 convergence and it coincides with the
functional F0 above.

Proof. Since the domain of the energies Eωε is composed of functions with ‖u‖∞ = 1 then we
immediately get that F (u) = +∞ if ‖u‖∞ > 1.

(i) By the lower-semicontinuity of the Γ-limsup it suffices to check that

F ′′(u) := Γ- lim sup
ε→0

Eωε (u) = 0

for a L1-strongly dense set of functions in BV (D; {±1}) since the latter is weakly dense in the unit
ball of L∞. This immediately follows by the construction of the limsup inequality in the previous
section, after remarking that ψ1/2 = 0 (see [27]);

(ii) In this case, by the arbitrariness of Cε we have to show that for all u in a dense set of
functions in BV (D; {±1}) there exists a sequence uε ⇀ u in L1(D) such that Eωε (uε) = 0 for all ε.
To this end we can use arguments similar to those used for the proof of the Γ-limsup inequality in
the previous section. In this case the path γε is any path in the weak cluster of the dual lattice Z
contained in the strip {x : |〈x, ν〉| ≤ η/ε} and with the two endpoints lying at distance at most 2ε
from the two sides {x : 〈x, ν⊥〉 = ±M/2}. The existence of such a path in the subcritical regime is
well known (see [26])

5 Curves with ‘dilute’ length

We define a path γ in Dε as an array of points

εi0, εi1, . . . , εiN−1, εiN ∈ Dε, N ∈ N,

such that
|in − in−1| = 1.

Note that self-intersections are allowed by this definition. Each such path can be identified by
the piecewise-affine continuous curve γ : [0, εN ] → Rd satisfying γ(εn) = εin for n = 0, 1, . . . , N ,
parameterized by arc length. We say that a path γ joins x to y if γ(0) = εi0 = x and γ(εN) =
εiN = y.
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The energy of a path γ in Dε is

Fωε (γ) =
N∑
n=1

ε cωinin−1
(24)

In order to study the behaviour of such energies we extend each path to γ(t) = γ(0) if t < 0 and
γ(t) = γ(εN) if t > εN , so that we may define the convergence γε → γ as the L∞loc-convergence of
such extended curves.

When cωij satisfy
0 < α ≤ cωij ≤ β < +∞ (25)

the homogenization of such energies has been studied in [14], remarking first that Fωε are L∞-equi-
coercive, in the sense that if Fωε (γε) ≤ C < +∞, and γε are parameterized on {0, . . . , Nε} then εNε
is bounded, so that (γε− γε(0)) is bounded in L∞. In particular, up to subsequences εNε → L; the
Γ-limit is almost surely given by

F (γ) =
∫ L

0

ψp(γ′) dt, (26)

where for ‖τ‖1 < 1 the energy density ψp(τ) = ψωp (τ) is a.s. independent of ω and defined as the
first-passage percolation time constant defined by

ψωp (τ) = lim
m

1
m

inf

{
m∑
n=1

cωinin−1
: i0 = 0, im = bmτc

}
, (27)

where bmτc denotes the vector each component of which is the integer part of the corresponding
componemt of mτ , extended by continuity to ‖τ‖1 = 1, while we set ψωp (τ) = +∞ if ‖τ‖1 > 1.

In the dilute case the system is not elliptic and the energies Eωε are not a priori L∞ equi-coercive;
i.e., we may have L = +∞. The Eωε are trivially equicoercive with respect to the W 1,∞

loc (0,+∞)
topology, and their limit can be described from the results in [14].

Remark 5.1. For all 0 ≤ p < 1 we have a.s. ψωp (0) = 0. Indeed it suffices to remark that for fixed
ω we can choose iω, i′ω with ‖iω − i′ω‖ = 1 and cωiωi′ω = 0, and for m large enough choose a path in
the definition of ψp(0) with only a finite number (independent of m) of pairs {in, in−1} not equal
to {iω, i′ω}.

After this remark, we can state the convergence theorem, remarking that even though the Γ-
limit is written as an integral on (0,+∞), it also comprises the case when εNε → L after extending
functions as constant for t ≥ L.

Theorem 5.2. Let 0 < p < 1; then almost surely the energies Eωε Γ-converge to the energy

Fp(γ) =
∫ +∞

0

ψp(γ′) dt

defined on W 1,∞((0,+∞); Rd).

Proof. (i) we first check the liminf inequality. We will reduce to the Γ-convergence result of [14]
with c̃ωij = cωij + 1, which then is an elliptic model. Note that correspondingly, we have energies Ẽωε
whose limit is described by ψ̃p(τ) = ψp(τ) + 1.
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Let γε → γ be given, with γε parameterized on [0, εNε]. It suffices to consider the case εNε →
+∞. We fix L > 0 and Ñε such that εÑε → L, and we consider the paths γLε being the restriction
of γε to [0, εNε]. By [14] we then have

lim inf
ε→0

Eωε (γε) ≥ lim inf
ε→0

Ẽωε (γLε )− L

≥
∫ L

0

ψ̃p(γ′) dt− L =
∫ L

0

ψp(γ′) dt.

By letting L → +∞ we then obtain the desired lower bound. Note that if εNε is bounded then
it is not restrictive to suppose that εNε → L and the argument above keeps working without the
passage to the limit as L→ +∞.

(ii) we now prove the limsup inequality. Again we can use the elliptic result in [14].
Given γ such that Fp(γ) < +∞, and given L > 0, we can find a recovery sequence γLε for

F̃p(γ;L) =
∫ L

0
ψ̃p(γ′) dt. After extending such γLε by a constant, we have γLε → γL where γL = γ

on [0, L] and γL(t) = γ(L) for t > L. Again, by [14] we have

lim
ε→0

Eωε (γLε ) = lim
ε→0

(Ẽωε (γLε )− L) ≤
∫ L

0

ψ̃p(γ′) dt− L =
∫ L

0

ψp(γ′) dt,

so that

F ′′p (γL) := Γ- lim sup
ε→0

Eωε (γL) ≤
∫ L

0

ψp(γ′) dt.

Note that γL → γ in W 1,∞
loc (R; Rd) and then by the lower semicontinuity of the Γ-limsup

F ′′p (γ) ≤ lim inf
L→+∞

F ′′p (γL) ≤ lim
L→+∞

∫ L

0

ψp(γ′) dt =
∫ +∞

0

ψp(γ′) dt,

as desired.

In the supercritical case we have the two propositions below that follow from Theorem 3.2.

Proposition 5.3. Let p > 1/2; then almost surely the function ψω defined above exists, is deter-
ministic and ψωp (τ) ≥ Cp|τ | for some positive constant Cp.

Proof. To check the lower bound ψω(τ) ≥ Cp|τ | it suffices to remark that given a minimal path γ
for ψωp (τ) we can find a non intersecting path in Zd joining 0 and bmτc contained in the image of
γ, which then consists of at least ‖bmτc‖1 edges. For sufficiently large m then the number of edges
k of this path such that cωk = 1 is at least Cp‖bmτc‖1, which implies the desired estimate.

Proposition 5.4. Let p > 1/2 and let supεEωε (γε) < +∞ with γε(0) equibounded. Then almost
surely the sequence (γε) is bounded in L∞.

Proof. This is a straightforward consequence of the existence of the positive time constant in su-
percritical first-passage percolation [26].

Finally, in the subcritical regime p < 1/2 the function ψp satisfies the following property.
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Proposition 5.5. Let p < 1/2; then we have ψp(τ) = 0 if |τ | ≤ ϕ1−p(τ/|τ |), where ϕs is the
asymptotic chemical distance as defined in [13].

Proof. It suffices to remark that by the properties of the chemical distance for such τ there exists
a.s. a path from 0 to bmτc contained in the weak cluster (up to a o(m) number of nodes).
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