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Abstract. We analyze a variational problem for the recovery of vector valued functions and we
compute its numerical solution. The data of the problem are a small set of complete samples of

the vector valued function and a significant incomplete information where the former are missing.
The incomplete information is assumed as the result of a distortion, with values in a lower dimen-
sional manifold. For the recovery of the function we minimize a functional which is formed by
the discrepancy with respect to the data and total variation regularization constraints. We show
existence of minimizers in the space of vector valued BV functions. For the computation of mini-
mizers we provide a stable and efficient method. First we approximate the functional by coercive
functionals on W

1,2 in terms of Γ-convergence. Then we realize approximations of minimizers
of the latter functionals by an iterative procedure to solve the PDE system of the correspond-
ing Euler-Lagrange equations. The numerical implementation comes naturally by finite element
discretization. We apply the algorithm to the restoration of color images from a limited color
information and gray levels where the colors are missing. The numerical experiments show that
this scheme is very fast and robust. The reconstruction capabilities of the model are shown, also
from very limited (randomly distributed) color data. Several examples are included from the real
restoration problem of the A. Mantegna’s art frescoes in Italy.

AMS subject classification: 65M60, 94A08, 49M30, 49J45
Key Words: color image processing, systems of partial differential equations, calculus of variations,
finite element method

1. Introduction

This paper concerns with the analysis and the numerical implementation of a variational model for
the restoration of vector valued functions. The restoration is obtained from few and sparse complete
samples of the function and from a significant incomplete information. The latter is assumed as the
result of a nonlinear distortion and with values in a lower dimensional manifold. The applications
we consider are in the field of digital signal and image restoration. Therefore we deal with functional
analysis in the space of bounded variation (BV) functions, that are actually considered a reasonable
functional model for natural images and signals, usually characterized by discontinuities and piece-
wise smooth behavior. While in the literature on mathematical image processing real valued BV
functions and associated variational problems are mainly discussed, see for example [7, 29], in this
contribution we consider vector valued functions.

Since the work of Mumford and Shah [27], and Rudin, Osher and Fatemi [28], variational cal-
culus techniques have been applied in several image processing problems. We refer the reader to
the introductory book [6] for a presentation of this field, for more details, and an extended literature.

Let Ω be an open, bounded, and connected subset of RN , D ⊂ Ω, and p ≥ 1. Inspired by the
fresco problem described in Figure 1, in [21] one of the authors has proposed the following variational
problem
(1)

arginfu:Ω→RM

{

F (u) = µ

∫

Ω\D

|u(x) − ū(x)|pdx + λ

∫

D

|L(u(x)) − v̄(x)|pdx +

∫

Ω

M∑

i=1

φ(|∇ui(x)|)dx

}

1
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Figure 1. Fragmented A. Mantegna’s frescoes (1452) by a bombing in the Second
World War. Computer based reconstruction by using efficient pattern matching
techniques [23]. Unfortunately the surface covered by the original fragments is only
77 m2, while the original area was of several hundreds. This means that what we
can currently reconstruct is just a fraction (estimated up to 8%) of what was this
inestimable artwork. In particular, for most of the frescoes, the original color of
the blanks is not known. So, natural questions raise: is it possible to estimate
mathematically the original colors of the frescoes by using the known fragments
information and the gray level of the pictures taken before the damage? And, how
faithful this estimation is?

to model the reconstruction/restoration of a vector valued function u : Ω → RM from a given ob-
served couple of functions (ū, v̄). The observed function ū is assumed to represent correct information
on Ω\D, and v̄ the result of a nonlinear distortion L : RM → R on D.

In particular, a digital image can be modeled as a function u : Ω ⊂ R2 → R3
+, so that, to

each “point” x of the image, one associates the vector u(x) = (r(x), g(x), b(x)) ∈ R3
+ of the color

represented by the different channels red, green, and blue. In particular, a digitalization of the image
u corresponds to its sampling on a regular lattice τZ2, τ > 0. Let us again write u : N → R3

+,
u(x) = (r(x), g(x), b(x)), for x ∈ N := Ω ∩ τZ2.

Usually the gray level of an image can be described as a submanifold M ⊂ R3 by

M := Mσ = {σ(x) : x = L(r, g, b) := L(αr + βg + γb), (r, g, b) ∈ R3
+},

where α, β, γ > 0, α+β + γ = 1, L : R → R is a non-negative increasing function, and σ : R+ → R3
+

is a suitable section such that L ◦ σ = idR+ . The function L is assumed smooth, nonlinear, and
normally nonconvex and nonconcave. For example, Figure 1 illustrates a typical situation where
this model applies and Figure 2 describes the typical shape of an L function. Here L is estimated
by fitting a distribution of data from real color fragments. In fact, in this case, there is an area Ω\D
of the domain Ω ⊂ R2 of the image, where some fragments with colors are placed and complete
information is available, and an other area D (which we call the inpainting region) where only the
gray level information is known, modeled as the image of L.

The solution of the variational problem (1) produces in this case a new color image that extends
the colors of the fragments in the gray region. Once the extended color image is transformed by
means of L, it is constrained to match the known gray level. We can consider this problem as a
generalization of the well known image inpainting/disocclusion, see, e.g., [3, 8, 9, 13, 14, 15, 16].
Several heuristic algorithms have been introduced for colorization of gray images and we refer to
the recently appeared paper [31] for related literature. Nevertheless, our approach is theoretically
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Figure 2. Estimate of the nonlinear curve L from a distribution of points with
coordinates given by the linear combination αr + βg + γb of the (r, g, b) color frag-
ments (abscissa) and by the corresponding underlying gray level of the original
photographs dated to 1920 (ordinate). The sensitivity parameters α, β, γ to the
different frequencies of red, green, and blue are chosen in order to minimize the
total variance of the ordinates.

founded, more general, and fits with many possible applications, for example the recovery of a trans-
mitted multichannel signal affected by a stationary (nonlinear) distortion.

For N = p = 2, we can compute the Euler-Lagrange equations associated to the functional F and
obtain

(2) 0 = −∇·

(
φ′(|∇ui|)

|∇ui|
∇ui

)

+2µ(ui−ūi)1Ω\D+2λ(L(u)−v̄)
∂L

∂xi
(u)1D := Ei(L, u), i = 1, ..., M,

where u = (u1, ..., uM ) are the components of the function u. This is a system of coupled second
order equations and the analysis of the solutions constitutes itself a problem of independent interest.
By using (2) and a finite difference approximation, a steepest-descent algorithm can be formulated
as in [21]. An application of this numerical scheme for the restoration of a color image from few and
sparse fragments and from the constraint given by known gray levels of the missing part is shown
in Figure 3.

Encouraged by these numerical evidences, we discuss the existence of minimizers of the functional
F in the context of vector valued BV functions. Our second goal is the formulation of efficient and
stable algorithms for the computation of minimizers. Although the steepest-descent scheme recalled
above gives appreciable results, it lacks of a rigorous analysis and its convergence is usually very
slow. For these reasons, we introduce new coercive functionals Fh on W 1,2 which approximate F̄
(the relaxed functional of F with respect to the BV weak-∗-topology) in terms of Γ-convergence.
The computation of minimizers of Fh is performed by an iterative double-minimization algorithm,
see also [12]. The reconstruction performances are very good, also from very limited (randomly
distributed) color data. The virtues of our scheme can be summarized as follows.

• It is derived as the minimization of a functional and its mathematical analysis and founda-
tions are well described.

• It implements a total variation (TV) minimization. It is well known [14, 15] that total
variation inpainting is affected by two major drawbacks. The first one is that the TV model
is only a linear interpolant, i.e., the broken isophotes are interpolated by straight lines. Thus
it can generate corners along the inpainting boundary. The second one is that TV often fails
to connect widely separated parts of a whole object, due to the high cost in TV measure of
making long-distance connections. Due to the constraint on the gray level in the inpainting
region, our scheme does not extend isophotes as straight lines and it does not violate the
connectivity principle.
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Figure 3. Successive iterations of the interpolation-inpainting process. We have
chosen here a descent parameter ∆t = 0.1, λ = µ = 10, and L(r, g, b) = 1

3 (r+b+g).
Although the gray level is a fundamental datum, in this figure we have displayed
only the color in order to better visualize the diffusion progress.

• As pointed out in [11, 22], while it is relatively easy to recover at higher resolution image
portions with relatively uniform color, it might be difficult to recover jumps correctly. Not
only we should preserve the morphology and enhance the detail of the discontinuities, but
these properties must fit through the different color channels. An incorrect or uncoupled
recovery in fact produces “rainbow effects” around jumps. In our functional, the constraint
on the gray level in the inpainting region is formulated as a coupled combination of the color
channels. In practice, this is sufficient to enforce the correct coupling of the channels at
edges.

• The numerical implementation of our double-minimization scheme is very simple. Its ap-
proximation by finite elements comes in a natural way. The scheme is fast and stable.

The paper is organized as follows. In Section 2 we introduce the mathematical setting. We recall
the main properties of BV functions and a definition of the space of BV functions with vector values.
Section 3 is dedicated to results on convex functions and relaxed functionals of measures. In Section
4 we collect the assumptions on the nonlinear function L we will need in our analysis. In Section
5 the representation of the relaxed functional F̄ of F with respect to the BV tolopology is given,
and existence and uniqueness of minimizers of F̄ are discussed. In Section 6 we introduce coercive
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functionals Fh on W 1,2 which are shown to Γ-converge to the relaxed functional described above.
The double-minimization algorithm to compute minimizers of Fh is illustrated in Section 7. Its
numerical implementation is presented in Section 8. We include several numerical experiments and
we discuss their results.

Nota on color pictures. This paper introduces methods to recover colors in digital images. There-
fore the gray level printout of the manuscript does not allow to appreciate the quality of the illus-
trated techniques. The authors recommend the interested reader to access the electronic version
with color pictures which is available online.

2. Vector Valued BV Functions

In this section we want to introduce notations and preliminary results concerning vector valued
BV functions.

We denote by LN (and in the integrals dx) the Lebesgue N -dimensional measure in RN and by
Hα the α-dimensional Hausdorff measure. Let Ω be an open, bounded, and connected subset of RN .
With B(Ω) we denote the family of Borel subsets of Ω ⊂ RN . For a given vector valued measure
µ : B(Ω) → RM , we denote with |µ| its total variation, i.e., the finite positive measure

|µ|(A) := sup







M∑

j=1

∫

Ω

vjdµj : v = (v1, ..., vM ) ∈ C0(A; RM ), ‖v‖∞ ≤ 1






,

where C0(A; RM ) := Cc(A; RM )
‖·‖∞

, i.e., the sup-norm closure of the space of continuous func-
tion with compact support in A and vector values in RM . The set of the signed measures on Ω
with bounded total variation is denoted by M(Ω), coinciding in fact with the topological dual of
(C0(A; RM ), ‖ · ‖∞). Thus, the usual weak-∗-topology on M(Ω) is the weakest topology that makes
the maps µ →

∫

Ω
fdµ continuous for every continuous function f ∈ C0(A; RM ). In the following we

will make use of the notations x ∧ y := inf{x, y} and x ∨ y := sup{x, y} for all x, y ∈ R.
We say that u ∈ L1(Ω) is a real function of bounded variation if its distributional derivative

Du = (Dx1u, ..., DxN
u) is in M(Ω). Then the space of bounded variation functions is denoted by

BV (Ω) := {u ∈ L1(Ω) : Du ∈ M(Ω)},

and, endowed with the norm
‖u‖BV (Ω) := ‖u‖1 + |Du|(Ω),

is a Banach space [20]. More general, we are interested in vector valued functions with bounded
variation components, whose space is defined by

BV (Ω; RM ) := {u = (u1, ..., uM ) ∈ L1(Ω; RM ) : ui ∈ BV (Ω)}.

To this space it will turn out to be convenient to attach the norm

‖u‖BV (Ω;RM ) := ‖u‖L1(Ω;RM ) +

M∑

i=1

|Dui|(Ω).

With a slight abuse of notation, for u ∈ BV (Ω; RM ) we denote

(3) |Du| :=

M∑

i=1

|Dui|,

that is again a finite positive measure for Ω. The space (BV (Ω; RM ), ‖ · ‖BV (Ω;RM )) is a Banach
space, and its norm can be of course equivalently defined by

‖u‖BV (Ω;RM ) ∼ ‖u‖L1(Ω;RM ) +

(
M∑

i=1

|Dui(Ω)|q

)1/q

,
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for all q ∈ [1,∞) and for q → ∞ we have

‖u‖BV (Ω;RM ) ∼ ‖u‖L1(Ω;RM ) + max
i=1,...,M

|Dui(Ω)|.

Of course BV (Ω; RM ) = BV (Ω) for M = 1, and our notations are consistent with this case.
The product topology of the strong topology of L1(Ω; RM ) for u and of the weak-∗-topology of
measures for Dui (for all i = 1, ..., M) will be called the weak-∗-topology of BV (Ω; RM ) or the
componentwise BV weak-∗-topology. In the following, whenever the domain Ω and the dimension
M will be clearly understood, we will write L1 instead of L1(Ω; RM ) and BV instead of BV (Ω; RM ).

We further recall the main structure properties of BV functions [1, 2, 20]. If v ∈ BV (Ω) then the
Lebesgue decomposition of Dv with respect to the Lebesgue measure LN is given by

Dv = ∇v · LN + Dsv,

where ∇u = d(Dv)
dx ∈ L1(Ω; RN ) is the Radon-Nikodym derivative of Dv and Dsv is singular with

respect to LN .

For a function v ∈ L1(Ω) one denotes with Sv the complement of the Lebesgue set of v, i.e.,

Sv := {x ∈ Ω : v−(x) < v+(x)},

where

v+(x) := inf

{

t ∈ R̄ : lim
ǫ→0

LN ({v > t} ∩ B(x, ǫ))

ǫN
= 0

}

and

v−(x) := sup

{

t ∈ R̄ : lim
ǫ→0

LN ({v < t} ∩ B(x, ǫ))

ǫN
= 0

}

.

Then Sv is countably rectifiable, and for HN−1-a.e. x ∈ Ω we can define the outer normal ν(x). We
denote by ṽ : Ω \ Sv → R the approximate limit of v defined as ṽ(x) = v+(x) = v−(x).

Following [1, 20] Dsv can be expressed by

Dsv = Cv + Jv,

where

Jv = (v+ − v−)ν · HN−1|Sv
,

is the jump part and Cv is the Cantor part of Dv. Therefore, we can express the measure Dv by

(4) Dv = ∇v · LN + Cv + (v+ − v−)ν · HN−1|Sv
,

and its total variation by

(5) |Dv|(E) =

∫

E

|∇v|dx +

∫

E\Sv

|Cv| +

∫

E∩Sv

(v+ − v−)dHN−1,

for every Borel set E in the Borel σ-algebra B(Ω) of Ω. For major details we refer the reader to
[1]. By these properties of real BV-functions, one obtains the following result for vector valued
BV-functions.

Lemma 2.1 (Lebsegue decomposition for vector valued BV-functions). For u ∈ BV (Ω; RN ), the
positive measure |Du| as defined in (3) has the following Lebesgue decomposition

(6) |Du| = |Dau| + |Dsu|,

where

(7) |Dau| =

M∑

i=1

|∇ui|LN
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is the absolutely continuous part and

(8) |Dsu| =

M∑

i=1

|Cui
| +

M∑

i=1

(u+
i − u−

i )HN−1|Sui
,

is the singular part of |Du|, with respect to the Lebesgue measure LN .

Proof. By definition it is

|Du| =

M∑

i=1

|Dui|

and by the Lebesgue decomposition (5) for each |Dui| it is

|Du| =
M∑

i=1

(
|∇ui|LN + |Cui

| + (u+
i − u−

i )HN−1|Sui

)
.

Since
∑M

i=1 |∇ui|LN is absolutely continuous and
∑M

i=1 |Cui
|+
∑M

i=1(u
+ − u−)HN−1|Sui

is singular

with respect to LN , one concludes the proof by the uniqueness of the Lebesgue decomposition.

3. Convex Functions and Functionals of Measures

In the following and throughout the paper we assume that

(A) φ : R → R+ is an even and convex function, nondecreasing in R+ such that
(i) φ(0) = 0;
(ii) There exists c > 0 and b ≥ 0 such that cz − b ≤ φ(z) ≤ cz + b, for all z ∈ R.

Under such conditions the asymptotic recession function φ∞ defined by

φ∞(z) := lim
y→∞

φ(yz)

y

is well defined and bounded. It is c = limy→∞
φ(y)

y = φ∞(1) and φ∞(z) = cz · sign(z).

Following [17, 24] we can define convex functions of measures. In particular if µ ∈ M(Ω) then we
can define

φ(|µ|) = φ(|µa|)LN + φ∞(1)|µs|,

where µa and µs are the absolutely continuous and singular parts of µ respectively, with respect to
LN . Therefore, according to Lemma 2.1, if u ∈ BV (Ω; RM ) then

(9)
M∑

i=1

φ(|Dui|) =
M∑

i=1

φ(|∇ui|)LN + φ∞(1)

(
M∑

i=1

|Cui
| +

M∑

i=1

(u+ − u−)HN−1|Sui

)

.

Definition 1. Let (X, τ) be a topological space satisfying the first axiom of countability and F :
X → R̄. The relaxed functional of F with respect to the topology τ is defined for every x ∈ X as
F̄ (x) := sup{G(x) : G is τ -lower semicontinuous and G ≤ F}. In other words F̄ is the maximal
τ -lower semicontinuous functional that is smaller than F . We may also write

F̄ (u) = inf
u(n)∈X,u(n) τ

→u

{lim inf
n

F (u(n))}

we have the following result

Lemma 3.1. If u ∈ BV (Ω; RM ) and φ is as in assumption (A), then

E(u) :=

∫

Ω

M∑

i=1

φ(|Dui|) :=

M∑

i=1

φ(|Dui|)(Ω) =

∫

Ω

M∑

i=1

φ(|∇ui|)dx+c

(
M∑

i=1

∫

Ω\Sui

|Cui
| +

∫

Sui

(u+
i − u−

i )dHN−1

)

is lower semicontinuous with respect to the componentwise BV weak-∗-topology.
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Proof. It is known that

ui → Ei(ui) :=

∫

Ω

φ(|∇ui|)dx + c

(
∫

Ω\Sui

|Cui
| +

∫

Sui

(u+
i − u−

i )dHN−1

)

is lower semicontinuous for the BV weak-∗-topology on BV (Ω) [24]. One concludes simply by

observing that E(u) =
∑M

i=1 Ei(ui).

4. Assumptions on the Evaluation Map L.

In the following we assume that

(L1) L : RM → R+ is a non-decreasing continuous function in the sense that L(x) ≤ L(y) for any
x, y ∈ RM such that |xi| ≤ |yi| for any i ∈ {1, . . . , M};

(L2) L(x) ≤ a + b|x|s, for all x ∈ RM and for fixed s ≥ p−1, b > 0, and a ≥ 0.

Moreover, one of the two following conditions holds

(L3-a) limx→∞ L(x) = +∞;
(L3-b) L(x) = L(x1, ..., xM ) = L((ℓ1 ∧ x1 ∨ −ℓ1), ..., (ℓM ∧ xM ∨ −ℓM )), for a suitable fixed vector

ℓ = (ℓ1, ..., ℓM ) ∈ RM
+ .

Observe that condition (L3-a) is equivalent to say that for every C > 0 the set {L ≤ C} is bounded.
Therefore there exists A ∈ RM , with Ai ≥ 0 for any i ∈ {1, . . . , M}, such that {L ≤ C} ⊆
∏M

i=1[−Ai, Ai].
In the following and throughout the paper D denotes a measurable subset of Ω, and we are given

the couple (ū, v̄) of bounded functions such that ū : Ω \ D → RM and v̄ : D → R.
If the condition (L3-a) holds, for any measurable function u : Ω → RM , we define the truncation

or clipping operator as follows:

(10) tr(u, ū, Ω, D)(x) := ((‖ūi|Ω \ D‖∞ ∨ Ai) ∧ ui(x) ∨ (−‖ūi|Ω \ D‖∞ ∧ −Ai))
M
i=1,

where A ∈ RM is determined so that {L ≤ ‖v̄|D‖∞} ⊆
∏M

i=1[−Ai, Ai]. Analogously we define the
truncation operator in the case of the assumption (L3-b):

(11) tr(u, ū, v̄, Ω, D)(x) := ((‖ūi|Ω \ D‖∞ ∨ ℓi) ∧ ui(x) ∨ (−‖ūi|Ω \ D‖∞ ∧ −ℓi))
M
i=1.

In the case it is clear which of the assumptions (L3-a,b) holds, and the set D and the functions ū, v̄
are given, then it will be convenient the shorter notation û := tr(u, ū, v̄, Ω, D).

For any measurable function u : Ω → RM we define:

(12) G1(u) =

∫

Ω\D

|u(x) − ū(x)|pdx,

(13) G2(u) =

∫

D

|L(u(x)) − v̄(x)|pdx.

Lemma 4.1. For any u ∈ BV (Ω; RM ) the truncation operator has the property that û ∈ BV (Ω; RM ),
and

(14) Gi(û) ≤ Gi(u), i = 1, 2, and E(û) ≤ E(u).

Proof. Let us assume that the condition (L3-a) holds. If x ∈ Ω \ D the definition of the truncation
operator implies that |û(x) − ū(x)| ≤ |u(x) − ū(x)|, from which it follows

G1(û) ≤ G1(u).

If x ∈ D is such that u(x) ∈
∏M

i=1[−‖ūi|Ω \ D‖∞ ∧ −Ai, ‖ūi|Ω \ D‖∞ ∨ Ai], then û(x) = u(x).

Otherwise, x /∈
∏M

i=1[−Ai, Ai] and |ui(x)| ≥ |ûi(x)| ≥ |ξi|, for any ξ such that L(ξ) ≤ ‖v̄|D‖∞ and
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any i ∈ {1, . . . , M}. Therefore, by the monotonicity assumption (L1) L(u(x)) ≥ L(û(x)) ≥ ‖v̄|D‖∞,
which implies that |L(û(x)) − v̄(x)| ≤ |L(u(x)) − v̄(x)| for any x ∈ D, and

G2(û) ≤ G2(u).

The proof is analogous if the condition (L3-b) holds.
We now prove the corresponding statement for the functional E. Fix i ∈ {1, . . . , M}. By definition

of the truncation operator, we have ûi = gi ◦ ui, where gi : R → R is a Lipschitz function such that

gi(t) =







t, −ci ≤ t ≤ di

di, t > di

−ci, t < −ci,

where ci, di > 0 are determined by (10,11). Using the chain rule for real-valued BV functions
(Theorem 3.99 of [2]), we have that û ∈ BV (Ω; RM ) and

Dûi = g′i(ui)∇ui · LN + g′i(ũi)Cui
+
(
gi(u

+
i ) − gi(u

−
i )
)
νi · HN−1|Sui

,

where ũi is the approximate limit of ui. Then ∇ûi(x) = ∇ui(x) if −ci < ui(x) < di, and ∇ûi(x) = 0
if either ui(x) > di or ui(x) < −ci. Moreover, by Proposition 3.73 (c) of [2] it follows that ∇ui(x) = 0
for a.e. x ∈ {ui(x) = di} and a.e. x ∈ {ui(x) = −ci}. Hence |∇ûi(x)| ≤ |∇ui(x)| a.e., so that from
the assumption (A) of the function φ we get

(15)

∫

Ω

φ(|∇ûi|)dx ≤

∫

Ω

φ(|∇ui|)dx.

Since u+
i (x) ≥ u−

i (x) for any x ∈ Sui
, by the definition of the function gi we have

Sûi
⊆ Sui

, gi(u
+
i (x)) − gi(u

−
i (x)) ≤ u+

i (x) − u−
i (x) for any x ∈ Sui

.

Then it follows

(16)

∫

Sûi

(û+
i − û−

i )dHN−1 ≤

∫

Sui

(u+
i − u−

i )dHN−1.

By the definition of gi we then have 0 ≤ g′i(ũi(x)) ≤ 1 for any x ∈ {x : ũi(x) 6= di}∩{x : ũi(x) 6= −ci}.
Moreover, by Proposition 3.92 (c) of [2], the Cantor part Cui

vanishes on sets of the form ũ−1
i (Q)

with Q ⊂ R, H1(Q) = 0. It follows that Cui
vanishes on the set {x : ũi(x) = di}∪{x : ũi(x) = −ci},

so that we get |Cûi
|(Ω) ≤ |Cui

|(Ω), i.e.,

(17)

∫

Ω\Sûi

|Cûi
| ≤

∫

Ω\Sui

|Cui
|.

Collecting the inequalities (15-17) and summing over i = 1, . . . , M , we obtain

E(û) ≤ E(u),

which concludes the proof.

Remark 4.2. The truncation operator maps C1
0 functions into W 1,q, i.e., for any u ∈ C1

0 (Ω; RM )
we have tr(u, ū, v̄, Ω, D) ∈ W 1,q(Ω; RM ) for any 1 ≤ q ≤ ∞.

5. Relaxation and Existence of Minimizers

The functional F is well defined in L∞(Ω; RM )∩W 1,1(Ω; RM ). Since this space is not reflexive, and
sequences that are bounded in W 1,1 are also bounded in BV , we extend F to the space BV (Ω; RM ) in
such a way that the extended functional is lower semicontinuous. By using the relaxation method of
the Calculus of Variations, the natural candidate for the extended functional is the relaxed functional
F̄ of F with respect to the componentwise BV weak-∗-topology [6].

In the following, without loosing generality, we set µ = λ = 1.
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5.1. Relaxation. We set

X = {u ∈ BV (Ω; RM ) : ‖ui‖∞ ≤ Ki, i = 1, . . . , M},

where, for any i ∈ {1, . . . , M}, the constant Ki > 0 is defined by

Ki = max{Ai, ‖ūi|Ω \ D‖∞},

if the condition (L3-a) holds, and by

Ki = max{ℓi, ‖ūi|Ω \ D‖∞},

if the condition (L3-b) holds.
The following theorem extends to our case the relaxation result proved in Theorem 3.2.1 of [6].

Theorem 5.1. The relaxed functional of F in X with respect to the componentwise BV weak-∗-
topology is given by

F̄ (u) =

∫

Ω\D

|u(x) − ū(x)|pdx +

∫

D

|L(u(x)) − v̄(x)|pdx

+

∫

Ω

M∑

i=1

φ(|∇ui|)dx + c

(
M∑

i=1

∫

Ω\Sui

|Cui
| +

∫

Sui

(u+
i − u−

i )dHN−1

)

.

Proof. Let us define

f(u) :=

{
F (u), u ∈ X \ W 1,1(Ω; RM )
+∞, u ∈ X \ W 1,1(Ω; RM ).

Observe that f(u) = F̄ (u) for u ∈ W 1,1(Ω; RM ).
By the property (L2) we have that G1(u), G2(u) < +∞ for all u ∈ X . By using Fatou’s lemma

the functionals G1 and G2 are lower semicontinuous with respect to the strong L1 topology, and
hence with respect to the componentwise BV weak-∗-topology. Therefore, by Lemma 3.1, F̄ is lower
semicontinuous in X with respect to such topology.

Let f̄ denote the relaxed functional of f in X with respect to the same topology. Since F̄ (u) ≤ f(u)
for any u ∈ X , and f̄ is the greatest lower semicontinuous functional less than or equal to f , we
have f̄(u) ≥ F̄ (u) for any u ∈ X . Then we have to show that f̄(u) ≤ F̄ (u).

By [17, Theorem 2.2 and Theorem 2.3] for any u ∈ X there exists a sequence {u(n)}n ⊂
C∞

0 (Ω; RM )∩W 1,1(Ω; RM ) such that u(n) converges to u in the componentwise BV weak-∗-topology
and E(u) = limn E(u(n)).

Let us now consider the sequence {û(n)}n of the truncated functions. By Lemma 4.1 we have

(18) E(u) = lim
n

E(u(n)) ≥ lim sup
n

E(û(n)).

With similar computations as those in the proof of Lemma (4.1)
∫

Ω

|û(n)(x) − u(x)|dx ≤

∫

Ω

|u(n)(x) − u(x)|dx → 0, n → ∞.

Moreover, since the truncated functions û(n) are uniformly bounded in L∞(Ω; RM ), then û(n) con-
verges to u in Lq(Ω; RM ) for any 1 ≤ q < ∞.

Now the functional G1 is continuous with respect to the strong Lp(Ω\D; RM ) topology. Moreover,
since L is continuous, the functional G2 is continuous with respect to the strong Lq(D; RM ) topology,
with q = sp ≥ 1 (see [19, Lemma 3.2, Chapter 9]).

Then, using (18), the continuity properties of G1 and G2, and Remark 4.2, we have û(n) ∈
W 1,1(Ω; RM ), F̄ (û(n)) = f(û(n)), and

F̄ (u) = G1(u) + G2(u) + E(u) ≥ lim
n

(G1(û
(n)) + G2(û

(n))) + lim sup
n

E(û(n)) ≥ lim sup
n

f(û(n))

≥ lim inf
n

f(û(n)) ≥ inf
u(n)∈BV,u(n)BV −w∗

→ u

{lim inf
n

f(u(n))} = f̄(u).
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Then we have F̄ (u) = f̄(u) and the statement is proved.

5.2. Existence and uniqueness of minimizers.

Theorem 5.2. There exists a solution u ∈ X of the following variational problem:

min{F̄ (v) =

∫

Ω\D

|v(x) − ū(x)|pdx +

∫

D

|L(v(x)) − v̄(x)|pdx

+

∫

Ω

M∑

i=1

φ(|∇vi|)dx + c

(
M∑

i=1

∫

Ω\Svi

|Cvi
| +

∫

Svi

(v+
i − v−i )dHN−1

)

}.

In particular we have

min
v∈X

F̄ (v) = inf
v∈X

F (v).

Moreover, if D ( Ω and G2 is a strictly convex functional then the solution is unique.

Proof. Let {u(n)}n be a minimizing sequence in BV . By assumption (A) (ii) there exists a constant
C > 0 such that

|Du(n)|(Ω) ≤ C,

uniformly with respect to n. By Lemma 4.1 we can modify the minimizing sequence by truncation,
obtaining a new minimizing sequence {û(n)}n ⊂ X . By Lemma 4.1 this sequence is uniformly
bounded in BV (Ω; RM ), i.e.,

‖û(n)‖∞ ≤ max
i=1,...,M

Ki, |Dû(n)|(Ω) ≤ C,

for any n. Therefore there exists a subsequence {û(nk)}k converging with respect to the com-
ponentwise BV weakly-∗-topology to a function u ∈ X . Since the relaxed functional F̄ is lower
semicontinuous in X with respect to such a topology, we have

F̄ (u) ≤ lim inf
k

F̄ (u(nk)).

From the compactness and lower semicontinuity properties of F̄ it follows that u ∈ X is a minimizer
of F̄ . Moreover, if D ( Ω and G2 is a strictly convex functional, then F̄ is strictly convex and the
solution u is unique. Since F is coercive in X one concludes by an application of Theorem A.3.

6. Approximation by Γ-Convergence

In this section we endow the space X with the L1 strong topology, and we show that minimizers
of F̄ can be approximated in X by minimum points of functionals that are defined in W 1,2(Ω; RM ).

For a positive decreasing sequence {εh}h∈N such that limh→∞ εh = 0, and for φ ∈ C1(R), we
define

(19) Fh(u) =







G1(u) + G2(u) +

∫

Ω

M∑

i=1

φh(|∇ui(x)|)dx u ∈ W 1,2(Ω; RM )

+∞, u ∈ X \ W 1,2(Ω; RM ),

where

φh(z) =







φ′(εh)

2εh
z2 + φ(εh) −

εhφ′(εh)

2
0 ≤ z ≤ εh

φ(z) εh ≤ z ≤ 1/εh

εhφ′(1/εh)

2
z2 + φ(1/εh) −

φ′(1/εh)

2εh
z ≥ 1/εh.
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If z 7→ φ′(z)
z is continuously decreasing, then φh(z) ≥ φ(z) ≥ 0 for any h and any z, and limh φh(z) =

φ(z) for any z.
By means of standard arguments we have that for any h the functional Fh has a minimizer

in X ∩ W 1,2(Ω; RM ), see, e.g., [29, Proposition 6.1]. Moreover, if D ( Ω and G2 is a strictly
convex functional then the minimizer is unique. The following theorem extends to our case the
Γ-convergence result proved in [29, Proposition 6.1], see also Theorem 3.2.3 of [6].

Theorem 6.1. Let {u(h)}h be a sequence of minimizers of Fh. Then {u(h)}h is relatively compact
in L1(Ω; RM ), each of its limit points minimizes the functional F̄ , and

min
u∈X

F̄ (u) = lim
h→∞

min
u∈X∩W 1,2

Fh(u).

Moreover, if D ( Ω and G2 is a strictly convex functional, we have

(20) lim
h→∞

u(h) = u(∞) in X, lim
h→∞

Fh(u(h)) = F̄ (u(∞)),

where u(∞) is the unique minimizer of F̄ in X.

Proof. We define

g(u) =

{
F (u) u ∈ X ∩ W 1,2(Ω; RM )
+∞, u ∈ X \ W 1,2(Ω; RM ).

Observe that g is the restriction of F to functions u ∈ W 1,2(Ω; RM ).
By construction we have that {Fh}h is a decreasing sequence of functionals that converges point-

wise to g in X ∩ W 1,2(Ω; RM ). Therefore, by Proposition A.1, Fh Γ-converges to the relaxed
functional ḡ of g in X with respect to the L1(Ω; RM ) topology. Then we have to show that F̄ = ḡ.

Let {u(n)}n ⊂ X be a sequence such that u(n) → u in L1(Ω; RM ) and lim infn F̄ (u(n)) < +∞.
Up to the extraction of a subsequence we may assume that lim infn F̄ (u(n)) = limn F̄ (u(n)). Then
F̄ (u(n)) is uniformly bounded with respect to n, so that {u(n)}n is uniformly bounded in BV . Then,
up to a subsequence, u(n) converges to u in the componentwise BV weak-∗-topology and, by Theorem
5.1, we have lim infn F̄ (u(n)) ≥ F̄ (u). Hence F̄ is lower-semicontinuous in X with respect to the
L1(Ω; RM ) topology.

Then, arguing as in the proof of Theorem 5.1, for any function u ∈ X there exists a sequence of
truncated functions û(n) ∈ W 1,2(Ω; RM ) ∩ X such that

(21) û(n) → u in L1(Ω; RM ), and F̄ (u) ≥ lim inf
n→∞

g(û(n)).

Since g ≥ F̄ , property (21) implies that F̄ ≥ ḡ. Then, by the lower-semicontinuity of F̄ with respect
to the L1(Ω; RM ) topology, we have F̄ = ḡ. Therefore Fh Γ-converges to F̄ .

By construction φh(z) ≥ φ(z) for any z ≥ 0, so that Fh(u) ≥ F̄ (u) for any h and any u ∈ X .
Since F̄ is coercive and lower semicontinuous in L1(Ω; RM ), it follows that the sequence {Fh}h

is equi-coercive in L1(Ω; RM ). In particular, any family {u(h)}h of minimizers of Fh is relatively
compact in L1(Ω; RM ). Then, using Theorem A.2, the limit points of sequences of minimizers of Fh

minimize F̄ and minu∈X F̄ (u) = limh minu∈W 1,2 Fh(u).
Finally, if D ( Ω and G2 is a strictly convex functional, by Theorem 5.2 there exists a unique

minimizer of F̄ in X . Therefore the limits (20) follow from Corollary 7.24 of [25].

Remark 6.2. So far we have considered evaluation maps L : RM → R. However the whole analysis
can be generalized to the case L : RM → M, L(x) = (L1(x), . . . ,LD(x)), where M ⊂ RM is a
D ≤ M dimensional submanifold.

In certain problems, as that of the reconstruction of the colors of an image from the colors of
some fragments and the gray levels of the blanks, we can model the evaluation map by

L(r, g, b) := L(α(0 ∨ r ∧ 255) + β(0 ∨ g ∧ 255) + γ(0 ∨ b ∧ 255)),
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where α, β, γ > 0 with α + β + γ = 1 and L : [0, 255] → [0, 255] is an increasing continuous function
such that ran(v̄|D) ⊂ L([0, 255]). The evaluation map L satisfies the condition (L3-b) of Section 4.
Hence, in this case, instead of minimizing directly (1) we may minimize

F ∗(u) = µ

∫

Ω\D

|u(x) − ū(x)|2dx

+ λ

∫

D

| (α(0 ∨ u1(x) ∧ 255) + β(0 ∨ u2(x) ∧ 255) + γ(0 ∨ u3(x) ∧ 255)) − L−1(v̄(x))|2dx

+
M∑

i=1

∫

Ω

φ(|∇ui(x)|)dx,

since L is invertible on L([0, 255]). If L is also differentiable (or at least a Lipschitz function), then
certainly we have

|L(u(x)) − v̄(x)| = |L(α(0 ∨ u1(x) ∧ 255) + β(0 ∨ u2(x) ∧ 255) + γ(0 ∨ u3(x) ∧ 255))− v̄(x)|

= |L(α(0 ∨ u1(x) ∧ 255) + β(0 ∨ u2(x) ∧ 255) + γ(0 ∨ u3(x) ∧ 255))− L(L−1(v̄(x)))|

≤ C|α(0 ∨ u1(x) ∧ 255) + β(0 ∨ u2(x) ∧ 255) + γ(0 ∨ u3(x) ∧ 255) − (L−1(v̄(x))|,

for a suitable constant C > 0. Therefore we have

F (u) ≤ max{1, C2}F ∗(u),

where F ∗ is convex on X .

7. Euler-Lagrange Equations and a Relaxation Algorithm

In this section we want to provide an algorithm to compute efficiently minimizers of the approx-
imating functionals Fh. First, we want to derive the Euler-Lagrange equations associated to Fh. In
the following we assume that both φh and L are continuously differentiable, and that Ω is an open,
bounded, and connected subset of RN with Lipschitz boundary ∂Ω. Moreover p = 2 if N = 1 and
p = N

N−1 for N > 1, 1/p + 1/p′ = 1. By standard arguments we have the following result.

Proposition 7.1. If u is a minimizer in W 1,2(Ω; RM ) of Fh, then u solves the following system of
Euler-Lagrange equations
(22)






0 = −div
(

φ′
h(|∇ui|)
|∇ui|

∇ui

)

+ p|u − ū|p−2(ui − ūi)1Ω\D + p|L(u) − v̄|p−2(L(u) − v̄) ∂L
∂xi

(u)1D,
φ′

h(|∇ui|)
|∇ui|

∂ui

∂ν = 0 on ∂Ω, i = 1, ..., M.

The former equalities hold in the sense of distributions and in Lp′

(Ω; RM ).

Equations (22) yield a necessary condition for the computation of minimizers of Fh. Again we are
not ensured of the uniqueness in general, unless G2 is strictly convex. The system (22) is composed
by M second order nonlinear equations which are coupled on terms of order 0. Both the nonlinear

term div
(

φ′
h(|∇ui|)
|∇ui|

∇ui

)

and the coupled terms of order 0 constitute a complication for the numerical

solution of these equations.
Based on the work [12, 18, 30], we propose in the following a method to compute efficiently

solutions of (22), which simplifies the problem of the nonlinearity. Since we want to illustrate concrete
applications for color image recovery, for simplicity, we limit our analysis to the case N = p = 2 and
φ(t) = |t|, for all t ∈ R. Let us introduce a new functional given by

(23) Eh(u, v) := 2 (G1(u) + G2(u)) +

∫

Ω

M∑

i=1

(

vi|∇ui(x)|2 +
1

vi

)

dx,
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where u ∈ W 1,2(Ω; RM ), and v ∈ L2(Ω; RM ) is such that εh ≤ vi ≤ 1
εh

, i = 1, . . . , M . While the
variable u is again the function to be reconstructed, we call the variable v the gradient weight. In
the following, since we assume h fixed, we drop the index h from the functional Eh.

For any given u(0) ∈ X ∩ W 1,2(Ω; RM ) and v(0) ∈ L2(Ω; RM ) (for example v(0) := 1), we define
the following iterative double-minimization algorithm:

(24)







u(n+1) = arg min
u∈W 1,2(Ω;RM )

E(u, v(n))

v(n+1) = argminεh≤v≤ 1
εh

E(u(n+1), v).

We have the following convergence result.

Theorem 7.2. The sequence {u(n)}n∈N has subsequences that converge strongly in L2(Ω; RM ) and
weakly in W 1,2(Ω; RM ) to a stationary point u(∞) of Fh, i.e., u(∞) solves (22). Moreover, if Fh has
a unique minimizer u∗, then u(∞) = u∗ and the full sequence {u(n)}n∈N converges to u∗.

Proof. Observe that

E(u(n), v(n)) − E(u(n+1), v(n+1)) =
(

E(u(n), v(n)) − E(u(n+1), v(n))
)

︸ ︷︷ ︸

An

+
(

E(u(n+1), v(n)) − E(u(n+1), v(n+1))
)

︸ ︷︷ ︸

Bn

≥ 0.

Therefore E(u(n), v(n)) is a nonincreasing sequence and moreover it is bounded from below, since

inf
εh≤v≤1/εh

∫

Ω

M∑

i=1

(

vi|∇ui(x)|2 +
1

vi

)

dx ≥ 0.

This implies that E(u(n), v(n)) converges. Moreover, we can write

Bn =

∫

Ω

M∑

i=1

c(v
(n)
i (x), |∇u

(n+1)
i (x)|) − c(v

(n+1)
i (x), |∇u

(n+1)
i (x)|)dx,

where

c(z, w) := zw2 +
1

z
.

By Taylor’s formula, we have

c(v
(n)
i , w) = c(v

(n+1)
i , w) +

∂c

∂z
(v

(n+1)
i , w)(v

(n)
i − v

(n+1)
i ) +

1

2

∂2c

∂z2 (ξ, w)|v
(n)
i − v

(n+1)
i |2,

for ξ ∈ conv(v
(n)
i , v

(n+1)
i ). By definition of v

(n+1)
i , and taking into account that εh ≤ v

(n+1)
i ≤ 1

εh
,

we have
∂c

∂z
(v

(n+1)
i , |∇u

(n+1)
i (x)|)(v

(n)
i − v

(n+1)
i ) ≥ 0,

and ∂2c
∂z2 (z, w) = 2

z3 ≥ 2ε3
h, for any z ≤ 1/εh. This implies that

E(u(n), v(n)) − E(u(n+1), v(n+1)) ≥ Bn ≥ ε3
h

∫

Ω

M∑

i=1

|v
(n)
i (x) − v

(n+1)
i (x)|2dx,

and since E(u(n), v(n)) is convergent, we have
∑M

i=1

∫

Ω
|v

(n)
i (x) − v

(n+1)
i (x)|2dx → 0 for n → ∞. In

fact it holds

(25) ‖v
(n)
i − v

(n+1)
i ‖Lq → 0, i = 1, ..., M,
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for n → ∞, for any 1 ≤ q < ∞. Since u(n+1) is a minimizer of E(u, v(n)) it solves the following
system of variational equations

∫

Ω

(

v
(n)
i ∇u

(n+1)
i (x) · ∇ϕi(x) + 2(u

(n+1)
i (x) − ūi(x))1Ω\D(x)

+ 2(L(u(n+1)(x)) − v̄(x))
∂L

∂xi
(u(n+1)(x))1D(x)

)

ϕi(x)dx = 0

for i = 1, ..., M , for all ϕ ∈ W 1,2(Ω; RM ). Therefore we can write
∫

Ω

(

v
(n+1)
i ∇u

(n+1)
i (x) · ∇ϕi(x)

+ 2(u
(n+1)
i (x) − ūi(x))1Ω\D(x) + 2(L(u(n+1)(x)) − v̄(x))

∂L

∂xi
(u(n+1)(x))1D(x)

)

ϕi(x)dx

=

∫

Ω

(v
(n+1)
i − v

(n)
i )∇u

(n+1)
i (x) · ∇ϕi(x)dx.

For 1
q + 1

q′ + 1
2 = 1, we have

∣
∣
∣
∣

∫

Ω

(

v
(n+1)
i ∇u

(n+1)
i (x) · ∇ϕi(x)

+ 2(u
(n+1)
i (x) − ūi(x))1Ω\D(x) + 2(L(u(n+1)(x)) − v̄(x))

∂L

∂xi
(u(n+1)(x))1D(x)

)

ϕi(x)dx

∣
∣
∣
∣

≤ ‖v
(n+1)
i − v

(n)
i ‖Lq‖∇u

(n+1)
i ‖Lq′ ‖∇ϕi‖L2 .

Since u(n+1) is a minimizers of E(u, v(n)), we may assume without loss of generality that û
(n+1)
i =

u
(n+1)
i , for all i = 1, ..., M where ·̂ is the truncation operator. Consequently ‖u

(n+1)
i ‖∞ ≤ C < +∞

uniformly with respect to n. We can use the results in [26] to show that there exists q′ > 2 such
that

‖∇u
(n+1)
i ‖Lq′ ≤ C < +∞

uniformly with respect to n (see also [4, 5, 12] for similar arguments). Therefore, using (25), we can
conclude that

−div(v
(n+1)
i ∇u

(n+1)
i ) + 2

(

(u
(n+1)
i − ūi)1Ω\D + (L(u(n+1)) − v̄)

∂L

∂xi
(u(n+1))1D

)

→ 0,

for n → ∞, in (W 1,2(Ω; RM ))′. This also shows that {u(n)}n is uniformly bounded in W 1,2(Ω; RM ).
Therefore there exists a subsequence {u(nk)}k that converges strongly in L2 and weakly in W 1,2(Ω; RM )

to a function u(∞) ∈ W 1,2(Ω; RM ). Since v
(n+1)
i =

φ′
h(|∇u

(n+1)
i

|)

|∇u
(n+1)
i

|
, with standard arguments for mono-

tone operators (see the proof of [12, Proposition 3.1] and [10]), we show that in fact

(26) −div

(

φ′
h(|∇u

(∞)
i |)

|∇u
(∞)
i |

∇u
(∞)
i

)

+ 2

(

(u
(∞)
i − ūi)1Ω\D + (L(u(∞)) − v̄)

∂L

∂xi
(u(∞))1D

)

= 0,

for i = 1, ..., M , in (W 1,2(Ω; RM ))′. The latter are the Euler-Lagrange equations associated to the
functional Fh and therefore u(∞) is a stationary point for Fh.

Assume now that Fh has a unique minimizer u∗. Then necessarily u(∞) = u∗. Since every
subsequence of {u(n)}n has a subsequence converging to u∗, the full sequence {u(n)}n converges to
u∗.

Since both Fh and Eh(·, v) admit minimizers, their uniqueness is equivalent to the uniqueness
of the solutions of the corresponding Euler-Lagrange equations. If uniqueness of the solution is
satisfied, then the algorithm (24) can be equivalently reformulated as the following two-step iterative
procedure:
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• Find u(n+1) which solves
Z

Ω

“

v
(n)
i (x)∇u

(n+1)
i (x) · ∇ϕi(x) + 2(u

(n+1)
i (x) − ūi(x))1Ω\D(x)

+ 2(L(u(n+1)(x)) − v̄(x))
∂L

∂xi

(u(n+1)(x))1D(x)

«

ϕi(x)dx = 0

for i = 1, ..., M , for all ϕ ∈ W 1,2(Ω; RM ).
• Compute directly v(n+1) by

v
(n+1)
i = εh ∨

1

|∇u
(n+1)
i |

∧
1

εh
, i = 1, . . . , M.

There are cases for which one can ensure uniqueness of solutions:
1. If G2 is strictly convex then the minimizers are unique as well as the solutions of the equations.
2. Modify the equations by inserting again the parameters λ, µ > 0

∫

Ω

(

v
(n)
i ∇u

(n+1)
i (x) · ∇ϕi(x) + 2µ(u

(n+1)
i (x) − ūi(x))1Ω\D(x)

+ 2λ(L(u(n+1)(x)) − v̄(x))
∂L

∂xi
(u(n+1)(x))1D(x)

)

ϕi(x)dx = 0

for i = 1, ..., M , for all ϕ ∈ W 1,2(Ω; RM ). By a standard fixed point argument, it is not difficult
to show that for µ ∼ λ ∼ εh the solution of the previous equations is unique. Unfortunately the
condition µ ∼ λ ∼ εh is acceptable only for those applications where the constraints on the data are
weak. For example, when the data are affected by a strong noise.

3. In the following section we illustrate the finite element approximation of the Euler-Lagrange
equations. Since we are interested in color image applications, we restrict the numerical experiments
to the case L(u1, u2, u3) = 1

3 (u1 + u2 + u3). By this choice, the numerical results confirm that the
linear systems arising from the finite element discretization are uniquely solvable for a rather large
set of possible parameters λ, µ.

8. Numerical Implementation and Results

In this section we want to present the numerical implementation of the iterative double-minimization
algorithm (24) for color image restoration. As the second step of the scheme (which amounts in the
up-date of the gradient weight) can be explicitly done once u(n+1) is computed, we are left essen-
tially to provide a numerical implementation of the first step, i.e., the solution of the Euler-Lagrange
equations.

8.1. Finite element approximation of the Euler-Lagrange equations. For the solution of the
Euler-Lagrange equations we use a finite element approximation. We illustrate the implementation
with the concrete aim of the reconstruction of a digital color image supported in Ω = [0, 1]2 from
few color fragments supported in Ω \D and the gray level information where colors are missing. By
the nature of this problem, we can choose a regular triangulation T of the domain Ω with nodes
distributed on a regular grid N := τZ2 ∩Ω, corresponding to the pixels of the image. Associated to
T we fix the following finite element spaces:

U = {u ∈ C0(Ω) : u|T ∈ P1, T ∈ T },

V = {v ∈ L2(Ω) : v|T ∈ P0, T ∈ T }.

The space U induces the finite element space of color images given by

U := {u ∈ W 1,2(Ω, R3) : ui ∈ U , i = 1, 2, 3}.

The space V induces the finite element space of gradient weights given by

V := {v ∈ L2(Ω, R3) : vi ∈ V , i = 1, 2, 3}.
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In order to avoid the nonlinearity in the coupled terms of order 0, we restrict our functional to
the case L(u1, u2, u3) = 1

3 (u1 + u2 + u3). For further simplicity we have not considered truncations
which in fact are not necessary in practice.

For a given v(n) ∈ V , the first step of our approximation of the double-minimization scheme
amounts in the computation of u(n+1) ∈ U which solves

(27)

∫

Ω

(

v
(n)
i (x)∇u

(n+1)
i (x) · ∇ϕi(x) + 2µ(u

(n+1)
i (x) − ūi(x))1Ω\D(x)

+
2

3
λ(

1

3
(u

(n+1)
1 (x) + u

(n+1)
2 (x) + u

(n+1)
3 (x)) − v̄(x))1D(x)

)

ϕi(x)dx = 0

for i = 1, 2, 3, for all ϕ ∈ U . To the spaces U and V are attached the corresponding nodal bases
{ϕk}k∈N and {χk}k∈N respectively. Therefore, we have also that

U =






u : u =

(
∑

k∈N

ui,kϕk

)

i=1,2,3






, V =






v : v =

(
∑

k∈N

vi,kχk

)

i=1,2,3






.

With these bases we can construct the following matrices:

K
(n+1)
i :=

(∫

Ω

v
(n)
i (x)∇ϕk(x) · ∇ϕh(x)dx

)

k,h∈N

,(28)

MΩ\D :=

(

2µ

∫

Ω

1Ω\D(x)ϕk(x)ϕh(x)dx

)

k,h∈N

,(29)

MD :=

(
2λ

9

∫

Ω

1D(x)ϕk(x)ϕh(x)dx

)

k,h∈N

.(30)

By these building blocks, we can assemble

(31) K(n+1) :=






K
(n+1)
1 + MΩ\D + MD MD MD

MD K
(n+1)
2 + MΩ\D + MD MD

MD MD K
(n+1)
3 + MΩ\D + MD




 ,

and

(32) M :=





MΩ\D + MD MD MD

MD MΩ\D + MD MD

MD MD MΩ\D + MD



 .

Furthermore, let us denote the vector of the nodal values of the solution by

(33) u(n+1) = (u
(n+1)
1,k1

, ..., u
(n+1)
1,k#N

, u
(n+1)
2,k1

, ..., u
(n+1)
2,k#N

, u
(n+1)
3,k1

, ..., u
(n+1)
3,k#N

)T

assembled as a column vector containing the nodal values of each channel in order, where ki ∈ N are
nodes which are suitably ordered. In a similar way the nodal values of the data ū, v̄ are assembled
in the vector
(34)
ū = (ū1,k1 , ..., ū1,kj

, v̄1,kj+1 , ..., v̄1,k#N
, ū2,k1 , ..., ū2,kj

, v̄2,kj+1 , ..., v̄2,k#N
, ū3,k1 , ..., ū3,kj

, v̄3,kj+1 , ..., v̄3,k#N
)T .

For the right-hand side we have the additional requirement that v̄i,k = v̄ℓ,k for i 6= ℓ, representing
the gray level values. Moreover, the order of the nodes {kl : l = 1, . . . , #N} is such that

(MΩ\D + MD)(ūi,k1 , ..., ūi,kj
, v̄i,kj+1 , ..., v̄i,k#N

)T = MΩ\D

(
ūi

0

)

+ MD

(
0
v̄i

)

.

With this notations and conventions, the solution of the system of equations (27) is equivalent to
the solution of the following algebraic linear system

(35) K(n+1)u(n+1) = Mū.
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Figure 4. The datum (ū, v̄) is illustrated on the top-left position. The first five
iterations of the algorithms are listed from left to right, starting from the first row.
The original color image (A. Mantegna’s frescoes) to be reconstructed is illustrated
on the right-bottom position. The parameters we have used are εh = 10−4, λ =
µ = 150.

8.2. Numerical implementation of the double-minimization algorithm. We have now all
the ingredients to assemble our numerical scheme into the following algorithm.

Algorithm 1. DOUBLE MINIMIZATION

Input: Data vector ū, εh > 0, initial gradient weight v(0) with εh ≤ v
(0)
i,k ≤ 1/εh,

number nmax of outer iterations.
Parameters: positive weights λ, µ ≥ 0.
Output: Approximation u∗ of the minimizer of Fh

u(0) := 0;
f := Mū;
for n := 0 to nmax do
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Assemble the matrix K(n+1) as in (28);
Compute u(n+1) such that K(n+1)u(n+1) := f ;

Assemble the solution u(n+1) = (
∑

k∈N u
(n+1)
i,k ϕk)i=1,2,3;

Compute the gradient ∇u(n+1) = (
∑

k∈N u
(n+1)
i,k ∇ϕk)i=1,2,3;

v
(n+1)
i := εh ∨ 1

|∇u
(n+1)
i

|
∧ 1

εh
, i = 1, . . . , M ;

endfor

u∗ := u(n+1).

8.3. Numerical experiments in color image restoration and results. In this section we show
numerical results dealing with applications of the algorithm to color image restoration. We assume
as in Figure 1 to have at disposal few color fragments of the image and the gray levels of the missing
parts.

The algorithm converges to a stationary situation in a very limited number of iterations. In our
numerical tests 3-4 iterations are sufficient, see Figure 4 and Figure 7. The quality of the recon-
struction increases for increasing amount of correct color information of the datum. Nevertheless
we observe that the geometrical distribution of the color datum is more crucial for a better recon-
struction. A remarkable result is illustrated in Figure 5 and Figure 6. In the bottom-left positions
we illustrate data with only the 3% of original color information, randomly distributed. From this
very limited complete information the algorithm anyway produces a rather good reconstruction of
the original color images. Let us emphasize this once more:

It is sufficient to have a very limited guess of possible colors which are nicely distributed in the
image to re-color all the image.

This result has a significant impact for several possible applications. Besides the problem of the
restoration of the fresco colors (where we dispose of the 8% of the total color surface), we can use
this algorithm in old black and white video and image restoration, and for extreme compression of
color images.

To conclude, in Figure 7 we show the history of the residual error with respect to the original
color image for increasing choices of the parameters λ, µ. These numerical results confirm the
regularization effect due to the total variation constraint.

Appendix A

This appendix collects several useful concepts and results on Γ-convergence from [25]. In the
following X is a topological space and (Fh)h∈N is a sequence of functions from X to R̄. We denote
N (x) the set of all open neighborhoods of x in X .

Definition 2. The Γ-lower-limit and the Γ-lower-limit of a sequence (Fh)h∈N are the functions from
X to R̄ defined by

(

Γ − lim inf
h→∞

Fh

)

(x) = sup
U∈N (x)

lim inf
h→∞

inf
y∈U

Fh(y)

(

Γ − lim sup
h→∞

Fh

)

(x) = sup
U∈N (x)

lim sup
h→∞

inf
y∈U

Fh(y)

If there exists a function F : X → R̄ such that
(

Γ − lim inf
h→∞

Fh

)

(x) = F (x) =

(

Γ − lim sup
h→∞

Fh

)

(x),

for all x ∈ X , then we write F = Γ− limh→∞ Fh and we say that the sequence (Fh)h∈N Γ-converges
to F .

Proposition A.1. ([25, Proposition 5.7] If (Fh)h∈N is a decreasing sequence converging to F : X →
R̄ pointwise, then (Fh)h∈N Γ-converges to the relaxed function F̄ .
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Figure 5. The first column illustrates a sequence of different data. The second

column illustrates the corresponding 10th iteration of the algorithm. The param-
eters we have used are εh = 10−4, λ = µ = 150. In the bottom-left position we
illustrate a datum with only the 3% of original color information, randomly dis-
tributed.
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Figure 6. The first column illustrates a sequence of different data. The second

column illustrates the corresponding 10th iteration of the algorithm. The param-
eters we have used are εh = 10−4, λ = µ = 150. In the bottom-left position we
illustrate a datum with only the 3% of original color information, randomly dis-
tributed.
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Figure 7. History of the ℓ2(N )-error with respect to the original color image, and
for different values of the parameters λ, µ

Definition 3. We say that a function F : X → R̄ is coercive on X , if the closure of the set {F ≤ t}
is countably compact (for example if it is sequentially compact) in X for every t ∈ R. A sequence
(Fh)h∈N is called equi-coercive if there exists a lower-semicontinuous coercive function F : X → R̄

such that Fh ≥ F on X for every h ∈ N.

Theorem A.2. ([25, Theorem 7.8]) Suppose that (Fh)h∈N is equi-coercive in X and it Γ-converges
to a function F : X → R̄ in X, then F is coercive and

min
x∈X

F (x) = lim
h→N

inf
x∈X

Fh(x).

Moreover, the limit points of sequences of minimizers of Fh minimize F .

Theorem A.3. ([25, Theorem 3.8]) Assume that F : X → R̄ is coercive in X and that F̄ is its
relaxed functional. Then the following properties hold:

(i) F̄ is coercive and lower-semicontinuous;
(ii) F̄ has a minimum point;
(iii) minx∈X F̄ (x) = infx∈X F (x).

Putting together the previous results we obtain the following:

Theorem A.4. If (Fh)h∈N is a decreasing sequence converging to a coercive function F : X → R̄

pointwise, then
inf

x∈X
F (x) = min

x∈X
F̄ (x) = lim

h→∞
inf

x∈X
Fh(x).

Proof. Since F ≥ F̄ it is also Fh ≥ F ≥ F̄ . By Theorem A.3 (i) F̄ is coercive and lower-
semicontinuous, therefore (Fh)h∈N is equi-coercive. By Theorem A.1 (Fh)h∈N Γ-converges to F̄
and by Theorem A.2 it is

min
x∈X

F̄ (x) = lim
h→∞

inf
x∈X

Fh(x).
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By Theorem A.3 (iii) it is also

inf
x∈X

F (x) = min
x∈X

F̄ (x).
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