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Section de Mathématiques, EPFL, 1015 Lausanne, Switzerland

cupini@math.unifi.it bernard.dacorogna@epfl.ch
olivier.kneuss@epfl.ch

January 19, 2009

Abstract

We prove existence of u ∈ Ck
(
Ω; Rn

)
satisfying{

det∇u (x) = f (x) x ∈ Ω

u (x) = x x ∈ ∂Ω

where k ≥ 1 is an integer, Ω is a bounded smooth domain and f ∈ Ck
(
Ω
)

satisfies ∫
Ω

f (x) dx = meas Ω

with no sign hypothesis on f.

1 Introduction

In this article, we discuss the existence of u : Ω ⊂ Rn → Rn such that{
det∇u (x) = f (x) x ∈ Ω

u (x) = x x ∈ ∂Ω
(1)

where Ω is a bounded smooth domain. Clearly the divergence theorem implies
that a necessary condition for solving (1) is∫

Ω

f (x) dx = meas Ω. (2)

When f > 0, this problem has generated a considerable amount of work since the
seminal article of Moser [11], notably by Banyaga [1], Dacorogna [3], Reimann
[12], Tartar [15], Zehnder [17]. The next important step appeared in Dacorogna-
Moser [6], where the regularity problem was handled, in particular it was shown
that if f ∈ Cr,α

(
Ω
)
, then a mapping u can be found in Cr+1,α

(
Ω; Ω

)
. Posterior
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contributions can also be found in Burago-Kleiner [2], Mc Mullen [9], Rivière-
Ye [13] and Ye [16]. It should be emphasized that, when f > 0, the solution is
necessarily a diffeomorphism.

The aim of this article is to remove the hypothesis f > 0 and to consider
any f satisfying (2), with no restriction on its sign. Of course the solution will
then not be a diffeomorphism; although if f ≥ 0, and under further restrictions,
it can be a homeomorphism. Our main result is the following (cf. Theorem 2
for a more general statement).

Theorem 1 Let k ≥ 1 be an integer, Ω ⊂ Rn be the unit ball and f ∈ Ck
(
Ω
)

with ∫
Ω

f (x) dx = meas Ω.

Then there exists u ∈ Ck
(
Ω; Rn

)
verifying{

det∇u (x) = f (x) x ∈ Ω

u (x) = x x ∈ ∂Ω.

Our proof cannot use the flow method introduced by Moser and does not
use either the fixed point method developed in [6]. It is more constructive.
Some extensions of this theorem, in particular to more general domains Ω, are
considered below (cf. Propositions 11 and 12). We also point out that our
method does not produce, as the one in [6] did when f > 0, a gain in regularity.

We should also emphasize that when f is negative in some part, then it
might be that u

(
Ω
)
6⊂ Ω. This indeed happens if f < 0 in some part of ∂Ω (cf.

Proposition 4).
We would now like to conclude with a qualitative remark. If g > 0 and∫

Ω

f (x) dx =
∫

Ω

g (x) dx,

then the theorem is still valid (cf. Theorem 2) and there exists a solution of{
g (u (x)) det∇u (x) = f (x) x ∈ Ω

u (x) = x x ∈ ∂Ω
(3)

with no restriction on the sign of f. However if g vanishes in at least one point,
and even if f ≡ 1, then the problem becomes, in general, unsolvable. More
precisely, if f ≡ 1 (or more generally if f > 0), then the following assertions are
true (see Proposition 8).

(i) If g has at least one zero, then there is no C1 solution of (3).
(ii) If g ≥ 0 and has only a countable number of zeroes, then there exists a

continuous (but not C1) weak solution of (3).
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2 Notations

We gather here the main notations that will be used throughout the article. We
let Ω, O ⊂ Rn be bounded open sets.

- Balls in Rn are denoted by

Bε(x) := {y ∈ Rn : |y − x| < ε}

and when x = 0 we just write Bε instead of Bε(0).
- For g ∈ C0(Rn), Φ ∈ C1(Ω; Rn) and x ∈ Ω, we let, as in differential

geometry,
Φ∗(g)(x) := g(Φ(x)) det∇Φ(x).

- The set diffeomorphisms of class (k, α), k ≥ 1 an integer and α ∈ [0, 1], is
denoted by

Diffk,α(Ω;O) :=
{

Φ : Φ ∈ Ck,α(Ω;O) and Φ−1 ∈ Ck,α(O; Ω)
}
.

If α = 0, we simply write Diffk(Ω;O).
- For homeomorphisms, we let

Hom(Ω;O) :=
{

Φ : Φ ∈ C0(Ω;O) and Φ−1 ∈ C0(O; Ω)
}
.

- For A ⊂ Rn, the characteristic function of A is defined as

1A(x) :=

{
1 if x ∈ A
0 if x /∈ A.

- In many instances, we will write, for g ∈ Ck(Rn) and f ∈ Ck(Ω), supp(g−
f) ⊂ Ω meaning that the support of [g|Ω − f ] is contained in Ω.

3 Main result

The main result of our paper (also valid in the framework of Hölder spaces Ck,α)
is the following one.

Theorem 2 Let k ≥ 1 be an integer and Ω ⊂ Rn be an open set, such that Ω
is Ck+1-diffeomorphic to B1 . Let also g ∈ Ck(Rn) and f ∈ Ck(Ω) be such that

inf
x∈Rn

g(x) > 0 and
∫

Ω

f =
∫

Ω

g.

Then there exists Φ ∈ Ck(Ω; Rn) such that{
Φ∗(g) = f in Ω

Φ = id on ∂Ω.
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Moreover Φ has the extra following three properties.
(i) If supp(g − f) ⊂ Ω, then Φ can be defined so that supp(Φ− id) ⊂ Ω.
(ii) If f ≥ 0, then Φ can be chosen so that Φ ∈ Ck(Ω; Ω).
(iii) If f ≥ 0 and f−1(0) ∩ Ω is countable, then Φ can be defined so that

Φ ∈ Hom(Ω; Ω).

Remark 3 (i) By “ Ω is Ck+1-diffeomorphic to B1 ” we mean that there exists
Φ1 ∈ Diffk+1(Rn; Rn) such that

Φ1(B1) = Ω

and
inf
x∈Rn

det∇Φ1(x) > 0.

In particular B1 is Ck+1-diffeomorphic to B1 .

(ii) Throughout the article we will assume n ≥ 2. When n = 1, the result is
trivial and the solution is unique.

(iii) If f is negative in some part of ∂Ω, then any Φ must go out of Ω (cf.
Proposition 4). However if, for example, f > 0 on ∂Ω, then Φ can be chosen so
that Φ

(
Ω
)

= Ω. For details we refer to Kneuss [8]. Note that when n = 1, the
condition f > 0 on ∂Ω, is not sufficient to guarantee that Φ

(
Ω
)
⊂ Ω.

The proof is rather long and relies on the results of Sections 5, 6 and 7.
However in order to motivate all the technical lemmas of these sections, we now
give the proof of the theorem, based on these intermediate results.
Proof. We split the proof into seven steps. In the course of the proof, we use
several times (32), namely

(Φ ◦Ψ)∗ = Ψ∗ ◦ Φ∗.

Step 1. Since Ω is Ck+1-diffeomorphic toB1 , there exists Φ1 ∈ Diffk+1(Rn; Rn)
with Φ1(B1) = Ω and

inf
x∈Rn

det∇Φ1(x) > 0.

Step 2 (positive radial integration). Applying Lemma 26 to Φ∗1(f) ∈ Ck(B1),
we find that there exists Φ2 ∈ Diff∞(B1;B1) satisfying

(Φ1 ◦ Φ2)∗(f)(0) > 0 and supp(Φ2 − id) ⊂ B1

with ∫ r

0

sn−1(Φ1 ◦ Φ2)∗(f)(s
x

|x|
)ds > 0, for every x 6= 0 and r ∈ (0, 1]. (4)

Notice that ∫
B1

(Φ1 ◦ Φ2)∗(f) =
∫
B1

Φ∗1(f) =
∫

Ω

f.
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Step 3 (radial solution). Applying Lemma 17 to Φ∗1(g) and (Φ1 ◦ Φ2)∗(f),
we infer that there exists Φ3 ∈ Ck(B1; Rn) such that{

(Φ1 ◦ Φ3)∗(g) = (Φ1 ◦ Φ2)∗(f) in B1

Φ3 = id on ∂B1 .

This is possible, since infx∈Rn Φ∗1(g)(x) > 0, (Φ1 ◦ Φ2)∗(f)(0) > 0,∫
B1

Φ∗1(g) =
∫

Ω

g =
∫

Ω

f =
∫
B1

Φ∗1(f) =
∫
B1

(Φ1 ◦ Φ2)∗(f)

and (4) holds.
Step 4 (conclusion). By the previous steps, we have that

Φ := Φ1 ◦ Φ3 ◦ Φ−1
2 ◦ Φ−1

1 ∈ Ck(Ω; Rn)

satisfies {
Φ∗(g) = f in Ω

Φ = id on ∂Ω

since

Φ∗(g) =
[
(Φ1 ◦ Φ2)−1

]∗
◦ [Φ1 ◦ Φ3]∗ (g)

=
[
(Φ1 ◦ Φ2)−1

]∗
◦ [Φ1 ◦ Φ2]∗ (f) = f.

Step 5. We now discuss (i). If supp(g − f) ⊂ Ω, then

supp(Φ∗1(g)− (Φ1 ◦ Φ2)∗(f)) ⊂ B1 .

Therefore, by Lemma 17 (i), we can define Φ3 such that

supp(Φ3 − id) ⊂ B1 .

Finally, we get
supp(Φ− id) ⊂ Ω.

Thus Statement (i) is established.

Step 6. We now consider Statement (ii). Since f ≥ 0, we have (Φ1◦Φ2)∗(f) ≥
0 and then by Lemma 17 (ii), we can choose Φ3 ∈ Ck(B1;B1). Eventually we
get Φ ∈ Ck(Ω; Ω).

Step 7. As far as (iii) is concerned, we have from Lemma 17 (iii) that
Φ3 ∈ Hom(B1;B1). Since Φ1 ∈ Diffk+1(B1; Ω) and Φ2 ∈ Diff∞(B1;B1), we
have the claim.
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4 Remarks, extensions and related results

In this section Ω ⊂ Rn is a bounded connected open set.
We start by showing that if f < 0 in some parts of ∂Ω, then any solution of{

Φ∗(g) = f in Ω
Φ = id on ∂Ω

(5)

must go out of Ω, more precisely Φ
(
Ω
)
6⊂ Ω.

Proposition 4 Let Ω ⊂ Rn be a bounded open set of class C1 and Φ ∈ C1(Ω; Rn)
with Φ = id on ∂Ω. If there exists x ∈ ∂Ω such that det∇Φ(x) < 0 then

Φ(Ω) 6⊂ Ω. (6)

Proof. Step 1 (simplification). By hypothesis there exists Ψ ∈ Diff1(B1; Ψ(B1))
with Ψ(0) = x and

(i) Ψ(B1 ∩ {xn = 0}) ⊂ ∂Ω
(ii) Ψ(B1 ∩ {xn > 0}) ⊂ Ω
(iii) Ψ(B1 ∩ {xn < 0}) ⊂ (Ω)c.

Therefore using that Φ(x) = x, we can choose ε > 0 small enough so that
Φ̃ : Bε ∩ {xn ≥ 0} → Rn,

Φ̃(x) := Ψ−1(Φ(Ψ(x)))

is well defined. We observe that Φ̃ satisfies

Φ̃ = id on Bε ∩ {xn = 0} and det∇Φ̃(0) = det∇Φ(x) < 0. (7)

To prove (6) it is enough to show that

Φ̃(Bε′ ∩ {xn > 0}) ⊂ {xn < 0}, (8)

for a certain 0 < ε′ ≤ ε.
Step 2. We now show (8). Using (7), we immediately obtain

∂Φ̃n
∂xn

(0) = det∇Φ̃(0) = det∇Φ(x) < 0

and therefore by continuity, there exists 0 < ε′ ≤ ε such that

∂Φ̃n
∂xn

< 0 in Bε′ . (9)

Combining (9) and the fact that Φ̃n(0) = 0 (by (7)) we get (8).
We next prove, under suitable assumptions, that a classical solution of (5)

is necessarily a weak solution (see Definition 5 and Lemma 7). We then prove
that g and f do not play the same role in (5) (see Proposition 8).
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Definition 5 Let g, f ∈ C0(Ω). We say that Φ ∈ Hom(Ω; Ω) is a weak solution
of (5) if { ∫

Φ(E)
g =

∫
E
f for every open E ⊂ Ω

Φ = id on ∂Ω.
(10)

Remark 6 If Φ /∈ Hom(Ω; Ω), then the right notion of weak solution of (5) is
with the first equation in (10) replaced (see [7] page 106) by∫

E

f (x) dx =
∫

Rn
g(y) deg(Φ, E, y)dy

where deg stands for the topological degree (see Appendix).

Lemma 7 Suppose that g, f ∈ C0(Ω) and Φ ∈ C1(Ω; Ω) ∩Hom(Ω; Ω). Then Φ
is a classical solution if and only if Φ is a weak solution.

Proof. It will be seen in Proposition 31 that, if Φ ∈ C1(Ω; Ω)∩Hom(Ω; Ω) and
Φ = id on ∂Ω, then det∇Φ(x) ≥ 0 and

int
(

(det∇Φ)−1 (0)
)

= ∅. (11)

(i) Suppose that Φ is a classical solution of (5) and let E ⊂ Ω be an open
set. Consider

E+ := E ∩ {x ∈ Ω : det∇Φ(x) > 0}
E0 := E ∩ {x ∈ Ω : det∇Φ(x) = 0}.

Since g(Φ(x)) det∇Φ(x) = f(x), we have f ≡ 0 in E0 . By Sard theorem (see
(72))

meas (Φ(E0)) = 0.

Thus, by the change of variables formula and Φ being one to one, we obtain∫
Φ(E)

g =
∫

Φ(E+∪E0)

g =
∫

Φ(E+)

g +
∫

Φ(E0)

g

=
∫

Φ(E+)

g =
∫
E+

f =
∫
E

f.

Hence Φ is a weak solution of (5).
(ii) Assume now that Φ is a weak solution of (5). Let x ∈ Ω be such that

det∇Φ(x) > 0. Then Φ ∈ Diff1(Br (x); Φ
(
Br (x)

)
) for some suitable small r.

By the assumptions and the change of variables formula, for every 0 < ρ < r,
we have∫

Bρ(x)

g (Φ (y)) det∇Φ(y)dy =
∫

Φ(Bρ(x))

g (z) dz =
∫
Bρ(x)

f (z) dz.
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Letting ρ→ 0 we obtain

g (Φ (x)) det∇Φ(x) = f (x) .

By continuity, we conclude that the above equality holds true for every

x ∈ closure {y ∈ Ω : det∇Φ(y) > 0} = Ω

in view of (11).
We now show that in our problem (5), the functions g and f do not play the

same role.

Proposition 8 The following three statements hold true.
(i) If g ∈ C0(Rn), f ∈ C0(Ω), f > 0 and g−1(0) ∩ Ω 6= ∅, then there exists

no solution Φ ∈ C1(Ω; Rn) to (5).
(ii) Let f, g ∈ C0(Ω) satisfy

f > 0, g ≥ 0 and
∫

Ω

f =
∫

Ω

g.

If there exists a weak solution of (5), then

int(g−1(0) ∩ Ω) = ∅. (12)

(iii) Let Ω be C2-diffeomorphic to B1 and f, g ∈ C1(Ω) be such that

f > 0, g ≥ 0, g−1(0) ∩ Ω is countable and
∫

Ω

f =
∫

Ω

g.

Then there exists a weak solution of (5).

Proof. (i) We proceed by contradiction. Assume that Φ ∈ C1(Ω; Rn) is a
solution of (5). Since Φ = id on ∂Ω , then (see (74))

Φ(Ω) ⊃ Ω.

Thus, there exists z ∈ Ω such that Φ(z) ∈ Ω and g(Φ(z)) = 0, which is the
desired contradiction, since

g(Φ(z)) det∇Φ(z) = f (z) > 0.

(ii) Let Φ ∈ Hom(Ω; Ω) satisfy (10) with f > 0. If (12) is not true, then
there exists Bε(z) such that

Bε(z) ⊂ g−1(0) ∩ Ω.

Let E = Φ−1 (Bε(z)) ⊂ Ω which is open (and non-empty) by continuity of Φ.
From (10) we get that

0 <
∫
E

f =
∫

Φ(E)

g = 0,
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which is absurd.
(iii) From Theorem 2 iii) we find that there exists Ψ ∈ C1(Ω; Ω)∩Hom(Ω; Ω),

such that
Ψ∗(f) = g and Ψ = id on ∂Ω .

For every open set E ⊂ Ω we have, from Lemma 7,∫
Ψ(E)

f =
∫
E

g.

Then, Φ := Ψ−1 satisfies (10).
In the following proposition, we state a necessary condition (see (13)) for

the existence of a one to one solution of (5). Moreover, we show that not all
solutions of (5), verifying (13), are one to one. Notice that Lemma 28 shows
that if Φ ∈ C0(Ω; Rn) is one to one and Φ = id on ∂Ω, then Φ ∈ Hom(Ω; Ω).

Proposition 9 Let

g ∈ C0(Rn), f ∈ C0(Ω), inf
x∈Rn

g(x) > 0 and
∫

Ω

f =
∫

Ω

g.

Then the following claims hold true.
(i) If Φ ∈ C1(Ω; Rn) is a one to one solution of (5), then

f ≥ 0 and int(f−1(0)) = ∅. (13)

(ii) If f satisfies (13), then not all solutions Φ ∈ C1(Ω; Rn) of (5) are one
to one.

Proof. (i) By Lemma 28, we have that Φ ∈ Hom(Ω; Ω). Applying Proposition
31, we have the claim.

(ii) We provide a counterexample in two dimensions. Let f ∈ C1(B1) be
such that f ≥ 0,

f−1(0) = {(t, 0) : t ∈ [1/2, 3/4]}, f ≡ 1 on a neighborhood of 0

and, for x 6= 0, ∫ 1

0

s f(s
x

|x|
)ds =

1
2
.

Define next α : B1 \ {0} → [0, 1], through

α(x)2

2
=
∫ |x|

0

s f(s
x

|x|
)ds.

As in the proof of Lemma 17, the function

Φ(x) := α(x)
x

|x|
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is in C1(B1;B1) with

Φ∗(1) = f and Φ = id on ∂B1 .

Since Φ(1/2, 0) = Φ(3/4, 0), then Φ is not one to one.
The next proposition can be proved with the same techniques as the one

developed here and we refer to [8] for details.

Proposition 10 Let k ≥ 1 be an integer, g ∈ Ck(Rn) and f ∈ Ck(B1) satisfy

inf
x∈Rn

g(x) > 0 and
∫
B1

g =
∫
B1

f.

Then there exist γ = γ(n, k, g, f) and ε = ε(n, k, g, f) such that for every h1, h2 ∈
Ck(B1) satisfying∫

B1

hi =
∫
B1

g and ‖hi − f‖Ck ≤ ε, i = 1, 2,

there exist Φhi ∈ Ck(B1; Rn), i = 1, 2, with

Φ∗hi(g) = hi and Φhi = id on ∂B1

and
‖Φh1 − Φh2‖Ck ≤ γ‖h1 − h2‖Ck .

We conclude this section with two extensions of Theorem 2 (cf. [8]) to more
general domains Ω. For example domains with a finite number of holes or general
domains but with only a finite number of connected components where f is not
positive.

Proposition 11 Let k ≥ 1 be an integer. Let Ω be an open set such that Ω is
Ck+1-diffeomorphic to

B1 \
N⋃
i=1

Bδi(xi)

with Bδi(xi) pairwise disjoint and contained in B1 , and denote by Φ1 such a
diffeomorphism. If g ∈ Ck(Rn) and f ∈ Ck(Ω) satisfy

inf
x∈Rn

g(x) > 0, f > 0 in Φ−1
1 (
⋃N
i=1∂Bδi(xi))

and ∫
Ω

f =
∫

Ω

g,

then there exists Φ ∈ Ck(Ω; Rn) verifying (5).
The following three properties also hold.
(i) If supp(g − f) ⊂ Ω, then Φ can be defined so that supp(Φ− id) ⊂ Ω.
(ii) If f ≥ 0 or if f > 0 on ∂Ω, then Φ can be chosen so that Φ ∈ Ck(Ω; Ω).
(iii) If f ≥ 0 and f−1(0) ∩ Ω is countable, then Φ can be defined so that

Φ ∈ Hom(Ω; Ω).
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Proposition 12 Let k ≥ 1 be an integer. Let Ω be an open set of class Ck and
suppose that f, g ∈ Ck(Ω) satisfy

g > 0 in Ω, f > 0 on ∂Ω and
∫

Ω

f =
∫

Ω

g.

Suppose that W1, · · · ,Wm are open sets such that
Wi ⊂ Ω and Wi is Ck+1 diffeomorphic to B1 1 ≤ i ≤ m

Wi ∩Wj = ∅ 1 ≤ i 6= j ≤ m
f−1((−∞, 0]) ⊂

⋃m
i=1Wi .

Then, there exists Φ ∈ Ck(Ω; Ω) solution of (5).
Moreover, if supp(g−f) ⊂ Ω, then Φ can be defined so that supp(Φ−id) ⊂ Ω.

5 Preliminary results

We now recall a result of [6].

Theorem 13 (Dacorogna-Moser theorem) Let k ≥ 1 be an integer, Ω be a
bounded connected open set of class Ck and let f, g ∈ Ck(Ω) be such that

f · g > 0 in Ω and
∫

Ω

f =
∫

Ω

g.

Then there exists Φ ∈ Diffk(Ω; Ω) such that{
Φ∗(g) = f in Ω

Φ = id on ∂Ω.

Furthermore, if supp(g−f) ⊂ Ω, then Φ can be chosen so that supp(Φ−id) ⊂ Ω.

We have as an immediate corollary the following.

Corollary 14 Let k ≥ 1 be an integer, f, g ∈ Ck(Ω) and let V ⊂ Ω be a
connected open set such that

f · g > 0 in V,

∫
V

f =
∫
V

g and supp(f − g) ⊂ V.

Then there exists Φ ∈ Diffk(V , V ) such that

Φ∗(g) = f in V and supp(Φ− id) ⊂ V.

Proof. We surely can find an open set W of class Ck such that

W ⊂ V and supp(f − g) ⊂W.

Using Theorem 13, we have the claim.
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Proposition 15 Let k ≥ 1 be an interger and R > 1. Let also f, g ∈ Ck(BR)
be such that f, g > 0 in BR and∫

B1

f =
∫
B1

g ,

∫
BR

f =
∫
BR

g.

There exists Φ ∈ Diffk(BR;BR) such that{
Φ∗(g) = f in BR

Φ = id on ∂B1 ∪ ∂BR. (14)

Proof. We decompose the proof into two steps.
Step 1. Since f − g ∈ Ck(BR), then, for example, f − g ∈ Ck−1,1/2(BR);

therefore, using Lemma 16, there exists u ∈ Ck,1/2(BR; Rn) (in particular in
Ck(BR; Rn)) such that{

div(u) = f − g in BR
u = 0 on ∂B1 ∪ ∂BR.

Step 2. Let v ∈ Ck([0, 1]×BR; Rn), v(t, x) = vt(x), be defined by

vt(x) :=
u(x)

tg(x) + (1− t)f(x)
.

We then define Ψt(x) : [0, 1]×BR → Rn as the solution of{
d
dt [Ψt(x)] = vt(Ψt(x)) t > 0

Ψ0(x) = x.

Using classical results about ODE, recalling that vt ≡ 0 on ∂B1∪∂BR , we have,
for every t ∈ [0, 1], that

Ψt ∈ Diffk(BR;BR) and Ψt = id on ∂B1 ∪ ∂BR .

Finally, it can be easily shown, see e.g. [5] p. 540, that Φ := Ψ1 verifies (14).
In Proposition 15 we used the following lemma.

Lemma 16 Let k ≥ 0 be an integer, α ∈ (0, 1) and R > 1. Let also f ∈
Ck,α(BR) be such that ∫

B1

f =
∫
BR

f = 0.

There exists u ∈ Ck+1,α(BR; Rn) such that{
div(u) = f in BR
u = 0 on ∂B1 ∪ ∂BR. (15)
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Proof. We split the proof into four steps.
Step 1. Using a classical result about the divergence, see e.g. [5] p. 531,

there exist w1 ∈ Ck+1,α(B1; Rn) and v ∈ Ck+1,α(BR; Rn) such that{
div(w1) = f in B1

w1 = 0 on ∂B1
(16)

and {
div(v) = f in BR
v = 0 on ∂BR. (17)

Step 2. Let w2 ∈ Ck+1,α(B1; Rn) be defined by w2 := w1 − v. Using (16)
and (17), we obtain {

div(w2) = 0 in B1

w2 = −v on ∂B1. (18)

Since div(w2) = 0, there exists, by Poincaré lemma (see e.g. [4]),

H = (Hij)1≤i<j≤n ∈ Rn(n−1)/2

with Hij ∈ Ck+2,α(B1) and
w2 = rot∗H

where
rot∗H = ((rot∗H)1, · · · , (rot∗H)n)

and

(rot∗H)i =
i−1∑
j=1

∂Hji

∂xj
−

n∑
j=i+1

∂Hij

∂xj
.

Step 3. For all 1 ≤ i < j ≤ n let H̃ij ∈ Ck+2,α(BR) be such that

H̃ij = Hij in B1.

Let also φ ∈ C∞(Rn) be such that{
φ ≡ 1 in B(1+R)/2

φ ≡ 0 in (B(1+2R)/3)c.

Finally let w ∈ Ck+1,α(BR; Rn) be defined by w := rot∗(φH̃).
Step 4. Let us show that u ∈ Ck+1,α(BR; Rn) defined by u := v +w verifies

(15). Using (17), we have

div(u) = div(v) + div(w) = f + 0 = f in BR .

Using the definition of φ we have w = 0 on ∂BR and therefore, using (17),

u = v + w = 0 on ∂BR .
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Using again the definition of φ we obtain w = rot∗(H̃) = rot∗(H) = w2 in B1 .
Combining this with (16) and (18) we have

u = v + w = v + w2 = w1 = 0 on ∂B1 ,

which concludes the proof of the lemma.
In Step 3 of the proof of our main theorem (Theorem 2), we used the following

lemma.

Lemma 17 (Radial solution) Let k ≥ 1 be an integer, g ∈ Ck(Rn) and f ∈
Ck(B1) be such that infx∈Rn g(x) > 0, f(0) > 0,∫

B1

g =
∫
B1

f

and, for every x 6= 0 and r ∈ (0, 1] ,∫ r

0

sn−1f(s
x

|x|
)ds > 0. (19)

Then there exists Φ ∈ Ck(B1; Rn) verifying{
Φ∗(g) = f in B1

Φ = id on ∂B1 .

The three following statements are also valid.
(i) If supp(g − f) ⊂ B1 then Φ can be chosen so that

supp(Φ− id) ⊂ B1 .

(ii) If for every x 6= 0 and r ∈ [0, 1] ,∫ 1

r

sn−1f(s
x

|x|
)ds ≥ 0 (20)

then Φ can be assumed in Ck(B1;B1). In particular (20) is always verified if
f ≥ 0.

(iii) If
f ≥ 0 and f−1(0) ∩B1 is countable, (21)

then Φ can be assumed in Hom(B1;B1).

Remark 18 Notice that the assumption f−1(0)∩B1 countable can be weakened
as

f−1(0) ∩
[
0,

x

|x|

]
does not contain intervals for every x 6= 0.
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Proof. Step 1 (definition of an auxiliary function). Since f(0) > 0 and (19)
holds, we can find 0 < ε < 1/6 such that

f > 0 in B2ε and min
x 6=0

∫ 1

2ε

sn−1f(s
x

|x|
)ds > 0. (22)

We define η ∈ C∞([0, 1]; [0, 1]) as

η(s) =

{
1 if 0 ≤ s ≤ ε
0 if 2ε ≤ s ≤ 1.

If supp(g − f) ⊂ B1 (in particular f > 0 on ∂B1) we modify the definition of ε
and η as follows. We assume that

η(s) =

{
1 if 0 ≤ s ≤ ε or 1− ε ≤ s ≤ 1
0 if 2ε ≤ s ≤ 1− 2ε

where 0 < ε < 1/6 is such that

f > 0 in B2ε ∪
(
B1 \B1−2ε

)
and min

x 6=0

∫ 1−2ε

2ε

sn−1f(s
x

|x|
)ds > 0. (23)

Define next f : B1 \ {0} → R as

f(x) = f(
x

|x|
) :=

∫ 1

0
sn−1(1− η(s))f(s x

|x| )ds∫ 1

0
sn−1(1− η(s))ds

.

It is easy to see that f ∈ Ck(B1 \ {0}) and, by (22) or (23), f > 0. We now
define

h(x) := η(|x|)f(x) + (1− η(|x|))f(x).

Observe that h satisfies{
h > 0 on B1 , h = f in Bε∫ 1

0
sn−1h(s x

|x| )ds =
∫ 1

0
sn−1f(s x

|x| )ds, for every x 6= 0
(24)

and is in Ck(B1). Furthermore, if supp(g−f) ⊂ B1 then h = f in a neighborhood
of ∂B1 .

Step 2. Define

h0 := min
x∈B1

h(x), g0 := inf
x∈Rn

g(x) > 0,

m := min{g0, h0}/2 and A := max
x 6=0

max
r∈(0,1]

∫ r

0

sn−1f(s
x

|x|
)ds <∞.

Define R > 1 large enough in order to have

mRn

n
> A.
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We now construct a function g̃ ∈ Ck(BR) such that g̃ ≥ m in BR ,

g̃ = h in B1,∫
B1

g =
∫
B1

g̃ and
∫
BR

g =
∫
BR

g̃. (25)

Using (24), we first observe
∫
B1
h =

∫
B1
g and so the first identity in (25) is

automatically verified. Let h ∈ Ck(BR) be an extension of h such that h > m
in BR. For all ε > 0 let ρε ∈ C∞(Rn) be such that 0 ≤ ρε ≤ 1 and

ρε ≡
{

1 in B1;
0 in (B1+ε)c.

For all ε > 0 small enough, it is clear that there exists a unique D(ε) ∈ R such
that the function

g̃ε := ρεh+ (1− ρε)D(ε) ∈ Ck(BR)

verifies ∫
BR

g̃ε =
∫
BR

g.

It is easy to see that we can choose ε1 small enough in order to have

D(ε1) > m.

The function g̃ := g̃ε1 has all the required properties.
Since g, g̃ > 0, g, g̃ ∈ Ck(BR) and (25) holds, there exists, using Proposition

15, Φ1 ∈ Diffk(BR;BR) such that{
Φ∗1(g) = g̃ in BR
Φ1 = id on ∂B1 ∪ ∂BR. (26)

Since g̃ ≥ m in BR, we have, by definition of R, that∫ R

0

sn−1g̃(s
x

|x|
)ds > A. (27)

Step 3 (radial solution). Let α : B1 \ {0} → R be such that∫ α(x)

0

sn−1g̃(s
x

|x|
)ds =

∫ |x|
0

sn−1f(s
x

|x|
)ds. (28)

Since g̃ > 0, by (19), (27) and the definition of A, α is well defined and satisfies
α ∈ [0, R]. Moreover using again (19), α(x) > 0 if x ∈ B1 \{0}. Using (24) (and
the fact that g̃ = f in a neighborhood of ∂B1 if supp(g − f) ⊂ B1), we get

(i) α(x) = |x| in Bε ,

(ii) α(x) = 1 on ∂B1 (and α(x) = |x| in a neighborhood of ∂B1 if supp(g −
f) ⊂ B1)),
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(iii) if (20) holds then α ∈ [0, 1],
(iv) if (21) holds, then

α(x) 6= α(rx), for every x ∈ B1 \ {0} and r ∈ [0, 1). (29)

Thus, by the implicit function theorem, we have that the function α ∈
Ck(B1 \ {0}), since g̃ > 0 and α(x) > 0 if x ∈ B1 \ {0}. Moreover, since
α(x) = |x| in Bε , in fact the function x→ α(x)/|x| is Ck(B1). Let us show that

Φ2(x) :=
α(x)
|x|

x,

is in Ck(B1; Rn) and verifies{
Φ∗2(g̃) = f in B1

Φ2 = id on ∂B1 .

In fact, by the properties of α, it easily follows that Φ2 ∈ Ck(B1;BR) (and
Φ2 ∈ Ck(B1;B1) if (20) holds). We also see that Φ2 = id on ∂B1 (and also on a
neighborhood of ∂B1 if supp(g− f) ⊂ B1). Appealing to Lemma 19, we obtain

det∇Φ2(x) =
αn−1(x)
|x|n

n∑
i=1

∂α(x)
∂xi

xi . (30)

Computing the derivative of (28) with respect to xi , we get

αn−1(x)g̃(Φ2(x))
∂α(x)
∂xi

+
n∑
j=1

∫ α(x)

0

sn
∂g̃

∂xj
(s
x

|x|
)

(
|x|δij − xixj

|x|

|x|2

)
ds

= |x|n−1f(x)
xi
|x|

+
n∑
j=1

∫ |x|
0

sn
∂f

∂xj
(s
x

|x|
)

(
|x|δij − xixj

|x|

|x|2

)
ds,

where δij = 1 if i = j, δij = 0 otherwise. Multiplying by xi the above equality,
adding up the terms with respect to i and using

n∑
i=1

xi

(
|x|δij − xixj

|x|

|x|2

)
= 0, 1 ≤ j ≤ n,

we obtain

αn−1(x)g̃(Φ2(x))
n∑
i=1

xi
∂α

∂xi
(x) = |x|nf(x).

This equality, together with (30), implies that Φ∗2(g̃) = f.

Step 4 (conclusion). Defining Φ ∈ Ck(B1; Rn) by

Φ = Φ1 ◦ Φ2 ,
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it is obvious to see that {
Φ∗(g) = f in B1

Φ = id on ∂B1 .

Indeed
Φ∗(g) = (Φ1 ◦ Φ2)∗(g) = Φ∗2(Φ∗1(g)) = Φ∗2(g̃) = f.

Step 5. It remains to prove the statement (iii). We claim that Φ is one to
one. From (29), we already know that it is one to one on B1 \ {0}. By (28) and
the assumption (21), we obtain

0 = Φ (0) 6= Φ (x) , for every x ∈ B1 \ {0}.

Hence Φ is one to one. Moreover, by (74) in the Appendix, Φ is onto and thus
Φ ∈ Hom(B1;B1).

In Step 3 of the previous lemma, we used the following elementary result.

Lemma 19 Let λ ∈ C1(B1) and Φ ∈ C1(B1; Rn), Φ(x) := λ(x)x. Then

det∇Φ(x) = λn(x) + λn−1(x)
n∑
i=1

xi
∂λ

∂xi
(x).

In particular, if λ(x) = α(x)/|x|, for some α, then

det∇Φ(x) =
αn−1(x)
|x|n

n∑
i=1

xi
∂α

∂xi
(x).

Proof. Since ∇Φ = λ Id +∇λ ⊗ x and ∇λ ⊗ x is a rank-one matrix, the first
equality holds true. The second one easily follows.

6 Uniform concentration of mass

We start with an elementary lemma.

Lemma 20 Let c ∈ C0([0, 1];B1). Then for every ε > 0 such that c([0, 1]) +
Bε ⊂ B1 , there exists Φε ∈ Diff∞(B1;B1) satisfying

Φε(c(0)) = c(1) and supp(Φε − id) ⊂ c([0, 1]) +Bε .

Proof. For every ε > 0 such that c([0, 1]) +Bε ⊂ B1 define ηε ∈ C∞0 (Rn; [0, 1])
such that

ηε =

{
1 in Bε/4

0 in
(
Bε/2

)c
.

Set, for a ∈ Rn,
ηa,ε(x) := ηε(x− a).
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We then have
δ‖∇ηa,ε‖C0 = δ‖∇ηε‖C0 ≤ 1/2, (31)

for a suitable δ = δ(ε) > 0. Let xi ∈ B1 , 1 ≤ i ≤ N, with x1 = c(0), xN = c(1),
be such that {

xi ∈ c([0, 1]) 1 ≤ i ≤ N
|xi+1 − xi| < δ 1 ≤ i ≤ N − 1

and define

Φi(x) := x+ ηxi,ε(x)(xi+1 − xi), 1 ≤ i ≤ N − 1.

Since (31) holds and supp(Φi − id) ⊂ c([0, 1]) +Bε ⊂ B1 , we have det∇Φi > 0
and Φi = id on ∂B1 . Therefore Φi ∈ Diff∞(B1;B1), by Theorem 29. Moreover
Φi(xi) = xi+1 . Then the diffeomorphism Φε := ΦN−1 ◦ · · · ◦ Φ1 has all the
required properties.

Before stating the main result of this section, we need some notations and
elementary properties of pullbacks and connected components.

Notation 21 Let Ω ⊂ Rn be open and bounded. If f ∈ C0(Ω), we adopt the
following notations

F+ = f−1((0,∞)) and F− = f−1((−∞, 0)).

Moreover, if x ∈ F± then

F±x is the connected component of F± containing x.

In the following lemma we state, without proof, some basic properties of
pullbacks.

Lemma 22 (Properties of pullbacks) Let Ω ⊂ Rn be open and bounded and
f ∈ C0(Ω), Φ ∈ Diff1(Ω; Ω) with det∇Φ > 0, x ∈ F+, y ∈ F−. Letting
f̃ := Φ∗(f), we have

Φ−1(F+
x ) = F̃+

Φ−1(x) , Φ−1(F−y ) = F̃−Φ−1(y)

and, for any open U ⊂ Ω, ∫
U

f =
∫

Φ−1(U)

Φ∗(f).

In particular, if Φ = id on ∂U, the following holds∫
U

f =
∫
U

Φ∗(f).

Moreover, if Φ1,Φ2 ∈ C1(Rn; Rn), then

(Φ1 ◦ Φ2)∗ = Φ∗2 ◦ Φ∗1 . (32)
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The following one is a trivial result about the cardinality of the connected
components of super (sub) level sets of continuous functions and we state it for
the sake of completeness.

Lemma 23 Let f ∈ C0(B1). Let {F+
xi}i∈I+ and {F−yj}j∈I− be the connected

components of F+ respectively of F−. Then I+ and I− are at most countable.
Moreover, if |I+| =∞ or |I−| =∞, then

lim
k→∞

meas(F+ \
k⋃
i=1

F+
xi) = 0 or lim

k→∞
meas(F− \

k⋃
j=1

F−yj ) = 0

respectively.

One of the key lemmas in our proof of the main theorem is the following,
which allows to concentrate the mass and to distribute it uniformly.

Lemma 24 (Uniform concentration of mass) Let k ≥ 1 be an integer, f ∈
Ck(B1) and z ∈ F+. Suppose that A1 and A2 are two closed sets with non-empty
interior such that

A1 ⊂ int(A2) ⊂ A2 ⊂ F+
z ∩B1 .

Then, for every small ε > 0, there exists Φε,f,A1,A2 ∈ Diffk(B1;B1) (which will
be simply denoted Φε) satisfying the following properties

supp(Φε − id) ⊂ F+
z ∩B1 and

∫
F+
z

Φ∗ε (f) =
∫
F+
z

f

‖Φ∗ε (f)‖C0 is uniformly bounded with respect to ε (33)

Φ∗ε (f) = Cε in A1 , Cε constant (34)

0 < Φ∗ε (f) ≤ Cε in A2 \A1 (35)

lim
ε→0

Φ∗ε (f)(x) =


∫
F+
z
f/meas(A1) x ∈ A1

0 x ∈ (F+
z ∩B1) \A1

f(x) elsewhere

(36)

Cε meas(A1) ≤
∫
F+
z

f and lim
ε→0

∫
A1

Φ∗ε (f) =
∫
F+
z

f (37)

∫ 1

0

sn−1(1F+
z \A2

Φ∗ε (f))(s
x

|x|
)ds ≤ ε, x 6= 0. (38)

Remark 25 A similar result holds true if A1, A2 ⊂ F−y . The changes are
straightforward. In particular, (35), (37) and (38) are replaced by

Cε ≤ Φ∗ε (f) < 0 in A2 \A1 ,

Cε meas(A1) ≥
∫
F−y

f and lim
ε→0

∫
A1

Φ∗ε (f) =
∫
F−y

f
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and ∫ 1

0

sn−1(1F−y \A2
Φ∗ε (f))(s

x

|x|
)ds ≥ −ε, x 6= 0,

respectively.

Proof. We split the proof into two steps.
Step 1 (simplification). Using Corollary 14, it is sufficient to prove the

existence of fε ∈ Ck(B1), such that
fε > 0 in F+

z

supp(f − fε) ⊂ F+
z ∩B1∫

F+
z
fε =

∫
F+
z
f

satisfying also (33)-(38) with Φ∗ε (f) replaced by fε .
Step 2 (definition of fε). In the following we adopt the following notations:

M := sup
B1

|f |, m :=
∫
F+
z

f and k :=
1

2 max{1,M, 2m/meas(A1)}
.

Let 0 < ε1 ≤ 1/4 be such that A1 + Bε1 ⊂ int(A2) and let ηε ∈ C∞(B1; [0, 1]),
0 < ε ≤ ε1 , satisfy

ηε = 1 in A1 and supp ηε ⊂ A1 +Bε .

We claim that there exists a family of closed sets Kε , such that

A2 ⊂ Kε ⊂ F+
z ∩B1 (39)

Kε ⊂ Kε′ if ε′ < ε (40)⋃
ε>0

Kε = F+
z ∩B1 (41)

f |(F+
z ∩B1−kε)\Kε≤ kε. (42)

In fact since f = 0 in ∂F+
z ∩B1 and f is uniformly continuous, for every ε > 0

there exists δ = δ (ε) > 0 such that

|f (y)| ≤ kε ∀y ∈
[(
∂F+

z ∩B1

)
+Bδ

]
∩B1 .

Then it is clear that there exists a family of closed sets {Kε} satisfying (39),
(40) and (41) and(

F+
z ∩B1−kε

)
\Kε ⊂

[(
∂F+

z ∩B1

)
+Bδ

]
∩B1 ,

which implies (42).
Let fε , ε small, be defined as follows:

fε :=

{
ηεCε + (1− ηε)kε in A2

ξεkε+ (1− ξε)f elsewhere
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where ξε ∈ C∞(B1; [0, 1]) is such that

ξε = 1 in Kε , supp ξε ⊂ F+
z ∩B1

and Cε is the constant which guarantees that∫
F+
z

fε =
∫
F+
z

f.

We claim that fε has all the required properties. Obviously fε ∈ Ck(B1),
supp(f − fε) ⊂ F+

z ∩B1 and (34) holds. Using

lim
ε→0

ηε = 1A1 and lim
ε→0

ξε = 1F+
z ∩B1

,

(the last one holding by (40) and (41)) the definition of Cε and the dominated
convergence theorem, we get

lim
ε→0

Cε = m/meas(A1) (43)

and thus

lim
ε→0

fε =


m/meas(A1) x ∈ A1

0 x ∈ (F+
z ∩B1) \A1

f elsewhere

and (36) follows.
Let us prove (33) and (35). From (43), we can find ε2 ≤ ε1 such that for

every ε ≤ ε2 ,

kε ≤ ε ≤ m/(2 meas(A1)) ≤ Cε ≤ 2m/meas(A1).

Then, (35) follows by the very definition of fε , and, for every ε ≤ ε2 , we get

fε > 0 in F+
z and ‖fε‖C0 ≤ max{M, 2m/meas(A1)} (44)

and (33) follows.
The properties in (37) are easily implied by (33), (36) and fε > 0 in F+

z .
To prove (38), first notice that, by definition of fε , fε = kε in Kε \ A2 . Then,
using the definition of fε and (42), we get that

fε |(F+
z ∩B1−kε)\A2

≤ kε .

This inequality, together with (44), implies that, for every ε ≤ ε2 and every
x 6= 0,∫ 1

0

sn−1(1F+
z \A2

fε)(s
x

|x|
)ds ≤

∫ 1−kε

0

(1F+
z \A2

fε)(s
x

|x|
)ds+

∫ 1

1−kε
(1F+

z \A2
fε)(s

x

|x|
)ds

≤
∫ 1−kε

0

kεds+
∫ 1

1−kε
max{M, 2m/meas(A1)}ds

≤ kε+ max{M, 2m/meas(A1)}kε ≤ ε

and (38) follows.

22



7 Positive radial integration

In this section we show how to modify the distribution of mass of f ∈ Ck(B1)
satisfying

∫
B1
f > 0, in order to have strictly positive integrals on every radius.

This is the central part of our argument.

Lemma 26 (Positive radial integration) Let k ≥ 1 be an integer and f ∈
Ck(B1) be such that ∫

B1

f > 0. (45)

Then there exists Φ ∈ Diff∞(B1;B1) such that Φ∗(f)(0) > 0, supp(Φ− id) ⊂ B1

and ∫ r

0

sn−1Φ∗(f)(s
x

|x|
)ds > 0, for every x 6= 0 and r ∈ (0, 1]. (46)

Remark 27 (i) If f ≥ 0, the proof is straightforward; it already ends after Step
1.

(ii) If f1 satisfies (46) with a certain Φ as in the lemma, then every f ≥ f1

satisfies (46) with the same Φ. Indeed,

Φ∗(f1)(x) = f1(Φ(x))det∇Φ(x)︸ ︷︷ ︸
>0

≤ f(Φ(x)) det∇Φ(x) = Φ∗(f)(x).

(iii) If, in addition to (45), f > 0 on ∂B1 , we can find with a similar
argument (see [8] for details) Φ satisfying in addition∫ 1

r

sn−1Φ∗(f)(s
x

|x|
)ds ≥ 0, for every x 6= 0 and r ∈ [0, 1] .

Proof. Since the proof is rather long, we divide it into nine steps. The following
three facts will be crucial.

(a) For fixed a, b ∈ B1 , there exists, from Lemma 20, Φ ∈ Diff∞(B1;B1)
such that Φ(a) = b. This will be used in Steps 1 and 5.

(b) From Lemma 24, we concentrate the mass contained in connected com-
ponents of F+ and F− in balls or sectors of cones. This will be used in Steps 6
and 8.

(c) From Remark 27 (ii), it is sufficient to prove the result for a function
f1 ≤ f. This will be used in Steps 2, 3 and 7.

Step 1. Without loss of generality, we can assume f(0) > 0. In fact, sup-
pose that f(0) ≤ 0. We prove that there exists a diffeomorphism Φ1 such that
Φ∗1(f)(0) > 0. Since

∫
B1
f > 0, there exists a ∈ B1 such that f(a) > 0. By

Lemma 20, there exists Φ1 ∈ Diff∞(B1;B1) such that

supp(Φ1 − id) ⊂ B1 and Φ1(0) = a.
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Since Φ∗1(f)(0) = f(a) det∇Φ1(0) > 0, we have the claim. From now on, we
write f in place of Φ∗1(f). Moreover, we assume F− 6= ∅, otherwise the proof is
already done.

Step 2. We show that we can assume that f ∈ C∞(B1). First extend f so
that f ∈ Ck(Rn) and let fε = f ∗ ϕε , where ϕ is a positive mollifier. For every
σ > 0 there exists ε0(σ) such that

|fε(x)− f(x)| < σ for every ε ≤ε0(σ) and every x ∈ B1 . (47)

Define hσ ∈ C∞(B1) by
hσ := fε0(σ) − σ.

Using Step 1 and (47), there exists σ > 0 such that hσ verifies∫
B1

hσ > 0, hσ(0) > 0 and hσ ≤ f.

Using Remark 27 (ii) we have the assertion. For now on we write f instead of
hσ.

Step 3. We now show that we can assume that∫
B1\F+

0

f > 0, (48)

where, we recall, F+
0 is the connected component of F+ containing 0. In fact,

by Steps 1 and 2 and (45), if δ1 > 0 is small enough we have that B4δ1 ⊂ F+
0

and ∫
B1\B4δ1

f > 0. (49)

Let η ∈ C∞([0, 1]; [0, 1]) be such that

η (r) =

{
1 if r ≤ δ1 or 4δ1 ≤ r ≤ 1
0 if 2δ1 ≤ r ≤ 3δ1 .

If H+
0 is the connected component containing 0 of

H+ := {x ∈ B1 : η (|x|) f (x) > 0},

we have that Bδ1 ⊂ H+
0 ⊂ B2δ1 . Using (49), we get∫

B1\H+
0

(ηf) ≥
∫
B1\B4δ1

(ηf) =
∫
B1\B4δ1

f > 0.

Since ηf ≤ f, we may, according to Remark 27 (ii), proceed replacing f with
ηf.

Step 4 (choice of N connected components of F+ \ F+
0 ). Let F+

xi , i ∈ I
+,

xi ∈ B1\F+
0 , be the pairwise disjoint connected components of F+\F+

0 . Notice
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that I+ is not empty by Step 3 and it is at most countable, see Lemma 23. We
claim that there exists N ∈ N such that∫

∪Ni=1F
+
xi

f +
∫
F−

f > 0. (50)

In fact, suppose that I+ is infinite (otherwise the assertion is trivial because of
(48)) and let, using (48), ε > 0 be such that∫

B1\F+
0

f > ε. (51)

Then, since f is bounded, there exists N ∈ N such that (see Lemma 23)∫
F+\∪Ni=1F

+
xi

f −
∫
F+

0

f < ε. (52)

Combining (51) and (52), we deduce that (50) holds true.
Step 5. In this step we move the N connected components selected in the

previous step, in order that they contain sectors of cone having the same axis.
Choose y ∈ F−, let F+

x1
, · · · , F+

xN be the connected components of F+ defined
in the previous step and let ρ > 0 be such that Bρ ⊂ F+

0 .

Step 5.1 (displacement of the points xi). Applying N + 1 times Lemma 20,
it is easy to define Φ2 ∈ Diff∞(B1;B1), with

supp(Φ2 − id) ⊂ B1 \Bρ ,

such that
x̃i := Φ−1

2 (xi), 1 ≤ i ≤ N and ỹ := Φ−1
2 (y)

satisfying

ρ < |x̃1| < · · · < |x̃N | < |ỹ| < 1 and
x̃i
|x̃i|

=
ỹ

|ỹ|
, 1 ≤ i ≤ N.

To be complete, we also define x0 = x̃0 = 0.
Step 5.2 (definition of the sectors of cone). If δ > 0 let Kδ be the closed

cone having aperture δ, vertex 0 and axis R+ỹ and define

f̃ := Φ∗2(f).

Since
f̃(x̃i) > 0, 0 ≤ i ≤ N and f̃(ỹ) < 0,

then there exists δ > 0 small enough such that

|x̃i+1| − |x̃i| > 4δ, 0 ≤ i ≤ N − 1 and |ỹ| − |x̃N | > 4δ
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with 
B3δ ⊂ F̃+

0

K2δ ∩
(
B|x̃i|+2δ \B|x̃i|−δ

)
⊂ F̃+

x̃i
, 1 ≤ i ≤ N

K2δ ∩
(
B|ỹ|+2δ \B|ỹ|−δ

)
⊂ F̃−ỹ .

Using Lemma 22 and (50), we get that f̃ satisfies∫
∪Ni=1F̃

+
x̃i

f̃ +
∫
F̃−

f̃ > 0. (53)

From now on we write f, xi and y in place of f̃ = Φ∗2(f), x̃i and ỹ, respectively
(see the figure below).
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Step 6 (concentration of the positive mass in the cone sectors). From now
on, if σ ∈ (−δ/2, δ] we use the following notations

Sσ0 := B2δ+σ

Sσi := Kδ+σ ∩
(
B|xi|+δ+σ \B|xi|−σ

)
, 1 ≤ i ≤ N

Sσ := Kδ+σ ∩
(
B|y|+δ+σ \B|y|−σ

)
.

For the sake of simplicity, if σ = 0 we write S0 , Si and S in place of S0
0 , S

0
i and

S0, respectively. Let

Φ3,ε := Φε,f,S0,Sδ0
◦ Φε,f,S1,Sδ1

◦ · · · ◦ Φε,f,SN ,SδN ,

where Φε,f,Si,Sδi , i = 0, · · · , N, is the C∞ diffeomorphism obtained by Lemma
24 applied to f, F+

xi , A1 = Si , A2 = Sδi . Notice that supp(Φ3,ε − id) ⊂ B1 .
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By (34), (37) and (53), there exists ε̃ such that the constants Ci,ε̃ satisfy the
inequality

N∑
i=1

Ci,ε̃ meas(Si) +
∫
F−

f > 0.

Denoting h := Φ∗3,ε̃(f) we have that h satisfies

h = f in B1 \ ∪Ni=0F
+
xi , H− = F−,

F+
xi = H+

xi ,

∫
F+
xi

f =
∫
F+
xi

h, 0 ≤ i ≤ N,

h ≡ Ci,ε̃ > 0 in Si , 0 ≤ i ≤ N, (54)∫
∪Ni=1Si

h+
∫
H−

h > 0. (55)

From now on, we write f,Φ3 and Ci in place of h,Φ3,ε̃ and Ci,ε̃ , 0 ≤ i ≤ N.
Step 7 (modification of f in order to have F− connected). Extend f so that

f ∈ C∞(Rn), define f̃ : Rn → R,

f̃(x) := min{f(x), 0}

and let f̃ε = f̃ ∗ϕε , where ϕ is a positive mollifier. By continuity of f̃ , for every
σ > 0 there exists ε0(σ) such that

|f̃ε(x)− f̃(x)| < σ for every ε ≤ε0(σ) and every x ∈ B1 . (56)

Defining hσ ∈ C∞(B1), hσ = f̃ε0(σ) − σ, we have, using (56), that

hσ(x) < f̃(x) = min{f(x), 0} ≤ f(x).

For every σ ∈ (0, δ/8), let ξσ ∈ C∞(B1; [0, 1]) be such that

ξσ ≡ 1 in ∪Ni=0 (Sσi \ S−σi ) and supp ξσ ⊂ ∪Ni=0(S2σ
i \ S−2σ

i )

and
{x ∈ B1 \ ∪Ni=0Si : ξσ(x) < 1} is connected. (57)

Moreover let fσ : B1 → R be defined as

fσ(x) :=

{
(1− ξσ(x))f(x) if x ∈ ∪Ni=0Si

(1− ξσ(x))hσ(x) if x ∈ (∪Ni=0Si)
c.

(58)
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It is easy to verify that fσ is of class C∞ and that it satisfies the following
properties:

fσ(x)



= hσ(x) < min{f(x), 0} ≤ f(x) if x ∈ B1 \ ∪Ni=0S
2σ
i ,

≤ 0 < f(x) if x ∈ ∪Ni=0(S2σ
i \ Sσi ),

= 0 < f(x) if x ∈ ∪Ni=0(Sσi \ S
−σ
i ),

≤ f(x) if x ∈ ∪Ni=0(S−σi \ S−2σ
i ),

= f(x) = Ci if x ∈ S−2σ
i , for some i ∈ {0, · · · , N},

where Ci are as in (54); in particular, fσ ≤ f. We moreover have

F−σ = {x ∈ B1 : fσ(x) < 0} = {x ∈ B1 \ ∪Ni=0Si : fσ(x) < 0}
= {x ∈ B1 \ ∪Ni=0Si : (1− ξσ(x))hσ(x) < 0}
= {x ∈ B1 \ ∪Ni=0Si : ξσ(x) < 1},

which is a connected set by (57); we thus have that

F−σ ⊂ B1 \ ∪Ni=0Si and F−σ is connected.

Notice that (55), (56) and (58) imply that we can choose σ such that

N∑
i=1

Ci meas(S−2σ
i ) +

∫
F−σ

fσ =
∫
∪Ni=1S

−2σ
i

fσ +
∫
F−σ

fσ > 0, (59)

since

lim
s→0+

{∫
∪Ni=1S

−2s
i

fs +
∫
F−s

fs

}
=
∫
∪Ni=1Si

f +
∫
F−

f > 0.

From now on, we write f in place of fσ , since fσ ≤ f and Remark 27 (ii) holds.
Step 8 (concentration of the negative mass). We finally concentrate the

negative mass around y.

Step 8.1 (preliminaries). Let τ ∈ (0, σ/2]. Using Remark 25 (with A1 =
S−2σ−τ and A2 = S−2σ) and recalling that, by Step 7, F−y = F−, we have, for
ε small enough, Φτ4,ε ∈ Diff∞(B1;B1) satisfying the following properties.

supp(Φτ4,ε − id) ⊂ F− ∩B1∫
F−

(Φτ4,ε)
∗(f) =

∫
F−

f

(Φτ4,ε)
∗(f) = Cτε < 0 in S−2σ−τ

and
Cτε ≤ (Φτ4,ε)

∗(f) < 0 in S−2σ \ S−2σ−τ (60)
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lim
ε→0

(Φτ4,ε)
∗(f)(x) =


∫
F−

f/meas(S−2σ−τ ) if x ∈ S−2σ−τ

0 if x ∈ (F− ∩B1) \ S−2σ−τ

f(x) elsewhere
(61)

Cτε meas(S−2σ−τ ) ≥
∫
F−

f (62)∫ 1

0

sn−1(1F−\S−2σ (Φτ4,ε)
∗(f))(s

x

|x|
)ds ≥ −ε, for every x 6= 0. (63)

Step 8.2 (choice of ε and τ). We first choose ε̃ small enough in order to
have ∫ 2δ−2σ

0

sn−1C0 ds− ε̃ > 0. (64)

We claim that there exists τ̃ such that

N∑
i=1

Ci meas(S−2σ
i ) + C τ̃ε̃ meas(S−2σ) > 0. (65)

In fact, for every λ ∈ (0, 1) there exists τ ∈ (0, σ/2] such that

meas
(
S−2σ

)
meas (S−2σ−τ )

≤ 1
1− λ

. (66)

Using (62), we have that, for every λ ∈ (0, 1) and τ = τ(λ) as in (66),

Cτε̃ meas(S−2σ) = Cτε̃ meas(S−2σ−τ )
meas

(
S−2σ

)
meas (S−2σ−τ )

≥ Cτε̃
1

1− λ
meas(S−2σ−τ ) ≥ 1

1− λ

∫
F−

f.

By this inequality and (59), choosing λ sufficiently small, we have that there
exists τ̃ such that (65) holds true. From now on we write f, ε,Φ4 and C− in

place of
(

Φτ̃4,ε̃
)∗

(f) , ε̃,Φτ̃4,ε̃ and C τ̃ε̃ .

Step 8.3 (summary). Using (54), (60), (63), (64), (65) f satisfies the following
properties

f ≡ C0 > 0 in S−2σ
0 = B2δ−2σ (67)

f ≡ Ci > 0 in S−2σ
i 1 ≤ i ≤ N (68)

f ≡ C− in S−2σ−τ̃ and C− ≤ f < 0 in S−2σ \ S−2σ−τ̃ (69)
N∑
i=1

∫
S−2σ
i

f +
∫
S−2σ

f ≥
N∑
i=1

Ci meas(S−2σ
i ) + C−meas(S−2σ) > 0 (70)

∫ 2δ−2σ

0

sn−1C0 ds+
∫ 1

0

sn−1
(
1F−\S−2σf

)
(s
x

|x|
)ds > 0. (71)
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Step 9 (conclusion). Let

Φ = Φ1 ◦ Φ2 ◦ Φ3 ◦ Φ4 .

Note that by construction supp(Φ− id) ⊂ B1 . Because of all successive replace-
ments of f in Steps 1-8 by new f, the lemma has to be proved for Φ = id . From
(67), we have f(0) > 0. We finally show (46). We split into three parts.

Step 9.1. If r ≤ 2δ − 2σ, (67) implies directly the assertion.
Step 9.2. Now, suppose that either x 6∈ Kδ−2σ and r ∈ (2δ − 2σ, 1] or

x ∈ Kδ−2σ and r ∈ (2δ − 2σ, |y|+ 2σ]. Then (71) implies∫ r

0

sn−1f(s
x

|x|
)ds ≥

∫ r

0

sn−1(1F+
0
f)(s

x

|x|
)ds+

∫ r

0

sn−1(1F−f)(s
x

|x|
)ds

=
∫ r

0

sn−1(1F+
0
f)(s

x

|x|
)ds+

∫ r

0

sn−1(1F−\S−2σf)(s
x

|x|
)ds

≥ C0

∫ 2δ−2σ

0

sn−1ds+
∫ 1

0

sn−1(1F−\S−2σf)(s
x

|x|
)ds > 0.

Step 9.3. It remains to consider the case x ∈ Kδ−2σ , r ∈ (|y|+ 2σ, 1]. Under
these assumptions, we have∫ r

0

sn−1f(s
x

|x|
)ds

=
∫ r

0

sn−1(1F+
0
f)(s

x

|x|
)ds+

∫ r

0

sn−1(1∪Ni=1F
+
xi
f)(s

x

|x|
)ds+

∫ r

0

sn−1(1F−f)(s
x

|x|
)ds

≥

{
C0

∫ 2δ−2σ

0

sn−1ds+
∫ 1

0

sn−1(1F−\S−2σf)(s
x

|x|
)ds

}

+
{∫ 1

0

sn−1(1∪Ni=1S
−2σ
i

f)(s
x

|x|
)ds+

∫ 1

0

sn−1(1S−2σf)(s
x

|x|
)ds
}
> 0.

In fact, the positivity of the first sum follows from (71). The second one is also
positive, since, from (69)∫ 1

0

sn−1(1∪Ni=1S
−2σ
i

f)(s
x

|x|
)ds+

∫ 1

0

sn−1(1S−2σf)(s
x

|x|
)ds

≥
N∑
i=1

Ci

∫ 1

0

sn−11S−2σ
i

(s
x

|x|
)ds+ C−

∫ 1

0

sn−11S−2σ (s
x

|x|
)ds

and the positivity of the right hand side is guaranteed by (70) and the fact that
S−2σ
i and S−2σ are sectors of a radial cone centered at 0. This concludes the

proof.
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8 Appendix

We begin recalling some results on the topological degree (see e.g. [7] or [14] for
further details).

Let Ω be a bounded open set of Rn, Φ ∈ C1(Ω; Rn) and

ZΦ := {x ∈ Ω : det∇Φ(x) = 0}.

Then for every p ∈ Rn such that

p /∈ Φ(∂Ω) ∪ Φ(ZΦ),

we define the integer deg(Φ,Ω, p) as

deg(Φ,Ω, p) :=
∑

x∈Ω:Φ(x)=p

sign(det∇Φ(x)),

with the convention deg(Φ,Ω, p) = 0 if {x ∈ Ω : Φ(x) = p} = ∅.
It is possible to extend the definition of deg(Φ,Ω, p) to Φ ∈ C0(Ω; Rn) and

p /∈ Φ(∂Ω), in particular using Sard theorem which states that

meas(Φ(ZΦ)) = 0. (72)

In this framework, the following two properties hold.
(i) If Φ,Ψ ∈ C0(Ω; Rn) with Φ = Ψ on ∂Ω, then for every p /∈ Φ(∂Ω),

deg(Φ,Ω, p) = deg(Ψ,Ω, p). (73)

(ii) If Φ ∈ C0(Ω; Rn), p /∈ Φ(∂Ω) and deg(Φ,Ω, p) 6= 0, then there exists
x ∈ Ω such that Φ(x) = p.

In particular, if Φ ∈ C0(Ω; Rn) and Φ = id on ∂Ω, then

Φ(Ω) ⊃ Ω and Φ(Ω) ⊃ Ω. (74)

As an application of these properties, we have the following lemma.

Lemma 28 Let Ω be a bounded, connected and open set in Rn and let Φ ∈
C0(Ω; Rn) be one to one, such that Φ = id on ∂Ω. Then Φ ∈ Hom(Ω; Ω).

Proof. By the boundedness of Ω and the continuity of Φ, if F ⊂ Ω is closed
then Φ(F ) is closed, too. Since Φ is one to one, then

Φ ∈ Hom(Ω; Φ(Ω)).

Let us prove that Φ(Ω) = Ω. Due to (74), it is enough to prove that Φ(Ω) ⊂ Ω.
By a classical result (see e.g. [7] Proposition 7.18) we have that Φ(∂Ω) =
∂(Φ(Ω)). Thus, since Φ = id on ∂Ω, we get

∂Ω = ∂(Φ(Ω)) and Φ(Ω) ∩ ∂Ω = ∅. (75)
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Suppose by contradiction that Φ(x) ∈ (Ω)c for some x ∈ Ω. Since Φ is the
identity map on ∂Ω, we have that x ∈ Ω. Let now consider y ∈ Ω such that
Φ(y) ∈ Ω (such a y surely exists by (74)) and let c ∈ C0([0, 1]; Ω) be a path
connecting x and y. Then, by continuity, there exists t ∈ (0, 1) such that
Φ(c(t)) ∈ ∂Ω, contradicting (75).

We now provide a sufficient condition for the invertibility of functions in
C1(Ω; Rn). A similar result can be found in Meisters-Olech [10].

Theorem 29 Let Ω be a bounded open set in Rn and let Φ ∈ C1(Ω; Rn) be such
that {

det∇Φ > 0 in Ω
Φ = id on ∂Ω.

Then Φ ∈ Diff1(Ω; Ω).

Remark 30 Under the weaker hypotheses det∇Φ ≥ 0, Φ = id on ∂Ω and
ZΦ ∩Ω does not have accumulation point, it can be proved that Φ ∈ C1(Ω; Ω) ∩
Hom(Ω; Ω), see [8].

Proof. We divide the proof into two steps.
Step 1. We first prove that Φ(Ω) = Ω. Using (74), we know that

Φ(Ω) ⊃ Ω.

Let us show the reverse inclusion, i.e., Φ(Ω) ⊂ Ω. We first prove that Φ(Ω) ⊂ Ω
and then conclude. By contradiction, let x ∈ Ω be such that Φ(x) /∈ Ω. By
definition of the degree and (73), we get

0 < deg(Φ,Ω,Φ(x)) = deg(id,Ω,Φ(x)) = 0;

which is absurd.
To conclude, suppose that x ∈ Ω and Φ(x) ∈ Ω \ Ω = ∂Ω. By the inverse

function theorem, which can be applied since det∇Φ(x) > 0, there exists a
neighborhood of x such that the restriction of Φ on this set is one to one and
onto a neighborhood of Φ(x) ∈ ∂Ω. In particular, this implies the existence of
y ∈ Ω such that Φ(y) /∈ Ω, which contradicts what has just been proved.

Step 2. Since Φ(Ω) = Ω and Φ = id on ∂Ω, we have that

Φ(Ω) = Ω.

Moreover, Φ(∂Ω) ∩ Φ(Ω) = ∂Ω ∩ Ω = ∅. Thus, it suffices to show that the
restriction of Φ to Ω is one to one to conclude. We reason by contradiction. We
assume that there exists p ∈ Ω which is the image of at least two elements in
Ω. By (73), it follows that

2 ≤ deg(Φ,Ω, p) = deg(id,Ω, p) = 1

which is the desired contradiction.
We also have a necessary condition for Φ to be a C1 homeomorphism.
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Proposition 31 Let Ω ⊂ Rn be a bounded open set and Φ ∈ C1(Ω; Ω) ∩
Hom(Ω; Ω) with Φ = id on ∂Ω. Then

det∇Φ(x) ≥ 0 in Ω and int(ZΦ) = ∅.

Proof. We split the proof into two steps.
Step 1. We show that det∇Φ ≥ 0. By contradiction, suppose that there

exists y ∈ Ω such that det∇Φ(y) < 0. By continuity, without loss of generality,
we can assume that y ∈ Ω. In particular, y /∈ ZΦ and since Φ is one to one, we
obtain

Φ(y) /∈ Φ(ZΦ) ∪ Φ(∂Ω) = Φ(ZΦ) ∪ ∂Ω.

By definition of deg(Φ,Ω,Φ(y)) and since Φ = id on ∂Ω, we have

1 = deg(Φ,Ω,Φ(y)) =
∑

z : Φ(z)=Φ(y)

sign(det∇Φ(z)).

Since sign(det∇Φ(y)) = −1 the above equality implies that Φ−1(Φ(y)) is not a
singleton, which is absurd.

Step 2. We prove that int(ZΦ) = ∅. By contradiction, suppose that int(ZΦ) 6=
∅. By continuity of Φ−1, we have

Φ (int(ZΦ)) = (Φ−1)−1(int(ZΦ)) 6= ∅,

contradicting Sard theorem.
We conclude with some other necessary conditions.

Proposition 32 Let Ω be a bounded open set in Rn and let Φ ∈ C1(Ω; Rn) be
such that {

det∇Φ ≥ 0 in Ω
Φ = id on ∂Ω.

(76)

Then
int(Φ(Ω)) = Ω. (77)

Moreover, the following statement

int(ZΦ) = ∅, (78)

implies
Φ(Ω) = Ω. (79)

Finally, if (78) does not hold, then there exists one Φ ∈ C1(Ω; Rn) such that
Φ(Ω) ⊃

6=
Ω.

Proof. We divide the proof into three steps.
Step 1. We already know that Φ(Ω) ⊃ Ω and thus

int(Φ(Ω)) ⊃ Ω.
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Let us show the reverse inclusion. We proceed by contradiction and assume
that int(Φ(Ω)) ∩ Ωc 6= ∅. Therefore there exist y and ε such that

Bε (y) ⊂ int(Φ(Ω)) ∩
(
Ω
)c ⊂ Φ(Ω) ∩

(
Ω
)c
.

We also have, as in the proof of Theorem 29, that

Φ(x) ∈ Ω, if x /∈ ZΦ ∪ ∂Ω

which is equivalent to Φ ((ZΦ ∪ ∂Ω)c) ⊂ Ω. This implies

Bε (y) ⊂ Φ (ZΦ)

which contradicts (72).
Step 2. Let us next show that (78) implies (79). If x ∈ ZΦ ∩ Ω, then

there exists xν /∈ ZΦ ∪ ∂Ω such that xν → x. Using Step 1, we also have
Φ ((ZΦ ∪ ∂Ω)c) ⊂ Ω and hence Φ(xν) ∈ Ω, which leads to Φ(x) ∈ Ω; and thus
Φ(ZΦ) ⊂ Ω. Hence we have shown that Φ(Ω) ⊂ Ω. Since the reverse inclusion
Φ(Ω) ⊃ Ω is always true, we have (77).

Step 3. We show that (79) may fail if (78) does not hold. Set Ω = B(0, 1)
and n = 2, consider

Φ(x1, x2) := ρ(x2
1 + x2

2)(x1, x2) + η(x2
1 + x2

2)(x1, 0)

where 
ρ, η ∈ C∞([0, 1]; R+)

supp ρ ⊂ (1/2, 1], supp η ⊂ (0, 1/2)
ρ′ ≥ 0 in [0, 1], ρ ≡ 1 in [3/4, 1]

η(1/4) = 4.

Let us verify the hypotheses of the proposition. Obviously, Φ ∈ C1(Ω; Rn) and
supp(Φ− id) ⊂ B1 . Let us now check that det∇Φ ≥ 0. We separately consider
two cases.

Case 1 (1/2 ≤ |x|2 ≤ 1). A straightforward computation implies that

det∇Φ(x) = (2x2
1ρ
′ + ρ)(2x2

2ρ
′ + ρ)− 4x2

1x
2
2ρ
′2

= 4x2
1x

2
2ρ
′2 + 2 |x|2 ρρ′ + ρ2 − 4x2

1x
2
2ρ
′2

= 2 |x|2 ρρ′ + ρ2 ≥ 0.

Case 2 (0 ≤ |x|2 ≤ 1/2). By definition of Φ it immediately follows that
det∇Φ = 0. Thus, det∇Φ ≥ 0.

We have the claim, since

Φ(1/2, 0) = η(1/4)(1/2, 0) = (2, 0) /∈ B1 .

This concludes the proof of the proposition.
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