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Abstract

The problem of optimal transportation between a set of sources and a set of wells has become recently
the object of new mathematical models generalizing the Monge-Kantorovich problem. These models are
more realistic as they predict the observed branching structure of communication networks. They also
define new distances between measures. The question arises of how these distances compare to the
classical Wasserstein distance obtained by the Monge-Kantorovich problem. In this paper we show sharp
inequalities between the dα distance induced by branching transport paths and the classical Wasserstein
distance over probability measures in a compact domain of Rm.

The problem of the optimal mass transportation was introduced by Monge in the 18th century. Kan-
torovich gave it a first rigorous mathematical treatment. In the Monge-Kantorovich model, two probability
measures µ+ and µ− (the source and target mass distributions) are given. Each particle of µ+ travels
on a straight line segment onto µ− and the cost of the transportation to be minimized is the integral of
the lengths of the individual paths. This variational model has received a lot of attention because of its
remarkable mathematical properties [1], [10].

From the economical viewpoint the Monge-Kantorovich problem is rather unrealistic. In most trans-
portation networks, the aggregation of particles on common routes is preferable to individual straight ones.
Thus the local structure of human-designed distribution systems doesn’t look as a set of straight wires but
rather like a tree. This branching structure is observable in communication networks [5], drainage networks
[7], pipelines [4] and in many natural systems like the blood circulation in mammals, the river basins and
the trees.

The design of functionals for mass transportation by branched structures was first addressed in [5] as a
discrete graph optimization problem with prescribed sources and well points. Recently, continuous models
have been proposed for this same setting [9], [8] and [3]. We will describe in the sequel these models in a
more detailed way. They all define a cost functional for the transportation between µ+ and µ−. The optimal
value for this functional yields a distance between µ+ and µ−. Our aim here is to compare this new distance
with the so called Wasserstein distance associated with the Monge-Kantorovich model.

This distance on probability measures owes its importance to the fact that, on compact domains, it gives
a metric to the topology of weak convergence. Given two probability measures µ+ and µ− with support in
a compact domain C ⊂ Rm this distance is obtained by minimizing the Monge-Kantorovich functional

∫

C×C

c(x, y)π(dx, dy)

among all probability measures π on C × C whose marginal measures are exactly µ+ and µ−. We denote
by Π(µ+, µ−) this set of probabilities

Π(µ+, µ−) = {π ∈ P(C × C) : X+
] π = µ+ and X−

] π = µ−},

where X± are the projections of C × C onto C, i.e. X+(x, y) = x and X−(x, y) = y. The function
c : C×C is a given cost function and its semicontinuity is sufficient for the existence of an optimal measure
π0 ∈ Π(µ+, µ−) which is called optimal transport plan. When c(x, y) = |x− y| the minimum value of this
problem is denoted by W1(µ+, µ−) and it defines a distance over the spaceP(C) of probability measures on
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C. The index 1 is due to the fact that one can produce other distances Wp by considering c(x, y) = |x−y|p
and then raising the infimum to the power of 1/p [10].

Let us now define more general transport problems modeling branched structures. Given two discrete
mass distributions µ+ =

∑m
i=1 aiδxi

and µ− =
∑m

j=1 bjδyj
Gilbert [5] considers the minimization problem

inf
G

∑

h

wα
hH1(eh), (1)

where the infimum is taken among all weighted oriented graphs G with edges eh and weights wh such that
at each segment vertex which is not one of the xi’s or yj’s the total incoming mass equals the outcoming,
while in each xi, ai + incoming mass = outcoming mass and conversely, in each yj incoming mass =
outcoming mass + bj . These conditions are nothing but the Kirchhoff law for circuits. The exponent α is a
fixed parameter 0 < α < 1 so that the function t 7→ tα is concave and sub-additive and therefore favors the
aggregation of routes. This problem was presented in [5] or [6] as an extension of Steiner’s minimal length
problem. A comparison of the typical structures arising in Gilbert and Monge’s models is shown in picture
1.

Figure 1: Monge’s straight line solution (left) vs Gilbert’s branching one (right)

There are several ways to extend this discrete functional to the case of arbitrary measures µ± ∈ P(C).
In [9] the problem is presented as an extension of the Monge-Kantorovich case (which corresponds some-
how, for c(x, y) = |x − y|, to α = 1) by a relaxation procedure. The constraint on the incoming and
outcoming masses at each vertex may be easily written as ∇ · λG = µ − ν, where λG =

∑
h wh[[eh]] is a

1−current. The term [[e]] denotes the integration on the segment e with orientation given by the direction of
e. According to this language, it can be proven that the Gilbert problem becomes in a continuous framework

min
∂T=µ+−µ−

Mα(T ) =
∫

M

θα dH1, (2)

among all rectifiable currents T = (M, θ, ξ) with prescribed boundary. The minimum value, which obvi-
ously depends on µ+ and µ−, will be denoted by dα(µ+, µ−). In [9] it is proven that dα defines a new
distance over the space of probability measures P(C), which induces the weak topology as well, provided
α > 1− 1/m. If α is under this threshold it may happen that the infimum is in fact +∞. Other formaliza-
tions by means of probabilities on the set of Lipschitz curves in C and yielding an equivalent model may
be found in [8] for the case when one of the measures is a single source, say µ+ = δ0, and in [3].

The two distances that we have introduced so far, dα and W1, induce the same topology on P(C),
which is the same induced by the weak convergence. It is easily checked [9] that W1 ≤ dα. This inequality
is optimal as can be checked by taking two close by Dirac masses. The purpose of this note is to give a
sharp quantitative estimate of the kind dα ≤ C(W1)β . This question was raised as a conjecture by Cedric
Villani while reviewing the PhD Thesis [2]. Such an inequality gives an a priori estimate on dα which is
numerically relevant. Indeed W1 is much easier to compute by linear programming than dα, which is a
non-convex optimization problem.

This estimate, as we avoid using previous results on the topology induced by these distances (i.e. no
density argument) gives a direct and quantitative proof of the equivalence between the weak convergence
topology and the topology defined by dα. In fact the only property on dα we will use is the following: if
µ+ and µ− are two nonnegative measures on a domain ω with the same total mass M , then their distance
dα (which may easily be extended to positive finite measures) can be estimated through dα(µ+, µ−) ≤
Cα,mMα diam(ω), under the important assumption α > 1 − 1/m. The proof of this property is easy. It
follows from the explicit construction of an irrigation fractal dyadic tree connecting any probability measure
on C to a Dirac mass and it can be found for instance in [9].
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To fix ideas, we consider two probability measures µ+ and µ− with support in a m-dimensional cube
C with edge 1, say C = [0, 1]m. It is not difficult to scale the result to any bounded domain in Rm.

Proposition 0.1. The following inequality holds for 1 > α > 1− 1
m :

dα(µ+, µ−) ≤ cW1(µ+, µ−)m(α−(1−1/m)),

where c denotes a suitable constant depending only on m and α.

We shall see in Example 0.1 that this inequality is sharp.

Proof. Let π0 ∈ P(C) be an optimal transport plan between µ+ and µ−, where we denote by Ω the product
space C × C. We also denote by X+ and X− the two projections from Ω onto C, so that X+(x, y) = x,
X−(x, y) = y and X±

] π0 = µ±. In what follows we set δ = W1(µ+, µ−) and

Ωi =
{

(x, y) ∈ C × C = Ω, (2i − 1)
δ

2
≤ |x− y| < (2i+1 − 1)

δ

2

}
.

We can limit ourselves to consider those indices i which are not too large, i.e. up to (2i − 1) δ
2 ≤

√
m

(being
√

m the diameter of C). Let I be the maximal index i so that this inequality is satisfied. Ω = ∪I
i=0Ωi

is a disjoint union and

I∑

i=0

(2i − 1)
δ

2
π0(Ωi) ≤ W1(µ+, µ−) = δ ≤

I∑

i=0

(2i+1 − 1)
δ

2
π0(Ωi) (3)

We call cube with edge e any translate of [0, e[m. For each i = 0, · · · , I , using a regular grid in Rm, one
can cover C with disjoint cubes Ci,k with edge (2i+1 − 1)δ. The number of the cubes in the i−th covering
may be easily estimated by

(
1

(2i+1 − 1)δ
+ 1

)m

≤
(

c

(2i+1 − 1)δ

)m

= K(i). (4)

For each index i, it holds C ⊂ ∪K(i)
k=1 Ci,k and the cubes are disjoint. Let us set

Ωi,k = (Ci,k × C) ∩ Ωi, µ+
i,k = X+

#(π011Ωi,k
) and µ−i,k = X−

#(π011Ωi,k
).

We have just cut µ+ and µ− into pieces. Let us call informally µ+
i the pieces of µ+ for which the

Wasserstein distance to the corresponding part µ−i of µ− is of order 2i δ
2 . Then µ+

i,k is the part of µ+
i whose

support is in the cube Ci,k. What we have now gained is that each µ+
i,k has a specified diameter of order

2iδ and is at a distance to its corresponding µ−i,k which is of the same order 2iδ (see picture 2). Let us be
a bit more precise. The support of µ+

i,k is a cube with edge (2i − 1)δ. By definition of Ωi, the maximum
distance of a point of µ−i,k to a point of µ+

i,k is less than (2i+1 − 1) δ
2 . Thus the supports of µ−i,k and µ+

i,k are
both contained in a same cube with edge 6 · 2iδ.

+=

Figure 2: Decomposition of Monge’s transportation into the sets Ωi,k
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By the scaling properties of the dα distance we deduce that for some constant c, depending only on α
and m, it holds (see [9]):

dα(µ+
i,k, µ−i,k) ≤ c2iδπ0(Ωi,k)α.

From this last relation, the sub-additivity of dα, Hölder inequality, (3) and the bound on K(i) given in (4),
one obtains in turn

dα(µ+, µ−) ≤
∑

i,k

dα(µ+
i,k, µ−i,k)

≤
∑

i,k

c2iδπ0(Ωi,k)α = c
∑

i,k

(2iδπ0(Ωi,k))α(2iδ)1−α

≤ c(
∑

i,k

(2iδπ0(Ωi,k)))α(
∑

i,k

2iδ)1−α

≤ c(
∑

i

(2iδπ0(Ωi)))α(
I∑

i=0

K(i)2iδ)1−α

≤ c(δ)α

(
I∑

i=0

(
c

(2i+1 − 1)δ

)m

2iδ

)1−α

≤ cδα+(1−m)(1−α)

(
I∑

i=0

2i(1−m)

)1−α

≤ cδαm−(m−1) = cW1(µ+, µ−)αm−(m−1),

where c denotes various constants depending only on m and α and where the last two inequalities are valid
if m ≥ 2 so that the series

∑∞
i=0 2i(1−m) is convergent.

In the case m = 1 a different proof is needed. In this case we know how does an optimal transportation
for dα(µ+, µ−) look like. We refer to the formulation in (2), which in the one-dimensional setting gives

dα(µ+, µ−) =
∫ 1

0

|θ(x)|αdx.

The function θ plays the role of the multiplicity and it is given by

θ(x) = µ([0, x]), µ := µ+ − µ−,

as a consequence of its constraint on the derivative. Hence we have

dα(µ+, µ−) =
∫ 1

0

|µ([0, x])|αdx ≤
[∫ 1

0

|µ([0, x])|dx

]α

,

where the inequality comes from Jensen inequality. Then we set A = {x ∈ [0, 1] : µ([0, x]) > 0} and
h(x) = 11A(x)− 11[0,1]\A(x) and we have

∫ 1

0

|µ([0, x])|dx =
∫ 1

0

µ([0, x])h(x)dx =
∫ 1

0

h(x)dx

∫ 1

0

11{t ≤ x}µ(dt)

=
∫ 1

0

µ(dt)
∫ 1

t

h(x)dx =
∫ 1

0

u(t)µ(dt) ≤ W1(µ+, µ−),

where u(t) =
∫ 1

t
h(x)dx is a Lipschitz continuous function whose Lipschitz constant does not exceed 1 as

a consequence of |h(x)| ≤ 1. Thus the last inequality is justified by the duality formula (see [10], Theorem
1.14, page 34):

W1(µ+, µ−) = sup
v∈Lip1

∫ 1

0

v d(µ+ − µ−).

Hence it follows easily dα(µ+, µ−) ≤ W1(µ+, µ−)α, which is the thesis for the one dimensional case.
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As we announced, the result in Proposition 0.1 is sharp as far as estimates of dα in terms of W1 are
concerned. The assumption α > 1 − 1/m cannot be removed since, for m ≥ 2, if we remove this
assumption, the quantity dα could be infinite while W1 is always finite. In dimension 1 the only uncovered
case is α = 0. In this case dα is in fact always finite but, for instance if µ+ = δ0 and µ− = (1− ε)δ0 + εδ1

it holds dα(µ+, µ−) = 1 while W1(µ+, µ−) = ε. As ε is as small as we want, this excludes any desired
inequality. Hence we get back to the m-dimensional case where the result cannot be improved as far as α
is concerned. On the other hand the exponent m(α− (1− 1/m)) cannot be improved as can be seen from
the following example.

Example 0.1. There exists a sequence of pairs of probability measures (µ+
n , µ−n ) on the cube C such that

dα(µ+
n , µ−n ) = cn−m(α−(1−1/m)) and W1(µ+

n , µ−n ) = c/n.

Proof. It is sufficient to divide the cube C into nm small cubes of edge 1/n and to set µ+
n =

∑nm

i=1
1

nm δxi

and µ−n =
∑nm

i=1
1

nm δyi , where each xi is a vertex of one of the nm cubes (let us say the one with minimal
sum of the m−coordinates) and the corresponding yi is the center of the same cube. In this way yi realizes
the minimal distance to xi among the yj’s. Thus the optimal configuration both for dα and W1 is given by
linking any xi directly to the corresponding yi. In this way we have

dα(µ+
n , µ−n ) = nm

(
1

nm

)α
c

n
= cn−m(α−(1−1/m))

W1(µ+
n , µ−n ) = nm 1

nm

c

n
=

c

n
,

where c =
√

m
2 .

One can deduce easily inequalities between dα and Wp by using standard inequalities between W1 and
Wp, namely CW p

p ≤ dα ≤ CW
m(α−(1−1/m))
p . The right hand inequality is sharp by using again example

0.1. It is not clear instead whether the left-hand inequality is optimal.
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