
Critical growth biharmonic elliptic problems

under Stekloff-type boundary conditions ∗

Elvise BERCHIO† – Filippo GAZZOLA‡ – Tobias WETH§

Abstract

We study the fourth order nonlinear critical problem ∆2u = u2∗−1 in a smooth bounded domain
Ω ⊂ Rn, n ≥ 5, subject to the boundary conditions u = ∆u−duν = 0 on ∂Ω. We provide estimates
for the range of parameters d ∈ R for which this problem admits a positive solution. If the domain
is the unit ball, we obtain an almost complete description.

1 Introduction

Let Ω ⊂ Rn (n ≥ 5) be a smooth bounded domain, let 2∗ = 2n
n−4 denote the critical Sobolev exponent,

let d ∈ R. The present paper is concerned with the following fourth order elliptic problem with purely
critical growth and Stekloff-type boundary conditions:

{
∆2u = u2∗−1, u > 0 in Ω

u = 0, ∆u− duν = 0 on ∂Ω.
(1)

Here uν denotes the outer normal derivative of u on ∂Ω. It is already evident from the well-studied
second order case that nonlinear equations with critical growth terms present highly interesting
phenomena concerning the existence/nonexistence of positive solutions, see the seminal paper by
Brezis-Nirenberg [6] and also [26, Chapter III] for a survey. For fourth order equations the exis-
tence/nonexistence problem is even more challenging, since the available techniques strongly depend
on the imposed boundary conditions. The present paper is motivated by its applications to conformal
geometry (see e.g. [19, Section 2.2]) and by the growing interest in recent years for the corresponding
Dirichlet boundary value problem

∆2u = u2∗−1, u > 0 in Ω, u = uν = 0 on ∂Ω, (2)

and Navier boundary value problem

∆2u = u2∗−1, u > 0 in Ω, u = ∆u = 0 on ∂Ω. (3)

We point out that (3) corresponds to d = 0 in (1), whereas (2) should be seen as the limit case d = −∞
in (1). We wish to show that the existence (resp. nonexistence) of solutions to (1) depends in a subtle
way on the parameter d, thus we highlight aspects of the equation ∆2u = u2∗−1 which cannot be
observed by just considering (2) and (3).
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Let us recall that if the domain Ω is strictly starshaped, then neither (2) nor (3) admit solutions, see
[20, 21, 28]. A first natural question then arises: do these nonexistence results really depend on the
geometry of the domain? The answer is positive. For instance, (3) has a solution on every domain
Ω with nontrivial topology, see [7]. This result is not available for (2), but it is shown in [2] that a
solution exists on domains with small holes. Moreover, in [12] it is proved that both (2) and (3) have
solutions in some contractible (non-starshaped) domains. It should be mentioned that the existence
results for (2) are for nontrivial solutions, not necessarily positive; this is due to the possible lack of
the positivity preserving property for ∆2 in certain domains. A second natural question which arises
is the following: do the above mentioned nonexistence results depend on the particular nonlinearity
(pure power) considered? Also for this question, the answer is positive since subcritical perturbations
of the pure power term may lead to existence results: we refer to [8, 10, 15] for the Dirichlet case
(2) and to [4, 14, 30] for the Navier case (3). At this point, a third natural question arises: do the
nonexistence results also depend on the boundary conditions considered? As far as we are aware, this
question has not been raised previously and it is precisely one of the purposes of the present paper to
give some answer to it. In other words, unlike in the present paper, in all the just mentioned references
modifications of the domain or of the equation were considered. In particular, modifications of the
equation turned out to be quite sensitive to the space dimension and this led to the study of the so-
called critical dimensions [25]. According to [8, Theorem 1.1] and [25, Theorem 3] (resp. [30, Theorem
1] and [12, Theorem 3]) it is known that the only critical dimensions for the biharmonic operator
∆2 under Dirichlet (resp. Navier) boundary conditions are n = 5, 6, 7. Here we study modifications
of the boundary conditions and we show that these have a quite different effect which seems “almost
independent” of the space dimension. More precisely, when Ω = B (the unit ball) for any n ≥ 5 we
find the threshold d = 4 for non-existence results relative to (1). Moreover, a suitable modification of
the Brezis-Nirenberg technique [6] (for the existence results) seems to show that the critical dimensions
for the Stekloff problem might be different, namely n = 5, 6.

2 Main results

To present our results concerning (1), we recall some facts about the boundary eigenvalue problem
{

∆2u = 0 in Ω
u = 0, ∆u− duν = 0 on ∂Ω .

(4)

This problem was studied by Kuttler [18] and Payne [22] more than 30 years ago, whereas the recent
paper [3] contains extensions and new results, relating in particular (4) to the positivity preserving
properties of ∆2 under the Stekloff-type boundary conditions. Let H(Ω) := [H2 ∩ H1

0 (Ω)] \ H2
0 (Ω)

endowed with the norm ‖∆u‖2 for all u ∈ H(Ω). The smallest (positive) eigenvalue σ of (4) is
characterized variationally as

σ := inf
u∈H(Ω)

∫

Ω
|∆u|2

∫

∂Ω
u2

ν

= inf
u∈H(Ω)

‖∆u‖2
2

‖u‖2
∂ν

. (5)

Here and in the following, we denote by ‖ · ‖p the usual Lp(Ω)-norm (1 ≤ p ≤ ∞), and we put

‖u‖2
∂ν

=
∫

∂Ω
u2

ν for u ∈ H2 ∩H1
0 (Ω).
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Hence σ is the largest constant satisfying

‖∆u‖2
2 ≥ σ‖u‖2

∂ν
for all u ∈ H2 ∩H1

0 (Ω) (6)

and σ−1/2 is the norm of the compact linear operator H2 ∩H1
0 (Ω) → L2(∂Ω), u 7→ uν . It is known

(see [18] for n = 2 and [3] for n ≥ 3) that, up to a multiplicative constant, there exists a unique
eigenfunction φ1 ∈ H(Ω) corresponding to the eigenvalue σ, and −∆φ1 ≥ 0 in Ω (so that φ1 > 0 in Ω
and φ1

ν < 0 on ∂Ω).
Finally, let us make precise what we mean by solution. We say that a function u ∈ H2 ∩H1

0 (Ω) is a
weak solution of (1) if u > 0 a.e. in Ω and

∫

Ω
∆u∆v − d

∫

∂Ω
uνvν =

∫

Ω
u2∗−1v for all v ∈ H2 ∩H1

0 (Ω) . (7)

It can be shown that a weak solution in this sense is in fact a strong (classical) solution, see [3,
Proposition 23] and also [29].
Our first result is somehow standard. We consider least energy solutions (or mountain-pass solutions)
according to the variational characterization of [1]. Then, we prove

Theorem 1. Let Ω ⊂ Rn (n ≥ 5) be a smooth bounded domain and let σ be as in (5). Then,
(i) if d ≥ σ, then (1) admits no solution.
(ii) there exists σ∗ < σ such that if σ∗ < d < σ, then (1) admits a least energy solution ud; these
solutions satisfy

ud → 0 in H2(Ω) ∩ L∞(Ω) and
ud

‖∆ud‖2
→ φ1 in H2(Ω) as d → σ , (8)

where φ1 is the first positive eigenfunction of (4) such that ‖∆φ1‖2 = 1.

Theorem 1 holds under no geometric assumptions on the domain Ω. As already noticed above, this is in
striking contrast with the cases d = 0 (Navier boundary conditions) and d = −∞ (Dirichlet boundary
conditions). The proof of Theorem 1 (ii) is variational and relies on a compactness argument, see
Proposition 14 below.

Next, we restrict our attention to the case where Ω = B, the unit ball. In this case, it is known that
σ = n, see [3]. Then, we prove

Theorem 2. Assume that Ω = B (the unit ball) and that d ≤ 4. Then (1) admits no solution.

The proof of this result relies on a Pohozaev type identity [23, 24] which has been noted by Mitidieri
[20]. Let us explain this more precisely. For a solution u of (1), the identity derived in [20, (2.6)] leads,
after some integrations by parts, to the following boundary integral equality:

∫

∂Ω

[
2 (x · ∇∆u) − d2 (x · ν) uν + nduν

]
uν = 0 . (9)

When d = 0 (Navier boundary conditions) two terms in (9) disappear and the “bad term” x · ∇∆u

simply reduces to (x · ν)(∆u)ν because ∆u vanishes on ∂Ω. When d 6= 0, not only all the three terms
in (9) remain, but also there seems to be no simple way to treat the term x ·∇∆u even on a starshaped
domain. In the particular case where Ω = B, we have x = ν on ∂B and (9) becomes

∫

∂B
[2(∆u)ν + d(n− d)uν ]uν = 0 . (10)

We will use (10) and the Hopf boundary lemma, applied to a suitably chosen auxiliary function, to
prove Theorem 2.
As a consequence of Theorem 2, we obtain the following Sobolev inequality with remainder term:
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Corollary 3. For all u ∈ H2 ∩H1
0 (B) we have

‖∆u‖2
2 ≥ S‖u‖2

2∗ + 4‖u‖2
∂ν

, (11)

where S is the Sobolev constant for the embedding H2 ∩H1
0 (B) ⊂ L2∗(B).

Let us recall that the constant S in (11) is independent of the domain, see [29]. It is clear that (11)
has no analogue in the first order space H1

0 . Inequality (11) should also be compared with Theorem
5 in [12].
Next we discuss the range of parameters d for which we can ensure existence of solutions to (1). For
n ≥ 5 we define the number

σn =





n− (n− 4)(n2 − 4) Γ(n
2
)

2
8
n +1

(
nΓ(n

2
)

Γ(n)

) 4
n

(
Γ( 2n

n−4
)

Γ( n2

2(n−4)
)

)1− 4
n

if n = 5 or n = 6

4(n−3)
n−4 if n ≥ 7 .

In particular, σ5 ≈ 4.5 and σ6 ≈ 5.2, see [31]. Then, we prove

Theorem 4. Assume that Ω = B (the unit ball). Then for all d ∈ (σn, n) problem (1) admits a radial
solution. Moreover, the solution is superharmonic in B.

In the next picture, we represent the existence/nonexistence regions for (1) (when Ω = B) according
to Theorems 1, 2 and 4. Note that σn → 4 as n → ∞, namely σn tends to become “optimal”. The
region with a question mark “?” represents the region 4 < d ≤ σn which is not covered by our results.

6 8 10 12
n

2

4

6

8

10

12

d

d=n

d=4

d=Σn?

$

±

±

Conjecture 5. When Ω = B, (1) admits a (radial) solution ud if and only if 4 < d < n. Moreover,
as d → 4+, ud tends to concentrate, namely ud(0) → +∞ and ud(x) → 0 for 0 < |x| ≤ 1.

In the next section we collect some further results providing evidence in favour of this conjecture. If
it were true, we would have a lower bound for d independent of the dimension n: by scaling, in a ball
of radius R the existence interval would become d ∈ ( 4

R , n
R). We have no explanation why the number

“4” appears, the only justification seems to be that it is the infimum of the real values of n for which
the critical exponent n+4

n−4 makes sense.

Remark 6. If d ≥ 0, we may relax the requirement u > 0 in (1) with u ≥ 0 and u 6≡ 0. Indeed a
solution u satisfies uν ≤ 0 on ∂Ω so that, using the boundary condition, we also infer that −∆u ≥ 0
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on ∂Ω. Since −∆(−∆u) = ∆2u = u2∗−1 ≥ 0 in Ω, by the maximum principle for −∆, we deduce
−∆u > 0 in Ω. In turn, this implies u > 0 in Ω and

uν < 0 on ∂Ω . (12)

The remainder of this paper is organized as follows. In Section 3 we collect some further results, some
of them related to Conjecture 5 above. In particular, we provide some numerical evidence for this
conjecture. We also state some open problems. In Section 4 we prove a compactness result which is
the crucial step in the proof of the existence statements in Theorems 1 and 4. Sections 4-7 contain
the proofs of our main results. In Section 8 we prove Theorem 7 below.

3 Further results and open problems

3.1 Three variational identities for radial solutions

Throughout this section we assume that Ω = B (the unit ball) and we consider radially symmetric
solutions. In this case, if we put r = |x|, then (1) reads

uiv(r) +
2(n− 1)

r
u′′′(r) +

(n− 1)(n− 3)
r2

u′′(r)− (n− 1)(n− 3)
r3

u′(r) = u
n+4
n−4 (r) r ∈ [0, 1) , (13)

while the boundary conditions become

u(1) = 0 , u′′(1) + (n− 1− d)u′(1) = 0 . (14)

Moreover, every nontrivial solution satisfies u′(1) < 0 by the nonexistence result for (2). Hence the
identity (10) yields the additional boundary condition

0 = (∆u)′(1) +
d(n− d)

2
u′(1) = u′′′(1) + (n− 1)u′′(1) +

(d(n− d)
2

− (n− 1)
)
u′(1) . (15)

Using this and a change of variables introduced in [11], we will prove

Theorem 7. Let ud = ud(r) be a positive solution to (13)-(14) for some d. Then,

(d− n)(d− 4)
2

u′d(1) =
∫ 1

0
rn+1u2∗−1

d (r) dr ,
d(d− n)

2
u′d(1) =

∫ 1

0
rn−1u2∗−1

d (r) dr ,

d(d− 4)(d− n)(d + n− 4)|u′d(1)|2 =
32(n + 4)
(n− 4)2

∫ 1

0
rn+2u2∗−3

d (r)[u′d(r)]
3 dr+

+
48(n + 4)

n− 4

∫ 1

0
rn+1u2∗−2

d (r)|u′d(r)|2 dr − 8(n2 − 16)
∫ 1

0
rn−1u2∗

d (r) dr .

Moreover, if a solution ud to problem (13)-(14) exists for all 4 < d < n, then as d → 4+ we necessarily
have that u′d(1) remains bounded and ud(r) → 0 for all r > 0.

Since 2∗− 3 > −1 for any n and u vanishes of order 1 at r = 1, the third identity in Theorem 7 makes
sense. Note that the first identity in Theorem 7 immediately yields a weaker version of Theorem 2,
namely the nonexistence of positive radial solutions of (1) in B when d 6∈ (4, n). The identities of
Theorem 7 suggest that the correct existence interval is d ∈ (4, n), and we feel that they could help
to complete the proof of Conjecture 5 above.
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3.2 Numerical results

Here we present some numerical experiments with Mathematica which give another strong hint that
Conjecture 5 should hold. Let us briefly describe the procedure we followed.
First, we fixed d ∈ (4, n) and we set the Cauchy problem for (13) in r = 1 by choosing ud(1) = 0,
u′d(1) < 0 as a parameter and, according to (14) and (15), by taking

u′′d(1) = (d + 1− n)u′d(1) , u′′′d (1) = (n− d)
(

n− 1− d

2

)
u′d(1) .

Then, we asked Mathematica to plot the solution on the interval (0, 1]. We tried different values of
u′d(1). If it was too negative, the solution remained positive and blew up to +∞ before reaching (going
backwards!) r = 0. If it was negative but too close to 0, the solution attained a maximum, changed
sign and blew up to −∞ before reaching r = 0. By dichotomy, we chose intermediate values of u′d(1)
until we reached an equilibrium. We reached only one equilibrium for every d. This suggests

Problem 8. When Ω = B, does there exist a unique radial solution to (1) for all d ∈ (4, n)?

For d very close to 4 and to n, the program was quite unstable and it was not so clear that uniqueness
of the solution was ensured. For large values of n (below we consider the case n = 12) one should not
completely trust the numerical results: both because very large numbers appear and because even if
the “correct” shooting derivative u′(1) was of the order of 103, small perturbations of order 10−6 gave
rise to quite different results.
In the tables below, we enclose what we obtained in our experiments.

Table 1. Numerical results in the case n = 5, n+4
n−4 = 9.

d 4.999999 4.9999 4.99 4.8 4.6 4.5 4.25 4.01 4.0001
u′d(1) -0.96 -1.71 -3.02 -3.85 -3.57 -3.34 -2.56 -0.97 -0.3
ud(0) 0.48 0.85 1.52 2.38 2.85 3.11 4 10 32

Table 2. Numerical results in the case n = 6, n+4
n−4 = 5.

d 5.99999 5.9999 5.999 5.9 5.75 5.5 5 4.5 4.1 4.01
u′d(1) -0.75 -1.34 -2.38 -7.15 -8.29 -8.49 -7.01 -4.49 -1.72 -0.52
ud(0) 0.35 0.67 1.2 3.9 5.2 6.8 11 18 46 145

Table 3. Numerical results in the case n = 12, n+4
n−4 = 2.

d 11.9 11 10 9 8 7 6 5 4.1
u′d(1) -776.62 -5429.32 -6949.15 -6235.15 -4521.8 -2657.56 -1159.79 -268.86 -2.38
ud(0) 425 6500 2 · 104 5.2 · 104 1.3 · 105 2.9 · 105 7.5 · 105 3.5 · 106 2 · 108

In order to test the procedure, when n = 5 we also tried the values d = 3 and d = 6 which are out of
the range (4, n). In both cases, regardless of the choice of u′d(1), the solution blew up to +∞ before
reaching r = 0. The blow up seemed monotonic, namely for |u′d(1)| decreasing, the blow up time was
also decreasing.

Finally, note that our numerical results seem to show that u′d(1) → 0 and ud(0) → +∞ as d → 4+.
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3.3 Nodal radially symmetric solutions in the ball

We consider here radial sign-changing solutions of (1) when Ω = B. More precisely, for r ∈ [0, 1) we
want to solve

uiv(r) +
2(n− 1)

r
u′′′(r) +

(n− 1)(n− 3)
r2

u′′(r)− (n− 1)(n− 3)
r3

u′(r) = |u(r)| 8
n−4 u(r) , (16)

with boundary conditions (14) and
u′(0) = u′′′(0) = 0 . (17)

This problem admits no solution as stated in

Proposition 9. For any d ∈ R, (16) with boundary conditions (14)-(17) admits no sign-changing
solution.

Proof. This follows by the arguments developed in [16], see also [11]. It is shown there that any
solution of (16)-(17) (with u(0) > 0) which attains 0 in finite time, remains then negative and blows
up to −∞ in finite time. 2

Let us also recall the following consequence of the comparison principle due to McKenna-Reichel [19]
which applies to any solution of (16):

Proposition 10. Any solution u of (16)-(14)-(17) with u(0) > 0 satisfies u′(r) < 0, ∆u(r) < 0,
(∆u)′(r) > 0 for all r ∈ (0, 1].

Proof. Let α = u(0) > 0 and consider the equation ∆2v = v2∗−1 in Rn. It is well-known [27] that
it admits a unique positive entire radial solution v vanishing at infinity and satisfying v(0) = α.
Moreover, this solution satisfies v′(r) < 0 and ∆v(r) < 0 for all r > 0. In view of the comparison
principle in [19] we first deduce that ∆u(0) < ∆v(0) and, subsequently, that u′(r) < v′(r) < 0 and
∆u(r) < ∆v(r) < 0 for all r ∈ (0, 1]. This proves the first two inequalities. The third inequality
follows by integrating the equation

{
rn−1 [∆u(r)]′

}′ = rn−1u2∗−1(r) over [0, r] for r ∈ (0, 1]. 2

3.4 Low and high energy solutions in general domains

As already mentioned, when d = 0 (Navier boundary conditions) the existence of positive solutions of
(1) depends on the geometry of Ω, and the same is true for the Dirichlet problem (2). The solutions
found in [2, 7, 12] are high energy solutions and therefore seem unrelated with the ones we find in
Theorems 1 and 4. The results in [29] show that there exists no least energy solution of (1) when
d = 0. Hence, also in view of Theorem 1, we know that there exists an interval I1 ⊂ (0, σ) such that
(1) admits a least energy solution if and only if d ∈ I1. A natural question then arises:

Problem 11. Prove (or disprove!) that for any domain Ω, there exists a nonempty interval I2 ⊂
(−∞, σ) such that (1) admits a high energy solution for all d ∈ I2. For the domains in [7, 12] we
clearly have 0 ∈ I2.

Furthermore, one may wonder if both least energy solutions and high energy solutions may exist:

Problem 12. For a domain Ω, can it happen that I1 ∩ I2 6= ∅? Does this answer depend on Ω?

It is shown in [13] that in certain domains Ω the biharmonic operator with the boundary conditions
in (1) does not enjoy the positivity preserving property for very negative d. And if one is interested
in positive solutions (as in (1)) one usually cannot avoid using the positivity preserving property. On
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the other hand, it is also shown in [13] that if Ω = B then the problem enjoys the positivity preserving
property for all d < n. But we have seen in Theorem 2 that (1) has no solution if d ≤ 4. This leads
to the following

Problem 13. Is there any connection between the positivity preserving property and the existence
of solutions to (1)?

4 A compactness result

Let Ω ⊂ Rn (n ≥ 5) be a smooth bounded domain. We first recall the characterization of the Sobolev
constant for the embedding H2 ∩H1

0 (Ω) ⊂ L2∗(Ω):

S = inf
u

‖∆u‖2
2

‖u‖2
2∗

,

where the infimum is taken over all u ∈ H2∩H1
0 (Ω)\{0}. It was shown in [29] that S is never achieved

if Ω 6= Rn and that S does not depend on the domain. Moreover, we have

S = π2(n− 4)(n2 − 4)n
(

Γ(n
2 )

Γ(n)

)4/n

, (18)

see also [27].
Next, for all u ∈ H2 ∩H1

0 (Ω) \ {0} we define the ratio

Qd(u) :=
‖∆u‖2

2 − d‖u‖2
∂ν

‖u‖2
2∗

. (19)

Consider now the following minimization problem:

Σd(Ω) := inf
u∈H2∩H1

0 (Ω)\{0}
Qd(u) . (20)

The purpose of this section is to prove the following

Proposition 14. Assume that 0 < d < σ. Then if Σd(Ω) < S the infimum in (20) is achieved.
Moreover, up to a change of sign, any minimizer of (20) is strictly superharmonic in Ω. Finally, up
to a Lagrange multiplier, any minimizer is a positive solution of (1).

Proof. Let {um}m≥0 be a minimizing sequence for Σd(Ω) such that

‖um‖2
2∗ = 1. (21)

Then,
‖∆um‖2

2 − d‖um‖2
∂ν

= Σd(Ω) + o(1) (m → +∞). (22)

Moreover, recalling (6) we have

‖∆um‖2
2 = Σd(Ω) + d‖um‖2

∂ν
+ o(1) ≤ Σd(Ω) +

d

σ
‖∆um‖2

2 + o(1)

so that {um}m≥0 is bounded in H2 ∩H1
0 (Ω). Hence {∇um}m≥0 is bounded in H1(Ω). Exploiting the

compactness of the embeddings H1(Ω) ↪→ L2(∂Ω) and H2 ∩ H1
0 (Ω) ⊂ L2(Ω), we deduce that there

exists u ∈ H2 ∩H1
0 (Ω) such that:

um ⇀ u in H2 ∩H1
0 (Ω), (um)ν → uν in L2(∂Ω), um → u in L2(Ω), (23)
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up to a subsequence. That is, if we set vm := um − u, then

vm ⇀ 0 in H2 ∩H1
0 (Ω), (vm)ν → 0 in L2(∂Ω), vm → 0 in L2(Ω). (24)

On the other hand, by (21) we infer that ‖∆um‖2
2 ≥ S, so that from (22) we also obtain

d‖um‖2
∂ν

= ‖∆um‖2
2 − Σd(Ω) + o(1) ≥ S − Σd(Ω) + o(1)

which remains bounded away from 0 since Σd(Ω) < S. From this fact we deduce that u 6= 0.
In view of (23)-(24) we may rewrite (22) as

‖∆u‖2
2 + ‖∆vm‖2

2 − d‖u‖2
∂ν

= Σd(Ω) + o(1). (25)

Moreover, by (21) and the Brezis-Lieb Lemma [5], we have

1 = ‖u + vm‖2∗
2∗ = ‖u‖2∗

2∗ + ‖vm‖2∗
2∗ + o(1) ≤ ‖u‖2

2∗ + ‖vm‖2
2∗ + o(1) ≤ ‖u‖2

2∗ +
1
S
‖∆vm‖2

2 + o(1) ,

where we also used the fact that both ‖u‖2∗ and ‖vm‖2∗ do not exceed 1. Since Σd(Ω) ≥ 0 for every
0 < d < σ, this last inequality gives

Σd(Ω) ≤ Σd(Ω)‖u‖2
2∗ +

Σd(Ω)
S

‖∆vm‖2
2 + o(1).

By combining this inequality with (25), we obtain

‖∆u‖2
2 − d‖u‖2

∂ν
= Σd(Ω)− ‖∆vm‖2

2 + o(1) ≤

≤ Σd(Ω)‖u‖2
2∗ +

(
Σd(Ω)

S
− 1

)
‖∆vm‖2

2 + o(1) ≤ Σd(Ω)‖u‖2
2∗ + o(1),

which shows that u 6= 0 is a minimizer for (20). This proves the first part of Proposition 14.

Consider now a minimizer u for (20) and assume for contradiction that it is not superharmonic (nor
subhamonic) in Ω. Then, define w ∈ H2 ∩H1

0 (Ω) as the unique solution of
{ −∆w = |∆u| in Ω

w = 0 on ∂Ω.

By the maximum principle for superharmonic functions it follows that w > 0 in Ω and wν < 0 on ∂Ω.
Moreover, both w ± u are superharmonic (but not harmonic!) in Ω and vanish on ∂Ω. This proves
that

|u| < w in Ω , |uν | < |wν | on ∂Ω .

In turn, these inequalities (and −∆w = |∆u|) prove that Qd(w) < Qd(u) which contradicts the
assumption that u minimizes (20).
Therefore, any minimizer u for (20) is superharmonic (and positive) in Ω. By the standard Lagrange
multiplier method, it is readily seen that a multiple of u is a positive solution of (1). Since it is
superharmonic in Ω it also satisfies uν < 0 on ∂Ω. Hence, since −∆u = −duν on ∂Ω, we finally infer
that −∆u > 0 in Ω. 2

Remark 15. In view of [29] we have that Σ0(Ω) = S. Moreover, using the first eigenfunction φ1 in
(19)-(20), we also have Σσ(Ω) = 0. As a consequence of Proposition 14, one can show that the map
d 7→ Σd(Ω) is continuous over [0, σ] and it is strictly decreasing in the range where Σd(Ω) < S.
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5 Proof of Theorem 1

Let φ1 be a positive eigenfunction of (4). Taking v = φ1 as test function in (7) we obtain
∫

Ω
∆u∆φ1 − d

∫

∂Ω
uνφ

1
ν =

∫

Ω
u2∗−1φ1 . (26)

Two integrations by parts yield
∫

Ω
∆u∆φ1 = −

∫

Ω
∇u∇∆φ1 +

∫

∂Ω
∆φ1uν =

∫

Ω
u∆2φ1 + σ

∫

∂Ω
uνφ

1
ν = σ

∫

∂Ω
uνφ

1
ν (27)

where we took into account that φ1 solves (4) and u satisfies the boundary conditions in (1). Plugging
(27) into (26) yields

(σ − d)
∫

∂Ω
uνφ

1
ν =

∫

Ω
u2∗−1φ1 > 0 .

In view of (12), this shows that d < σ. We have so shown that if (1) admits a solution, then necessarily
d < σ. This proves statement (i) of Theorem 1.

Consider again the first eigenfunction φ1 and let

σ∗ :=
‖∆φ1‖2

2 − S‖φ1‖2
2∗

‖φ1‖2
∂ν

.

Then, σ∗ < σ and for all d > σ∗ we have

Σd(Ω) ≤ ‖∆φ1‖2
2 − d‖φ1‖2

∂ν

‖φ1‖2
2∗

< S .

The existence part of statement (ii) then follows from Proposition 14.

We now prove the first of (8). To this end, we remark that in view of the characterization of φ1 in
(20), we have

Σd = Σd(Ω) ≤ ‖∆φ1‖2
2 − d‖φ1‖2

∂ν

‖φ1‖2
2∗

=
1− d

σ

‖φ1‖2
2∗
→ 0 as d → σ . (28)

Since ud is a least energy solution of (1), we have

‖∆ud‖2
2 − d‖ud‖2

∂ν

‖ud‖2
2∗

= Σd . (29)

Moreover, by taking v = ud in (7), we have

‖∆ud‖2
2 − d‖ud‖2

∂ν
= ‖ud‖2∗

2∗ . (30)

Identities (29)-(30) readily imply that ‖ud‖2∗ = Σ(n−4)/8
d . In turn, this and (28) show that

ud → 0 in L2∗(Ω) as d → σ . (31)

We endow H2 ∩H1
0 (Ω) with the scalar product

(v, w)d :=
∫

Ω
∆v∆w − d

∫

∂Ω
vνwν . (32)
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We write ud according to the decomposition H2 ∩H1
0 (Ω) = [span{φ1}]⊕ [span{φ1}]⊥, where orthogo-

nality is intended with respect to the scalar product in (32). In this way, for all d ∈ (σ∗, σ) we obtain
αd ∈ R and ψd ∈ [span{φ1}]⊥ such that

ud = αdφ
1 + ψd . (33)

Using (30) and (31), we infer (as d → σ)

o(1) ≥ (ud, ud)d = α2
d(φ

1, φ1)d + (ψd, ψd)d ≥ α2
d

σ − d

σ
+

σ2 − d

σ2
‖∆ψd‖2

2 , (34)

where σ2 > σ denotes the second Stekloff eigenvalue (see [9]). The above inequality implies at once
that ‖∆ψd‖2 → 0 so that also ‖ψd‖2∗ → 0. Together with (31), this implies that αd → 0 and finally
that

ud → 0 in H2(Ω) as d → σ . (35)

The Lp(Ω) convergence for any p < ∞ follows now by the same argument used in [29, Lemma B1].
Moreover, we obtain uniform convergence with the same argument as [29, Lemma B3], and recalling
that the boundary conditions in (1) satisfy the complementing condition, see [3]. This proves the first
of (8).

In order to prove the second of (8), we note that by (28), (29) and (34), we infer

o(1) =
‖∆ud‖2

2 − d‖ud‖2
∂ν

‖ud‖2
2∗

≥ σ2 − d

2σ2

‖∆ψd‖2
2

α2
d‖φ1‖2

2∗ + ‖ψd‖2
2∗

,

where we also used the inequality ‖ud‖2
2∗ ≤ (‖αdφ

1‖2∗ + ‖ψd‖2∗)2 ≤ 2(α2
d‖φ1‖2

2∗ + ‖ψd‖2
2∗). Therefore,

we obtain

o(1) ≥ σ2 − d

2σ2

α−2
d ‖∆ψd‖2

2

‖φ1‖2
2∗ + α−2

d ‖ψd‖2
2∗

. (36)

For contradiction, if α−2
d ‖ψd‖2

2∗ → +∞, then we may neglect ‖φ1‖2
2∗ in the previous inequality so that

we obtain

o(1) ≥ σ2 − d

2σ2

‖∆ψd‖2
2

‖ψd‖2
2∗

,

which contradicts Sobolev inequality. This contradiction, shows that α−2
d ‖ψd‖2

2∗ remains bounded.
Hence, (36) implies that α−2

d ‖∆ψd‖2
2 → 0 as d → σ. In particular, this means that αd > 0 (recall

ud > 0) and α−2
d ‖∆ud‖2

2 → 1 as d → σ. Therefore, we finally obtain

∥∥∥∥
∆ud

‖∆ud‖2
−∆φ1

∥∥∥∥
2

2

= 2− 2
‖∆ud‖2

∫

Ω
∆φ1(αd∆φ1 + ∆ψd) → 0

which proves (8) and completes the proof of Theorem 1.

6 Proof of Theorem 2 and Corollary 3

For contradiction, let u be a solution of (1) for some d ≤ 4 and consider the auxiliary function
φ ∈ C2(B) defined by

φ(x) = (4− d + d|x|2)∆u(x)− 4dx · ∇u(x) + d(8− 2n)u(x), x ∈ B.
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Then φ = 0 on ∂B, since u = 0 and ∆u = duν on ∂B. A short computation shows

∆φ = 2dn∆u + 4dx · ∇∆u + (4− d + d|x|2)∆2u− 4d(2∆u + x · ∇∆u) + d(8− 2n)∆u

= (4− d + d|x|2)u2∗−1.

If u > 0 solves (1), then ∆φ > 0, since d ≤ 4. By the maximum principle we conclude that φ < 0 in
B, and φν > 0 on ∂B by the Hopf boundary Lemma. But on ∂B we also get by direct computation
(using also the second boundary condition)

φν = 2d∆u + 4(∆u)ν − 4d(uν + uνν) + d(8− 2n)uν

= 2d∆u + 4(∆u)ν − 4d(uν + ∆u− (n− 1)uν) + d(8− 2n)uν

= 2
(
2(∆u)ν + d(n− d)uν

)
,

so that 2(∆u)ν + d(n − d)uν > 0 on ∂B. Since u > 0 in B we have uν ≤ 0 on ∂B. Then, the last
inequality combined with identity (10) yields uν = 0 on ∂B. But then u would be a solution of the
Dirichlet problem (2) in B, which is known to have no positive solutions [21]. This contradiction
concludes the proof of Theorem 2. 2

Corollary 3 is a direct consequence of the definition of Σd combined with Theorem 2 and the fact that,
in view of Proposition 14, Σ4(B) = S. 2

7 Proof of Theorem 4

Throughout this section we denote by Σd the number Σd(B) defined in (20). Moreover, we will use
some properties of the Gamma and Beta functions for which we refer to [31, 32]. Let us recall that

ωn := |∂B| = 2πn/2

Γ(n
2 )

. (37)

In order to prove Theorem 4, we apply Proposition 14. More precisely, we show that if d lies in the
range specified by Theorem 4, then Σd < S. And this is obtained by constructing a suitable radial
function u ∈ H2 ∩H1

0 (B) for which Qd(u) < S. To this end, we have to distinguish between “high”
space dimensions n ≥ 7 and “low” space dimensions n = 5, 6. In the first case we prove

Lemma 16. Assume that n ≥ 7. Then, Σd < S for all 4n−3
n−4 < d < n.

Proof. For all ε > 0 consider the entire function uε(x) := 1

(ε2+|x|2)
n−4

2
. It is known (see e.g. [27]) that

S =

∫

Rn

|∆uε|2
(∫

Rn

|uε|2∗
)2/2∗ for all ε > 0 , (38)

where S is as in (18). We now briefly recall some basic facts about uε. Firstly, we compute
∫

Rn

|uε|2∗ =
∫

Rn

1
(ε2 + |x|2)n

=
1
εn

∫

Rn

1
(1 + |x|2)n

=

=
ωn

εn

∫ ∞

0

rn−1

(1 + r2)n
dr =

ωn

2εn

∫ ∞

0

t
n
2
−1

(1 + t)n
dt =

ωn

2εn

[Γ(n
2 )]2

Γ(n)
=:

K2

εn
. (39)
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Moreover, by (38), ∫

Rn

|∆uε|2 = S

(∫

Rn

|uε|2∗
)2/2∗

= S
K

2/2∗
2

εn−4
=:

K1

εn−4
. (40)

In particular, (39)-(40) and (18) show that K1 and K2 are linked by the following relations

K1 = n(n− 4)(n2 − 4)K2 , K1 = S K
2/2∗
2 . (41)

Consider now the function

Uε(x) := uε(x)− 1

(ε2 + 1)
n−4

2

=
1

(ε2 + |x|2)n−4
2

− 1

(ε2 + 1)
n−4

2

.

Since Uε ∈ H2 ∩H1
0 (B), we may compute

Qd(Uε) =

∫

B
|∆uε|2 − d

∫

∂B
|(uε)ν |2




∫

B

∣∣∣∣∣uε(x)− 1

(ε2 + 1)
n−4

2

∣∣∣∣∣
2∗




2/2∗ .

We first remark that
∫

∂B
|(uε)ν |2 =

(n− 4)2

(1 + ε2)n−2
ωn → (n− 4)2ωn as ε → 0 . (42)

Next, we claim that as ε → 0 the two following facts hold:
∫

B
|∆uε|2 =

K1

εn−4
− 4(n− 4)ωn + o(1), (43)

∫

B

∣∣∣∣∣uε(x)− 1

(ε2 + 1)
n−4

2

∣∣∣∣∣
2∗

=
K2

εn
− 4ωn

(n− 4)(n + 2)ε4
+ o(ε−4), (44)

where K2 and K1 are defined in (39)-(40). Postponing their proofs, from (41)-(42)-(43)-(44) we get

Qd(Uε) =
K1

εn−4

(
1− εn−4

K1
ωn(n− 4)(4 + d(n− 4)) + o(εn−4)

)

K
2/2∗
2

εn−4

(
1− 4ωn

(n−4)(n+2)K2
εn−4 + o(εn−4)

)2/2∗ =

= S

(
1− ωn(n− 4)(4 + d(n− 4))

εn−4

K1
+ o(εn−4)

)(
1 +

4ωnεn−4

n(n + 2)K2
+ o(εn−4)

)
=

= S

[
1− εn−4ωn

(
(n− 4)(4 + d(n− 4))

K1
− 4

n(n + 2)K2

)
+ o(εn−4)

]
as ε → 0 .

Hence, if
(n− 4)(4 + d(n− 4))

K1
− 4

n(n + 2)K2
> 0 (45)

then Qd(Uε) < S for sufficiently small ε and the statement follows. But (45) also reads

d >
4

n− 4

(
K1

n(n + 2)(n− 4)K2
− 1

)
= 4

n− 3
n− 4

,
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where the last (striking!) equality follows from (41). So we have proved that if (43) and (44) hold,
then Qd(Uε) < S for sufficiently small ε provided that d > 4n−3

n−4 .
Hence, the proof of the lemma will be complete once we demonstrate the estimates (43) and (44). By
(40) we have ∫

B
|∆uε|2 =

∫

Rn

|∆uε|2 −
∫

Rn\B
|∆uε|2 =

=
K1

εn−4
− (n− 4)2

∫

Rn\B

(nε2 + 2|x|2)2
(ε2 + |x|2)n

=
K1

εn−4
− 4(n− 4)ωn + o(1)

which is (43). More delicate is the proof of (44). By (39) we have

∫

B

∣∣∣∣∣uε(x)− 1

(ε2 + 1)
n−4

2

∣∣∣∣∣
2∗

=

=
∫

Rn

|uε(x)|2∗ −
∫

Rn\B
|uε(x)|2∗ −

∫

B


|uε(x)|2∗ −

∣∣∣∣∣uε(x)− 1

(ε2 + 1)
n−4

2

∣∣∣∣∣
2∗


 =

=
K2

εn
− ωn

n
+ o(1)−

∫

B


|uε(x)|2∗ −

∣∣∣∣∣uε(x)− 1

(ε2 + 1)
n−4

2

∣∣∣∣∣
2∗


 . (46)

We now decompose the last term in the sum in (46) as follows

∫

B


|uε(x)|2∗ −

∣∣∣∣∣uε(x)− 1

(ε2 + 1)
n−4

2

∣∣∣∣∣
2∗


 = (47)

=
∫

B
ε1/n


|uε(x)|2∗ −

∣∣∣∣∣uε(x)− 1

(ε2 + 1)
n−4

2

∣∣∣∣∣
2∗


 +

∫

B\B
ε1/n


|uε(x)|2∗ −

∣∣∣∣∣uε(x)− 1

(ε2 + 1)
n−4

2

∣∣∣∣∣
2∗


 .

We study separately the two terms above. For the first term, we have

∫

B
ε1/n


|uε(x)|2∗ −

∣∣∣∣∣uε(x)− 1

(ε2 + 1)
n−4

2

∣∣∣∣∣
2∗


 =

=
∫

B
ε1/n

1
(ε2 + |x|2)n


1−

(
1−

(
ε2 + |x|2
ε2 + 1

)n−4
2

)2∗
 =

=
∫

B
ε1/n

1
(ε2 + |x|2)n

[
2∗

(
ε2 + |x|2
ε2 + 1

)n−4
2

+ o

((
ε2 + |x|2
ε2 + 1

)n−4
2

)]
=

= 2∗ωn(1 + o(1))
∫ ε1/n

0

rn−1

(ε2 + r2)
n+4

2

dr =
2∗ωn

2ε4
(1 + o(1))

∫ ∞

0

t
n
2
−1

(1 + t)
n
2
+2

dt =

=
2∗ωn

2ε4

Γ(n
2 )Γ(2)

Γ(n
2 + 2)

(1 + o(1)) =
4ωn

(n− 4)(n + 2)ε4
(1 + o(1)).
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For the second term, we have

∫

B\B
ε1/n


|uε(x)|2∗ −

∣∣∣∣∣uε(x)− 1

(ε2 + 1)
n−4

2

∣∣∣∣∣
2∗


 =

=
∫

B\B
ε1/n

1
(ε2 + |x|2)n


1−

(
1−

(
ε2 + |x|2
ε2 + 1

)n−4
2

)2∗
 ≤

≤
∫

B\B
ε1/n

1
(ε2 + |x|2)n

≤ ωn

∫ ∞

ε1/n

dr

rn+1
=

ωn

nε
+ o(1) = o(ε−4).

Inserting these two estimates into (47) yields

∫

B


|uε(x)|2∗ −

∣∣∣∣∣uε(x)− 1

(ε2 + 1)
n−4

2

∣∣∣∣∣
2∗


 =

4ωn

(n− 4)(n + 2)ε4
+ o(ε−4) .

In turn, inserting this estimate into (46) proves (44). 2

The lower bound 4n−3
n−4 found in Lemma 16 is not smaller than n when n = 5 or n = 6. Therefore,

Lemma 16 does not apply in these dimensions. But here we can prove

Lemma 17. Assume that n = 5 or n = 6. Then, Σd < S for all σn < d < n where

σn = n− (n− 4)(n2 − 4)
Γ(n

2 )

2
8
n

+1

(
nΓ(n

2 )
Γ(n)

) 4
n

(
Γ( 2n

n−4)

Γ( n2

2(n−4))

)1− 4
n

.

Therefore, σ5 ≈ 4.5 and σ6 ≈ 5.2.

Proof. It is shown in [3] that the first eigenfunction of (4) in B can be normalized to be φ1(x) = 1−|x|2.
We have

‖∆φ1‖2
2 = 4nωn , ‖φ1‖2

∂ν
= 4ωn ,

‖φ1‖2∗
2∗ = ωn

∫ 1

0
(1− r2)

2n
n−4 rn−1 dr =

ωn

2

∫ 1

0
(1− u)

2n
n−4 u

n
2
−1 du =

2ωn

n

Γ(n
2 )Γ( 2n

n−4)

Γ( n2

2(n−4))
,

from which we conclude that

Qd(φ1) = 2(n− d) (2ωn)
4
n


 nΓ( n2

2(n−4))

Γ(n
2 )Γ( 2n

n−4)




n−4
n

.

By combining (18) with (37) and the just found value of Qd(φ1), we deduce that Qd(φ1) < S whenever
d > σn. This completes the proof of the lemma. 2
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8 Proof of Theorem 7

With the change of variables

u(r) = r−
n−4

2 v(log r) (0 < r ≤ 1) , v(t) = e
n−4

2
t u(et) (t ≤ 0), (48)

equation (13) may be rewritten as

viv(t)−K2v
′′(t) + K1v(t) = v

n+4
n−4 (t) t ∈ (−∞, 0) , (49)

where

K1 =
(

n(n− 4)
4

)2

, K2 =
n2 − 4n + 8

2
> 0.

We now establish some properties of the solution of (49). Firstly, we derive an upper bound for v:

Lemma 18. For all t ∈ (−∞, 0] we have v(t) ≤
(

(n− 4)n3

16

)(n−4)/8

.

Proof. For every t ∈ (−∞, 0], we define the energy function

E(t) :=
1
2∗

v2∗(t)− K1

2
v2(t) +

K2

2
(v′(t))2 +

1
2
(v′′(t))2 − v′(t)v′′′(t). (50)

By differentiating and using (49), we obtain

E′(t) = −[viv(t)−K2v
′′(t) + K1v(t)− v

n+4
n−4 (t)]v′(t) = 0 ∀t ∈ (−∞, 0).

From this, observing that E(t) → 0 as t → −∞, we conclude that

E(t) = 0 ∀t ∈ (−∞, 0).

Since v(t) is positive on (−∞, 0) and vanishes both for t = 0 and as t → −∞, v admits a global
maximum over (−∞, 0]. Let t be the maximum point of v. Then, v′(t) = 0 and

0 = E(t) =
1
2∗

v2∗(t)− K1

2
v2(t) +

1
2
(v′′(t))2 ≥

[
v2∗−2(t)− nK1

n− 4

]
v2(t)
2∗

which proves the statement. 2

Next, for t = 0, we write higher order derivatives in terms of the first order derivative:

Lemma 19. We have

v(0) = 0 , v′′(0) = (d− 2)v′(0) , v′′′(0) =
n2 − 4n + 2d2 − 8d + 16

4
v′(0) , (51)

viv(0) =
(n2 − 4n + 8)(d− 2)

2
v′(0) , vv(0) = A(n, d)v′(0) , (52)

where 16A(n, d) = n2(n−4)2 +16(3n2−12n+16)+4d(d−4)(n2−4n+8) > 0 since n ≥ 5 and d > 4.
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Proof. In view of the change of variables (48), we may “translate” the boundary conditions on u in
terms of the boundary conditions on v. To this end, we use the formulas in [11, Section 3] to obtain:

u′(1) = v′(0) , u′′(1) = v′′(0)− (n− 3)v′(0) , u′′′(1) = v′′′(0)− 3
2
(n− 2)v′′(0)+

3n2 − 12n + 8
4

v′(0).

Hence, v satisfies v(0) = 0 and v′′(0) + (2− d)v′(0) = 0. Moreover, (15) becomes first 2u′′′(1) + 2(n−
1)u′′(1)+(2(1−n)+d(n−d))u′(1) = 0 and subsequently 4v′′′(0)+2(4−n)v′′(0)+(2d(n−d)−n2)v′(0) = 0.
This proves (51).
From equation (49) we infer viv(0) = K2v

′′(0) so that (51) yields the first of (52). Moreover, by
differentiating (49), we obtain vv(t)−K2v

′′′(t) + K1v
′(t) = n+4

n−4v
8

n−4 (t)v′(t) so that the so far proved
relations show that also the second of (52) holds. 2

In order to apply Lemma 19, we prove some identities concerning v′(0):

Lemma 20. The following identities hold:

d(d− 4)(d− n)(d + n− 4)|v′(0)|2 =
32(n + 4)
(n− 4)2

∫ 0

−∞
v

12−n
n−4 (t)[v′(t)]3 dt , (53)

(d− n)(d− 4)
2

v′(0) =
∫ 0

−∞
ent/2v

n+4
n−4 (t) dt , (54)

d(d− n)
2

v′(0) =
∫ 0

−∞
e(n−4)t/2v

n+4
n−4 (t) dt . (55)

Proof. We multiply equation (49) by v′′′(t) and integrate over (−∞, 0) to obtain:
∫ 0

−∞
viv(t)v′′′(t) dt−K2

∫ 0

−∞
v′′(t)v′′′(t) dt + K1

∫ 0

−∞
v(t)v′′′(t) dt =

∫ 0

−∞
v

n+4
n−4 (t)v′′′(t) dt .

By (48) we know that v and its derivatives vanish as t → −∞; therefore, with two integration by parts
the previous identity becomes

1
2
|v′′′(0)|2 − K2

2
|v′′(0)|2 − K1

2
|v′(0)|2 = −n + 4

n− 4

∫ 0

−∞
v

8
n−4 (t)v′(t)v′′(t) dt . (56)

Notice that a further integration by parts gives
∫ 0

−∞
v

8
n−4 (t)v′(t)v′′(t) dt = − 8

n− 4

∫ 0

−∞
v

12−n
n−4 (t)[v′(t)]3 dt−

∫ 0

−∞
v

8
n−4 (t)v′(t)v′′(t) dt ,

so that ∫ 0

−∞
v

8
n−4 (t)v′(t)v′′(t) dt = − 4

n− 4

∫ 0

−∞
v

12−n
n−4 (t)[v′(t)]3 dt .

By replacing this identity in (56) and by using (51) we obtain (53).
Next, we multiply (49) by ent/2. Then, we may rewrite the equation as

d

dt

[
ent/2

(
v′′′(t)− n

2
v′′(t)− (n− 4)2

4
v′(t) +

n(n− 4)2

8
v(t)

)]
= ent/2v

n+4
n−4 (t) . (57)

By integrating (57) over (−∞, 0) and using (51) we obtain (54).
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Finally, we multiply (49) by e(n−4)t/2. Then, we may rewrite the equation as

d

dt

[
e(n−4)t/2

(
v′′′(t)− n− 4

2
v′′(t)− n2

4
v′(t) +

n2(n− 4)
8

v(t)
)]

= e(n−4)t/2v
n+4
n−4 (t) . (58)

By integrating (58) over (−∞, 0) and using (51) we obtain (55). 2

We now prove the following

Lemma 21. Assume that for all 4 < d < n there exists a solution vd to (49). Then, as d → 4+, v′d(0)
remains bounded and vd(t) → 0 for all t ≤ 0.

Proof. From Lemma 18 and (55) we obtain

d(n− d)
2

|v′d(0)| =
∫ 0

−∞
e(n−4)t/2v

n+4
n−4

d (t) dt ≤ C

∫ 0

−∞
e(n−4)t/2 dt = C ′ .

This proves the first statement. Using this fact in (54), yields

∫ 0

−∞
ent/2v

n+4
n−4

d (t) dt → 0 as d → 4+ .

The proof of the lemma is so complete. 2

We may now complete the proof of Theorem 7. Using (48) it is not difficult to rewrite (54)-(55) as

(d− n)(d− 4)
2

u′d(1) =
∫ 1

0
rn+1u

n+4
n−4

d (r) dr ,
d(d− n)

2
u′d(1) =

∫ 1

0
rn−1u

n+4
n−4

d (r) dr .

Moreover, (53) reads

d(d− 4)(d− n)(d + n− 4)|u′d(1)|2 = 4(n2 − 16)
∫ 1

0
rn−1u2∗

d (r) dr + 24(n + 4)
∫ 1

0
rnu2∗−1

d (r)u′d(r) dr+

+
48(n + 4)

n− 4

∫ 1

0
rn+1u2∗−2

d (r)|u′d(r)|2 dr +
32(n + 4)
(n− 4)2

∫ 1

0
rn+2u2∗−3

d [u′d(r)]
3 dr .

The third identity then follows by integrating by parts the second integral.

Finally, Lemma 21 states that, as d → 4+, u′d(1) remains bounded and ud(r) → 0 for all r > 0.

Remark 22. Instead of performing the change of variables (48) and using the equation (49), one could
also try to argue directly on equation (13). In this case, one should replace the energy functional (50)
with the one suggested in [17]. More precisely, one can show that

2ru′(r)(∆u)′(r) + (n− 4)u(r)(∆u)′(r) + nu′(r)∆u(r)− n− 4
n

ru2∗(r)− r|∆u(r)|2 ≡ 0 (r ∈ [0, 1]) .

However, with this alternative approach it seems much more difficult to obtain a result like Lemma
18 which is crucial in the proof of Lemma 21. Moreover, although it is not a fundamental identity,
(53) seems out of reach without using (48).
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