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Abstract. Transport equations arise in various areas of fluid mechanics, but the precise
conditions on the vector field for them to be well-posed are still not fully understood. The
renormalized theory of DiPerna and Lions for linear transport equations with unsmooth
coefficient uses the tools of approximation of an arbitrary weak solution by smooth functions,
and the renormalization property, that is to say to write down an equation on a nonlinear
function of the solution. Under some W 1,1 regularity assumption on the coefficient, well-
posedness holds. In this paper, we establish that these properties are indeed equivalent to
the uniqueness of weak solutions to the Cauchy problem, without any regularity assumption
on the coefficient. Coefficients with unbounded divergence but with bounded compression
are also considered.
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1. Introduction

In this paper we consider linear transport equations

∂tu+ div(bu) = 0 in (0, T )× Rd, (1)

where b(t, x) ∈ Rd is the coefficient, and u is scalar. Such equations arise in many areas
of fluid mechanics, and a precise analysis of them is a key issue for the understanding of
the particle flows in applications. In the present work, we give sharp results characterizing
the well-posedness of transport equations. The question of well-posedness for the associated
Cauchy problem for (1) has a well-known answer when b is continuous and Lipschitz contin-
uous with respect to x, because of the Cauchy-Lipschitz theorem and the relation between
(1) and the ordinary differential equation dX/ds = b(s,X(s)). When b is not smooth, the
well-posedness is much more delicate. A general theory has been developed in [13] in the case
where b ∈ L1((0, T ),W 1,1

loc (Rd)), divb ∈ L∞, and under some growth conditions on b. After
some intermediate results (see in particular [5], [9] and [10]), the theory has been generalized
in [2] to the case of only BV regularity for b instead of W 1,1. However, some recent coun-
terexamples (as in [11] and [12], both inspired by [1]), show that there is not much room to
weaken the regularity assumptions. Nevertheless, some questions remain open, as the case

1
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of BD regularity for b (the symmetric part of ∇xb is a measure, instead of the full matrix
as in the BV case), see [8] and [4] for some partial results in this direction. For a detailed
exposition and for a wider bibliography, the reader is refered to [3].

In this paper, we intend to give results of a different type, that do not give directly
the answer to the well-posedness problem, but rather give equivalent conditions for it to
hold, without regularity assumptions on b. For simplicity we shall always assume that
b ∈ L∞((0, T ) × Rd), and consider an L2 framework. The approach of [13] and [2] rely on
an approximation by convolution of a given weak solution to (1) and on the renormalized
property, that is to say that if u solves (1) and if divb = 0 (to simplify) then β(u) also solves
(1) for any suitable nonlinearity β. Theorem 2.1 states that such properties are indeed equiv-
alent to the well-posedness of both forward and backward Cauchy problems, up to the fact
that the smooth approximate solution (in the sense of the norm of the graph of the transport
operator) is not necessarily given by convolution. Then, one can think to make the difference
between forward and backward uniqueness. Theorem 3.1 states that a characterization of
backward uniqueness is the existence of a solution to the forward Cauchy problem that is
approximable by smooth functions in the sense of the norm of the graph of the transport
operator. Finally, we also consider the case of a coefficient b with unbounded divergence,
but with bounded compression. We show that the previous results extend naturally to this
case.

2. Forward-backward formulation

Theorem 2.1. Let b ∈ L∞((0, T )×Rd; Rd) such that divb = 0. Then the following statements
are equivalent:

(i) b has the uniqueness property for weak solutions in C([0, T ];L2(Rd) − w) for both
the forward and the backward Cauchy problems starting respectively from 0 and T ,
i.e. the only solutions in C([0, T ];L2(Rd)− w) to the problems{

∂tuF + div(buF ) = 0,

uF (0, ·) = 0,
and

{
∂tuB + div(buB) = 0,

uB(T, ·) = 0,

are uF ≡ 0 and uB ≡ 0;
(ii) the Banach space

F :=

{
u ∈ C([0, T ];L2(Rd)− w) s.t.
∂tu+ div(bu) ∈ L2((0, T )× Rd)

}
(2)

with norm

‖u‖F := ‖u‖B([0,T ];L2(Rd)) + ‖∂tu+ div(bu)‖L2((0,T )×Rd) (3)

has the property that the space of functions in C∞([0, T ]×Rd) with compact support
in x is dense in F ;

(iii) every weak solution in C([0, T ];L2(Rd) − w) of ∂tu + div(bu) = 0 lies in
C([0, T ];L2(Rd) − s) and is a renormalized solution, i.e. for every function β ∈
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C1(R; R) such that |β′(s)| ≤ C(1 + |s|) for some constant C ≥ 0, one has ∂t

(
β(u)

)
+

div
(
bβ(u)

)
= 0 in (0, T )× Rd.

In the statement of the theorem we used the notations C([0, T ];L2(Rd) − w) and
C([0, T ];L2(Rd) − s) for the spaces of maps which are continuous from [0, T ] into L2(Rd),
endowed with the weak or the strong topology respectively. We recall the classical fact
that, up to a redefinition in a negligible set of times, every solution to (1) belongs to
C([0, T ];L2(Rd)− w) (see for example Remark 3 in [3]).

Proof of Theorem 2.1. (i) ⇒ (ii). Step 1. Cauchy problem in F . It is easy to check
that F is a Banach space, since L2 and B([0, T ];L2(Rd)) are Banach spaces (the latter
denotes the space of bounded functions, with the supremum norm). We preliminarily show
that for any f ∈ L2((0, T )× Rd) and u0 ∈ L2(Rd), the Cauchy problem{

∂tu+ div(bu) = f,

u(0, ·) = u0
(4)

has a unique solution in F . We proceed by regularization. Consider a sequence of smooth
vector fields {bn}n, with bn → b a.e., bn is uniformly bounded in L∞, and divbn = 0 for every
n. Let un be the solution to the problem{

∂tun + div(bnun) = f,

un(0, ·) = u0 .

Then, by standard results on the smooth theory of transport equations (see for example [6]),
we know that the solution un is unique in C([0, T ];L2(Rd)) and is given by

un(t, x) = u0(Xn(0, t, x)) +

∫ t

0

f(τ,Xn(τ, t, x)) dτ ,

where Xn(s, t, x) is the flow of bn at time s, starting at the point x at time t, i.e. the solution
to the ordinary differential equation

dXn

ds
(s, t, x) = bn(s,Xn(s, t, x)),

Xn(t, t, x) = x .

Recalling that divbn = 0, so that Xn(s, t, ·)#L d = L d for every s and t (we denote by
L d the d-dimensional Lebesgue measure on Rd), we can estimate the L2 norm of un(t, ·) as
follows,

‖un(t, ·)‖L2 ≤ ‖u0(Xn(0, t, ·))‖L2 +

∫ t

0

‖f(τ,Xn(τ, t, .))‖L2 dτ

≤ ‖u0‖L2 +

∫ t

0

‖f(τ, ·)‖L2 dτ

≤ ‖u0‖L2 +
√
T‖f‖L2 .
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This implies that the sequence {un}n is equi-bounded in C([0, T ];L2(Rd)). From the equation
on un, we have also that for any ϕ ∈ C∞

c (Rd), d/dt(
∫
unϕdx) is bounded in L2(0, T ). We

deduce that for any ϕ ∈ L2(Rd),
∫
unϕdx is uniformly in n equicontinuous in [0, T ]. Thus,

up to the passage to a subsequence (which does not depend on t), we can suppose that
un(t, ·) ⇀ u(t, ·) in L2(Rd)−w, with u ∈ C([0, T ];L2(Rd)−w). By the semicontinuity of the
norm with respect to weak convergence we also obtain that

‖u(t, ·)‖L2 ≤ ‖u0‖L2 +
√
T‖f‖L2 . (5)

Passing to the limit in the transport equation, we obtain that u solves the Cauchy problem{
∂tu+ div(bu) = f,

u(0, ·) = u0 .

Noticing that ∂tu + div(bu) = f ∈ L2, we conclude that u ∈ F . Uniqueness is clear: every
solution to the Cauchy problem (4) is by definition a weak solution in C([0, T ];L2(Rd)−w)
of the forward Cauchy problem with right-hand side, and thus by linearity, uniqueness is
guaranteed by the forward part of assumption (i).
Step 2. Density of smooth functions. Define a linear operator

A :
F → L2(Rd)× L2((0, T )× Rd)

u 7→
(
u(0, ·) , ∂tu+ div(bu)

)
.

This operator in clearly bounded by the definition of the norm we have taken on F . It is
also a bijection because of Step 1, with continuous inverse because of (5). This means that
A is an isomorphism, and thus we can identify F with the space L2(Rd)× L2((0, T )× Rd),
and its dual F ∗ with L2(Rd)× L2((0, T )×Rd). Therefore, for every functional L ∈ F ∗, we
can uniquely define v0 ∈ L2(Rd) and v ∈ L2((0, T )× Rd) in such a way that

Lu =

∫
(0,T )×Rd

(
∂tu+ div(bu)

)
v dtdx+

∫
Rd

u(0, ·)v0 dx for every u ∈ F .

We recall the classical fact that a subspace of a Banach space is dense if and only if every
functional which is zero on the subspace is in fact identically zero. Then the density of
smooth functions is equivalent to the following implication:∫

(0,T )×Rd

(
∂tu+ div(bu)

)
v dtdx+

∫
Rd u(0, ·)v0 dx = 0

for every u ∈ C∞([0, T ]× Rd) with compact support in x
=⇒ v0 = 0 and v = 0.

(6)

If we first take u arbitrary but with compact support also in time, we obtain that∫
(0,T )×Rd

(
∂tu+ div(bu)

)
v dtdx = 0 ,

and since divb = 0 this is precisely the weak form of

∂tv + div(bv) = 0 .
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This implies that v ∈ C([0, T ];L2(Rd) − w). Now let χ be a cut-off function on R, i.e. χ ∈
C∞

c (R), χ(z) = 1 for |z| ≤ 1 and χ(z) = 0 for |z| ≥ 2. For every function ϕ ∈ C∞
c (Rd),

take a function ũ ∈ C∞([0, T ]×Rd) with compact support in x such that ũ(T, ·) = ϕ. Then,
testing in (6) with u(t, x) = ũ(t, x)χ

(
(T − t)/ε

)
, we obtain for 0 < ε < T/2

0 =

∫
(0,T )×Rd

[
∂t

(
ũ(t, x)χ

(
T − t

ε

))
+ div

(
b(t, x)ũ(t, x)χ

(
T − t

ε

))]
v(t, x) dtdx

=

∫
(0,T )×Rd

[∂tũ(t, x) + div(b(t, x)ũ(t, x))] v(t, x)χ

(
T − t

ε

)
dtdx

−
∫

(0,T )×Rd

1

ε
χ′

(
T − t

ε

)
ũ(t, x)v(t, x) dtdx . (7)

Letting ε → 0, we observe that the first integral clearly converges to 0 since supp
(
χ
(
(T −

t)/ε
))
⊂ [T − 2ε, T + 2ε]. The second integral can be rewritten as

−
∫ T

0

1

ε
χ′

(
T − t

ε

) [∫
Rd

ũ(t, x)v(t, x) dx

]
dt .

Now, since ũ is smooth and v ∈ C([0, T ];L2(Rd) − w), the integral over Rd is a continuous
function of t. Moreover, it is easy to check that

−
∫ T

0

1

ε
χ′

(
T − t

ε

)
dt = 1.

Therefore, coming back to (7) and letting ε→ 0 we get

0 =

∫
Rd

ũ(T, x)v(T, x) dx =

∫
Rd

ϕ(x)v(T, x) dx .

Since ϕ ∈ C∞
c (Rd) is arbitrary, we obtain v(T, .) = 0. We conclude that v ∈ C([0, T ];L2(Rd)−

w) solves the Cauchy problem {
∂tv + div(bv) = 0,

v(T, ·) = 0.

Thus, by the backward part of the uniqueness assumption (i), we get that v = 0. Substituting
in (6), we get that

∫
Rd u(0, ·)v0 dx = 0 for every u ∈ C∞([0, T ]× Rd) with compact support

in space, and this implies that v0 = 0. This concludes the proof of the implication (6), that
ensures that (ii) holds.
(ii) ⇒ (iii). Let u ∈ C([0, T ], L2(Rd) − w) satisfy ∂tu + div(bu) = 0. Then by (ii),
there exists a sequence {un} of functions in C∞([0, T ]×Rd) with compact support in space
such that ‖un − u‖F → 0. In particular this gives that un → u in B([0, T ];L2(Rd)), thus
u ∈ C([0, T ], L2(Rd) − s). Then, define fn = ∂tun + div(bun) ∈ L2((0, T ) × Rd). By the
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definition of convergence in F we have that fn → 0 strongly in L2((0, T ) × Rd). For every
function β with the regularity stated we can apply the classical chain-rule giving

∂t(β(un)) + div(bβ(un)) = β′(un)fn .

The left-hand side clearly converges to ∂t(β(u)) + div(bβ(u)) in the sense of distributions.
According to the assumed bound on β′, we have that the sequence β′(un) is equi-bounded in
L2

loc((0, T )×Rd), hence with the strong convergence of fn we deduce that the right-hand side
converges strongly in L1

loc((0, T )×Rd) to zero. This implies that ∂t

(
β(u)

)
+ div

(
bβ(u)

)
= 0.

(iii) ⇒ (i). This step is classical. Let u ∈ C([0, T ], L2(Rd) − w) satisfy ∂tu + div(bu) = 0.
According to (iii), u lies in C([0, T ], L2(Rd)− s), and applying the renormalization property
with β(u) = u2, we get

∂t(u
2) + div(bu2) = 0 ,

with u2 ∈ C([0, T ], L1(Rd)− s). Testing this equation against smooth functions of the form
ψ(t)ϕR(x), where ψ ∈ C∞

c ((0, T )) and ϕR(x) = ϕ(x/R) with ϕ ∈ C∞
c (Rd) is a cut-off

function equal to 1 on the ball of radius 1 and equal to 0 outside the ball of radius 2, we get∫ T

0

[∫
Rd

u2ϕ
( x
R

)
dx

]
ψ′(t) dt+

∫ T

0

[∫
Rd

bu2 1

R
∇ϕ

( x
R

)
dx

]
ψ(t) dt = 0 .

Thus, we get in the sense of distributions in (0, T )

d

dt

∫
Rd

u2ϕ
( x
R

)
dx =

∫
Rd

bu2 1

R
∇ϕ

( x
R

)
dx.

Since the right-hand side is in L∞(0, T ) and bounded in L∞ by 1
R
‖b‖L∞t,x

‖∇ϕ‖L∞x ‖u(t, ·)‖2
L2

x
,

letting R→ +∞ we obtain

d

dt

∫
Rd

u(t, x)2 dx = 0 in (0, T ).

Recalling that u2 ∈ C([0, T ], L1(Rd) − s), this yields
∫
u(t, x)2dx = cst on [0, T ], which

implies uniqueness for both forward and backward Cauchy problems, proving (i). �

Remark 2.2 (Well-posedness). The space F defined in (2) is a natural space for the
study of the Cauchy problem (4). Whenever one of the statements of Theorem 2.1 is
true, we have existence and uniqueness in F with the estimate (5), as shown in the proof.
Moreover, every solution is renormalized and strongly continuous with respect to time,
i.e. u ∈ C([0, T ];L2(Rd)−s). Overall, the following weak stability holds: if {fn}n is a bounded
sequence in L2((0, T ) × Rd) which converges weakly to f , {u0

n}n is a bounded sequence in
L2(Rd) which converges weakly to u0 and {bn}n is a bounded sequence in L∞((0, T ) × Rd)
which converges strongly in L1

loc to b and such that divbn = 0 for every n, then the solutions
{un}n to

∂tun + div(bnun) = fn , un(0, ·) = u0
n

converge in C([0, T ];L2(Rd)− w) to the solution u to the Cauchy problem (4).
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Remark 2.3 (Lp case). We can modify the summability exponent in the definition of the
space F . For every p ∈]1,∞[, define Fp as the space containing those functions u ∈
C([0, T ];Lp(Rd)−w) that satisfy ∂tu+div(bu) ∈ Lp((0, T )×Rd) and define the norm ‖ · ‖Fp

in the obvious way, that makes Fp a Banach space. Denoting by p′ the conjugate exponent
of p, i.e. 1

p
+ 1

p′
= 1, the following statements are equivalent:

• Smooth functions with compact support in x are dense in Fp and in Fp′ ;
• The vector field b has the forward and backward uniqueness property for weak solu-

tions in C([0, T ];Lp(Rd)− w) and in C([0, T ];Lp′(Rd)− w).

Remark 2.4 (Equivalent norms). According to the proof of Theorem 2.1, if one of the
properties (i), (ii) or (iii) holds, then the norm of F is equivalent to the norm

‖u‖F ,0 = ‖u(0, ·)‖L2(Rd) + ‖∂tu+ div(bu)‖L2((0,T )×Rd)

(see the estimate (5)). In the same spirit, it is easy to prove that ‖ · ‖F is in fact equivalent
to every norm of the form

‖u‖F ,s = ‖u(s, ·)‖L2(Rd) + ‖∂tu+ div(bu)‖L2((0,T )×Rd) ,

for s ∈ [0, T ].

Remark 2.5 (Depauw’s counterexample). A simple modification (translation in time) of the
counterexample constructed in [12] shows that the renormalization property is really linked
to the uniqueness in both the forward and the backward Cauchy problems. In fact, we can
construct a divergence free vector field b ∈ L∞((0, 1) × R2; R2) and a function ū ∈ L∞(R2)
such that

• the backward Cauchy problem with datum ū at time t = 1 has a unique solution,
which is however not renormalized and not strongly continuous with respect to time;

• the forward Cauchy problem with datum 0 at time t = 0 has more than one solution;
• the unique solution u(t, x) to the backward Cauchy problem with datum ū at time
t = 1 satisfies {

|u(t, x)| = 0 for 0 ≤ t ≤ 1/2,

|u(t, x)| = 1 for 1/2 < t ≤ 1,

hence the equivalence of the norms in Remark 2.4 does not hold.

Remark 2.6 (The Sobolev and the BV cases). In the case of a vector field with Sobolev

regularity with respect to the space variable, b ∈ L1((0, T );W 1,p′

loc (Rd)) with 1 < p <∞, it is
almost possible to prove that the natural regularization by convolution with respect to the
space variable of u ∈ Fp (see Remark 2.3) converges to u with respect to ‖ · ‖Fp . Indeed, let
ηε be a standard convolution kernel in Rd and set uε = u ∗ ηε. We can compute

∂tu+ div(bu)− ∂tuε − div(buε)

=
[
∂tu+ div(bu)

]
−

[
∂tu+ div(bu)

]
∗ ηε +

[
div(bu) ∗ ηε − div(buε)

]
.
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Then the convergence of uε to u with respect to ‖·‖Fp is equivalent to the strong convergence
in Lp((0, T )× Rd) to zero of the commutator

rε = div(bu) ∗ ηε − div(buε) .

The results of [13] ensure this strong convergence for every convolution kernel ηε, except
that it holds in L1

loc instead of Lp. We need also a regularization with respect to time and a
cutoff in order to get the density property (ii), but this means that our strategy is more or
less “equivalent” to the one of [13], in the framework of Sobolev vector fields. However, the
situation is different in the BV case studied in [2]. In general, the commutator rε does not
converge strongly to zero; our result shows that, even in this case, there exists some smooth
approximation of the solution, but it less clear how to construct it in an explicit way.

Remark 2.7 (Strong continuity condition). The condition of continuity with values in strong
L2 in (iii) cannot be removed, otherwise the equivalence with (i) fails. This can be seen again
with Depauw’s counterexample with singularity at time t = 0. In this case all weak solutions
are renormalized in (0, T )× Rd since b is locally BV in x, but uniqueness of weak solutions
does not hold. Another remark is that in general, a renormalized solution need not be
continuous with values in strong L2, even inside the interval, as the following counterexample
shows. On the interval (−1, 1), take for b the one of Depauw’s counterexample in (0, 1) (with
singularity at 0), and define on (−1, 0) b(t, x) = −b(−t, x). Consider then the weak solution
u with value 0 at t = 0, that we extend on (−1, 0) by u(t, x) = u(−t, x). Then u is a
renormalized solution on (−1, 1) but is not strongly continuous at t = 0.

3. One-way formulation

Theorem 3.1. Let b ∈ L∞((0, T ) × Rd; Rd) such that divb ∈ L∞((0, T ) × Rd), and let
c ∈ L∞((0, T )× Rd). Define the Banach space F and its norm ‖ · ‖F as in (2)-(3). More-
over, define F 0 ⊂ F as the closure (with respect to ‖ · ‖F ) of the subspace of functions in
C∞([0, T ]× Rd) with compact support in x. Then the following statements are equivalent:

(i) for every u0 ∈ L2(Rd) and every f ∈ L2((0, T ) × Rd) there exist a solution u ∈ F 0

to the Cauchy problem{
∂tu+ div(bu) + cu = f,

u(0, ·) = u0 ,
u ∈ F 0 ;

(ii) there is uniqueness for weak solutions in C([0, T ];L2(Rd)−w) for the backward dual
Cauchy problem starting from T , i.e. the only function v ∈ C([0, T ];L2(Rd) − w)
which solves {

∂tv + b · ∇v − cv = 0,

v(T, ·) = 0,

is v ≡ 0.

Here and further on, the advection term b · ∇v is defined according to b · ∇v ≡ div(bv)−
v divb, which makes sense since divb ∈ L∞.
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Remark 3.2. The two statements in Theorem 3.1 are really the “nontrivial” properties
relative to the vector field b. In general, there is always uniqueness in F 0 (see Step 1 in the
proof) and there is always existence of weak solutions in F (this can be easily proved by
regularization, as in the first step of the proof of Theorem 2.1).

Before proving the theorem, we recall the following standard result of functional analysis
(see for example Theorem II.19 and Theorem II.20 of [7]).

Lemma 3.3. Let E and F be Banach spaces and let L : E → F be a bounded linear operator.
Denote by L∗ : F ∗ → E∗ the adjoint operator, defined by

〈v, Lu〉F ∗,F = 〈L∗v, u〉E∗,E for every u ∈ E and v ∈ F ∗.

Then

(a) L is surjective if and only if L∗ is injective and with closed image;
(b) L∗ is surjective if and only if L is injective and with closed image.

Proof of Theorem 3.1. Step 1. An energy estimate in F 0. In this first step we prove
that for every u ∈ F 0 the following energy estimate holds:

‖u(t, ·)‖L2
x
≤

(
‖u(0, ·)‖L2

x
+
√
T‖∂tu+ div(bu) + cu‖L2

t,x

)
exp

(
T‖c+

1

2
divb‖L∞t,x

)
. (8)

Let us first prove the estimate for u smooth with compact support in x. We define

f = ∂tu+ div(bu) + cu,

and we multiply this relation by u, giving

∂t
u2

2
+ div(b

u2

2
) + (c+

1

2
divb)u2 = fu.

For justifying the previous identity, we used the Leibnitz rule

∂i(Hψ) = ψ∂iH +H∂iψ, (9)

valid for ψ ∈ C∞ and H any distribution. Then, integrating over x ∈ Rd we get in the sense
of distributions in (0, T )

d

dt

∫
Rd

u(t, x)2dx = 2

∫
Rd

fu dx− 2

∫
Rd

(c+
1

2
divb)u2dx.

Therefore, we get for a.e. t ∈ (0, T )∣∣∣∣ ddt
∫

Rd

u(t, x)2dx

∣∣∣∣ ≤ 2‖f(t, ·)‖L2
x
‖u(t, ·)‖L2

x
+ 2‖(c+

1

2
divb)(t, .)‖L∞x ‖u(t, ·)‖

2
L2

x
.

This differential inequality can be easily integrated, obtaining

‖u(t, ·)‖L2
x
≤ ‖u(0, ·)‖L2

x
exp

(∫ t

0

‖(c+
1

2
divb)(s, ·)‖L∞x ds

)
+

∫ t

0

‖f(s, ·)‖L2
x
exp

(∫ t

s

‖(c+
1

2
divb)(τ, ·)‖L∞x dτ

)
ds ,
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which clearly implies (8). In the general case of u ∈ F 0, we can find approximations un

smooth with compact support such that ‖un − u‖F → 0, and we obtain the estimate (8) at
the limit.
Step 2. The operator A0. As in the proof of Theorem 2.1, we consider the linear operator

A0 :
F 0 → L2(Rd)× L2((0, T )× Rd)

u 7→
(
u(0, ·) , ∂tu+ div(bu) + cu

)
.

Since we can estimate

‖A0u‖L2
x×L2

t,x
= ‖u(0, ·)‖L2

x
+ ‖∂tu+ div(bu) + cu‖L2

t,x

≤ ‖u‖Bt(L2
x) + ‖∂tu+ div(bu)‖L2

t,x
+ ‖c‖L∞t,x

√
T‖u‖Bt(L2

x)

≤
(
1 + ‖c‖L∞t,x

√
T

)
‖u‖F ,

we deduce that A0 is a bounded operator. Next, the energy estimate established in the first
step gives that for any u ∈ F 0,

‖u‖Bt(L2
x) ≤ exp

(
T‖c+

1

2
divb‖L∞t,x

)
max(1,

√
T )‖A0u‖L2

x×L2
t,x
.

But we have

‖∂tu+ div(bu)‖L2
t,x
≤ ‖∂tu+ div(bu) + cu‖L2

t,x
+ ‖c‖L∞t,x

√
T‖u‖Bt(L2

x),

and we conclude that
‖u‖F ≤ C ‖A0u‖L2

x×L2
t,x
, u ∈ F 0. (10)

This means that A0 is injective and with closed image. Notice that the injectivity of A0 is
equivalent to the fact that the only solution u ∈ F 0 to{

∂tu+ div(bu) + cu = 0,

u(0, ·) = 0,

is u ≡ 0.
Step 3. Proof of the equivalence of the two statements. Since by Step 2, A0 is
injective with closed image, we can apply Lemma 3.3 (b) to get the surjectivity of the
adjoint operator (A0)∗ : L2(Rd) × L2((0, T ) × Rd) → (F 0)∗ . We recall that the adjoint
operator is characterized by the condition

〈(A0)∗(v0, v), u〉 = 〈(v0, v), A
0u〉 =

∫
Rd

v0u(0, ·) dx+

∫
(0,T )×Rd

v
(
∂tu+div(bu)+cu

)
dtdx, (11)

for (v0, v) ∈ L2(Rd) × L2((0, T ) × Rd) and u ∈ F 0. Since (A0)∗ is surjective, in particular
it has closed image. Therefore, applying Lemma 3.3 (a) we get the equivalence between
surjectivity of A0 and injectivity of (A0)∗.

It is clear that the surjectivity of the operator A0 is equivalent to the existence of solutions
in F 0 (statement (i)). Therefore, it only remains to characterize the injectivity of (A0)∗.
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Recalling the definition of F 0 as the closure of the set of smooth functions with compact
support in x and recalling the characterization of the adjoint operator given in (11), we
obtain that the injectivity of (A0)∗ is equivalent to the following implication:∫

(0,T )×Rd

(
∂tu+ div(bu) + cu

)
v dtdx+

∫
Rd u(0, ·)v0 dx = 0

for every u ∈ C∞([0, T ]× Rd) with compact support in x
=⇒ v0 = 0 and v = 0.

(12)

Arguing as in Step 2 of the proof of Theorem 2.1, and eventually testing the integral condition
with smooth functions of the form u(t, x) = χ(t/ε)ũ(t, x) (using the same notations as in the
proof of Theorem 2.1), we obtain that the following two properties are equivalent for given
v0 ∈ L2(Rd) and v ∈ L2((0, T )× Rd):

(a) for every u ∈ C∞([0, T ]× Rd) with compact support in x we have∫
(0,T )×Rd

(
∂tu+ div(bu) + cu

)
v dtdx+

∫
Rd

u(0, ·)v0 dx = 0 ,

(b) v ∈ C([0, T ];L2(Rd)−w), v0 = v(0, ·) and v is a weak solution of the backward dual
Cauchy problem {

∂tv + b · ∇v − cv = 0,

v(T, ·) = 0 .

Therefore we deduce that the implication (12) is equivalent to the uniqueness of weak solu-
tions in C([0, T ];L2(Rd)−w) of the backward dual Cauchy problem, i.e. statement (ii). �

Remark 3.4 (Time inversion). Just reversing the direction of time, there is existence for
the backward Cauchy problem in F 0 if and only if there is uniqueness for weak solutions to
the forward dual Cauchy problem.

Remark 3.5 (Approximation by smooth functions and renormalization). Solutions in F 0

lie in C([0, T ], L2(Rd)− s) and are renormalized: this can be seen as in the proof of the im-
plication (ii)⇒(iii) of Theorem 2.1, using the density of smooth functions in F 0. Conversely,
it is possible that some renormalized solutions do not belong to F 0. This can be seen by
noticing that one can have several renormalized solutions to the same Cauchy problem (see
an example in [13]), while there is always uniqueness in F 0. Another difference between the
criterion of approximation by smooth functions and the renormalization property is that F 0

is a vector space, while in general renormalized solutions are not a vector space.

Remark 3.6 (Depauw’s example again). We notice that forward and backward uniqueness
of weak solutions are really distinct properties: the example described in Remark 2.5 shows
how to construct bounded divergence free vector fields with backward uniqueness but not
forward uniqueness, or vice-versa.
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4. Vector fields of bounded compression

We shall say that a vector field b ∈ L∞((0, T )× Rd; Rd) has bounded compression if there
exists a function ρ ∈ C([0, T ];L∞(Rd)−w∗), with 0 < C−1 ≤ ρ ≤ C <∞ for some constant
C > 0, such that the identity

∂tρ+ div(bρ) = 0 (13)

holds in the sense of distributions in (0, T ) × Rd. We remark that every vector field b
with bounded divergence has bounded compression (if b is smooth, take for ρ the Jaco-
bian determinant of the flow generated by b, ρ(t, x) = det∇xX(0, t, x), which is bounded

since ρ(t, x) = exp−
∫ t

0
(divb)(σ,X(σ, t, x))dσ, where X(s, t, x) satisfies dX(s, t, x)/ds =

b(s,X(s, t, x)), X(t, t, x) = x), but in general a vector field of bounded compression does
not need to have absolutely continuous divergence.

Theorem 4.1. Let b ∈ L∞((0, T ) × Rd; Rd) be a vector field of bounded compression, and
fix an associated function ρ ∈ C([0, T ];L∞(Rd) − w∗). We define the Banach space F and
its norm ‖ · ‖F as in (2)-(3). Let F 1 ⊂ F be the closure of{

ρϕ : ϕ ∈ C∞([0, T ]× Rd) with compact support in x
}

with respect to ‖ · ‖F . Then the following statements are equivalent:

(i) for every u0 ∈ L2 and every f ∈ L2 there exist a solution u ∈ F 1 to the Cauchy
problem {

∂tu+ div(bu) = f,

u(0, ·) = u0 ,
u ∈ F 1 ;

(ii) there is uniqueness for weak solutions in C([0, T ];L2(Rd)−w) for the backward dual
Cauchy problem starting from T , i.e. the only function ρv ∈ C([0, T ];L2(Rd) − w)
which solves {

∂t(ρv) + div(bρv) = 0,

ρ(T, ·)v(T, ·) = 0,

is ρv ≡ 0.

Remark 4.2. In this context, the equation ∂t(ρv) + div(bρv) = 0 is dual to the equation
∂tu+ div(bu) = 0, since we can write (formally, since it is not possible to give a meaning to
the product b · ∇v without a condition of absolute continuity of divb):

∂t(ρv) + div(bρv) = ρ
(
∂tv + b · ∇v

)
.

Proof of Theorem 4.1. The proof is very close to the one of Theorem 3.1, thus we shall
sometimes omit the technical details.
Step 1. An energy estimate in F 1. We preliminarily prove that for every u ∈ F 1 the
following estimate holds (C is the constant related to the function ρ):

‖u‖Bt(L2
x) ≤ C‖u(0, ·)‖L2

x
+ C

√
T‖∂tu+ div(bu)‖L2

t,x
. (14)
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Fix a smooth function ϕ with compact support in Rd, and define f = ∂t(ρϕ) + div(bρϕ) =
ρ(∂tϕ + b · ∇ϕ) (use the Leibnitz rule (9) and (13)). We deduce with the same argument
that 2ϕf = ρ(∂tϕ

2 + b · ∇ϕ2) = ∂t(ρϕ
2) + div(bρϕ2). Thus, we get the following estimate in

the sense of distributions in (0, T ):

d

dt

∫
Rd

ρ(t, x)ϕ(t, x)2 dx = 2

∫
Rd

ϕ(t, x)f(t, x) dx

≤ 2‖f(t, ·)‖L2
x
‖ϕ(t, ·)‖L2

x

≤ 2
√
C‖f(t, ·)‖L2

x

[∫
Rd

ρ(t, x)ϕ(t, x)2 dx

]1/2

.

By integration with respect to time this implies[∫
Rd

ρ(t, x)ϕ(t, x)2 dx

]1/2

≤
[∫

Rd

ρ(0, x)ϕ(0, x)2 dx

]1/2

+
√
C

∫ t

0

‖f(s, ·)‖L2
x
ds .

Using the fact that C−1 ≤ ρ ≤ C we deduce

1√
C
‖ρ(t, ·)ϕ(t, ·)‖L2

x
≤
√
C‖ρ(0, ·)ϕ(0, ·)‖L2

x
+
√
C

∫ t

0

‖f(s, ·)‖L2
x
ds ,

and thus

‖ρ(t, ·)ϕ(t, ·)‖L2
x
≤ C‖ρ(0, ·)ϕ(0, ·)‖L2

x
+ C

√
T‖∂t(ρϕ) + div(bρϕ)‖L2

t,x
. (15)

But by definition of F 1, the validity of (15) for every smooth function ϕ with compact
support in x implies the validity of (14) for every function u ∈ F 1.
Step 2. The operator A1. We define the linear operator

A1 :
F 1 → L2(Rd)× L2((0, T )× Rd)

u 7→
(
u(0, ·) , ∂tu+ div(bu)

)
.

It is immediate to see that the operator A1 is bounded. Using the energy estimate (14) it is

also immediate to check that ‖u‖F ≤ C̃‖A1u‖, and therefore that A1 is injective with closed
image. Applying Lemma 3.3(b) we obtain that the adjoint operator

(A1)∗ : L2(Rd)× L2((0, T )× Rd) → (F 1)∗

is surjective. The adjoint operator is characterized by the identity

〈(A1)∗(v0, v), u〉 = 〈(v0, v), A
1u〉 =

∫
Rd

v0u(0, ·) dx+

∫
(0,T )×Rd

v
(
∂tu+ div(bu)

)
dtdx, (16)

for (v0, v) ∈ L2(Rd)× L2((0, T )× Rd) and u ∈ F 1.
Step 3. Proof of the equivalence of the two statements. The statement (i) (existence
of solutions in F 1) is the surjectivity of the operatorA1, which is equivalent (applying Lemma
3.3(a) and using the surjectivity of (A1)∗ proved in Step 2) to the injectivity of (A1)∗. But
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recalling the characterization (16) and the definition of the space F 1, the injectivity of (A1)∗

is equivalent to the following implication for v0 ∈ L2(Rd) and v ∈ L2((0, T )× Rd):∫
(0,T )×Rd

(
∂t(ρϕ) + div(bρϕ)

)
v dtdx+

∫
Rd ρ(0, ·)ϕ(0, ·)v0 dx = 0

for every ϕ ∈ C∞([0, T ]× Rd) with compact support in x
=⇒ v0 = 0 and v = 0.

(17)

Arguing as in Step 3 of the proof of Theorem 3.1 we obtain that the following two properties
are equivalent:

(a) for every ϕ ∈ C∞([0, T ]× Rd) with compact support in x we have∫
(0,T )×Rd

(
∂t(ρϕ) + div(bρϕ)

)
v dtdx+

∫
Rd

ρ(0, ·)ϕ(0, ·)v0 dx = 0 ,

(b) ρv ∈ C([0, T ];L2(Rd)− w), ρ(0, ·)v0 = ρ(0, ·)v(0, ·), and ρv is a weak solution of the
backward dual Cauchy problem{

∂t(ρv) + div(bρv) = 0,

ρ(T, ·)v(T, ·) = 0 .

Then we deduce that implication (17) is equivalent to statement (ii), and this concludes the
proof of the theorem. �
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[7] H. Brezis: Analyse fonctionnelle. Théorie et applications. Masson, Paris, 1983.
[8] I. Capuzzo Dolcetta & B. Perthame: On some analogy between different approaches to first order

PDE’s with nonsmooth coefficients. Adv. Math. Sci. Appl., 6 (1996) no. 2, 689–703.
[9] F. Colombini & N. Lerner: Sur les champs de vecteurs peu réguliers. Séminaire Équations aux
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