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Abstract. We consider, in an abstract setting, an instance of the Coleman-
Gurtin model for heat conduction with memory, that is the Volterra integro-
differential equation

∂tu(t)− β∆u(t)−
∫ t

0

k(s)∆u(t− s)ds = 0.

We establish new results for the exponential and polynomial decay of solutions,
by means of conditions on the convolution kernel which are weaker than the
classical differential inequalities.

1. Introduction

Given a real Hilbert space (H, 〈·, ·〉, ‖ · ‖), we consider the following linear homo-
geneous Volterra integro-differential equation of the first order

(1.1)

 ∂tu(t) + βAu(t) +

∫ t

0

k(s)Au(t− s)ds = 0, t > 0,

u(0) = u0 ∈ H.
Here β > 0 and A is a strictly positive selfadjoint operator on H with domain
D(A). The memory kernel k is a piecewise smooth convex decreasing function on
R+ = (0,∞), summable along with its (distributional) derivative.

In the concrete formulation

(1.2) H = L2(Ω), A = −∆, D(A) = H1
0 (Ω) ∩H2(Ω),

(1.1) describes the evolution of heat flow in an isotropic rigid heat conductor occu-
pying a bounded smooth volume Ω ⊂ R3. The unknown function u is the absolute
temperature in the body, according to the so-called Coleman-Gurtin conduction
law [5].

Problem (1.1) has been studied by many authors, both for the sake of well-
posedness and stability issues, and it is well-known (see e.g. [3, 8, 10, 12, 14]) that,
for every u0 ∈ H, it possesses a unique weak solution u ∈ C([0,∞), H).

Energy dissipation. The main task of this paper is to establish, under different
requirements on the memory kernel k, uniform decay properties of the system
energy, defined by

E(t) = ‖u(t)‖2 −
∫ ∞

0

k′(s)

∥∥∥∥∫ t

t−s
u(y)dy

∥∥∥∥2

V

ds,
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having set u(t) = 0 for t < 0, V = D(A1/2) and ‖ · ‖V = ‖A1/2 · ‖. As we will show
later, this is the actual form for the energy, where the integral term accounts for
past values of the variable u. The dissipativity of (1.1) lies in the fact that E(t) is
a decreasing function. To be more precise, we introduce the following

Definition 1.1. Let Λ : [0,∞) → [0,∞) be a decreasing vanishing function. We
say that E(t) has a (uniform) decay rate Λ if there exists an increasing positive Q
such that

E(t) ≤ Q(E(0))Λ(t).

In particular, we shall investigate the following instances:

• Λ(t) = e−εt for some ε > 0 [exponential stability ],

• Λ(t) = (1 + t)−p for some p > 0 [polynomial stability of rate p].

From now on, the stability of problem (1.1) is understood to correspond to the one
of E , according to the above definition. Moreover, Q will always denote a generic
positive constant, possibly varying within the same formula, and (increasingly)
depending only on E(0).

Energy decay results have already been achieved in linear viscoelasticity with
memory, both for the infinite delay [18] and for the Volterra [6] equation, under
very general assumptions on the memory kernel. We point out that investigations
therein exploited rely on the so-called past history setting. Such an approach,
originally raised in [7], is necessary in order to treat the infinite delay case in the
framework of the semigroup of operators, on a suitable phase-space. Moreover,
this tool seems to be very useful even for a Volterra-type equation, where the
semigroup generation cannot be expected (and then non-exponential uniform decay
is possible). In either problems [18] and [6], without requiring the kernel to fulfill
any differential inequality, exponential stability is achieved, as well as polynomial
one in the Volterra case. We stress that in both the above quoted examples, such
results can be established also when all the dissipation of the system is carried out
by the memory term solely, provided that an additive constraint on the so-called
flatness rate of the kernel (cf. [18]) is assumed.
Therefore, for the sake of our problem, we introduce the history space setting,
which indeed enables us to achieve decay results removing differential inequalities
on the kernel k. Nevertheless, a complete parallel to the second order problem
[6] does not hold. That is, we are not yet able to treat the limiting case β = 0,
which seems to require the introduction of some new, deep technique. Thus, in
this paper we shall work under the restriction β > 0, with the only exception of
the last section, where we shall in fact investigate polynomial stability assuming k
to fulfill a differential inequality.

Memory kernel hypotheses. We now briefly discuss some conditions and results
already available in literature. As the infinite-delay counterpart of (1.1) generates
a linear semigroup, in [11] it is shown that, whenever k(s) is smooth and µ(s) =
−k′(s) fulfills the differential inequality

(1.3) µ′(s) + δµ(s) ≤ 0, s > 0,
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for some positive δ, then the semigroup is exponentially stable. It is immediate to
see that (1.3) is equivalent to

(1.4) µ(t+ s) ≤ e−δtµ(s), s > 0, t ≥ 0.

On the other hand, (1.4) is weakened in [3], where the assumption (first introduced
in [18])

(1.5) µ(t+ s) ≤ Ce−δtµ(s), t ≥ 0,

for some C ≥ 1, δ > 0 and for a.e. s > 0, is shown to be necessary and sufficient.
Since (1.5) implies the existence of γ > 0 such that

(1.6) k′(s) + γk(s) ≤ 0,

for a.e. s > 0, we have a necessary condition for the exponential decay of the
semigroup in terms of the kernel k.
We recall that (1.1) is only a particular instance, obtained by taking null values of
u(t) for negative times, of the infinite delay equation, so that its energy E(t) decays
whenever the semigroup does. Nevertheless, our aim is the one to take advantage
of the Volterra finite time delay in order to study the stability under more general
assumptions than (1.6). To this purpose, Fabrizio and Polidoro in [9] make use of
the so-called exponential decay property

(1.7)

∫ ∞
0

k(s)eδsds <∞,

for some δ > 0. They show the necessity of (1.7) for a particular exponential
stability property (which we discuss in the sequel), under the further assumption
of square summability for k, and for the concrete formulation (1.2).
There is indeed a gap between conditions (1.5)-(1.6) and (1.7), as we will show in
Section 3 with a counterexample.
For what concerns polynomial stability, we introduce the polynomial decay property
for the kernel k:

(1.8)

∫ ∞
0

(1 + s)rk(s)ds <∞, r > 0.

Again, in [9] a result concerning the necessity of such a condition for polynomial
decay is established. We will return on these issues with some detail later in Section
3.

The main theorem. In the present paper, under some basic assumptions that
guarantee well-posedness and energy dissipation, we will show that uniform decay
properties for E(t) hold assuming (1.7) or (1.8). Our main result, which will be
stated rigorously in Section 3, reads as follows: provided that the kernel k satisfies
the exponential (resp. polynomial) decay property, then problem (1.1) is exponen-
tially (resp. polynomially) stable.
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Plan of the paper. We conclude our introduction by outlining the rest of the
paper. In Section 2 we state in a precise way the basic assumptions on the memory
kernel, then we translate the problem in the so-called history space setting and
recall from [3] a well-posedness result. Moreover, we establish some general decay
properties. In Section 3, the main theorem is rigorously stated under some dis-
sipativity assumptions on k (corresponding to (1.7) and (1.8)), and the necessity
of such assumptions is also discussed. Sections 4 and 5 are dedicated to prove
the main result in the exponential and polynomial case, respectively. Finally, in
Section 6 the polynomial stability is revisited, under the further requirement that
the kernel fulfills a differential inequality, even in the degenerate case β = 0.

2. Semigroup generation and general decay properties

In order to proceed in our investigation, as already remarked, it is convenient
to view our problem as an ordinary differential equation in a proper Hilbert space
accounting for the past history of the variable u (cf. [7]). We first state the basic
assumptions on the kernel, which are a refinement of the ones outlined in the
introduction.

Basic assumptions. We suppose k to be a (nonnegative) decreasing convex sum-
mable function, and we require its a.e. derivative k′ to be summable as well. Let

µ(s) = −k′(s)

and

κ =

∫ ∞
0

µ(s)ds <∞.

Corner points for k are allowed, but with the following restriction. We assume the
set of jump points of µ to be a strictly increasing sequence {sn}n≥1 ∈ R+, either
finite (possibly empty) or converging to s∞ ∈ (0,∞], such that µ is absolutely
continuous on each interval In = (sn, sn+1). If s∞ < ∞, we also require the
absolute continuity on the interval (s∞,∞), whereas in this case s∞ may or may
not be a jump point.
Under such hypotheses, µ is decreasing and possibly singular for s → 0+, µ′ is
defined almost everywhere, and k is a piecewise C1 function.

Remark 2.1. In the rest of the paper, these basic assumptions are always under-
stood to hold.

The history space setting. We extend the solution u to negative times, setting
u(t) = 0 for t < 0, and we introduce the following auxiliary past history variable

ηt(s) =

∫ t

t−s
u(r)dr, t ≥ 0, s > 0.

Note immediately that η0(s) = 0 for all s > 0. According to the above definition,
the integro-differential equation of problem (1.1) reads (cf. [3])

∂tu(t) + βAu(t) +

∫ ∞
0

µ(s)Aηt(s)ds = 0, t > 0.
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The past history variable η is the unique mild solution (in the sense of [20, §4]) of
an abstract Cauchy problem in the µ-weighted space M = L2

µ(R+, V ), that is{
∂tη

t = Tηt + u(t), t > 0

η0 = 0,

where, as a consequence of the basic assumptions (see [12]), the linear operator T
is the infinitesimal generator of the right-translation C0-semigroup on M, defined
as

Tη = −η′, D(T ) =

{
η ∈M : η′ ∈M, lim

s→0+
η(s) = 0 in V

}
.

Here the superposed prime symbol denotes the distributional derivative with re-
spect to the internal variable s. Consequently, we define the Hilbert space

H = H ×M,

normed by
‖(u, η)‖2H = ‖u‖2 + ‖η‖2M,

with

‖η‖2M =

∫ ∞
0

µ(s)‖η(s)‖2V ds.

From now on, we let u0 = u(0) and η0 = η0.
In this setting (cf. [3, Section 3]) it is possible to show that a function u is a weak
solution to (1.1) if and only if the vector z = (u, η) is a mild solution of the ordinary
differential equation in H

(2.1)


d

dt
z(t) = Lz(t), t > 0,

z(0) = (u0, 0).

The operator L is defined by

L(u, η) =

(
−A

(
βu+

∫ ∞
0

µ(s)η(s)ds

)
, T η + u

)
,

D(L) =

{
z ∈ H : u ∈ V, βu+

∫ ∞
0

µ(s)η(s)ds ∈ D(A), η ∈ D(T )

}
.

Moreover, in our present case the explicit representation formula (cf. [19]) for η
reads

(2.2) ηt(s) =


∫ s

0

u(t− r)dr, 0 < s ≤ t,∫ t

0

u(t− r)dr, s > t.

As shown in [3], we have the following well-posedness result

Theorem 2.2. The equation in problem (2.1) generates a C0-semigroup of con-
tractions S(t) on H.

Remark 2.3. We stress that Theorem 2.2 holds on the whole space H, not just
on H × {0}.
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As a consequence, for any given (u0, η0) ∈ H, we have

z(t) = (u(t), ηt) = S(t)(u0, η0).

The energy of the semigroup is defined as

E(t) = E(z(t)) = ‖S(t)(u0, η0)‖2H.

Moreover (see [3] again), there holds

Theorem 2.4. For every initial data (u0, η0) ∈ D(L), the corresponding solution
S(t)(u0, η0) belongs to C1([0,∞),D(L)), and the associated energy fulfills the dif-
ferential identity

(2.3)
d

dt
E(t) + 2β‖u(t)‖2V −

∫ ∞
0

µ′(s)‖ηt(s)‖2V ds+ J[ηt] = 0,

with

J[ηt] =
∑
n

[µ(s−n )− µ(s+
n )]‖ηt(sn)‖2V ,

where the sum includes the value n = ∞ if s∞ < ∞. In particular, E(t) is a
decreasing function of t.

From now on we shall restrict our investigation to initial data of the form (u0, 0),
to take advantage of the one-to-one correspondence between problems (1.1) and
(2.1). Also, the associated energy is

E(t) = ‖S(t)(u0, 0)‖2H.

In view of representation formula (2.2), this is indeed the energy defined in the
introduction. Since an initial datum of the form (u0, 0) ∈ H×{0} belongs to D(L)
if u0 ∈ V , it follows that E(t) satisfies equality (2.3) for any u0 ∈ V .

Remark 2.5. In the sequel, we shall always assume the initial datum to belong to
V × {0}. Thanks to the semigroup continuity property, our decay results will be
understood to extend by density to the whole space H × {0}, where equality (2.3)
is still fulfilled, provided that the time derivative of E(t) is intended in the sense of
distributions.

General decay properties. We first notice that, without introducing new as-
sumptions, it is possible to obtain a uniform decay for the energy. To this purpose,
define

U(t) =

∫ t

0

u(y)dy,

so that (2.2) turns out to be

(2.4) ηt(s) = U(t)− U(t− s), t ≥ 0, s > 0,

where it is understood that U(t) = 0 for t ≤ 0. We have the following

Theorem 2.6. E(t) is polynomially stable of rate 1.
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Proof. We introduce the following energy functionals, already encountered in [3],

Ψ1(t) =
1

2
〈U(t), u(t)〉,

Ψ2(t) =
1

2

∫ ∞
0

k(s)‖ηt(s)− U(t)‖2V ds.

These functionals are well defined since (2.4) holds and U(t−s) = 0 for s ≥ t. Due
to the continuity of k(s), there exist s > 0, C ≥ 0 such that k(s) ≤ Cµ(s) for all
s ∈ (0, s]. Then∫ s

0

k(s)‖U(t)‖2V ds ≤ 2

∫ s

0

k(s)‖ηt(s)‖2V ds+ 2

∫ s

0

k(s)‖U(t− s)‖2V ds

≤ 2C

∫ s

0

µ(s)‖ηt(s)‖2V ds+ 2

∫ s

0

k(s)‖U(t− s)‖2V ds

≤ 2C‖ηt‖2M + 2Ψ2(t).

so, letting Q = 2(
∫ s

0
k(s)ds)−1 max{1, C} we end up with

(2.5) ‖U(t)‖2V ≤ Q
[
‖ηt‖2M + Ψ2(t)

]
.

A straightforward computation (see [3]) shows that Ψ(t) = 2Ψ1(t) + Ψ2(t) fulfills
the differential equality

d

dt
Ψ(t) = −1

2
‖ηt‖2M + ‖u(t)‖2.

We now define, for M > 0, the further functional

J (t) = ME(t) + Ψ(t).

Therefore, recalling the energy identity (2.3) and the Poincaré inequality λ‖ · ‖2 ≤
‖ · ‖2V (corresponding to the continuous inclusion V ↪→ H), we obtain, for M large
enough,

(2.6)
d

dt
J (t) + εE(t) ≤ 0,

for some ε > 0. Since η0(s) ≡ 0, we have J (0) = ME(0). Integrating inequality
above on (0, t) we get

J (t) + ε

∫ t

0

E(τ)dτ ≤ME(0),

then

Ψ(t) + ε

∫ t

0

E(τ)dτ ≤ME(0),

and

(2.7) Ψ2(t) + ε

∫ t

0

E(τ) dt ≤ME(0)− 〈U(t), u(t)〉 ≤ME(0) + ‖U(t)‖
√
E(0).
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By means of (2.5), with the Young and Poincaré inequalities we have

(2.8) ‖U(t)‖
√
E(0) ≤ Q

4λ
E(0) + ‖ηt‖2M + Ψ2(t).

Letting K = ε−1(1 +M + Q
4λ

) we obtain∫ t

0

E(τ)dτ ≤ KE(0).

In particular, being E(t) decreasing, we conclude

tE(t) ≤
∫ t

0

E(τ)dτ,

so that

E(t) ≤ KE(0)

t
.

Since E(t) is bounded, the thesis follows. �

Remark 2.7. Changing the constants in the Young inequality used in (2.8), we
find

‖U(t)‖
√
E(0) ≤ Q

2λ
E(0) +

1

2
‖ηt‖2M +

1

2
Ψ2(t),

so from (2.7) it is easily seen that, letting R be a generic positive constant, Ψ2(t) ≤
RE(0). This holds also for ‖U(t)‖2V , thanks to (2.5). Moreover, back to (2.4), we
infer

‖ηt(s)‖2V ≤ RE(0),

uniformly in t and s. This is the main consequence of the Volterra equation finite
delay structure, and in the sequel it will play an important role.

3. The main result

We will state our main result under the following reformulation of conditions
(1.7) and (1.8).

Dissipativity assumptions. Let p ∈ (1,∞]. Suppose there exists C ≥ 0 such
that

(3.1) k(s) ≤ CΛp(s), s > 0,

where

Λp(s) =


e−δs (δ > 0), if p =∞;

1

(1 + s)p
, if p <∞.

Notice that, being k a decreasing function, (3.1) with p = ∞ is equivalent to
the exponential decay property (1.7), up to replacing δ in (1.7) with an arbitrarily
chosen γ > δ. Also, the polynomial decay property (1.8) implies (3.1) with p = r+1.
Conversely, if (3.1) holds for p ∈ (1,∞), (1.8) follows with r = p − 1 − ε, for any
(small) ε > 0. Therefore, we have the correspondence between (3.1) and (1.7)-(1.8).
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Remark 3.1. Condition (3.1) with p =∞ is weaker than the differential inequality
(1.6), even for convex kernels. A counterexample can be constructed as follows.
For n ∈ N, define

kn(s) = −e−n2

s+ (1 + n2)e−n
2

.

Then the kernel

k(s) = max
n∈N

kn(s)

fulfills (3.1) for p = ∞, with C = δ = 1, but easy computations show that (1.6)
cannot hold.

We immediately prove a lemma which yields a useful estimate to be used in the
sequel.

Lemma 3.2. Let k enjoy the dissipativity condition (3.1). Then, for any ω ∈
(1/(p+ 1), 1) there exists a positive c = c(p, ω, κ) such that∫ ∞

0

[µ(s)]ωds ≤ c <∞.

Proof. Since µ is decreasing, (3.1) can be equivalently stated as follows. There exist
C ≥ 0 and s∗ ≥ 0 such that

(3.2) µ(s) ≤ CΛp+1(s), s > s∗,

where s∗ can be chosen to be zero if µ is not singular in the origin. Let

A = {s ∈ (0, s∗) : µ(s) > 1} and B = {s ∈ (0, s∗) : µ(s) ≤ 1}.

Then, exploiting (3.2), we have∫ ∞
0

[µ(s)]ωds =

∫
A

[µ(s)]ωdr +

∫
B
[µ(s)]ωds+

∫ ∞
s∗

[µ(s)]ωds ≤ κ+ s∗ + Cωc∗,

where

c∗ =

∫ ∞
s∗

[Λp+1(s)]
ωds =


eωδs∗

ωδ
, if p =∞;

(1 + s∗)
−ω(p+1)+1

ω(p+ 1)− 1
, if p <∞.

The thesis is then achieved, provided that we choose c = κ+ s∗ + Cωc∗. �

Remark 3.3. We stress that, in the case p =∞, the lower bound on ω in lemma
above is to be considered as 0. Moreover, in this case, the constant c depends on
δ also.

We now state the main result of this paper.

Theorem 3.4. Assume condition (3.1). Then

• if p =∞, then E(t) is exponentially stable;

• if p ∈ (2,∞), then E(t) is polynomially stable of rate r, for any r < p− 1.
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Necessary conditions. Before proceeding with the proof, we discuss the main
result in comparison with the necessary conditions obtained by Fabrizio and Poli-
doro (see [9]) and mentioned in the introduction. Indeed, in [9], for the particular
case of the concrete formulation (1.2), the authors proved (by means of Laplace
transform methods) that if the solution u satisfies

(3.3)

∫ ∞
0

eαt‖u(t)‖2V dt <∞

for some α > 0 and the kernel k is square integrable, then (1.7) holds. To be
consistent, until the end of this section, we restrict to formulation (1.2), and we

also assume
√
k ∈ L1(R+). Then, the condition (3.1) with p = ∞ is easily shown

to be necessary as well. In fact, starting from an exponentially decaying energy

E(t) ≤ Qe−εt,

and recalling identity (2.3), we have∫ t

0

eγτ
d

dt
E(τ)dτ + 2β

∫ t

0

eγτ‖u(τ)‖2V dτ ≤ 0,

for some fixed γ > 0. An integration by parts yields

eγtE(t)− E(0)− γ
∫ t

0

eγτE(τ)dτ + 2β

∫ t

0

eγτ‖u(τ)‖2V dτ ≤ 0,

so that condition (3.3) is fulfilled, provided that we choose γ < ε. The exponential
decay property for k follows by [9, Theorem 2.5].

Concerning polynomial stability, we first recall the necessary condition of [9]:
defining

p0 = sup

{
r ≥ 0 :

∫ ∞
0

(1 + s)r−1k(s)ds <∞
}
,

q0 = sup

{
r ≥ 0 :

∫ ∞
0

(1 + t)2r−1‖u(t)‖2V dt <∞
}
,

result [9, Theorem 4.2] reads p0 ≥ q0 under the hypothesis q0 > 1. That is, if

(3.4) sup

{
r ≥ 0 :

∫ ∞
0

(1 + t)r‖u(t)‖2V dt <∞
}

= p

for some p > 1, then

(3.5) sup

{
r ≥ 0 :

∫ ∞
0

(1 + s)rk(s)ds <∞
}
≥ p− 1

2
.

Remark 3.5. Such a necessary condition, as remarked also in [6], is somehow
unsatisfactory, although difficult to improve. Indeed, for large values of p the rate
loss is rather gross.

Now let p > 1 and

E(t) ≤ Q
(1 + t)p

.
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We can show how (3.5) is still necessary. To this purpose, introduce γ ∈ (0, p);
back to (2.3) once again, we are led to∫ t

0

(1 + τ)γ
d

dt
E(τ)dτ + 2β

∫ t

0

(1 + τ)γ‖u(τ)‖2V dτ ≤ 0,

so that, by means of an integration by parts, we deduce

(1 + t)γE(t)− E(0)− γ
∫ t

0

(1 + τ)γ−1E(τ)dτ + 2β

∫ t

0

(1 + τ)γ‖u(τ)‖2V dτ ≤ 0.

The first three summands are bounded, so∫ ∞
0

(1 + τ)γ‖u(τ)‖2V dτ <∞

for any γ < p. Then, (3.4) holds, and we can apply the result of [9] to obtain (3.5).
Summing up, we proved the following

Theorem 3.6. Assume (1.2) to hold and
√
k ∈ L1(R+);

• if E(t) is exponentially stable, then (3.1) holds with p =∞,

• if E(t) is polynomially stable of rate r > 1, then (3.1) holds for any p < r+1
2

.

4. Exponential stability

In this section we will prove Theorem 3.4 in the case p =∞. We begin defining
the following functionals

Υ(t) =

∫ ∞
0

k(s)‖ηt(s)‖2V ds,

Θ(t) =

∫ ∞
0

e−δs‖ηt(s)‖2V ds,

being δ as in (3.1). The next set of lemmas provide essential estimates involving
the above functionals, which will be crucial in the sequel. Along the rest of this
paper let c be a (positive) generic constant.

Lemma 4.1. The functionals Υ and Θ are well defined, and fulfill the inequality

(4.1) Υ(t) ≤ cΘ(t).

Proof. Inequality (4.1) follows directly by assumption (3.1). Moreover, using the
boundedness of ‖ηt(s)‖V (see Remark 2.7), the well definition of Θ is achieved,
whereas the one for Υ is a consequence of (4.1).

�

Lemma 4.2. The following differential inequalities hold

d

dt
Υ(t) +

1

2
‖ηt‖2M ≤ c‖u(t)‖2V ,(4.2)

d

dt
Θ(t) +

δ

2
Θ(t) ≤ c‖u(t)‖2V .(4.3)



12 EDOARDO MAININI AND GIANLUCA MOLA

Proof. Notice previously that, as µ is nonincreasing,∫ ∞
s

µ(r)dr =

∫ ∞
s

[µ(r)]2/3[µ(r)]1/3dr ≤ [µ(s)]2/3
∫ ∞

0

[µ(r)]1/3dr,

for any s > 0. Therefore, choosing ω = 1/3 in Lemma 3.2, we are led to

(4.4) k(s) ≤ c[µ(s)]2/3, s > 0.

By means of the equation for the past history variable, a direct calculation leads
to the following differential equality for Υ(t)

(4.5)
d

dt
Υ(t) + ‖ηt‖2M = 2

∫ ∞
0

k(s)〈ηt(s), u(t)〉V ds.

Concerning the right hand side, we have∫ ∞
0

k(s)〈ηt(s), u(t)〉V ≤ ν

(∫ ∞
0

k(s)‖ηt(s)‖V ds
)2

+
1

ν
‖u(t)‖2V ,

for some ν ∈ (0, 1). As a consequence of (4.4) and again Lemma 3.2 with ω = 1/3,
we get ∫ ∞

0

k(s)‖ηt(s)‖V ds ≤ c

∫ ∞
0

[µ(s)]2/3‖ηt(s)‖V ds

≤ c

(∫ ∞
0

[µ(s)]1/3ds

)1/2

‖ηt‖M ≤ c‖ηt‖M.

Therefore

2

∫ ∞
0

k(s)〈u(t), ηt(s)〉V ≤ 2νc2‖ηt‖2M +
2

ν
‖u(t)‖2V ,

which, back to equality (4.5), yields (4.2), provided that we choose ν small enough.
Analogously to (4.5), we see that Θ(t) fulfills the differential equality

(4.6)
d

dt
Θ(t) + δΘ(t) = 2

∫ ∞
0

e−δt〈ηt(s), u(t)〉V ds.

It is immediate to realize that∫ ∞
0

e−δt〈ηt(s), u(t)〉V ds ≤
δ

4
Θ(t) +

1

δ

(∫ ∞
0

e−δsds

)
‖u(t)‖2V ,

which, in (4.6), concludes the proof. �

We end the section with the proof of the exponential stability result.

Proof of Theorem 3.4 (case p =∞). We define the further functional

L(t) = ME(t) + Υ(t) + Θ(t),

for some M ≥ 1 to be suitably chosen in the sequel. Inequality (4.1) implies that

(4.7) E(t) + Θ(t) ≤ L(t) ≤ c [E(t) + Θ(t)] .

Summing up inequalities (2.3), (4.2) and (4.3), and recalling the Poincaré inequal-
ity, we deduce

d

dt
L(t) +Mβλ‖u(t)‖2 +

1

2
‖ηt‖2M +

δ

2
Θ(t) + (Mβ − c)‖u(t)‖2V ≤ 0.
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Provided that M is large enough, by setting ε = c−1 min{Mβλ, 1/2, δ/2}, we finally
reach

d

dt
L(t) + εL(t) ≤ 0.

By means of (4.7), invoking the Gronwall Lemma, we get

E(t) ≤ L(t) ≤ME(0)e−εt = Qe−εt,
which concludes the proof. �

5. Polynomial stability

In this section we will prove theorem 3.4 in the case p ∈ (2,∞).

Remark 5.1. For the case p ≤ 2 we address the reader to Theorem 2.6.

Again, the proof requires the introduction of suitable functionals. We let Υ be
as in the previous section; also, we define

Θp(t) =

∫ ∞
0

1

(1 + s)p
‖ηt(s)‖2V ds.

Analogously to the case p =∞, we have

Lemma 5.2. The functionals Υ and Θp are well defined, and fulfill the inequalities

(5.1) Υ(t) ≤ cΘp(t) ≤ Cq

(∫ ∞
0

1

(1 + s)p+1
‖ηt(s)‖2V ds

)1/q

,

for any q > p/(p − 1), where Cq is a positive constant depending only on q and
(increasingly) on E(0).

Proof. Left hand side of inequality (5.1) follows directly by assumption (3.1). By
means of the Hölder inequality, we have, for some 0 < σ < p,

Θp(t) =

∫ ∞
0

1

(1 + s)σ
1

(1 + s)p−σ
‖ηt(s)‖2V ds

≤
(∫ ∞

0

1

(1 + s)σ(p+1)/(1+σ)
‖ηt(s)‖2V ds

) 1+σ
p+1
(∫ ∞

0

1

(1 + s)p+1
‖ηt(s)‖2V ds

) p−σ
p+1

.

By virtue of Remark 2.7, we have ‖ηt(s)‖2V ≤ Q, so the first factor is well defined
for σ > 1/p. Therefore

(5.2) [Θp(t)]
q ≤ Cq

q

∫ ∞
0

1

(1 + s)p+1
‖ηt(s)‖2V ds

for q > p/(p− 1), being

Cq =

(∫ ∞
0

1

(1 + s)(pq−p−1)/(q−1)
ds

) q−1
q

Q.

This proves the right hand side inequality in (5.1). Moreover, by the uniform bound
on ‖ηt(s)‖V , we infer the well definition of Θp(t), and as a consequence of the left
hand side inequality in (5.1), also of Υ(t). �
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Remark 5.3. It is worth to point out that the constant Cq above is well defined
only for q > p/(p− 1) and tends to infinity for q ↓ p/(p− 1).

Lemma 5.4. The following differential inequalities hold

d

dt
Υ(t) +

1

2
‖ηt‖2M ≤ c‖u(t)‖2V ,(5.3)

d

dt
Θp(t) + kq[Θp(t)]

q ≤ c‖u(t)‖2V ,(5.4)

for any q > p/(p− 1), being kq = C−qq .

Proof. Proof of inequality (5.3) goes exactly like the one of (4.2), noticing that
ω in Lemma 3.2 can be chosen to be 1/3 for all p > 2. Concerning (5.4), a
straightforward computation shows that

(5.5)
d

dt
Θp(t) + p

∫ ∞
0

1

(1 + s)p+1
‖ηt(s)‖2V ds = 2

∫ ∞
0

1

(1 + s)p
〈ηt(s), u(t)〉V ds.

Again by the Hölder inequality we infer∫ ∞
0

1

(1 + s)p
〈ηt(s), u(t)〉V ds

≤
∫ ∞

0

1

(1 + s)(p+1)/2

1

(1 + s)(p−1)/2
‖ηt(s)‖V ‖u(t)‖V ds

≤
(∫ ∞

0

1

(1 + s)p+1
‖ηt(s)‖2V ds

)1/2(∫ ∞
0

1

(1 + s)p−1
‖u(t)‖2V ds

)1/2

≤p
2

∫ ∞
0

1

(1 + s)p+1
‖ηt(s)‖2V ds+

1

2p

(∫ ∞
0

1

(1 + s)p−1
ds

)
‖u(t)‖2V ,

Notice that, as p > 2, the last term is well defined. Therefore, from (5.5) we deduce
the inequality

d

dt
Θp(t) +

p

2

∫ ∞
0

1

(1 + s)p+1
‖ηt(s)‖2V ds ≤ c‖u(t)‖2V .

By means of the right hand side inequality in (5.1), this will imply (5.4), provided
that we choose kq = C−qq . �

Remark 5.5. As a consequence of Remark 5.3, the constant kq defined above tends
to 0 for q ↓ p/(p− 1).

Again, we end the section with the proof of the polynomial stability result.

Proof of Theorem 3.4 (case 2 < p <∞). We define, for M ≥ 1, the functional

(5.6) Lp(t) = ME(t) + Υ(t) + Θp(t).

Inequality (5.1) implies that

(5.7) E(t) + Θp(t) ≤ Lp(t) ≤ c [E(t) + Θp(t)] .
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Let q be fixed, with q > p/(p − 1). Collecting the differential inequalities (2.3),
(5.3) and (5.4), we are led to

d

dt
Lp(t) +Mβλ‖u(t)‖2 +

1

2
‖ηt‖2M + kq[Θ(t)]q + (Mβ − c)‖u(t)‖2V ≤ 0,

where λ is the constant appearing in the Poincarè inequality. Being q fixed, we
have Cq ≤ Q and kq ≥ Q−1. Therefore, provided that M is large enough, we
deduce

d

dt
Lp(t) +

1

Q
{E(t) + [θp(t)]

q} ≤ 0.

Since Υ(t) ≤ cΘp(t), and since E(t) ≤ E(0) ≤ Q, we have, for any q > 1,

[Lp(t)]q ≤ Q{E(t) + [Θp(t)]
q},

so that, by the differential inequality above, we eventually end up with

d

dt
Lp(t) +

1

Q
[Lp(t)]q ≤ 0,

which, by means of (5.7), implies the estimate

E(t) ≤ Lp(t) ≤ Q(1 + t)−r.

From the limitation q > p/(p − 1), we immediately infer r < p − 1, and we stress
that the constant Q depends on q and diverges for q ↓ p/(p− 1). �

Remark 5.6. If the kernel has the form 1/(1 + s)r, condition (3.1) is verified with
p = r, so we find a polynomial decay of the energy of rate r − 1− ε; we also have
the constraint r > 2.

6. Polynomial decay for a kernel satisfying a differential
inequality

Another task of our investigation is the polynomial stability whenever the kernel
fulfills a differential inequality of the type

(6.1) −k′′(s) + δ[−k′(s)]ω ≤ 0, s > 0,

for some δ > 0 and ω > 1. Some results under assumptions of this kind can be
found in [1, 15, 16, 17], for the linear second order problem in viscoelasticity.

Remark 6.1. The techniques exploited in this note are not fit to tackle the more
difficult case of problem (1.1) with β = 0. Indeed, in that case the dissipation is
due to the memory term solely. Nevertheless, under hypothesis (6.1), we are able
to provide a result both for β > 0 and β = 0. We also mention that in the latter
situation, problem (1.1) is an abstract version of the so-called Gurtin-Pipkin model
for heat conduction (see [13]). Also, in the special case of an exponential kernel
k(s) = e−s, from the Gurtin-Pipkin law we recover the Maxwell-Cattaneo model
(cf. [2]).
We point out that, also for the case β = 0, we have the correspondence between
problems (1.1) and (2.1). Moreover, under the basic assumptions of Section 2,
Theorem 2.2 still holds and the energy equality is given again by (2.3).
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It is convenient to state (6.1) in terms of µ, namely

(6.2) µ′(s) + δ[µ(s)]ω ≤ 0, s > 0;

this is the polynomial corresponding of the exponential condition (1.3). We will
show that a stronger result than Theorem 3.4 can be provided under (6.2). Namely,
the rate of decay is improved by one. Let us give the precise statement.

Theorem 6.2. Let β ≥ 0 in problem (1.1). For any fixed p > 2 assume that µ
fulfills, for some δ > 0, the differential inequality

(6.3) µ′(s) + δ[µ(s)]
p+1
p ≤ 0, s > 0.

Then E(t) is polynomially stable with rate r, for any r < p− 1.

Notice immediately that assumption (6.3) implies that there exist C ≥ 0 and s∗ ≥ 0
such that there holds

µ(s) ≤ C

(1 + s)p
, s > s∗.

Therefore, arguing as in Lemma 3.2, we easily see that∫ ∞
0

[µ(s)]ωds <∞,

for any ω ∈ (1/p, 1).
The proof of the case β = 0 requires the introduction of the further functional

(6.4) Φ(t) = −1

κ

∫ ∞
0

ψ(s)〈u(t), ηt(s)〉ds.

Here, in order to handle the (possible) integrable singularity of µ at 0, following [18],
we have defined, for any fixed sν ∈ (0, s1), the function ψ = ψsν : (0,∞)→ [0,∞),
as

ψ(s) = µ(sν)χ(0,sν ](s) + µ(s)χ[sν ,∞)(s),

where χI denotes the indicator function of any interval I ⊂ (0,∞).

Remark 6.3. In order to recover Theorem 2.6 in the case β = 0, we need to
introduce an hypothesis on the so called flatness rate of the kernel (see [3, 6]; see
also [18]). One defines (for any measurable P ⊂ R+) the probability measure

mµ(P) =
1

κ

∫
P
µ(s)ds,

and the flatness set of µ as

Fµ = {s ∈ R+ : µ(s) > 0, µ′(s) = 0};
the flatness rate of µ is the quantity

Rµ = mµ(Fµ).

If β = 0, the functional J defined in the proof of Theorem 2.6 does not fulfill (2.6).
Nevertheless, in [3] it is shown that the modified functional

J1(t) = ME(t) + Φ(t) + aΨ(t),

where M and a are suitable positive constants, does satisfy (2.6), under the further
restriction Rµ < 1/2. If such a condition holds, since J1(0) = J (0), we can
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integrate (2.6) and repeat the conclusion of the proof of Theorem 2.6 with J1 in
place of J . Now, assuming (6.3), it is easily seen that Rµ = 0, so that Theorem
2.6 holds. In particular we get ‖ηt(s)‖V ≤ Q (see Remark 2.7).

Next lemma provides a basic estimate on the derivative of Φ.

Lemma 6.4. Let β = 0 and (6.3) hold. Then, for every ν ∈ (0, 1), there exist sν ∈
(0, s1) and positive constants c1 and c2 depending only on ν (possibly unbounded as
ν → 0) such that the functional Φ(t) fulfills the inequality

d

dt
Φ(t) ≤ −(1− ν)‖u(t)‖2 + c1

∫ ∞
0

[µ(s)]
p+1
p ‖ηt(s)‖2V ds(6.5)

− c2
(∫ ∞

0

µ′(s)‖ηt(s)‖2V ds− J[ηt]

)
.

Proof. Immediate computation yields

(6.6)
d

dt
Φ(t) = −1

κ

∫ ∞
0

ψ(s)〈u(t), ∂tη
t(s)〉ds− 1

κ

∫ ∞
0

ψ(s)〈∂tu(t), ηt(s)〉ds.

Arguing exactly like in [18, Lemma 4.1], it is possible to prove the following control

− 1

κ

∫ ∞
0

ψ(s)〈u(t), ∂tη
t(s)〉ds

≤ −(1− ν)‖u(t)‖2 − c2
(∫ ∞

0

µ′(s)‖ηt(s)‖2V ds− J[ηt]

)
.

Concerning the second summand in right hand side of (6.6), we have

− 1

κ

∫ ∞
0

ψ(s)〈∂tu(t), ηt(s)〉ds

=
1

κ

∫ ∞
0

ψ(s)

(∫ ∞
0

µ(ζ)〈ηt(s), ηt(ζ)〉V dζ
)
ds

≤ 1

κ

(∫ ∞
0

µ(s)‖ηt(s)‖V ds
)2

≤ 1

κ

(∫ ∞
0

[µ(s)]
p−1
p ds

)(∫ ∞
0

[µ(s)]
p+1
p ‖ηt(s)‖2V ds

)
≤ c1

∫ ∞
0

[µ(s)]
p+1
p ‖ηt(s)‖2V ds,

having used the fact that (p−1)/p > 1/p. The thesis is then achieved by collecting
both of the above inequalities. �

Lemma 6.5. Let β = 0. For M > 0 large enough, the functional defined by

B(t) = ME(t) + Φ(t)

fulfills the inequalities

K ′E(t) ≤ B(t) ≤ KE(t),(6.7)
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and

d

dt
B(t) + C1‖u(t)‖2 + C2

∫ ∞
0

[µ(s)]
p+1
p ‖ηt(s)‖2V ds ≤ 0,(6.8)

for some positive constants K, K ′, C1 and C2.

Proof. Inequalities (6.7) follow immediately by the definition of Φ(t). In order
to prove (6.8), we collect the energy identity (2.3) and (6.5), and by means of
assumption (6.3), we have (for M large enough)

d

dt
B(t) ≤ −(1− ν)‖u(t)‖2 + c1

∫ ∞
0

[µ(s)]
p+1
p ‖ηt(s)‖2V ds

+ (M − c2)
(∫ ∞

0

µ′(s)‖ηt(s)‖2V ds− J[ηt]

)
≤ −(1− ν)||u(t)||2 + c1

∫ ∞
0

[µ(s)]
p+1
p ‖ηt(s)‖2V ds

− δ(M − c2)
∫ ∞

0

[µ(s)]
p+1
p ‖ηt(s)‖2V ds− (M − c2)J[ηt].

Inequality (6.8) then follows, provided that we choose M > c2 + c1/δ. �

Remark 6.6. In the case β > 0, simply set B(t) = E(t). Then, by virtue of (6.3)
along with the Poincaré inequality, from the energy identity (2.3) we easily get

d

dt
B(t) ≤ −δ

∫ ∞
0

[µ(s)]
p+1
p ‖ηt(s)‖2V ds− 2βλ‖u(t)‖2,

so that (6.7) and (6.8) follow.

Proof of Theorem 6.2. Let σ ∈ (0, 1). The Hölder inequality entails

‖ηt‖2M =

∫ ∞
0

[µ(s)]σ[µ(s)]1−σ‖ηt(s)‖2V ds

≤
(∫ ∞

0

[µ(s)]
σ(p+1)
1+σp ‖ηt(s)‖2V ds

) 1+σp
p+1
(∫ ∞

0

[µ(s)]
p+1
p ‖ηt(s)‖2V ds

) p−σp
p+1

.

Using once more the boundedness of ‖ηt(s)‖V , which holds after Remark 6.3, under
the restriction

σ(p+ 1)/(1 + σp) > 1/p,

we infer

(6.9) ‖ηt‖2qM ≤ Cq
q

∫ ∞
0

[µ(s)]
p+1
p ‖ηt(s)‖2V ds

for any fixed q > p/(p− 1). The constant Cq plays the same role as in Section 5: it
depends increasingly on E(0) and singularly on q. So let us fix q ∈ (p/(p − 1), 1);
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then, by means of (6.7) and (6.9), and since q > 1, we are led to

B(t)q ≤ KqE(t)q ≤ Q
[
‖u(t)‖2q + ‖ηt‖2qM

]
≤ Q

[
‖u(t)‖2 +

∫ ∞
0

[µ(s)]
p+1
p ‖ηt(s)‖2V ds

]
.

Therefore, from (6.8) we obtain

d

dt
B(t) +

1

Q
B(t)q ≤ 0,

which, together with (6.7), yields

E(t) ≤ Q(1 + t)−r.

From the limitation q > p/(p− 1), we immediately infer r < p− 1. Again, we have
a singular dependence of Q on r.

�
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