We construct some examples of explicit solutions to the problem

$$\min_{\gamma} \int_{\Omega} d_{\gamma}(x) \, dx$$

where the minimum is over all connected compact sets $\gamma \subset \overline{\Omega} \subset R^2$ of prescribed one-dimensional Hausdorff measure. More precisely we show that, if γ is a $C^{1,1}$ curve of length l with curvature bounded by 1/R, $l \leq \pi R$ and $\varepsilon \leq R$, then γ is a solution to the above problem with Ω being the ε -neighbourhood of γ . In particular, $C^{1,1}$ regularity is optimal for this problem.