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Abstract: We modify and extend proofs of Serrin’s symmetry result for overdeter-
mined boundary value problems from the Laplace-operator to a general quasilinear
operator and remove a strong ellipticity assumption in [9] and a growth assumption
in [5] on the diffusion coefficient A, as well as a starshapedness assumption on Ω
in [4].

1 Introduction and Result

Consider the overtermined elliptic boundary value problem

−div(A(|∇u|)∇u) = 1 in Ω (1.1)
u = 0, and |∇u| = c on ∂Ω (1.2)

on a connected bounded domain Ω ⊂ RN , and suppose that the function A :
(0,∞) → [0,∞) satisfies the regularity requirement

A ∈ C2(0,+∞) (1.3)

and the (possibly degenerate) ellipticity condition

lim
t→0+

tA(t) = 0 ,
(
tA(t)

)′
> 0 for t > 0, (1.4)

It was shown in [4] that these assumptions are sufficient to prove the existence of
a radially symmetric solution to (1.1) and (1.2) if Ω is a ball in RN . Moreover, the
assumptions imply that for general Ω with Lipschitz boundary there exist weak
C1

0 (Ω) solutions u of (1.1), and that they are of class C2 outside their set of critical
points {x ∈ Ω, |∇u(x)| = 0}.

It is well known that under suitable additional assumptions on A and Ω the ball
is the only domain on which a solution exists. In the present note we review and
generalize results of this nature and give a more geometric proof of the following
Theorem:
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Theorem 1.1 If the overdetermined elliptic boundary value problem (1.1) (1.2) has
a weak C1

0 (Ω)-solution in a connected bounded domain Ω ⊂ RN with sufficiently
smooth boundary ∂Ω, and if A satisfies the above assumptions (1.3) and (1.4), then
Ω is a ball.

A weak solution satisfies∫
Ω

A(|∇u|)∇u · ∇ϕ dx =
∫

Ω

ϕ dx for every ϕ ∈ C1
0 (Ω) (1.5)

and minimizes the functional

E(v) :=
∫

Ω

{B(|∇v|)− v} dx with B(t) :=
∫ t

0

sA(s) ds (1.6)

on W 1,∞
0 (Ω) or a on suitable Sobolev-Orlicz space (with norm given in terms of

the strictly convex function B). Because of (1.4) B is strictly convex and any
minimizer of E is unique.

For classical solutions of strongly elliptic equations Theorem 1.1 is a celebrated
result of Serrin [14]. To prove it, Serrin introduced the PDE community to Alexan-
drov’s moving plane method, and the proof applied to even more general equations
with classical solutions. For A(|∇u|) ≡ 1 Weinberger [17] provided a much sim-
pler proof, and there have been several attempts to extend Weinberger’s approach
to more general equations. Philippin succeded in [9] for quasilinear (nondegener-
ate) equations, in which A was bounded above and below by positive constants.
Garofalo and Lewis [5] proved it for a more general class of (possibly) degenerate
equations with growth assumptions on A, including the p-Laplacian for p ∈ (1,∞),
and for a somewhat weaker form of the Neumann boundary condition which did
not require any explicit smoothness assumptions on ∂Ω. In [4] Fragalà, Gazzola
and Kawohl were able to provide a fairly simple and geometric proof that applies
to degenerate equations such as

−div
(

|∇u|p−2

(1 + |∇u|2)q/2
∇u

)
= 1 in Ω, (1.7)

with p ∈ (1,∞) and q ∈ [0, p−1]. This class of equations is not covered by any of the
papers [14, 17, 9, 5]. However, the proof in [4] required an additional starshapedness
assumption on Ω if the dimension N of Ω is larger than 2. In the present paper
we can now also remove the starshapedness assumption. A totally different line
of reasoning was pursued in [2], where Brock and Henrot used continuous Steiner
symmetrization and domain derivative to study an overdetermined problem under
the assumption that Ω is a convex domain and for a class of quasilinear operators
of p-Laplacian-type.

In what follows, we will first outline the proof, because then the individual
steps will not be obscured by technicalities. While steps 1 and 3 are more or less



3

technical refinements of known methods, we should point out that in step 2 we
uncover hidden geometric information in the constancy of P with geometric rather
than analytic arguments.

Step 1: Set Φ(t) := 2
∫ t

0
(A(s) + sA′(s))s ds. If u solves (1.1) (1.2), then the

function

P (x) := Φ(|∇u(x)|) +
2
N

u(x)

attains its maximum over Ω on the boundary ∂Ω. Therefore either P (x) < Φ(c)
on a set of positive measure, or P (x) ≡ Φ(c).

Step 1 was performed in [4] in full detail, first for strongly elliptic and then after
a regularization for degenerate elliptic operators under the assumptions (1.3) and
(1.4). To prove Step 1 one has to derive a differential inequality for P in the spirit
of [8] or [15]. Under stronger assumptions Step 1 was also done in [9] and [5].

Step 2: In the second case that P (x) ≡ Φ(c) the function u must be radial and
radially decreasing. One way to see this goes via isoparametric surfaces. One notes
that the identity Φ(|∇u(x)|) + 2

N u(x) = Φ(c) gives rise to a first order semilinear
equation |∇u| = g(u) in Ω. This and the second order differential equation imply
that all level sets of u are isoparametric surfaces, i.e. all their principal curvatures
are either elements of a set {0, κ(u)} with only two elements. Because of the
Dirichlet boundary conditions the principal curvatures of a given level surface are
all identically nonzero and thus the level sets are concentric spheres, see [6, Theorem
5] or [16]. For readers who do not like isoparametric surfaces we give an alternative
geometric proof of Step 2 in Section 2, while the traditional purely analytical way
to derive radial symmetry from the constancy of P is briefly explained in Section
4. It is interesting to note that both geometric versions of proof of Step 2 require
(1.3) and (1.4) to hold.

Step 3: To rule out the first case from Step 1 (i.e. P (x) < Φ(c) on a set of
positive measure), we show via certain integral identities (named after Rellich [13],
Pohožaev [10] and Pucci-Serrin [12]), that

∫
Ω

P (x) dx = Φ(c)|Ω|. (1.8)

One essential part of this step can be found in [9] or [5], however, there it was
derived under stronger assumptions on A than here. Since [9] and [5] use different
notation, we shall give the relatively short but full details below in Section 3 and
explain why one can pass from nodegenerate equations and classical solutions to
degenerate equations and weak solutions. Again assumptions (1.3) and (1.4) are
crucial.
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2 Alternative Proof of Step 2

If P ≡ Φ(c) then Φ(|∇u|(x)) = Φ(c) − 2
N u(x). In this situation the strict mono-

tonicity of the map t → tA(t) can be used to make |∇u| explicit as a function g of
u

|∇u(x)| = Φ−1

(
Φ(c)− 2

N
u(x)

)
=: g(u(x)), (2.1)

and the regularity of A is needed to render g(u) of class C1 on the interval
(0,max u). Since Φ is strictly monotone, ∇u vanishes only in points where u
attains its maximum on Ω. Therefore ν = − ∇u

|∇u| is well defined on the open set
U := {x ∈ Ω | u(x) ∈ (0,max u)}. Observe that uν = −|∇u| = −g(u) and that
(1.1) can be rewritten as

−A(|∇u|)∆u− |∇u|A′(|∇u|)uνν = 1 in U, (2.2)

while
∆u = uνν + (N − 1)Huν . (2.3)

Here H is the mean curvature of the level set of u. From (2.2) and (2.3) we can
extract

H = H(uν , uνν) = H(g(u), uνν),

and to see that H depends only on u, we have to express uνν in terms of u. On
one hand

∂

∂ν
(|∇u|2) = 2uνuνν

and on the other hand because of (2.1)

∂

∂ν
(|∇u|2) = 2g(u)g′(u)uν ,

so that uνν = g(u)g′(u) is in fact related to u. Here the differentiability of g enters
into the proof. So upon performing obvious algebraic operations (2.1) and (2.2)
lead to

H =
1 + g(u)g′(u)[A(g(u)) + g(u)A′(g(u))]

(N − 1)g(u)A(g(u))
=: h(u) in U, (2.4)

But this identity just says that every level set of u at height between zero and
max u is a set of constant mean curvature. By Alexandrov’s classical result [1] each
connected component of it must then be a sphere. In particular Ω must now be
simply connected, because otherwise a particular level set, say {x ∈ Ω; u(x) = δ},
would contain two nested spheres of equal radius, a contradiction. Therefore each
level set consists of exactly one sphere, and because of (2.1) these spheres are
concentric.
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3 Proof of Step 3

For the proof of Step 3 we observe (using B(t) :=
∫ t

0
sA(s) ds and integration by

parts) that

Φ(t) = 2
∫ t

0

sA(s) ds + 2
∫ t

0

s2A′(s) ds

= 2B(t) + 2[−
∫ t

0

2sA(s) ds + t2A(t)]

= −2B(t) + 2t2A(t),

so that

P (x) = 2A(|∇u|)|∇u|2 − 2B(|∇u|) +
2
N

u. (3.1)

Now we test the differential equation first with u and then with the scalar product
(x,∇u) and integrate by parts. The first integration gives∫

Ω

A(|∇u|)|∇u|2 dx =
∫

Ω

u dx. (3.2)

Then we test (1.1) with (x,∇u). This gives

−
∫

Ω

div(A(|∇u|)∇u) (x,∇u) dx =
∫

Ω

(x,∇u) dx. (3.3)

The right hand side of (3.3) transforms as follows∫
Ω

(x,∇u) dx = −
∫

Ω

(divx) u dx = −N

∫
Ω

u dx,

while (formally) for the left hand side of (3.3) we have (with B(t) :=
∫ s

0
tA(s) ds)∫

Ω

A(|∇u|)∇u∇(x,∇u) dx−
∫

∂Ω

A(a)uν(x,∇u) ds

=
∫

Ω

A(|∇u|)
[
|∇u|2 + (x,∇(

|∇u|2

2
))

]
dx−

∫
∂Ω

A(c)c2(x, ν) ds

=
∫

Ω

A(|∇u|)|∇u|2 + (x,∇B(|∇u|)) dx−A(c)c2N |Ω|

=
∫

Ω

[A(|∇u|)|∇u|2 −NB(|∇u|)] dx +
∫

∂Ω

B(c)(x, ν) ds−A(c)c2N |Ω|

=
∫

Ω

N [
1
N

A(|∇u|)|∇u|2 −B(|∇u|)] dx−N [A(c)c2 −B(c)] |Ω|,
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so that after multiplication with 2/N equation (3.3) can also be written as∫
Ω

[
2
N

A(|∇u|)|∇u|2 − 2B(|∇u|) + 2u

]
dx =

[
2A(c)c2 − 2B(c)

]
|Ω|, (3.4)

that is, using (3.1) and (3.2), as∫
Ω

P (x) dx = Φ(c)|Ω|. (3.5)

This completes the proof of Step 3 in the (regular) case that A satisfies the stronger
assumptions A : [0,∞) → (0,∞), A ∈ C2[0,∞) and (tA(t))′ > 0 for t ≥ 0.

In the degenerate case, where A ∈ C2(0,∞) and (tA(t))′ > 0 only for t > 0,
we simply observe that only (3.3) requires a certain regularity of u. However, as
shown in Theorem 2 of [3] equation (3.4) still holds if u is only of class C1(Ω). As a
function of ∇u, the function B(|∇u|) is strictly convex due to (1.4). Subsequently
also (3.5) holds in the degenerate case.

4 Concluding remarks

Step 1, the maximum principle part, applies also to equations involving the right
hand side w(|∇u|2)f(u) instead of 1 in (1.1). In fact in [15, Theorem 7.3] Sperb
considers the elliptic equation

−div
(
a(|∇u|2)∇u

)
= w(|∇u|2)f(u) in Ω (4.6)

with w > 0 and introduces the functions Φ(t) :=
∫ t

0
[a(s) + 2sa′(s)]/w(s) ds and

F (t) =
∫ t

0
f(s) ds and

P (x) := Φ
(
|∇u(x)|2

)
+

2
N

F
(
u(x)

)
.

If u solves (1.1) (1.2) and under suitable assumptions on a ≥ 0, w > 0 and f > 0
he shows that P attains its maximum on the boundary. For w ≡ 1 the assumption
on f is f ′ ≤ 0.

Clearly, if P ≡ const in Ω, also Step 2 of the proof goes through. Therefore
there is a chance for improvement of our result to more general equations than
(1.1).

If one proceeds with Step 3 for the special case w ≡ 1, one arrives at∫
Ω

[P (x) + R(x)] dx = Φ(c2) |Ω|, (4.7)
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where the remainder term R(x) is given by∫
Ω

R(x) dx =
(

2− 2
N

) ∫
Ω

[F (u)− uf(u)] dx. (4.8)

But now the first case from Step 1 can apparently only be ruled out if F (u) ≤ uf(u).
If f ′(u) ≤ 0 as required in Step 1, however, F is concave and F (u) ≥ uf(u). So for
constant w this observation limits the method of proof to constant functions f .

Nevertheless it is not excluded that the method could be extended to noncon-
stant w.

Another way to reach the conclusion of Step 3 was pursued in [17, 9, 5]. These
authors analyzed the consequences of equality in the differential inequality for P
and came to the conclusion that mixed second derivatives of u had to vanish and
pure second derivatives had to coincide. From this one can derive that u depends
only on |x| (modulo translations of the origin).

Still another way to reach the conclusion of Step 3 was followed in [4], where
as a consequence of Step 1 the relation Pν ≥ 0 on ∂Ω was exploited. It leads to
a uniform bound on the mean curvature H of ∂Ω, namely H ≤ [NcA(c)]−1. The
strategy was then to show that the bound is sharp everywhere on ∂Ω.

In our paper we have assumed smoothness of ∂Ω out of convenience, because
our main goal was the removal of assumptions on the differential operator and on
the domain geometry. For nonsmooth, say Lipschitz boundaries, the Neumann
condition can only hold a.e. on ∂Ω, and then results of [11] seem to be useful.
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