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Abstract. Using the notion of h-subdifferential, we characterize both first and
second order differentiability of h-convex functions in stratified groups. Besides
some new results involving the h-subdifferential of h-convex functions, we show that
at all h-differentiability points of an h-convex function, the existence of a second
order expansion coincides with a suitable differentiability of its horizontal gradient.
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1. Introduction

The purpose of this work is to establish new results for first and second order
differentiability of h-convex functions from the viewpoint of Nonsmooth Calculus,
namely, using a suitable notion of subdifferential.

Following notations and terminology of Section 2, we represent a stratified group G
as a finite dimensional Hilbert space, that is the direct sum of orthogonal subspaces
H1, H2, . . ., Hι and that is equipped with a suitable polynomial operation. Here H1

is the subspace of horizontal directions at the origin, that yields the first layer V1 of
the Lie algebra g, that is formed by the so called left invariant horizontal vector fields.
More details and precise definitions can be found in Section 2.

According to [12], an h-convex function u : Ω −→ R defined on an open set Ω of a
stratified group G satisfies the property of being classically convex, when restricted
to all horizontal lines contained in Ω. More precisely, we say that u : Ω −→ R is
h-convex if for all h ∈ H1 with [0, h] = {th : 0 ≤ t ≤ 1} and [0, h] ⊂ x−1 · Ω, we have

(1) u
(
x(th)

)
≤ (1− t)u(x) + tu(xh)

for every t ∈ [0, 1]. This notion of h-convexity is local and it does not require any
assumption on Ω. It is not difficult to observe that smooth h-convex functions are
characterized by an everywhere nonnegative horizontal Hessian, see Definition 2.5.
Throughout this work, all h-convex functions on an open subset of G will be assumed
to be measurable, since this assumption implies their Lipschitz continuity on compact
subsets, as proved in [26]. Measurability can be replaced by local boundedness from
above, that also yields the Lipschitz continuity on compact subsets, [21].

We will also use the following local notion of h-subdifferential. We say that p ∈ H1

is an h-subdifferential of u : Ω −→ R at x ∈ Ω if

(2) u(xh) ≥ u(x) + 〈p, h〉

whenever h ∈ H1 and [0, h] ⊂ x−1 · Ω. The set of all h-subdifferentials of u at x is
denoted by ∂Hu(x). This defines the set-valued mapping ∂Hu : Ω ⇒ H1. The scalar
product 〈·, ·〉 in the inequality (2) is the one fixed on G.

Our starting point was the characterization of the second order differentiability of
h-convex functions, that we establish in Theorem 1.3. In tackling this problem, we
realized that it first requires different new tools involving h-subdifferentials, further
nonsmooth notions of differentiability and the characterization of h-differentiability of
h-convex functions through the h-subdifferential. We believe that these facts should
play an important role in the development of a nonsmooth calculus for h-convex
functions.

To present our results, we will start from notions of second order differentiability.
We will say that a locally Lipschitz function u : Ω → R is twice h-differentiable at x
if there exists the horizontal gradient ∇Hu(x) of u at x, and moreover there exists an
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h-linear map Ax : G→ H1 such that

(3)

∥∥∥∥∇Hu(xw)−∇Hu(x)− Ax(w)

‖w‖

∥∥∥∥
L∞(Bδ,H1)

−→ 0 as δ → 0+ .

Horizontal gradients, h-linear maps and h-differentiability are introduced in Defini-
tion 2.3 and Definition 2.4. If the limit (3) holds, then we equivalently say that
∇Hu is h-differentiable at x in the extended sense. We call Ax the second order h-
differential of u at x and denote it by D2

Hu(x), since it is uniquely defined. The notion
of differentiability in the extended sense is well posed, since Lipschitz functions are
almost everywhere h-differentiable, [24]. Differentiability in the extended sense in the
Euclidean case has been introduced by Rockafellar, [29]. The next lemma establishes
a precise characterization of this differentiability. In the sequel, we denote by B the
closed unit ball in H1 centered at the origin.

Lemma 1.1. Let u : Ω −→ R be h-convex, let x ∈ Ω and let Ax : G → H1 be
h-linear. We have that u is h-differentiable at x and satisfies (3) if and only if there
exists v ∈ H1 such that

(4) ∂Hu(xw) ⊆ v + Ax(w) + o(‖w‖)B
for all w ∈ x−1Ω. In particular, the validity of (4) implies the h-differentiability of u
at x, with v equal to the horizontal gradient ∇Hu(x).

This result is an important tool to establish one implication in the characterization
of the second order differentiability of h-convex functions, stated in Theorem 1.3.
Inclusion (4) can be seen as a continuity of the subdifferential at those points where
u is h-differentiable, joined with a first order expansion of the horizontal gradient.
The delicate implication of Lemma 1.1 is that the extended differentiability of ∇Hu
implies the inclusion (4). In fact, this is a consequence of the following theorem.

Theorem 1.1. Let u : Ω→ R be h-convex. Then for every x ∈ Ω, we have

(5) c̄o (∇?
Hu(x)) = ∂Hu(x) .

We denote by co(E) ⊂ H1 the convex hull in H1 of the subset E ⊂ H1 and by
c̄o(E) its closure. The reachable h-gradient is given by

(6) ∇?
Hu(x) =

{
p ∈ H1 : xk → x, ∇Hu(xk) exists for all k’s and ∇Hu(xk)→ p

}
.

The proof of equality (5) in the Euclidean case can be found for instance in [3]. Here
we apply the Hahn-Banach’s theorem inside the horizontal subspace H1. However,
the proof of Theorem 1.1 has a new difficulty. In fact, the group mollification does
not commute with horizontal derivatives, hence the mollification argument of the
Euclidean proof cannot be applied. We overcome this point by a Fubini type argument
with respect to a semidirect factorization, as in [20]. The proof of Theorem 1.1 also
uses the fact that the graph of the h-subdifferential mapping is closed. This follows
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from the following more general “set continuity” of the h-subdifferential, that does
not require the h-differentiability of the function at the fixed point.

Proposition 1.1. Let Ω ⊂ G be an open set ad ui : Ω → R be a sequence of
h-convex functions. Suppose that ui uniformly converges on compact sets to an h-
convex function u. Let x be a point in Ω and let (xi) be a sequence in Ω converging
to x. Then for every ε > 0, there exists i0 ∈ N such that

∂Hui(xi) ⊆ ∂Hu(x) + εB for all i ≥ i0.(7)

In addition, if u is everywhere h-differentiable in Ω, then for every compact set K ⊂ Ω
and every ε > 0, there exist iε,K ∈ N such that

∂Hui(y) ⊆ ∇Hu(y) + εB for all i ≥ iε,K , whenever y ∈ K.(8)

Proposition 1.1 joined with a nonsmooth mean value theorem, see Theorem 3.3,
are used to prove the following first order characterization of h-differentiability.

Theorem 1.2 (First order characterization). Let u : Ω −→ R be h-convex. Then u
is h-differentiable at x if and only if ∂Hu(x) = {p} and in this case ∇Hu(x) = p.

This theorem shows that (4) implies in particular the h-differentiability of u at x.
The fact that h-differentiability implies the uniqueness of the h-subdifferential has
been already observed in [12]. The opposite implication is more delicate, since in the
Euclidean approach the use of the Hahn-Banach theorem requires the subadditivity
of horizontal directional derivatives. We establish this subadditivity in Corollary 3.3,
proving the formula

(9) u′(x, h) = max
p∈∂Hu(x)

〈p, h〉 ,

where u′(x, h) is the horizontal directional derivative introduced in Definition 3.3.
Nevertheless, in the proof of Theorem 1.2 we follow a different scheme, that does
not use this subadditivity, rather we decompose the difference quotient of u into
sums of difference quotients along horizontal directions. This fits with the general
approach to differentiability in stratified groups, [24]. The interesting point here is
that the same scheme is one of the important features in the proof of one implication
in the characterization of Theorem 1.3. This corresponds to the fact that twice h-
differentiability implies the existence of a second order h-expansion.

The second order differentiability of h-convex functions is an interesting research
area, where several questions are not yet understood. Since the works of Busemann
and Feller, [7], and of Aleksandrov [2], there have been different methods to establish
the a.e. second order differentiability of convex functions in Euclidean spaces. The
functional analytic method by Reshetnyak, [25], relies on the fact that the gradient of
a convex function has bounded variation. This scheme can be extended to stratified
groups, provided that an h-convex function is H-BV 2 in the sense of [4]. This has
been established by different authors for h-convex functions on Heisenberg groups and
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two step stratified groups [16], [17], [15], [13] and for k-convex functions with respect
to Hörmander vector fields of step two, [31].

We refer to [13] for the presently known Aleksandrov-Busemann-Feller theorem in
stratified groups: let Ω be an open set of a two step stratified group and let u : Ω −→ R
be h-convex. Then u has at a.e. x ∈ Ω a second order h-expansion at x.

We mean that u : Ω −→ R has a second order h-expansion at x ∈ Ω if there exists
a polynomial Px : G −→ R whose homogeneous degree is less than or equal to two,
such that

(10) u(xw) = Px(w) + o(‖w‖2).

Unfortunately, in higher step groups the fact that h-convex functions are H-BV 2 is
not clear yet, hence the Aleksandrov-Busemann-Feller’s theorem is an important open
question for general stratified groups. On the other hand, the first proofs of this result
in Euclidean spaces, [2], [7] and also some of the subsequent proofs, did not use the
bounded variation property of the gradient. For instance, the Rockafellar’s proof of
[27] relies on Mignot’s a.e. differentiability of monotone functions, [23], where the
crucial observation is that the subdifferential of a convex function is monotone. This
approach to Aleksandrov’s theorem constitutes a further motivation to develop the
study of both first and second order nonsmooth calculus for h-convex functions. We
are now in the position to state our main characterization.

Theorem 1.3 (Second order characterization). Let u : Ω −→ R be h-convex and let
x ∈ Ω. We have that u has a second order h-expansion at x if and only if it is twice
h-differentiable at x. In addition, in this case the following facts hold

1. the gradient ∇V2u(x) =
(
Xm1+1u(x), . . . , Xm2u(x)

)
of u at x along V2 exists,

where (Xm1+1, . . . , Xm2) is an orthonormal basis of the second layer V2,
2. if Px is the second order h-expansion of u at x, then

Px(w) = u(x) +
〈(
∇Hu(x) +∇V2u(x)

)
, w
〉

+
1

2
〈∇2

HPxw,w〉,

where (∇2
H)ij =

XiXj+XjXi
2

, i, j = 1, . . . ,m1 is the horizontal Hessian operator,

3. if D2
Hu(x) is the second order h-differential of u at x and alij are the coefficients

appearing in (15), then
(
D2
Hu(x)

)
ij

= XiXjPx and we have

(11)
(
∇2
HPx

)
ij

=
(
D2
Hu(x)

)
ij
−

m2∑
l=m1+1

alij Xlu(x) .

Joining the Aleksandrov-Busemann-Feller’s Theorem of [13] with our Theorem 1.3,
we immediately achieve the following corollary.

Corollary 1.1. Let G be a two step stratified group and let Ω ⊂ G be an open subset.
If u : Ω −→ R is h-convex, then the second order h-differential D2

Hu(x) exists for a.e.
x ∈ Ω. Moreover, the properties 1, 2 and 3 of Theorem 1.3 hold.
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Let us point out that (11) in the case of commutative groups, namely, finite di-
mensional Banach spaces, yields in particular the Rockafellar’s result on symmetry
and nonnegativity of D2

Hu(x), see [29]. For h-convex functions on noncommutative
stratified groups the symmetric part ∇2

Hu(x) of D2
Hu(x) is nonnegative and the loss

of symmetry of D2
Hu(x) is natural, since it also takes into account the first order

derivatives along directions of the second layer of the Lie algebra of G.

Acknowledgments. We are grateful to Andrea Calogero and Rita Pini for having
addressed our attention to the paper by Rockafellar [29], that was our starting point.
We thank Luigi Ambrosio for a stimulating conversation and for having pointed out
to us the notion of λ-subdifferential in connection with the characterization of second
order differentiability.

2. Basic notions

A stratified group can be thought of as a graded vector space G = H1 ⊕ · · · ⊕ Hι

equipped with a polynomial group operation given by the Backer-Campbell-Hausdorff
formula and whose Lie algebra g satisfies the following properties. There exist linear
subspaces V1, V2, . . . , Vι of g such that g = V1 ⊕ · · · ⊕ Vι, Vj = [V1, Vj−1], for all
j ≤ 1 and Vj = {0} if and only if j > ι. On G we can define a natural family of
dilations δr : G→ G compatible with the group operation, see [14]. A scalar product
on G will be understood, such that all subspaces Hj are orthogonal. We denote by
πj : G −→ Hj the associated orthogonal projections. For every s = 1, . . . ι, we fix a
basis (ems−1+1, . . . , ems) of Hs, where m0 = 0, then

ms∑
i=ms−1+1

xiei ∈ Hs and x =
ι∑

s=1

ms∑
i=ms−1+1

xi ei.

We define
(
Xms−1+1, . . . , Xms

)
to be the basis of Vs such thatXj(0) = ej. Throughout,

we fix a homogeneous distance d on G, i.e. a continuous map d : G × G → [0,+∞)
that makes (G, d) a metric space and it has the following properties

(1) d(x, y) = d(ux, uy) for every x, y, u ∈ G,
(2) d(δrx, δry) = rd(x, y) for every r > 0.

For every w ∈ G, we denote by ‖w‖ the homogeneous norm of w induced by the
distance d by ‖w‖ = d(0, w). Open balls with respect to d will be denoted by Bx,r.
The following proposition is a well known fact, see for instance [22].

Proposition 2.1. Let G be a stratified group and let (e1, . . . , em1) be an orthonormal
basis of H1. Then there exists a positive integer γ along with a vector of integers
(i1, . . . , iγ) ∈ {1, . . . ,m1}γ and a bounded set U ⊂ Rγ such that

(12) B0,1 ⊂
{ γ∏
s=1

aseis| (a1, . . . , aγ) ∈ U
}
.
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Remark 2.1. The inclusion (12) can be always established by a rescaling argument,
once we know that

{∏γ
s=1 aseis| (a1, . . . , aγ) ∈ U

}
is a neighbourhood of the origin.

Definition 2.1. Let U ⊂ Rγ and (i1, . . . , iγ) ∈ {1, . . . ,m1}γ be as in Proposition 2.1.
Thus, we define

W =
{ γ∏
s=1

aseis| (a1, . . . , aγ) ∈ U
}

and M = sup
y∈W
‖y‖.

Definition 2.2 (h-convex set). We say that a subset C ⊂ G is h-convex if for every
x, y ∈ C such that x ∈ Hy we have xδλ(x

−1y) ∈ C for all λ ∈ [0, 1].

We denote by Hx the left translation of H1 by x, namely Hx = xH1. For any x ∈ G,
we set x · [0, h] = {xδth, 0 ≤ t ≤ 1} and throughout Ω denotes an open subset of G.

Definition 2.3. We say that a linear map L : G −→ R is h-linear if L(x) = L(π1(x))
for every x ∈ G.

Definition 2.4. We say that u : Ω −→ R is h-differentiable at x ∈ Ω, if there exists
an h-linear mapping L : G −→ R such that u(xz) = u(x) + L(z) + o(‖z‖). Notice
that L is unique and we denote it by dHu(x). Its associated vector with respect to
the fixed scalar product is the horizontal gradient, denoted by ∇Hu(x).

Definition 2.5. Let u : Ω −→ R be a C2(Ω) function. We define the horizontal

Hessian of u as follows (∇2
Hu)ij =

(
XiXju+XjXiu

2

)
ij
, for all i, j = 1, . . . ,m1.

Definition 2.6. We say that P : G → R is a polynomial on G, if with respect to
some fixed graded coordinates we have P (x) =

∑
α∈A cαx

α, under the convention
xα =

∏n
i=1 x

αi
i , and x0

j = 1, where A ⊂ Nn is a finite set.
The homogeneous degree of P is the integer h-deg(P ) = max {d(α), α ∈ A}, where

d(α) =
∑n

i=1 diαi, and di = s if ms−1 + 1 ≤ i ≤ ms.

By the previous definitions, any polynomial P can be decomposed into the sum of
its j-homogeneous parts, denoted by P (j), hence

P =
∑

0≤j≤h-degP

P (j).

A polynomial is j-homogeneous if it coincides with its j-homogeneous part.
As in [14], given a ∈ N, we shall denote by Pa the space of polynomials of homo-

geneous degree ≤ a. Moreover, by Proposition 1.25 in [14], Pa is invariant under left
translations. Given a multiindex I = (i1, . . . , in), 1 ≤ ij ≤ m1, we set

XI = Xi1 · · ·Xin and |I| = n.

Proposition 2.2 (1.30 in [14]). Take a ∈ N, and let µ be the dimension of Pa. Then

P → (XIP (0))|I|≤a

is a linear isomorphism from Pa to Cµ.
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Remark 2.2. Let P be a polynomial of homogeneous degree at most 2, and suppose
that P (0) = p0 and XiP (x) = li(x), for i = 1, . . . ,m1 where li : G → R are h-linear
maps. Clearly we can compute (XαP )(0) for each multiindex α, |α| ≤ 2, then by the
previous proposition P is uniquely determined.

We are interested to find the explicit isomorphism of the previous proposition in
the case of real polynomials of homogeneous degree less than or equal to two.

Lemma 2.1. Let P be a 2-homogeneous polynomial

P (x) =
1

2

∑
1≤i,j≤m1

cij xixj +

m2∑
s=m1+1

cs xs

Then the following formula holds

(13) P (x) = 〈∇V2P, x〉+
1

2
〈∇2

HPx, x〉 ,

where 〈∇V2P, x〉 =
∑m2

j=m1+1 XjP xj.

Proof. Let us consider, with respect to the same system of graded coordinates, the
left invariant vector fields Xj = ∂xj +

∑n
l=mdj+1 a

l
j(x)∂xl for j = 1, . . . , n, where alj(x)

are (dl−dj)-homogeneous polynomial. Since ∇V2P = (Xm1+1P, . . . , Xm2P ) and ∇2P
are 0-homogeneous it follows that they are constant. The explicit expression of Xj

immediately yields XjP = cj for all j = m1 + 1, . . . ,m2. Hence, it remains to prove
that

(14)
cij + cj i

2
=
XiXjP +XjXiP

2

for 1 ≤ i, j ≤ m1. First we observe that

(15) Xj(x) = ∂xj +

m2∑
l=m1+1

m1∑
i=1

alij xi ∂xl +
n∑

l=m2+1

alj(x) ∂xl

since alj(x) =
∑m1

i=1 a
li
j xi is 1-homogeneous for dl = 2 and dj = 1. Taking into account

the previous expression, we arrive at the following

XjP (x) =
1

2

m1∑
i=1

(cij + cj i)xi +

m1∑
i=1

m2∑
l=m1+1

XlP a
li
j xi

that immediately yields

(16) XiXjP =
cij + cj i

2
+

m2∑
l=m1+1

XlP alij .

Finally, formula (14) follows by the equality alij = −alji . This is in turn a consequence
of the Baker-Campbell-Hausdorff formula for the second order bilinear terms. �
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Definition 2.7. Let us fix x ∈ Ω and a ∈ N. Let f : Ω −→ R be a continuous function
whose distributional derivatives XIf are continuous functions in a neighborhood of
x whenever |I| ≤ a. We define the left Taylor polynomial of f at x of homogeneous
degree a as the unique P ∈ Pa, such that XIP (0) = XIf(x) for all |I| ≤ a.

Theorem 2.1 (Stratified Taylor Inequality, 1.42 of [14]). For each positive integer
k there exists Ck > 0 such that for any continuous function f : Ω −→ R whose
distributional derivatives XIf are continuous functions whenever |I| ≤ k, we have

|f(xy)− Px(y)| ≤ Ck‖y‖kη(x, bk‖y‖)

for all x, y ∈ Ω, where Px is the left Taylor polynomial of f at x of homogeneous
degree k, b is a constant depending only on G, and for small r > 0, we have

η(x, r) = sup
‖z‖≤r,|I|=k

∣∣XIf(xz)−XIf(x)
∣∣ ,

where we have set XI = Xi1 · · ·Xil and I = (i1, . . . , il) ∈ {1, . . . ,m1}l.

Lemma 2.2. Let P : G→ R be a polynomial of homogeneous degree at most 2. Let
P (2)(x) be the 2-homogeneous part of P and define λ = max‖w‖=1 |P (2)(w)|. If we
consider P (xh) as a function of h ∈ G, then for all h ∈ H1 there holds

P (xh) ≥ P (x) + 〈∇HP (x), h〉 − λ‖h‖2.

Proof. For every 1 ≤ i, j ≤ m1, we have XiXjP = XiXj(P (xh)) = ci,j for every
x, h ∈ G. This is a consequence of the following general fact, given a smooth function
u and X, a left invariant vector field on G, then X(u(xh)) = (Xu)(xh). Consider
P (xh) as a function of h, applying Theorem 2.1 we get a polynomial Px(h) such that

P (xh) = Px(h) + o(‖h‖2).

Notice that by the left translation invariance of P2, P (xh) as a function of h is
a polynomial of homogeneous degree at most 2, hence P (xh) = Px(h). Clearly

P
(0)
x (h) = P (x) and P

(1)
x (h) = 〈∇HP (x), h〉, as a consequence

(17) P (xh)− P (x)− 〈∇HP (x), h〉 = P (2)
x (h).

By (17) and previous considerations it follows that

ci,j = XiXjP (h) = XiXjP
(2)(xh) = XiXjP

(2)
x (h), i, j = 1, . . . ,m1.

Moreover all the other derivatives of P
(2)
x are zero, thus we can conclude that P

(2)
x (h) =

P (2)(h) by Proposition 2.2. Finally we get

P (xh) = P (x) + 〈∇HP (x), h〉+ P (2)(h) ≥ P (x) + 〈∇HP (x), h〉 − λ‖h‖2.

�
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3. Properties of the h-subdifferential

This section is devoted to the proofs of our results concerning h-differentiability,
h-subdifferential, converging sequences of h-convex functions and nonsmooth mean
value theorems for h-convex functions. Recall that B ⊂ H1 is the closed ball centered
at the origin of radius one with respect to the fixed scalar product on G.

Lemma 3.1. Let Ω ⊂ G be an open set and let u : Ω→ R be a continuous function.
Then the set ∂Hu(x) ⊂ H1 is convex.

Proof. Let p and q be in ∂Hu(x) and choose λ ∈ [0, 1], we need to prove that λp +
(1− λ)q ∈ ∂Hu(x). This follows from adding the two inequalities

λu(xh) ≥ λu(x) + 〈λp, h〉
(1− λ)u(xh) ≥ (1− λ)u(x) + 〈(1− λ)q, h〉 .

�

Remark 3.1. We wish to recall from the introduction that our assumption of measur-
ability for all h-convex functions yields their Lipschitz continuity on compact subsets,
[26]. Thus, as a straightforward consequence of the definition of h-subdifferential, for
every Bx,r ⊆ Ω and any h-convex function u : Ω −→ R, there exists a positive number
L > 0, depending on x ∈ Ω, r > 0 and u, such that

∂Hu(y) ⊆ LB for every y ∈ Bx,r.

Remark 3.2. As already mentioned, an h-convex function u : Ω −→ R that is
h-differentiable at x ∈ Ω has unique h-subdifferential, hence ∂Hu(x) = {∇Hu(x)},
according to [12].

Recall that the symbol co to denote the linear convex envelope in H1. Then our
first important tool is the following theorem.

Theorem 3.1. Let Ω ⊂ G be an open set, and let u : Ω→ R be h-convex. Then for
every x ∈ Ω we have

(18) ∂Hu(x) ⊆ c̄o (∇?
Hu(x)) ,

where ∇?
Hu(x) is defined in (6).

Proof. Suppose that there exists p ∈ ∂Hu(x) such that p /∈ c̄o (∇?
Hu(x)). We can

assume that p = 0, otherwise one considers v(x) = u(x) − 〈p, π1(x)〉, that is still
h-convex. Since c̄o (∇?

Hu(x)) is a closed convex subset of H1, the Hahn-Banach sep-
aration theorem can be applied to this set and the origin, hence there exists q ∈ H1,
d(0, q) = 1, and α > 0 such that

(19) 〈z, q〉 > α ∀z ∈ ∇?
Hu(x).

We claim the existence of r > 0 such that Bx,r ⊂ Ω and 〈∇Hu(y), q〉 > α
2

for every
y ∈ Bx,r where u is h-differentiable. By contradiction, suppose there exist sequences
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rj → 0 and yj ∈ Bx,rj such that 〈∇Hu(yj), q〉 ≤ α
2
, then possibly passing to a

subsequence we have yj → x and ∇Hu(yj) → z ∈ ∇?
Hu(x), with 〈z, q〉 ≤ α

2
and this

conflicts with (19). Denote by r the positive number having the previous property.
Let Q be the set Q = {δtq : t ∈ R} and consider µ the Haar measure on G. By
Lemma 2.7 in [20] there exists a normal subgroup N ⊂ G, such that N ∩Q = {e} and
NQ = G. Moreover, by Proposition 2.8 in [20], there exist νq and µN , respectively
Haar measures on Q and N such that for every measurable set A ⊂ G

(20) µ(A) =

∫
N

νq(An) dµN(n)

where An = {h ∈ Q : nh ∈ A}. Let P be the set of h-differentiable points of u, which
has full measure in Ω. From (20) it follows that for µN -a.e. n ∈ N , νQ(Q\n−1P ) = 0.
Then for µN -a.e. n ∈ N , nδtq ∈ P for a.e. t ∈ R. Let n̄ ∈ N and δt̄q ∈ Q be
respectively the unique elements in N and Q such that x = n̄δt̄q. Let ε > 0 and s > 0
be such that BN

n̄,s · B
Q
δt̄q,ε
⊂ Bx,r, where BN

n̄,s and BQ
δt̄q,ε

are open balls respectively in

N and Q. Fix a point n ∈ BN
n̄,s where u(nh) is νq-a.e. differentiable and consider the

convex function v(t) = u(nδtq), for νq-a.e. δtq, t ∈ (−ε+ t̄, ε+ t̄) we have

v′(t) = 〈∇Hu(nδtq), q〉 >
α

2
.

Integrating the previous inequality, taking into account the Lipschitz regularity of v
we get

v(t1)− v(t2) = u(nδt1q)− u(nδt2q) >
α

2
(t1 − t2)

where −ε + t̄ < t2 < t1 < ε + t̄. Now let nj → n̄ ∈ BN
n̄,s be such that njh is a

differentiable point of the map h→ u(njh) for every j and νq-a.e. h, by the previous
considerations we have

u(njδt1q)− u(njδt2q) >
α

2
(t1 − t2) − ε+ t̄ < t2 < t1 < ε+ t̄

finally we can pass to the limit in j and get the strict monotonicity of u(n̄δtq) i.e.

(21) u(n̄δt1q)− u(n̄δt2q) ≥
α

2
(t1 − t2) − ε+ t̄ < t2 < t1 < ε+ t̄.

Recall that 0 ∈ ∂Hu(x), i.e. u(xh) ≥ u(x) whenever [0, h] ⊆ H1 ∩ x−1Ω. Thus,
u(n̄δtq) ≥ u(n̄δt̄q) for all t ∈ (t̄− ε, t̄+ ε), in contrast with the monotonicity (21). �

Joining Theorem 3.1 with Theorem 9.2 of [12], we immediately get

Corollary 3.1. Let u : Ω→ R be an h-convex function. There exists C = C(G) > 0
such that for every ball B(x, r) ⊂ G one has

(22) sup
p∈∂Hu(y)
y∈Bx,r

|p| ≤ C

r

1

|Bx,15r|

∫
Bx,15r

|u(y)|dy.
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Given a set E ⊂ G and ρ > 0, by I(E, ρ), we denote the open set

I(E, ρ) = {x ∈ G, d(x,E) < ρ} .

Proof of Proposition 1.1. We argue by contradiction in both cases, hence we suppose
that there exist ε > 0 and a subsequence pik ∈ ∂Huik(xik) such that for every p ∈
∂Hu(x) we have |pik − p| > ε. By estimate (22) one easily observes that the sets
∂Hui(xi) are equibounded, thus possibly passing to a subsequence, pik → q and
dist(pjk , ∂Hu(xjk)) ≥ ε. Define a monotone family of compact sets

Kτ =

{
x ∈ Dτ : d(x,Ωc) ≥ 1

τ

}
,

such that
⋃
τ>0Kτ = Ω. Let us select a sequence of compact sets (Kl) and a subse-

quence (jl) such that pjl → q and ‖uil − u‖L∞(Kl) <
1
l
. Recall that pjl ∈ ∂Hujl(xjl).

It follows that ujl(xjlh) ≥ ujl(xjl) + 〈pjl , h〉, whenever [0, h] ⊆ H1 ∩ x−1
jl

Ω. By the
uniform convergence of (ui), for any integer l sufficiently large, we get

(23) u(xjlh) ≥ u(xjl)−
1

l
+ 〈pjl , h〉 ,

for all h ∈ H1 such that [0, h] ⊆ H1 ∩ x−1
jl
· Kl. Now, we fix any h̄ ∈ H1 such that

[0, h̄] ⊆ x−1 · Ω. Therefore there exists l0 ∈ N such that for every l ∈ N greater than
l0, we have [0, h̄] ⊂ x−1 ·Kl and there exists ρ > 0 such that I(x · [0, h̄], ρ) ⊂ Kl. By
the continuity of left translations, we get l1 ∈ N greater than l0, such that

xjl · [0, h̄] ⊆ I(x · [0, h̄], ρ),

for all l ≥ l1. It follows that [0, h̄] ⊆ x−1
jl
Kl for all l ≥ l1 and this allows us to apply

(23) for h = h̄ and pass to the limit with respect to l, getting

(24) u(xh̄) ≥ u(x) +
〈
q, h̄
〉
.

The arbitrary choice of h̄ implies that q ∈ ∂Hu(x), giving a contradiction.
Let us now suppose in addition that u is everywhere h-differentiable. Again, by

contradiction, there exist a compact set D ⊂ Ω, ε > 0 and a subsequence (jl) such
that for all l, xjl ∈ D we have

∂Hujl(xjl) * ∂Hu(xjl) + εB.

Therefore we can find pjl ∈ ∂Hujl(xjl) such that dist(pjl , ∂Hu(xjl)) ≥ ε, for all l > 0.
As before, we can suppose that, possibly passing to a subsequence, xjl → x̄ ∈ D and
pjl → p̄. By h-differentiability at x̄ and Remark 3.2, taking into account the first part
of this proposition, for every δ > 0 there exists l′ ∈ N such that

∂Hujl(xjl) ⊂ ∇Hu(x̄) + δB

for every l > l′. Thus, we achieve ε ≤ dist(pjl , ∂Hu(xjl)) ≤ 2δ for all l > l′. If we
choose δ = ε

4
, then reach a contradiction, concluding the proof. �
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Taking the constant sequence of h-convex functions in the previous proposition and
taking into account (7), we immediately reach the following simple consequence.

Corollary 3.2. Let Ω be an open set of G and let u : Ω→ R be an h-convex function,
then ∂Hu : Ω→ P(H1) has closed graph.

The previous corollary allows us to complete the proof of Theorem 1.1.

Proof of Theorem 1.1. By virtue of Theorem 3.1, we only have to prove the inclusion

c̄o (∇?
Hu(x)) ⊆ ∂Hu(x).

By Corollary 3.2, the set-valued map ∂Hu has closed graph and ∂Hu(y) = {∇Hu(y)}
at any h-differentiable point y of u. This immediately yields

∇?
Hu(x) ⊆ ∂Hu(x).

Moreover ∂Hu(x) is a convex set in H1 for every x ∈ G, then our claim follows. �

Remark 3.3. The almost everywhere h-differentiability of an h-convex function u
implies that ∇∗Hu(x) 6= ∅ for all x ∈ Ω. Thus, in view of formula (5), it follows
that ∂Hu(x) 6= ∅ for all x ∈ Ω. We have then shown that any h-convex function has
everywhere nonempty h-subdifferential. This fact was first observed in [9] for h-convex
functions on Heisenberg groups. The opposite implication in general stratified groups
can be found in [12] for h-convex domains. Notice that the same implication holds for
h-convex functions on open sets, since the everywhere existence of an h-subdifferential
implies the everywhere existence of the Euclidean subdifferential along horizontal
lines. Then the Euclidean characterization of convexity through the subdifferential
gives the Euclidean convexity along horizontal lines, that coincides with the notion
of h-convexity.

Definition 3.1. Let Ω ⊂ G be an open subset and let u be a real valued function in
Ω. Then we define the first order sub jet of u at x ∈ Ω as

J1,−
u (x) =

{
p ∈ H1 : u(xh) ≥ u(x) + 〈p, h〉+ o(‖h‖), if [0, h] ⊂ H1 ∩ x−1Ω

}
Remark 3.4. Let u be an h-convex function in Ω. Then u is h-subdifferentiable at
x if and only if J1,−

u (x) 6= ∅. Moreover J1,−
u (x) = ∂Hu(x). For the reader’s sake we

give the proof of this property, that in the Heisenberg group has been proved in [9].
The inclusion J1,−

u (x) ⊇ ∂Hu(x) follows by definition. Now let p be in J1,−
u (x), and

fix [0, h] ⊆ (x−1 · Ω) ∩H1 . Then p satisfies

u(xδth) ≥ u(x) + 〈p, th〉+ o(‖th‖).
By h-convexity of u, tu(xh) + (1− t)u(x) ≥ u(xδth) which implies

u(xh) ≥ u(x) + 〈p, h〉+
o(‖th‖)

t
.

Now the claim follows letting t→ 0.
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Definition 3.2. Let Ω ⊂ G an open subset and consider u : Ω → R . Given λ ≥ 0
we define the λ-subdifferential of u at x ∈ Ω as

∂λHu(x) =
{
p ∈ H1 : u(xh) ≥ u(x) + 〈p, h〉 − λ‖h‖2, whenever [0, h] ⊆ H1 ∩ x−1Ω

}
.

Notice that ∂0
Hu(x) coincides with the h-subdifferential ∂Hu(x).

Lemma 3.2. Consider a function u = U + P in Ω. Let U be h-convex and let P be
a polynomial with h-degP ≤ 2, denote by P (2) the 2-homogeneous part of P . Define
λ = max

‖w‖=1
|P (2)(w)|, then ∂λHu(x) ⊇ ∂HU(x) +∇HP (x).

Proof. Recall that by Lemma 2.2, for every x, h ∈ G we have

P (xh) ≥ P (x) + 〈∇HP (x), h〉 − λ‖h‖2.

Let p be in ∂HU(x) then

U(xh) + P (xh) ≥ U(x) + P (x) + 〈p+∇HP (x), h〉 − λ‖h‖2,

whenever [0, h] ⊆ x−1Ω ∩H1. This implies that p+∇HP (x) ∈ ∂λHu(x). �

Proposition 3.1. Let Ω be a subset of G. Let U and V be respectively an h-convex
function and a C1

H(Ω) function, we define the map u as u = U + V . Fix λ ≥ 0, then
for every x ∈ Ω we have ∂λHu(x) ⊆ ∂HU(x) +∇HV (x).

Proof. In fact let p be in ∂λHu(x) and take [0, h] ⊆ H1 ∩ x−1Ω

u(xh) ≥ u(x) + 〈p, h〉 − λ‖h‖2

U(xh) + V (xh) ≥ U(x) + V (x) + 〈∇HV (x), h〉+ 〈p−∇HV (x), h〉 − λ‖h‖2

Thus, by the smoothness of P , it follows that

U(xh) ≥ U(x) + 〈p−∇HV (x), h〉+ o(‖h‖)
recall that U is h-convex thus by Remark 3.4 , p−∇HV (x) ∈ ∂HU(x). Therefore the
inclusion is proved. �

In the following theorem we extend the classical non-smooth mean value theorem
to stratified groups.

Theorem 3.2. Let U be h-convex and let P be a polynomial, with h-degP ≤ 2 and
λ = max‖w‖=1 |P (2)(w)|. We define the function u as u = U+P . Then for every x ∈ Ω
and every h such that [0, h] ⊆ H1 ∩ x−1Ω, there exist t ∈ [0, 1] and p ∈ ∂λHu(xδth)
such that u(xh)− u(x) = 〈p, h〉.

Proof. Let Ui be a sequence of C∞(Ω) h-convex functions, converging to U uniformly
on compact sets. Define ui = Ui + P . For such functions the mean value theorem
holds i.e. there exists tj ∈ [0, 1] such that

ui(xh)− ui(x) = 〈∇Hui(xδtih), h〉 , [0, h] ⊂ H1 ∩ x−1Ω.
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Possibly passing to a subsequence we have ti → t and ∇Hui(xδtih)→ p, thus by the
uniform convergence

u(xh)− u(x) = 〈p, h〉 .
Our claim follows if we prove that p ∈ ∂λHu(xδth). By Proposition 1.1, for every k > 0
there exists ik such that

∇HUi(xδtih) = ∂HUi(xδtih) ⊆ ∂HU(xδth) +
1

k
B, ∀i ≥ ik

Moreover, possibly choosing a larger ik, we have

∇HUi(xδtih) +∇HP (xδtih) ⊆ ∂HU(xδth) +∇HP (xδth) +
2

k
B, ∀i ≥ ik

By Lemma 3.2, ∂λHu(x) ⊇ ∂HU(x) +∇HP (x) thus the previous inclusion implies that

∇Hui(xδtih) = ∇HUi(xδtih) +∇HP (xδtih) ⊆ ∂λHu(xδth) +
2

k
B, ∀i ≥ ik

then letting k →∞ we get that p ∈ ∂λHu(xδth). �

As a consequence of the previous result, we immediately get the following theorem.

Theorem 3.3 (Nonsmooth mean value theorem). Let u : Ω −→ R be an h-convex
function. Then for every x ∈ Ω and every h such that [0, h] ⊆ H1∩x−1Ω, there exists
t ∈ [0, 1] and p ∈ ∂Hu(xδth) such that u(xh)− u(x) = 〈p, h〉.

Proof. It suffices to apply Theorem 3.2 with P = 0 and λ = 0. �

Remark 3.5. In the literature a nonsmooth mean value can be found for Lipschitz
mappings on Banach homogeneous groups, that clearly include stratified groups, [30].
Unfortunately, this work does not imply our Theorem 3.3, since it uses the notion of
Clarke generalized gradient for Lipschitz mappings adapted to homogeneous groups.

Definition 3.3. Let Ω ⊂ G be an open set, and let u : Ω → R be a function. Take
h ∈ H1. The horizontal directional derivative of u at x, along h, is given by the limit
lim
λ→0+

(
u(xδλh)− u(x)

)
λ−1, whenever it exists. We denote this derivative by u′(x, h).

Corollary 3.3. Let u be an h-convex function in Ω. Then for every x ∈ Ω and
h ∈ H1 the horizontal directional derivative u′(x, h) exists and satisfies

(25) u′(x, h) = max
p∈∂Hu(x)

〈p, h〉 ,

hence it is subadditive with respect to the variable h.

Proof. The h-convexity of u implies the existence of u′(x, h) for any x ∈ Ω and h ∈ H1.
Let p0 ∈ ∂Hu(x) be such that 〈p0, h〉 = max

p∈∂Hu(x)
〈p, h〉. By definition of ∂Hu(x),

u(xδλh) ≥ u(x) + 〈p0, λh〉 , whenever [0, λh] ⊂ x−1Ω ∩H1.
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Then we easily get that

lim
λ→0+

u(xδλh)− u(x)

λ
≥ 〈p0, h〉 .

Notice that, for λ small enough, [0, λh] ⊂ x−1Ω∩H1, hence we can apply Theorem 3.2.
Then for every λ there exist c(λ) ∈ [0, 1] and p(λ) ∈ ∂Hu(xδc(λ)λh) such that

u(xδλh)− u(x)

λ
= 〈p(λ), h〉 .

Now fix a sequence λi → 0 such that p(λi) → p̄, then by the closure property of the
subdifferential we get p̄ ∈ ∂Hu(x). Moreover, the existence of the following limit gives

lim
λ→0+

u(xδλh)− u(x)

λ
= 〈p̄, h〉 ≤ max

p∈∂Hu(x)
〈p, h〉 ,

concluding the proof. �

Proof of Theorem 1.2. Uniqueness of the h-subdifferential under h-differentiability
has been already established in [12], see Remark 3.2. Let us assume now that the
h-subdifferential p of u at x is unique. Let U , W and M be as in Definition 2.1. Thus,
for any w ∈ G with ‖w‖ = 1, we have w =

∏γ
s=1 aseis for some (a1, . . . , aγ) ∈ U . We

fix r > 0 such that B0,r ⊂ x−1Ω and define the h-convex function

g(y) = u(xy)− u(x)− 〈p, y〉

for any y ∈ x−1Ω. We choose ρ0 > 0 such that ρ0M < r. Thus, whenever 0 < ρ < ρ0,
by Theorem 3.3 and the generating property, we have

g(δρw) =

γ∑
s=1

〈ps, ρaseis〉 − 〈p, ρaseis〉

where ps ∈ ∂Hu
(
xδρ(

∏s−1
k=1 akeik)δtsδρaseis

)
with ts ∈ [0, 1]. By Proposition 1.1, for

every ε > 0 there exists ρ0 such that

∂Hu

(
xδρ(

s−1∏
k=1

aseik)δtsδρaseis

)
⊆ ∂Hu(x) + εB = {p}+ εB

for all 0 < ρ < ρ0 and s = 1, . . . , γ. Thus |g(δρw)| ≤ Cγερ, where C is independent on

(a1, . . . , aγ), since W is a bounded set. This implies that
|g(δρw)|

ρ
uniformly converges

to zero with respect to w ∈ W as ρ→ 0+. �
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4. Second order differentiability

The aim of this section is to prove the characterization of the second order dif-
ferentiability of h-convex functions, stated in Theorem 1.3. Let us begin with the
following simple fact.

Proposition 4.1. Let Ω ⊂ G be an open set and let u : Ω → R. If u has a second
order h-expansion Px at x ∈ Ω, then u is h-differentiable at x

(26) P (1)
x (w) = 〈∇Hu(x), w〉 .

Proof. If (10) holds, then we can rewrite this condition as

u(xw)− P (0)
x (w)− P (1)

x (w) = P (2)
x (w) + o(‖w‖2).

Clearly P
(0)
x (w) = u(x) and P

(1)
x (w) is an h-linear map. Thus, we achieve

|u(xw)− u(x)− P (1)
x (w)| = o(‖w‖),

and the h-differentiability of u follows. In view of the uniqueness of the h-differential,
we get (26), concluding the proof. �

Definition 4.1 (Difference quotients). Let u : Ω→ R be h-convex and assume that
it is h-differentiable at x. For every τ > 0 define the first order h-quotient at x

ux,τ (w) = τ−1 {u(xδτw)− u(x)}

and the second order h-quotient at x

(27) ∆2
x,τu(w) =

u(xδτw)− u(x)− τ 〈∇Hu(x), w〉
τ 2

assuming in addition that u is h-differentiable at x. At this h-differentiability point,
the h-difference quotient of ∂Hu is given by the set-valued mapping

(28) ∆x,τ∂Hu(w) =
∂Hu(xδτw)−∇Hu(x)

τ
.

Remark 4.1. Notice that ∆2
x,τu can be written as

∆2
x,τu(w) = τ−1 [ux,τ (w)− 〈∇Hu(x), w〉]

where ux,τ is clearly h-convex. Moreover if we take the subdifferential of ∆2
x,τu we get

∂H
[
∆2
x,τu(w)

]
= τ−1 {∂Hux,τ (w)−∇Hu(x)}(29)

= τ−1 {∂Hu(xδτw)−∇Hu(x)}
= ∆x,τ∂Hu(w).

where the equality ∂Hux,τ (w) = ∂Hu(xδτw) follows from the definition of ux,τ .
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Proof of Lemma 1.1. Choosing w = 0 we get ∂Hu(x) = {v}, thus by Theorem 1.2, u is
h-differentiable at x, moreover v = ∇Hu(x). The twice h-differentiability immediately
follows from (4), taking its restriction to all points of h-differentiability. For the
converse implication, we rewrite expansion (3) as follows, for all ε > 0 there exists
ρ > 0 such that

(30)

∣∣∣∣∇Hu(xh)−∇Hu(x)− Ax(h)

‖h‖

∣∣∣∣ ≤ ε ‖h‖ < ρ.

for all h ∈ x−1Ω such that u is h-differentiable at xh. By (6), for any w ∈ x−1Ω∩B0,ρ,
taking into account (30), we get∣∣∣∣p−∇Hu(x)− Ax(w)

‖w‖

∣∣∣∣ ≤ ε for all p ∈ ∇?
Hu(xw).

In an equivalent form, we have

(31) ∇?
Hu(xw) ⊆ ∇Hu(x) + Ax(w) + ε‖w‖B.

Moreover, the set on the right is convex, hence Theorem 1.1 yields

(32) ∂Hu(xw) = c̄o (∇?
Hu(xw)) ⊆ ∇Hu(x) + Ax(w) + o(‖w‖)B.

This concludes the proof. �

Proposition 4.2. If u : Ω −→ R is h-convex, then it is twice h-differentiable at x if
and only if for any compact set D ⊂ Ω and for all ε > 0, there exists δ > 0 such that
for all w ∈ D and 0 < τ < δ we have

(33) ∆x,τ∂Hu(w)− Ax(w) ⊆ εB.

Proof. Let u be twice h-differentiable at x, fix a compact set D ⊂ Ω and ε > 0. We
set µD = maxw∈D ‖w‖. Then there is ρ(ε,D,Ω) > 0 such that

∂Hu(xw) ⊂ ∇Hu(x) + Ax(w) +
‖w‖ ε
µD

B,

whenever ‖w‖ < ρ(ε,D,Ω) and Bx,ρ(ε,D,Ω) ⊂ Ω. We consider w = δτh, where h ∈ D,

and 0 < τ < ρ(ε,D,Ω)
µD

. It follows that

∂Hu(xδτh) ⊂ ∇Hu(x) + τAx(h) + ετB
which is equivalent to (33). Conversely, let S = {w ∈ G : ‖w‖ = 1} be a compact
set and fix ε > 0. Then there exists δ > 0 such that (33) holds whenever 0 < τ < δ.
Thus, we have

∂Hu(xδτw)−∇Hu(x)

τ
− Ax(w) ⊆ εB.

In other words, whenever 0 < ‖h‖ < δ, we have

∂Hu(xh) ⊆ ∇Hu(x) + Ax(h) + ε‖h‖B,
that establishes the twice h-differentiability of u at x. �
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Finally, we have enough tools to establish the characterization of second order
differentiability of h-convex functions.

Proof of Theorem 1.3. Let us assume that u has a second order h-expansion at x.

By Proposition 4.1, u is h-differentiable at x, then P
(0)
x (w) = u(x) and P

(1)
x (w) =

〈∇Hu(x), w〉, where Px is the polynomial associated to the second order h-expansion.

Define φ(w) := P
(2)
x (w) and notice that ∇HP

(2)
x (w) is an h-linear map, since it is a

polynomial of homogeneous degree 1. The second order h-expansion yields
(34)

∆2
x,τu(w)− φ(w) =

u(xδτw)− P (0)
x (δτw)− P (1)

x (δτw)− P (2)
x (δτw)

τ 2
=
o(‖δτw‖2)

τ 2
.

As a consequence, ∆2
x,τu uniformly converges to φ on compacts sets as τ → 0+.

Moreover ∆2
x,τu is h-convex, then so is φ. Applying Proposition 1.1, we can establish

that for every compact set D ⊂ Ω and ε > 0 there exists δ > 0 such that

∂H∆2
x,τu(w) ⊆ ∇Hφ(w) + εB, for all w ∈ D and τ ∈ (0, δ).

Notice that (29) gives ∂H∆2
x,τu(w) = ∆x,τ∂Hu(w), hence

∆x,τ∂Hu(w) ⊆ ∇HP
(2)
x (w) + εB.

As a result, we have ∆x,τ∂Hu(w)−∇HP
(2)
x (w) ⊂ εB whenever w ∈ D and 0 < τ < δ.

By Proposition 4.2, u is twice h-differentiable. Furthermore, ∇HP
(2)
x is the second

order h-differential D2
Hu(x) of u at x.

We now assume that u is twice h-differentiable at x, where D2
Hu(x) denotes the

second order h-differential of u at x. By Lemma 1.1, we have

∇Hu(xw) = ∇Hu(x) +D2
Hu(x)w + o(‖w‖),

where D2
Hu(x) is regarded as an h-linear mapping. Let U , W and M be as introduced

in Definition 2.1. We define

v(w) = u(xw)− u(x)− Px(w),

for every w ∈ x−1 ·Ω and Px is the unique polynomial with h-degP ≤ 2 that satisfies
the condition Px(0) = 0 and

(35) ∇HPx(w) = ∇Hu(x) +D2
Hu(x)w.

This is as a consequence of Remark 2.2. Let r > 0 be such that B0,r ⊂ x−1 · Ω. Let
ρ0 > 0 be such that ρ0M < r and choose w such that ‖w‖ = 1. We consider 0 < ρ < ρ0

and δρw =
∏γ

s=1 ρaseis , for some (a1, . . . , aγ) ∈ U . Then v(δρw) = v(δρw)− v(0) can
be written as

v(δρw) =

γ∑
s=1

v
( s∏
l=1

ρ aileil

)
− v
( s−1∏
l=1

ρ aileil

)
.
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Observe that v is an h-convex function plus a polynomial of homogeneous degree less
than or equal to two. By Theorem 3.2 applied to horizontal directions eis , we get

v(δρw) =

γ∑
i=1

〈ps, ρ aseis〉

with ps ∈ ∂λHv
(
x
(∏s−1

k=1 ρ akeik
)
(tsρ aseis)

)
, where ts ∈ [0, 1] and λ = max

‖h‖=1
|P (2)
x (h)|.

Moreover, by Proposition 3.1 we know that

(36) ps +∇Px
(( s−1∏

k=1

ρ akeik
)
(tsρ aseis)

)
∈ ∂Hu

(
x
( s−1∏
k=1

ρ akeik
)
(tsρ aseis)

)
.

The expansion (4) for the h-subdifferential of u implies that

∂Hu
(
x
( s−1∏
k=1

ρ akeik
)
(tsρ aseis)

)
⊂ ∇Hu(x) + Ax

(( s−1∏
k=1

ρ akeik
)
(tsρ aseis)

)
(37)

+o
(
|
( s−1∏
k=1

ρ akeik
)
(tsρ aseis)|

)
B.

Thus, by formula (35), taking into account (36) and (37), we get that

|ps| = o

(
|δρ(

s−1∏
k=1

akeik)δtsδρaseis|

)
= o(ρ).

As a consequence, |v(δρw)| = o(ρ2). This concludes the proof of our characterization.
Next, we have to prove the claims (1), (2) and (3). The first one follows considering

the restriction of (34) to directions z ∈ H2, with |w| = 1, and taking into account
(13), hence getting the uniform limit

u(x exp(t2Z))− u(x)− t2〈∇V2P
(2)
x , z〉

t2
−→ 0

as t→ 0+, where z varies in a compact neighborhood of zero in H2 and Z is the unique
left invariant vector field such that Z(0) = z. In fact, we have used the equality

xδtz = x · δt exp(Z) = x · exp(t2Z),

In particular, we have ∇V2u(x) = ∇V2P . Taking into account Proposition 4.1 and
formula (13), then claim (2) follows. Now, with respect to the fixed basis (e1, . . . , en)
of G, we have the coefficients

(
D2
Hu(x)

)
ij

such that

D2
Hu(x)w =

m1∑
i,j=1

(
D2
Hu(x)

)
ij
wi ej ,
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therefore (35) yields ∇HP
(2)
x (w) = D2

Hu(x)w. For any j = 1, . . . ,m1, we have

XjP
(2)
x (w) =

m1∑
i=1

(Ax)ij wi ,

then formula (16) gives XiXjP
(2)
x =

(
D2
Hu(x)

)
ij

= (∇2
HP

(2)
x

)
ij

+
∑m2

l=m1+1Xlu(x) alij .

As a result, we get

(∇2
HP

(2)
x )ij = (Ax)ij −

m2∑
l=m1+1

Xlu(x) alij ,

that coincides with the formula of claim (3). Finally, we recall that P
(2)
x is the uniform

limit on compact sets of the h-convex functions ∆2
x,τu. This implies that P

(2)
x is also

h-convex and then its horizontal Hessian is nonnegative. �
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