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Abstract
We study the asymptotic behaviour of a general class of discrete en-

ergies de�ned on functions u : α ∈ εZN ∩ Ω 7→ u(α) ∈ Rm of the form
Eε(u) =

P
α,β∈εZN∩Ω εNgε(α, β, u(α), u(β)), as the mesh size ε goes to 0.

We prove that under general assumptions, that cover the case of bounded
and unbounded spin system in the thermodynamic limit, the variational
limit of Eε has the form E(u) =

R
Ω

g(x, u(x))dx. The case of homogeniza-
tion and that of non-pairwise interacting systems (e.g. multiple-exchange
spin-systems) is also discussed.

1 Introduction
Both in the applied mathematical and physical literature, there is much interest
in the origin of pattern formation at the mesoscopic scale. On one side continuous
descriptions provide a successful interpretation of pattern formation in terms of
non attainment of in�ma (austenite/martensite phase transformations, micromag-
netics in thin �lms, two wells problems etc., see [5, 21] and [15, 17, 22, 26] for
reviews). On the other side, statistical mechanics aims at predicting such patterns
starting from discrete systems of particles in interaction. This problem can be
stated as follows. Given m,L, N ∈ N and u : ZN → Rm, an energy for a discrete
system on [0, L]N ∩ ZN in the con�guration u can be written as

HL(u) =
∑

x6=y∈ZN∩[0,L]N

g(x, y, u(x), u(y)).

According to the range of u and the choice of g (e.g., regarding the typical dis-
tance of the interactions), we may recover many di�erent models for spin systems,
crystals, foams and polymers, to cite only a few of them. To study the macro-
scopic behaviour of such systems, one can characterize the thermodynamic limits
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of their free energies for general values of the temperature. In general, not much
is known on the �ne properties of the Gibbs states (such as pattern formation).
At small temperature however, a good insight may consist in characterizing the
ground states of the system at the bulk limit, namely:

lim
L→∞

1
LN

inf{HL(u), boundary conditions}.

There is actually a complete equivalence between letting the domain invade
RN (in the sense of Van Hove, e.g.) and taking the bulk limit on the one hand (as
it is usually done in statistical mechanics [28]), and considering a �xed domain and
letting the lattice spacing go to zero on the other hand. This point of view amounts
to consider, for given Ω ⊂ RN and ε > 0, the energy of a pairwise-interacting
discrete system on Zε(Ω) := εZN ∩ Ω in the con�guration u : Zε(Ω) → Rm with
energy-density gε : (Zε(Ω))2 × R2m → R on the lattice Zε(Ω) as the family of
functionals Eε : Rm → (−∞, +∞) de�ned as

Eε(u) =
∑

α,β∈Zε(Ω)

εNgε(α, β, u(α), u(β)). (1.1)

By computing the Γ-limit of Eε as ε goes to zero, the problem of getting some
information on the ground states of the bulk limit can then be recast in terms
of the study of �ne properties of the minimizing sequences of the Γ-converging
functionals Eε. The latter is our point of view.

Within this setting, many authors contributed to the study of the passage
from discrete to continuum from a variational point of view for several interesting
models in the framework of non-linear elasticity ([3, 11, 12]), thin �lms elasticity
([1]), dislocations ([27]) and plasticity ([9]). Recently also Ising type energies for
spin systems have been studied in [2, 4], respectively for u ∈ {−1, +1} and u ∈
{v ∈ Rm, |v| = 1}. The computation of the bulk limit for these systems is a trivial
task, and �ne properties of minimizers appear at a successive scale (interface or
vortex-type phase transitions). This is not true in the general case. For instance,
Giuliani, Lebowitz and Lieb [19] have recently addressed the characterization of
ground states of a spin system mixing both short range ferromagnetic and long
range antiferromagnetic interactions. For this model, the existence and the form of
the bulk limit is not straightforward (see Section 6). Moreover the task of providing
a �ner analysis of the minimizers seems to be reasonably made easier if some
information on the bulk limit is known. In particular, as the limit of a discrete
system cannot always be written as a local integral functional (see [7]), the aim
of the present paper is to �nd a wide class of energies of type (1.1) for which the
Γ-limit can be written as

E(u) =
∫

Ω

g(x, u(x))dx. (1.2)
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Here we stress that the computation of this limit is the �rst necessary step, in the
framework of expansion by Γ-convergence introduced by Braides and Truskinowsky
in [13], towards the full analysis of a problem which entails multiple scales.

To describe our results, it is useful to make a change of variables and rewrite
the energies (1.1) as

Eε(u) =
∑

ξ∈ZN

∑

α,α+εξ∈Zε(Ω)

εNfξ
ε (α, u(α), u(α + εξ)). (1.3)

In our analysis we distinguish whether the range of u is bounded (or even a
�nite set) or not. The �rst case models classical spin systems, whereas the second
one is usually referred to as the unbounded spin system case and it has been �rst
studied by Lebowitz and Presutti in [24] from the statistical mechanics point of
view. We make two types of hypotheses on fξ

ε , namely growth conditions that
ensure the limit functional to be �nite on Lp (for 1 < p < ∞) or on L∞, and a
decay assumption on the range of the interactions that ensures the locality of the
limit functional. Under this set of hypotheses we are able to prove a compactness
theorem asserting that, up to a subsequence, Eε Γ-converges to a functional of
the form (1.2). To prove this result we use a localization technique widely used
in the framework of homogenization theory and introduced in the discrete setting
by Alicandro and Cicalese in [3]. It amounts to regard the Γ-limit as a functional
de�ned on pairs function-set and to prove that all the hypothesis of an integral
representation result (see [14]) are satis�ed.

We also study minimum problems with a constraint on the mean of the �eld
u (this constraint arises naturally in the context of spin systems). This analysis
allows us to address the problem of homogenization for functionals of the type (1.1)
when fξ

ε (·, u, v) = fξ( ·ε , u, v) and fξ(·, u, v) is a periodic function. In particular in
this case we prove the existence of a Γ-limit of the form

∫

Ω

fhom(u(x)) dx

and we provide a homogenization formula for the energy density

fhom(z) = lim
h→+∞

1
hN

inf {Eh(u), 〈u〉 = z} ,

where
Eh(u) :=

∑

ξ∈ZN

∑

α,α+ξ∈ZN∩[0,h]N

fξ(α, u(α), u(α + ξ))

and 〈u〉 = z means that the mean of u in [0, h]N (computed in a discrete sense) is
z. We then simplify the homogenization formula in the case of a density fξ(α, u, v)
convex in the pair (u, v).
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In the last section of the paper we will see how all these results can be ex-
tended to the case of more general spin systems driven by non-pairwise-interaction
energies of the form

Fε(u) =
k∑

j=1

∑

ξ∈ZjN

∑

α,α+εξ1,...,α+εξj∈Zε(Ω)

εNfξ
ε (α, u(α), u(α + εξ1), . . . , u(α + εξj)) (1.4)

where k ∈ N and ξ = (ξ1, ξ2, . . . , ξj) ∈ ZjN . This class of discrete systems contains
also those Heisenberg spin systems with multiple-spin exchange energies, namely
energies of the type

Fε(u) =
k∑

j=2

Jj

∑

Ij

εNu(α1)u(α2) . . . u(αj), (1.5)

where k ≥ 3, Jj are given constants, K ∈ Rm is a bounded set and u ∈ K. Here Ij

denotes a set of j-ples of points of the lattice subject to some geometric constraint.
For this model we also provide, in Section 7.1, an example which shows how the
limit energy-density may depend on the geometric frustration of the spin system
on di�erent lattices.

As an example, in Section 6, we apply the result of the integral representation
theorem to prove that the bulk limit of the ferromagnetic-antiferromagnetic model
considered by Giuliani, Lebowitz and Lieb in [19] is a local integral.

The article is organized as follows:

Contents
1 Introduction 1

2 Notation and preliminary results 4

3 Compactness and integral representation results for spin systems 5
3.1 Pairwise-interaction energies . . . . . . . . . . . . . . . . . . . . . . 5
3.2 The case 1 < p < ∞ . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3 Case p = ∞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.4 Proof in Lp, 1 < p < ∞ . . . . . . . . . . . . . . . . . . . . . . . . 10
3.5 Proof in L∞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Minimum problems 17

5 Homogenization 19
5.1 Homogenization in Lp, 1 < p < ∞ . . . . . . . . . . . . . . . . . . 20

5.1.1 The convex case . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2 Homogenization in L∞ . . . . . . . . . . . . . . . . . . . . . . . . . 25
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6 Ferromagnetic-antiferromagnetic systems: existence of the bulk
limit 26

7 Non-pairwise-interaction energies 29
7.1 Multiple-spin exchange energies . . . . . . . . . . . . . . . . . . . . 31

2 Notation and preliminary results
In what follows LN will denote the N -dimensional Lebesgue measure and Ω ⊂ RN

will be a bounded open set with LN (∂Ω) = 0. We de�ne by B(Ω) the class of all
Borel subsets of Ω, by A(Ω) the class of all open bounded subsets of Ω and by
AR(Ω) the class of all open bounded subsets U ⊂ Ω such that LN (∂U) = 0. For
all B ∈ RN we de�ne Zε(B) = εZN ∩B and, for any ξ ∈ ZN , Rξ

ε(B) = {α ∈ εZN :
α, α + εξ ∈ B}. Given k ∈ N and z ∈ Rm, we set [z]k := k

([
z1
k

]
,
[

z2
k

]
, . . . ,

[
zm

k

])
.

In the rest of the paper we will make use of the following integral represen-
tation theorem on Lebesgue spaces by Buttazzo and Dal Maso [14] for functionals
de�ned on pairs function-sets:

Theorem 2.1 (Integral representation) Let p ∈ [1,∞[, and let F : Lp(Ω,Rm)×
B(Ω) → [0,+∞] be a functional satisfying:

(i) F is local on B(Ω); i.e. ∀u, v ∈ Lp(Ω,Rm) and ∀B ∈ B(Ω), u = v a.e. on
B ⇒ F (u,B) = F (v, B);

(ii) F is additive on B(Ω); i.e. ∀u ∈ Lp(Ω,Rm), and ∀B1, B2 ∈ B(Ω) : B1∩B2 =
∅ ⇒ F (u,B1 ∪B2) = F (u,B1) + F (u,B2);

(iii) there exists u0 ∈ Lp(Ω,Rm) such that F (u0, ·) is a Borel measure on B(Ω)
which is absolutely continuous w.r.t. LN ,

(iv) the functional F (·,Ω) is l.s.c. with respect to the weak convergence of Lp(Ω,Rm),

then there exists a unique positive measurable function f : Ω × Rm → [0, +∞],
with f(x, ·) convex and lower semicontinuous for a.e. x ∈ Ω, such that

F (u,B) =
∫

B

f(x, u(x))dx,

for all u ∈ Lp(Ω,Rm) and B ∈ B(Ω).
If in addition there exist D ∈ L1(Ω,Rm), c, C > 0 such that

c‖u‖p
Lp(B) ≤ F (u,B) ≤ C‖u‖p

Lp(B) + ‖D‖L1(B)

then f is a Carathéodory function satisfying

c|z|p ≤ f(x, z) ≤ C|z|p + D(x) for all z ∈ Rm and x ∈ Ω.
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3 Compactness and integral representation results
for spin systems

In this section we de�ne the class of energies we will mainly consider in the rest
of the paper;i.e. pairwise-interaction energies. For this class of energies we prove
a compactness and integral representation result asserting that, any sequence be-
longing to this family has a Γ-convergent subsequence whose Γ-limit is an integral
functional.

Note that pairwise-interaction energies do not provide the most general set-
ting to which our result apply. As it will be made precise in Section 7, Theorems
3.1 and 3.3 below can be extended to the case of systems driven by non-pairwise
interaction energies. For reader's convenience, here we present all the results for
pairwise-interaction energies since the proofs contain all the ideas of the general
case.

3.1 Pairwise-interaction energies
Given Ω ⊂ RN and ε > 0, the energy of a pairwise-interacting spin system with
spin variable u : Zε(Ω) → Rm and energy-density gε : (Zε(Ω))2×R2m → R on the
lattice Zε(Ω) is given by the functional Eε : Rm → (−∞,+∞):

Eε(u) =
∑

α,β∈Zε(Ω)

εNgε(α, β, u(α), u(β)).

Observe that there is no loss of generality in considering the interactions
symmetric. This symmetry condition is expressed by the formula gε(α, β, u, v) =
gε(β, α, v, u) (note that, otherwise, one could deal with g̃ε(α, β, u, v) = 1

2 (gε(β, α, v, u)+
gε(α, β, u, v))).

In the following we �nd it useful to rewrite the energy by a change of variable.
Given ξ ∈ ZN we de�ne:

gε(α, α + εξ, u, v) = fξ
ε (α, u, v)

and then we have

Eε(u) =
∑

ξ∈ZN

∑

α∈Rξ
ε(Ω)

εNfξ
ε (α, u(α), u(α + εξ)).

Note that, in the present variables, the symmetry condition reads fξ
ε (α, u, v) =

f−ξ
ε (α + εξ, v, u). Set, for any k ∈ N,
Cε(Ω,Rk) = {u : RN → Rk : u constant on α + [0, ε)N for any α ∈ Zε(Ω)},
we may identify any function u : Zε(Ω) → Rk as a piecewise-constant function
belonging to Cε(Ω,Rk) and then consider the family of energies Eε as de�ned on
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a subset of Lp(Ω,Rm). We may extend such energies in the whole Lp(Ω,Rm) and
de�ne a family of functionals Fε : Lp(Ω,Rm) → (−∞, +∞] by

Fε(u) =





∑
ξ∈ZN

∑
α∈Rξ

ε(Ω)

εNfξ
ε (α, u(α), u(α + εξ)) if u ∈ Cε(Ω,Rm)

+∞ otherwise,

(3.6)

where fξ
ε : Zε(Ω)× R2m → R is a given function.

The set of hypotheses we are going to work with will depend on whether we
consider the case 1 < p < ∞ or p = ∞.

3.2 The case 1 < p < ∞
Let us make the following hypotheses on the family of functions fξ

ε :

(H1) Coercivity hypothesis. For all α, ξ and ε, there exist cξ
ε,α ≥ 0 and dξ

ε ∈
Cε(Ω,R), dξ

ε(α) ≥ 0 such that

fξ
ε (α, u, v) ≥ cξ

ε,α(|u|p + |v|p)− dξ
ε(α) for all (u, v) ∈ R2m,

lim
R→∞

lim inf
ε→0

inf
α∈Zε(Ω)

∑

|ξ|≤R

cξ
ε,α ≥ c > 0

and the function dε ∈ Cε(Ω,R) de�ned by dε(α) =
∑

ξ

dξ
ε(α) weakly con-

verges to d in L1(Ω).

(H2) Growth hypothesis. For all α, ξ and ε, there exist Cξ
ε,α ≥ 0 and Dξ

ε ∈
Cε(Ω,R), Dξ

ε(α) ≥ 0 such that

fξ
ε (α, u, v) ≤ Cξ

ε,α(|u|p + |v|p) + Dξ
ε(α) for all (u, v) ∈ R2m,

lim sup
ε→0

sup
α∈Zε(Ω)

∑

ξ∈ZN

Cξ
ε,α ≤ C < ∞

and the function Dε ∈ Cε(Ω,R) de�ned by Dε(α) =
∑

ξ

Dξ
ε(α) weakly con-

verges to D in L1(Ω).

(H3) Decay hypothesis. For all δ > 0, there exists Mδ > 0 such that

lim sup
ε→0

sup
α∈Zε(Ω)

∑

|ξ|≥Mδ

Cξ
ε,α ≤ δ.
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We will see that hypotheses (H1)-(H2) ensure that any Γ-limit of a subsequence
of Eε is de�ned in Lp(Ω). Hypothesis (H3) provides a control on the long-range
interactions which yields the locality of the limit functional.

The main result of this section is the following

Theorem 3.1 Let Fε be as in (1.3), and {fξ
ε }ε,ξ satisfy hypotheses (H1), (H2)

and (H3). Then, for every sequence converging to zero, there exists a subsequence
(εj) and a Carathéodory function f : Ω × Rm → R convex in the second variable
and satisfying the following growth condition of order p

c|y|p − d(x) ≤ f(x, y) ≤ C|y|p + D(x) for all y ∈ Rm and x ∈ Ω, (3.7)

such that (Fεj
(·)) Γ-converges with respect to the weak convergence of Lp(Ω,Rm)

to the functional F : Lp(Ω,Rm) → R de�ned by

F (u) =
∫

Ω

f(x, u(x))dx. (3.8)

3.3 Case p = ∞
Let K ⊂ Rm be a bounded set. Let us make the following hypotheses on the family
of functions fξ

ε :

(H4) For all α, ξ and ε, fξ
ε (α, u, v) = +∞ if (u, v) /∈ K2,

(H5) For all α, ξ and ε, there exists Cξ
ε,α ≥ 0 such that

|fξ
ε (α, u, v)| ≤ Cξ

ε,α for all (u, v) ∈ K2,

lim sup
ε→0

sup
α∈Zε(Ω)

∑

ξ∈ZN

Cξ
ε,α < ∞,

(H6) for all δ > 0, there exists Mδ > 0 such that

lim sup
ε→0

sup
α∈Zε(Ω)

∑

|ξ|≥Mδ

Cξ
ε,α ≤ δ.

Remark 3.2 Hypotheses (H5) and (H6) do not imply lim sup
ε

∑

ξ

sup
α

Cξ
ε,α < ∞.

Let us take for instance C
α/ε
ε,α = 1

|α
ε |+1

and Cξ
ε,α = 0 for ξ 6= α

ε .

Theorem 3.3 Let Fε be as in (1.3), and {fξ
ε }ε,ξ satisfy hypotheses (H4), (H5)

and (H6). Then, for every sequence converging to zero, there exists a subsequence
(εj) and a Carathéodory function f : Ω × K → R convex in the second variable
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such that (Fεj (·)) Γ-converges with respect to the weak *-convergence of L∞(Ω,R)
to the functional F : L∞(Ω,R) → R ∪ {+∞} de�ned by

F (u) =





∫

Ω

f(x, u(x))dx if u ∈ L∞(Ω,K)

+∞ otherwise,
(3.9)

where K is the convex hull of K in Rm.

We now brie�y discuss the optimality of hypothesis (H5) on two simple ex-
amples.

Example 3.4 In this example we show that if we weaken assumption (H5) by
only assuming that

lim sup
ε

|
∑

ξ

fξ
ε (α, u, v)| < ∞ ∀α ∈ Rξ

ε(Ω), (u, v) ∈ K2,

then the Γ-limit may go to −∞ at some point. Let us consider a one-dimensional
discrete energy of the form (1.3) with energy density given by:

fξ
ε (α, u, v) =

{
(−1)|ξ|+1

|ξ|+1 uv if u, v ∈ {−1, 1},
+∞ if u, v 6∈ {−1, 1}.

For Ω = [0, 1] and ε = 1
n , the energy of the system for u : 1

nZ ∩ [0, 1] → {−1, 1}
can thus be written as

Fn(u) =
n∑

k=1

(−1)k+1

k + 1

n−k∑

i=0

1
n

u
( i

n

)
u
( i + k

n

)
.

Set un( i
n ) = (−1)i, we have that un ⇀∗ 0 in L∞([0, 1]), and

lim
n

Fn(un) = −
∞∑

k=1

1
k + 1

= −∞.

Hence Γ-limn Fn(0) = −∞. However, Γ-limn Fn is not identically −∞. Indeed it
can be easily proved that

Γ− lim
n

Fn(1) = lim
n

Fn(1) =
+∞∑

k=1

(−1)k+1

k + 1
.
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Example 3.5 In this example we weaken assumption (H5) by assuming that Ce1
ε

goes to in�nity as ε → 0. Let us consider a one-dimensional nearest-neighbors spin
system on (0, 1) with spin �eld taking values in K = {−1; 0; 1}. For u : εZ∩(0, 1) →
{−1, 0, 1}, let the energy of the system be of the form

Fε(u) =
∑

α∈εZ∩(0,1)

εfε(u(α), u(α + ε)), (3.10)

where the pair potential fε(u, v) : {−1; 0; 1}2 → (0,+∞) is such that fε(u, v) =
fε(v, u) and is given by

fε(α, u, v) =





1
ε

if (u, v) = (0, 1)

1 otherwise.

(3.11)

This energy does not satisfy (H5) since fε(0, 1) → ∞. However, any u ∈
L∞((0, 1), [−1, 1]) can be approximated in the w∗-topology of L∞ by a sequence
uε : εZ ∩ (0, 1) → {−1, 0, 1} such that (uε(α), uε(α + ε)) 6= (0, 1) for all α ∈
εZ ∩ (0, 1). This suggests us that, if in the de�nition of fε we replace 1

εγ by any
C ≥ max{fε(u, v), (u, v) 6= (0, 1)}, then the modi�ed energy satis�es assumption
(H5) and has the same Γ-limit of the original one.

Let us consider the case when in (3.10) the energy density in (3.11) is replaced
by

fε(u, v) =





1
ε

if (u, v) ∈ {(0, 1), (−1, 1)}

1
2

otherwise.

Let us now consider the piecewise constant function uk(x) = −1 for x < 1/k, and
uk(x) = 1 for x ≥ 1/k. For all uε ⇀∗ uk, we have Fε(uε) ≥ 1+ 1

2 +O(ε) = 3
2 +O(ε).

This can be easily seen by minimizing pointwise the energy and noticing that we
need at least one jump from 0 to 1 or from −1 to 1 to approximate uk. Thus, if
the Γ − limε Fε =: F exists, it satis�es F (uk) ≥ 3

2 . We also have that F (−1) =
F (1) = 1

2 . Let us suppose now that F admits an integral representation of the

type F (v) =
∫ 1

0

f(x, v(x))dx. As f ≥ 0, F (uk) =
∫ 1/k

0
f(x,−1) +

∫ 1

1/k
f(x, 1) ≤

∫ 1

0
f(x,−1) +

∫ 1

0
f(x, 1) = F (−1) + F (1) = 1, which contradicts F (uk) ≥ 3

2 .
Therefore the integral representation does not hold.

If fε(0, 1) = fε(−1, 1) = 1
ε2 , we cannot even �nd sequences of equi-bounded

energies converging to uk. Therefore the Γ-limit is +∞.
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3.4 Proof in Lp, 1 < p < ∞
In the proofs, we implicitly take m = 1, since the arguments do not depend on the
dimension (the problem is scalar as opposed to vectorial as in [3]).

To perform our analysis we need to de�ne a localized version of the functional
in (3.6). For any A ∈ AR(Ω), we set Fε(·, A) : Lp(Ω,Rm) → (−∞,+∞] as

Fε(u,A) =





∑
ξ∈ZN

∑
α∈Rξ

ε(A)

εNfξ
ε (α, u(α), u(α + εξ)) if u ∈ Cε(A,Rm)

+∞ otherwise.

(3.12)

Moreover we de�ne the lower and upper Γ-limits of Fε(u, A) as

F ′(u,A) = Γ- lim inf
ε→0+

Fε(u,A) = inf{lim inf
ε→0+

Fε(uε, A) : uε → u w-Lp(Ω)},
F ′′(u,A) = Γ- lim sup

ε→0+
Fε(u,A) = inf{lim sup

ε→0+
Fε(uε, A) : uε → u w-Lp(Ω)},

(3.13)

respectively. Then Fε is said to Γ-converge to F as ε → 0+ if and only if F ′(u) =
F ′′(u) = F (u) (we refer to [8] and [16] for de�nition and properties of Γ-convergence).

In the next two propositions we show that, by (H1) and (H2), F ′(u,A) and
F ′′(u,A) satisfy standard p-growth conditions.

Proposition 3.6 Let A ∈ AR(Ω), and
{
fξ

ε

}
satisfy (H1). If u ∈ Lp(A) such that

F ′(u,A) < ∞ then

F ′(u,A) ≥ c
(
‖u‖p

Lp(A) − ‖d‖L1(A)

)
(3.14)

for some positive constant c independent of u and A.

Proof. Let εn → 0, and let un ⇀ u in Lp(A) and be such that lim inf Fεn(un, A) < ∞.
Let Aη = {x ∈ A : dist(x, ∂A) > η} for all η > 0. By the growth condition (H1),
we have for 0 < η′ < η,

Fεn(un, A) ≥
∑

α∈Aη′

∑

|ξ|≤η/εn

εN
n cξ

εn,α|un(α)|p −
∑

ξ∈ZN

∑

α∈Rξ
εn (A)

εN
n dξ

εn
(α)

≥
∑

α∈Aη′

εN
n inf

α∈εnZN∩Ω


 ∑

|ξ|≤η/εn

cξ
εn,α


 |un(α)|p −

∑

ξ∈ZN

∑

α∈Rξ
εn (A)

εN
n dξ

εn
(α)

≥
∑

α∈Aη′

εN
n

c

2
|un(α)|p −

∑

ξ∈ZN

∑

α∈Rξ
εn (A)

εN
n dξ

εn
(α)

≥ c

2

∫

Aη

|un(x)|pdx−
∑

ξ∈ZN

∑

α∈Rξ
εn (A)

εN
n dξ

εn
(α)

(3.15)
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for εn small enough. Using now the lower semicontinuity of the norm for the weak
convergence of Lp and (H1), we obtain

F ′(u,A) ≥ c

2

∫

Aη

|u(x)|pdx−
∫

A

d(x)dx

Letting η go to zero, we obtain the thesis.

Proposition 3.7 Let A ∈ AR(Ω), and
{
fξ

ε

}
satisfy (H2). If u ∈ Lp(A) then

F ′′(u, A) ≤ C
(
‖u‖p

Lp(A) + ‖D‖L1(A)

)
(3.16)

for some positive constant C independent of u and A.

Proof. Let u ∈ C0(A) and let us de�ne un by un(α) = u(α) for all α such that
α + [0, ε]N ⊂ A and un(α) = 0 otherwise. We then have un → u in Lp(A) and

Fεn
(un, A) ≤

∑

ξ∈ZN

∑

α∈Rξ
εn (A)

εN
n

(
Cξ

εn,α(|un(α)|p + |un(α + εnξ)|p) + Dξ
εn

(α)
)

≤ 2
∑

α∈εnZN∩A

∑

ξ∈ZN

εN
n Cξ

εn,α|un(α)|p +
∑

ξ∈ZN

∑

α∈Rξ
εn (A)

εN
n Dξ

εn
(α)

≤ C
∑

α∈εnZN∩A

εN
n |un(α)|p +

∑

ξ∈ZN

∑

α∈Rξ
εn (A)

εN
n Dξ

εn
(α)

≤ C

∫

A

|un(x)|pdx +
∑

ξ∈ZN

∑

α∈Rξ
εn (A)

εN
n Dξ

εn
(α),

due to the symmetry of the interactions. Letting εn go to zero, we obtain

F ′′(u,A) ≤ C
(
‖u‖p

Lp(A) + ‖D‖L1(A)

)
.

Using a density argument, we deduce the thesis for all u ∈ Lp(A).

Remark 3.8 In order to prove Theorem 3.1 it is not restrictive to suppose that
fξ

ε ≥ 0. Indeed, if it were not the case, we could consider the family of functionals
F̃ε(u,A) de�ned as in (3.12) by replacing fξ

ε by fξ
ε + dξ

ε and conclude by easily
proving that F̃ ′′(u,A) = F ′′(u,A) +

∫
A

d dx.

As a consequence of the following three propositions we will prove that
F ′′(u,A) satisfy all the hypotheses of Theorem 2.1.

Proposition 3.9 Let
{
fξ

ε

}
satisfy (H1)-(H3) and be such that fξ

ε ≥ 0. If u ∈
Lp(Ω) and A ∈ AR(Ω), then there holds

sup
A′⊂⊂A

F ′′(u,A′) = F ′′(u, A). (3.17)

12



Proof. By the non negativity of fξ
ε ≥ 0, F ′′(u, ·) is an increasing set function.

Then it su�ces to prove that

sup
A′⊂⊂A

F ′′(u,A′) ≥ F ′′(u, A).

Given δ > 0, there exists A′′ ⊂⊂ A such that

‖D‖L1(A\A′′) + ‖u‖p

Lp(A\A′′) ≤ δ.

Reasoning by approximation, we may �nd vε ∈ Lp(Ω) such that vε weakly con-
verges to u in Lp(Ω) and

lim sup
ε→0

Fε(vε, A \A′′) ≤ C
(
‖D‖L1(A\A′′) + ‖u‖p

Lp(A\A′′)

)
≤ Cδ. (3.18)

Let A′ ∈ A(Ω) be such that A′′ ⊂⊂ A′ ⊂⊂ A and let uε ∈ Lp(Ω) weakly converge
to u in Lp(Ω), with

lim sup
ε→0

Fε(uε, A
′) = F ′′(u, A′).

Set
d := dist(A′′, A′c)

and for any M ∈ N and i ∈ {1, . . . , M} de�ne

Ai = {x ∈ A : dist(x,A′′) < i
d

M
}.

Let ϕi be the characteristic function of Ai. Then for any i ∈ {1, . . . , M} consider
the family of functions wi

ε ∈ Aε(Ω) still weakly converging to u in Lp(Ω) de�ned
as

wi
ε(α) := ϕi(α)uε(α) + (1− ϕi(α)) vε(α).

Fix i ∈ {1, 2, . . . ,M − 3}. Given ξ ∈ ZN and α ∈ Rξ
ε(A), then either α ∈

Rξ
ε(Ai), or α ∈ Rξ

ε(A \Ai+1), or

[α, α + εξ] ∩ (
Ai+1 \Ai

) ∩A′
c 6= ∅.

Then, if we set
(
Ai+1 \Ai

)ε,ξ
:= {x = y + tξ, |t| ≤ ε, y ∈ Ai+1 \Ai},

Sε,ξ
i :=

(
Ai+1 \Ai

)ε,ξ ∩A,

we get
Rξ

ε(A) ⊆ Rξ
ε(Ai) ∪Rξ

ε(A \Ai+1) ∪Rξ
ε

(
Sε,ξ

i

)
.

13



Let Mδ > 0 be such that lim sup
ε+→0

∑

|ξ|>Mδ

Cξ
ε < δ. Then, summing on ξ ∈ ZN ,

using (H2), (H3) and the previous decomposition we get

Fε(wi
ε, A) ≤ Fε(uε, A

′) + Fε(vε, A \A′′)
+C

∑

|ξ|≤Mδ

Cξ
ε

∑

α∈Rξ
ε(Sε,ξ

i )
εN (|uε(α)|p + |uε(α + εξ)|p + |vε(α)|p + |vε(α + εξ)|p)

+C
∑

|ξ|>Mδ

Cξ
ε

∑

α∈A

εN (|uε(α)|p + |uε(α + εξ)|p + |vε(α)|p + |vε(α + εξ)|p)

≤ Fε(uε, A
′) + Fε(vε, A \A′′)

+C
∑

|ξ|≤Mδ

Cξ
ε

∑

α∈Rξ
ε(Sε,ξ

i )
εN (|uε(α)|p + |vε(α)|p)

+C


 ∑

|ξ|>Mδ

Cξ
ε


 (‖uε‖p

Lp(A) + ‖vε‖p
Lp(A)),

by symmetry of the interactions. Note that, for ε small enough and |ξ| ≤ Mδ,
we have that Rξ

ε

(
Sε,ξ

i

)
∩Rξ

ε

(
Sε,ξ

j

)
6= ∅ if and only if |i − j| = 1. Note also that

∪M−3
i=1 Rξ

ε

(
Sε,ξ

i

)
⊆ Rξ

ε

(
A′ \A′′

)
. Thus, summing over i ∈ {1, 2, · · · ,M − 3}, aver-

aging and taking into account . . . , we get

1
M − 3

M−3∑

i=1

Fε(wi
ε, A) ≤ Fε(uε, A

′) + Cδ

+
1

M − 3
C


 ∑

|ξ|≤Mδ

Cξ
ε


 (‖uε‖p

Lp(Ω) + ‖vε‖p
Lp(Ω))

+Cδ(‖uε‖p
Lp(Ω) + ‖vε‖p

Lp(Ω))
(3.19)

For all M and ε we can choose i(ε) ∈ {1, 2, · · · ,M − 3} such that

Fε(wi(ε)
ε , A) ≤ 1

M − 3

M−3∑

j=1

Fε(wj
ε, A).

Then, w
i(ε)
ε still weakly converges to u in Lp(Ω). Therefore, letting ε go to zero,

we obtain
F ′′(u,A) ≤ sup

A′⊂⊂A
F ′′(u,A′) + C

(
1

M − 3
+ δ

)
.

Letting δ go to zero and M to in�nity concludes the proof of the thesis.

Remark 3.10 Using the same arguments in the proof of Proposition 3.9 one can
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show that

F ′(u,A) = Γ- lim inf
ε→0+

Fε(u,A) = inf{lim inf
ε→0+

Fε(uε, A) : uε → u w-Lp(A)},
F ′′(u,A) = Γ- lim sup

ε→0+
Fε(u,A) = inf{lim sup

ε→0+
Fε(uε, A) : uε → u w-Lp(A)}.

Proposition 3.11 Let
{
fξ

ε

}
satisfy (H1)-(H3) and be such that fξ

ε ≥ 0. If u ∈
Lp(Ω) and A,B ∈ AR(Ω) then there holds

F ′′(u,A ∪B) ≤ F ′′(u,A) + F ′′(u,B). (3.20)

If A ∩B = ∅ then

F ′′(u,A ∪B) ≥ F ′′(u,A) + F ′′(u,B). (3.21)

Proof. Using the same strategy as for Proposition 3.9, we may prove that for all
A′, B′ ∈ A(Ω) such that A′ ⊂⊂ A and B′ ⊂⊂ B we have

F ′′(u,A′ ∪B′) ≤ F ′′(u,A) + F ′′(u,B). (3.22)

Since for all C ∈ A(Ω) such that C ⊂⊂ A∪B there exist A′, B′ ∈ A(Ω) such that
A′ ⊂⊂ A, B′ ⊂⊂ B and C ⊂ A′ ∪ B′, Proposition 3.9 shows that (3.22) implies
(3.20). In addition, Fε(u, ·) is clearly superadditive, and so is F ′′ at the limit.

Proposition 3.12 Let
{
fξ

ε

}
satisfy (H1)-(H3) and be such that fξ

ε ≥ 0. Let F be
a Γ-limit of Fε for the weak convergence of Lp(Ω). Then for all A ∈ AR(Ω) and
u, v ∈ Lp(Ω) such that v = u almost everywhere on A, one has

F (u,A) = F (v,A).

Proof. Let u and v ∈ Lp(Ω) be such that u|A = v|A almost everywhere on
A ∈ A(Ω). As F (·, A) is a Γ-limit of Fε(·, A), we have that for all wε ⇀ v and
w̃ε ⇀ u in Lp(A), F (u,A) ≤ lim inf Fε(wε, A) and F (v,A) ≤ lim inf Fε(wε, A).

Let now uε and vε be recovery sequences for F (u,A) and F (v, A) in Lp(A).
As u|A = v|A almost everywhere on A, one also has vε ⇀ u|A in Lp(A) and
uε ⇀ v|A in Lp(A). Thus, F (v,A) ≤ lim inf Fε(uε, A) = F (u,A) and F (u,A) ≤
lim inf Fε(vε, A) = F (v, A), which shows the thesis.
Proof of Theorem 3.1 By Remark 3.8 it is not restrictive to suppose fξ

ε ≥ 0.
To conclude we �rst need to use the compactness of Γ-convergence w.r.t. weak
topologies. To this end we observe that, if we de�ne

F̃ε(u,A) =





Fε(u,A) if u ∈ Cε(A,Rm),
u(α) = 0 if α + [0, ε]N ∩ ∂A 6= ∅

+∞ otherwise,
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then, by using the same argument exploited in the proof of Theorem 3.9, it can be
easily shown that F̃ ′(u,A) = F ′(u,A) and that F̃ ′′(u,A) = F ′′(u,A). Moreover
F̃ε(u,A) ≥ c(‖u‖p

Lp(A) − 1) for some constant c > 0. Then by Corollary 8.12 in
[16], Proposition 3.9 and Theorem 10.3 in [10], there exists a subsequence εjk

such
that, for all (u,A) ∈ Lp(Ω)×AR(Ω), there exists

Γ(w − Lp)- lim
k

Fεjk
(u,A) =: F (u,A).

Moreover we can extend F (u, ·) to A(Ω) by setting F (u,A) = sup{F (u, A′) : A′ ∈
AR(Ω), A′ ⊂⊂ A} and easily verify that all the results contained in Propositions
3.6, 3.7, 3.9, 3.11 and 3.12 still hold true. Hence, by the De Giorgi-Letta Crite-
rion (see [10]), F (u, ·) is the restriction to A(Ω) of a Borel measure F (u, ·) which,
by Proposition 3.7, is absolutely continuous w.r.t. LN . By the lower semicontinu-
ity of F (u,A) and standard arguments in measure theory, F (u, ·) ful�lls all the
hypotheses of Theorem 2.1, by which we get the conclusion.

The proof of the previous theorem actually shows that a local version of
Theorem 2.1 holds

Theorem 3.13 Let Fε be as in (1.3), and {fξ
ε }ε,ξ satisfy hypotheses (H1), (H2)

and (H3). Let (εj) and f be as in Theorem 3.1. Then, for any u ∈ Lp(Ω,Rm) and
A ∈ A(Ω), there holds

Γ(w − Lp)- lim
j

Fεj (u,A) =
∫

A

f(x, u(x))dx.

3.5 Proof in L∞

The proof of Theorem 3.3 is an easy adaptation of the proof of Theorem 3.1. Let
F ′(u,A) and F ′′(u, A) be given by (3.13) (note that on L∞(Ω, K) the weak Lp

topologies are all equivalent for any p). Moreover note that for any uε ∈ Cε(Ω,K)
such that uε ⇀∗ u in L∞ then u ∈ L∞(Ω, K) and that, for any u ∈ L∞(Ω, K) one
can construct uε ∈ Cε(Ω,K) such that uε ⇀∗ u in L∞. By (H5) it holds that, for
any u ∈ Cε(Ω,K) and A ∈ AR(Ω)

|Fε(u,A)| ≤
∑

ξ∈ZN

∑

α∈Rξ
ε(A)

εNCξ
ε,α (3.23)

=
∑

α∈A

∑

ξ∈ZN

εNCξ
ε,α (3.24)

≤ C(|A|+ O(ε)). (3.25)

Then, by (H4) and (3.23) we get that F ′(u, A) and F ′′(u,A) are �nite if and only
if u ∈ L∞(Ω,K) and satisfy

−C|A| ≤ F ′(u,A) ≤ F ′′(u,A) ≤ C|A|.
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All the properties stated in Propositions 3.9, 3.11 and 3.12 hold true in the present
case for any u, v ∈ L∞(Ω,K) and for all A ∈ AR(Ω), the proof being the same.

Since the weak topology on L∞(Ω, K) is metrizable, by the compactness
property of Γ-convergence in metric spaces, there exists a subsequence εj → 0
such that, for any (u, A) ∈ L∞(Ω, K)×AR(Ω)

Γ(w∗ − L∞)- lim
j

Fεj
(u,A) = F (u,A).

As in the proof of the Lp case, we may extend F (u, ·) to B(Ω). Then, by applying
Theorem 2.1 to the functional F : Lp(Ω,Rm)× B(Ω) → [0, +∞] de�ned as

F (u,B) =

{
F (u,B) if u ∈ L∞(Ω, K)
+∞ otherwise,

we get the conclusion.
As in the Lp case the following local version of Theorem 3.3 holds true:

Theorem 3.14 Let Fε be as in (1.3), and {fξ
ε }ε,ξ satisfy hypotheses (H4), (H5)

and (H6). Then, let (εj) and f be as in Theorem 3.3. Then, for any u ∈ L∞(Ω, K)
and A ∈ A(Ω), there holds

Γ(w∗ − L∞)- lim
j

Fεj (u,A) =
∫

A

f(x, u(x))dx.

4 Minimum problems
In this section we derive a convergence result for minimum problems in the case
that our functionals are subject to mean type constraints. Let us introduce the
notion of discrete mean.

De�nition 4.1 For any A ⊂ Ω, ε > 0, and u ∈ Cε(Ω,Rm), we set

〈u〉d,ε
A =

1
#(εZN ∩A)

∑

α∈εZN∩A

u(α).

Given z ∈ Rm, we de�ne F z
ε : Lp(Ω)×A(Ω) → (−∞,+∞] as

F z
ε (u,A) =

{
Fε(u,A) 〈u〉ε,d

A = z

+∞ otherwise.
(4.26)

The following theorem holds true.

Theorem 4.2 Let {fξ
ε }ε,ξ satisfy hypotheses (H1), (H2) and (H3). Let (εj) and

f be as in Theorem 3.1. For any z ∈ Rm, let F z
εj

be as in (4.26). Then, for
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any A ∈ AR(Ω), (F z
εj

(·, A)) Γ-converges with respect to the weak convergence of
Lp(Ω,Rm) to the functional F z : Lp(Ω)×AR(Ω) → (−∞,+∞] de�ned as

F z(u,A) =

{∫
A

f(x, u) dx 〈u〉A = z

+∞ otherwise.

Proof. Let us �rst prove the lower bound inequality. Let A ∈ AR(Ω) and let (uj)
be a sequence of functions converging to u w.r.t. the weak convergence of Lp(Ω)
such that

lim inf
j

F z
εj

(uj , A) = lim
j

F z
εj

(uj , A) < +∞.

Then 〈uj〉εj ,d
A = z and, by the equi-integrability of uj we get that 〈u〉A = z. Then

the lower bound inequality follows by Theorem 3.13, observing that

F z
εj

(uj , A) ≥ Fεj
(uj , A).

To prove the upper bound inequality let us observe that, �xed z ∈ Rm and u ∈
Lp(Ω) such that 〈u〉A = z, by using the same argument exploited in the proof of
Proposition 3.9, for every δ > 0 there exists B ⊂⊂ A and a sequence of functions
uj → u weakly in Lp(Ω) such that

lim sup
j

Fεj (uj , A) ≤ F (u,A) + δ,

lim sup
j

∑

α∈Rξ
ε(A\B)

εN (|uj(α)|p + Dε(α)) ≤ Cδ (4.27)

for some constant C > 0. Set zj = 〈uj〉εj ,d
A and let B′ be such that B ⊂⊂ B′ ⊂⊂ A.

We then de�ne

vj(α) =

{
uj(α) α ∈ εjZN ∩B′

uj(α) + cj α ∈ εjZN ∩ (A \B′),

where
cj = (z − zj)

#(εjZN ∩A)
#(εjZN ∩ (A \B′)

.

Then, 〈vj〉εj ,d
A = z and, since zj → z, we have that vj → u weakly in Lp(A) . By

(4.27), since cj → 0, we conclude that

lim sup
j

F z
εj

(vj , A) ≤ F z(u,A) + δ.

By letting δ go to 0 we obtain the claim.
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Remark 4.3 For all η > 0 set Aη = {x ∈ A|d(x, ∂A) > η}. The proof of the pre-
vious result shows that, if, for every L > 0, we replace the functional F z

ε (u,A) in
4.26 by

F z
ε (u,A) =

{
Fε(u,A) 〈u〉ε,d

A = z and u(α) = z if α ∈ A \AεL

+∞ otherwise,
(4.28)

then the conclusion of Theorem 4.2 still holds true.

By the equicoercivity of the energies F z
ε and the properties of Γ-convergence we

derive the following corollary

Corollary 4.4 Under the hypotheses of Theorem 4.2, for any z ∈ Rm, A ∈ AR(Ω)
and for L large enough,

lim
j

inf{Fεj
(u, A) : 〈u〉ε,d

A = z and u(α) = z if α ∈ A \AεL}
= min{F (u,A) : 〈u〉A = z}.

Moreover, if (uj) is a converging sequence such that

lim
j

Fεj (uj , A) = lim
j

inf{Fεj (u,A) : 〈u〉ε,d
A = z and u(α) = z if α ∈ A \AεL},

then its limit is a minimizer for min{F (u, A) : 〈u〉A = z}.
Proof. It su�ces to observe that, by the coercivity assumption (H1), for L large
enough, the minimizing sequence uj is bounded in the Lp-norm. Then the conclu-
sion follows by Theorem 4.2 and the properties of Γ-convergence.

In the L∞ case, due to the discrete structure of the problem and the fact
that the functions in the domain of Fε take values in a set which will be relaxed in
the limit procedure, one need to relax the constraint and consider, for all z ∈ Rm

and ρ > 0, the functional F z,ρ
ε : L∞(Ω)×A(Ω) → R given by

F z,ρ
ε (u,A) =

{
Fε(u,A) 〈u〉ε,d

A ∈ B(z, ρ)
+∞ otherwise,

(4.29)

with Fε as in (1.3). The following Γ-convergence result holds true.

Theorem 4.5 Let {fξ
ε }ε,ξ satisfy hypotheses (H4), (H5) and (H6). Let (εj) and

f be as in Theorem 3.3. Then, for any z ∈ K, ρ > 0 and A ∈ AR(Ω) (F z,ρ
εj

(·, A))
Γ-converges with respect to the weak *-convergence of L∞(Ω,Rm) to the functional
and F z,ρ : L∞(Ω, K)×AR(Ω) → (−∞, +∞] de�ned as

F z,ρ(u,A) =

{∫
A

f(x, u) dx u ∈ L∞(A; K), 〈u〉A ∈ B(z, ρ)
+∞ otherwise.

(4.30)
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Proof. The lower bound inequality is straightforward thanks to Theorem 3.3, ob-
serving that the constraint is closed under weak *-convergence. By density it is
enough to prove the upper bound inequality for u such that 〈u〉A ∈ B(z, ρ). For
such a u we conclude by observing that the optimizing sequence uj for

∫
A

f(x, u(x)) dx

satis�es the constraint 〈u〉εj ,d
A ∈ B(z, ρ) for j large enough.

By the properties of Γ-convergence, the previous theorem yields the following
result about the convergence of minimum problems.
Corollary 4.6 Under the hypotheses of Theorem 4.5, for any z ∈ Rm, ρ > 0 and
A ∈ AR(Ω),

lim
j

inf{Fεj
(u,A) : 〈u〉εj ,d

A ∈ B(z, ρ)} = min{F (u,A) : 〈u〉A ∈ B(z, ρ)}.

Moreover, if (uj) is a converging sequence such that

lim
j

Fεj
(uj , A) = lim

ρ
lim

j
inf{Fεj

(u,A) : 〈u〉εj ,d
A ∈ B(z, ρ)},

then its limit is a minimizer for min{F (u, A) : 〈u〉A ∈ B(z, ρ)}.

5 Homogenization
In this section we show that if the energy densities fξ

ε are obtained by scaling by
ε functions fξ periodic in the space variable, then the energy density of the limit
functional does not depend on the space variable and is given by a homogenization
formula.

5.1 Homogenization in Lp, 1 < p < ∞
Let k ∈ N and for any ξ ∈ ZN , let fξ : ZN ×Rm×Rm → R be such that fξ(·, u, v)
is [0, k]N -periodic for any u, v ∈ Rm. We then set

fξ
ε (α, u, v) := fξ(

α

ε
, u, v). (5.31)

In this case, hypotheses (H1), (H2), (H3) read
(H7) For all α and ξ there exist cξ ≥ 0 and dξ ≥ 0 such that

fξ(α, u, v) ≥ cξ(|u|p + |v|p)− dξ

for all (u, v) ∈ R2m, there exists ξ̄ ∈ ZN with cξ̄ > 0, and
∑

ξ dξ < ∞.

(H8) For all α and ξ, there exists Cξ ≥ 0 such that

fξ(α, u, v) ≤ Cξ(|u|p + |v|p + 1)

for all (u, v) ∈ R2m, and
∑

ξ Cξ < ∞.
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In what follows, for simplicity of notation, we will write 〈u〉dA in place of 〈u〉d,1
A .

We have the following

Theorem 5.1 Let {fξ
ε }ε,ξ satisfy (5.31), (H7) and (H8). Then Fε Γ(w − Lp)-

converges to
F (u) =

∫

Ω

fhom(u(x))dx

for all u ∈ Lp(Ω), where fhom is given by the homogenization formula

fhom(z) = lim
h→+∞

1
hN

inf





∑

ξ∈ZN

∑

β∈Rξ
1(Qh)

fξ(β, v(β), v(β + ξ)), 〈v〉dQh
= z




(5.32)

and Qh = (0, h)N .

Proof. Let (εn) be a sequence of positive numbers converging to 0. Then, by
Theorem 3.13, we can extract a subsequence (not relabeled) such that (Fεn(·, A))
Γ-converges to a functional F (·, A) de�ned as in (3.8). The theorem is proved if
we show that the density function f does not depend on the space variable x and
if f ≡ fhom.

To prove the independence on the space variable, it su�ces to show that

F (z, B(x, ρ)) = F (z, B(y, ρ))

for all x, y ∈ Ω, ρ > 0 and z ∈ Rm. Using the inner regularity and by changing the
roles of x and y, it su�ces to have

F (z, B(x, ρ′)) ≤ F (z,B(y, ρ)) (5.33)

for all ρ′ < ρ. Let vn ⇀ z in Lp(Ω) be such that

lim
n

Fεn(vn, B(y, ρ)) = F (z,B(y, ρ)).

Then set

un(α) =





vn

(
α− εn

[
x− y

εn

]

k

)
if α ∈ εnZN ∩B(x, ρ′)

z otherwise

Due to the periodicity (5.31), for n large enough, we have

Fεn(un, B(x, ρ′)) ≤ Fεn(vn, B(y, ρ)).

From this, we easily get (5.33) since un ⇀ z.

21



The second step consists in proving that f ≡ fhom. To this end, we note that,
since f(·) is a convex function, there holds

f(z) =
1

rN
min

{∫

Qr

f(u)dx, 〈u〉Qr
= z

}

= lim
n

1
rN

inf
{

Fεn(u,Qr), 〈u〉d,εn

Qr
= z

}
.

(5.34)

The second equality is a consequence of the convergence of minima given in Corol-
lary 4.4. Set hn =

[
r

εn

]
+ 1, then (5.34) holds with εnhn in place of r. Eventually,

through the change of variable

β =
α

ε
, v(β) = u(εβ), (5.35)

we get

f(z) = lim
n

1
hN

n

inf





∑

ξ∈ZN

∑

β∈Rξ
1(Qhn )

fξ(β, v(β), v(β + ξ)), 〈v〉dQhn
= z



 .

One then infers the thesis from the existence of limn→∞ I(n, z), where

I(n, z) =
1

nN
inf





∑

ξ∈ZN

∑

β∈Rξ
1(Qn)

fξ(β, v(β), v(β + ξ)), 〈v〉dQn
= z



 . (5.36)

To prove the existence of this limit, let us �rst truncate the range of the
interactions and de�ne for any R > 0,

FR
1 (u, Qn) =

∑

ξ∈ZN ,|ξ|<R

∑

β∈Rξ
1(Qn)

fξ(β, v(β), v(β + ξ)),

and
IR(n, z) =

1
nN

inf
{
FR

1 (u,Qn), 〈v〉Qn = z
}

.

By (H8) one can easily prove that

lim
R→∞

sup
n
|IR(n, z)− I(n, z)| = 0. (5.37)

We also introduce for n > R,

IR,R(n, z) =
1

nN
inf

{
FR

1 (u,Qn), 〈v〉Qn = z, v(β) = z ∀β ∈ Qn \Qn−R

}
. (5.38)
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By using the same arguments of Theorem 4.2, thanks to Remark (4.3) and Corol-
lary (4.4), for any sequence nh → +∞ there exists a subsequence (not relabelled)
such that

lim
h

IR(nh, z) = lim
h

IR,R(nh, z). (5.39)

It is then enough to prove that limn→∞ IR,R(n, z) exists for all z ∈ Rm.
To this end let n ∈ N and let vn be a test function in the minimum problem

de�ning IR,R(n, z) such that

1
nN

FR
1 (vn, Qn) ≤ IR,R(n, z) +

1
n

.

We then de�ne, for any k > n, a test function uk in the minimum problem de�ning
IR,R(k, z) as follows:

uk(β) =

{
vn(β − ni) if β ∈ ni + Qn, i ∈ {0, . . . ,

[
k
n

]− 1}N

z otherwise.

By the growth hypotheses on fξ and the constancy of uk near the boundary of
Qn, we get

IR,R
k (z) ≤ 1

kN
FR

1 (uk, Qk) ≤
[

k

n

]N 1
kN

FR
1 (vn, Qn)

+C|z|p 1
kN

(
kN −

[
k

n

]N

nN +
[

k

n

]N (
(n + R)N − (n−R)N

)
)

≤
[

k

n

]N
nN

kN

(
IR,R
n (z) +

1
n

)

+C|z|p 1
kN

(
kN −

[
k

n

]N

nN +
[

k

n

]N (
(n + R)N − (n−R)N

)
)

.

By letting k tend to +∞, we then get

lim sup
k

IR,R
k (z) ≤ IR,R

n (z) +
1
n

+ C|z|p 1
nN

(
(n + R)N − (n−R)N

)

Eventually, letting n tend to +∞, we obtain

lim sup
k

IR,R
k (z) ≤ lim inf

n
IR,R
n (z),

that is the claim.
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5.1.1 The convex case
In this subsection we prove that in the convex case the function fhom can be
rewritten by a single periodic minimization problem on the periodic cell Qk =
(0, k)N .
Theorem 5.2 Let (fξ

ε )ε,ξ satis�es all the assumptions of Theorem 5.1 and in
addition let fξ

ε (α, u, v) be convex w.r.t. the couple (u, v) for all α ∈ εZN , ε > 0
and ξ ∈ ZN . Then the conclusion of Theorem 5.1 holds with fhom given by

fhom(z) =
1

kN
inf

{ ∑

ξ∈ZN

∑

β∈Ik

fξ (β, v(β), v(β + ξ)) , 〈v〉dQk
= z

}
,

for all z ∈ RN , where Ik = {0, . . . , k − 1}N .
Proof. Set

f(z) =
1

kN
inf

{ ∑

ξ∈ZN

∑

β∈Ik

fξ (β, v(β), v(β + ξ)) , 〈v〉dQk
= z

}
.

We �rst prove that
fhom(z) ≤ f(z). (5.40)

With �xed δ > 0, let v be such that 〈v〉dQk
= z and that

1
kN

∑

ξ∈ZN

∑

β∈Ik

fξ (β, v(β), v(β + ξ)) ≤ f(z) + δ.

For n ∈ N, let I(n, z) be as in (5.36). Since in particular 〈v〉dQnk
= z, we get

I(nk, z) ≤ 1
nNkN

∑

ξ∈ZN

∑

β∈Rξ
1(Qnk)

fξ (β, v(β), v(β + ξ))

≤ 1
kN

∑

ξ∈ZN

∑

β∈Ik

fξ (β, v(β), v(β + ξ)) ≤ f(z) + δ.

Estimate (5.40) follows by letting n go to +∞, thanks to the arbitrariness of δ.
We now prove that

fhom(z) ≥ f(z).

To this end we set

f
R
(z) =

1
kN

inf
{ ∑

|ξ|≤R

∑

β∈Ik

fξ (β, v(β), v(β + ξ)) , 〈v〉dQk
= z

}
,

and

fR
hom(z) = lim

n→+∞
IR,R(n, z)
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where IR,R(n, z) is de�ned in (5.38). By (5.37) and (5.39) we get that

lim
R→+∞

fR
hom(z) = fhom(z).

Analogously one can show that

lim
R→+∞

f
R
(z) = f(z).

Thus it su�ces to prove that, for every R > 0

fR
hom(z) ≥ f

R
(z). (5.41)

For n ∈ N, nk > R, let v be such that 〈v〉Qnk
= z, v(β) = z ∀β ∈ Qnk \ Qnk−R.

Hence
1

nNkN

∑

|ξ|≤R

∑

β∈Rξ
1(Qnk)

fξ (β, v(β), v(β + ξ))

=
1

nNkN

∑

|ξ|≤R

∑

β∈Ink

fξ (β, v(β), v(β + ξ))−O(
1
n

)

=
1

kN

∑

|ξ|≤R

∑

β∈Ik

1
nN

∑

γ∈{1,...,n}N

fξ

(
β, v(β + k

N∑

i=1

γiei), v(β + k

N∑

i=1

γiei + ξ)

)
−O(

1
n

)

≥ 1
kN

∑

|ξ|≤R

∑

β∈Ik

fξ (β, vn(β), vn(β + ξ))−O(
1
n

), (5.42)

where we have set

vn(β) =
1

nN

∑

γ∈{1,...,n}N

v(β + k

N∑

i=1

γiei)

and the last inequality follows by the convexity hypothesis on fξ. Since 〈vn〉Qk
= z,

by (5.42) and the de�nition of f
R
(z), we get

1
nNkN

∑

|ξ|≤R

∑

β∈Rξ
1(Qnk)

fξ (β, v(β), v(β + ξ)) ≥ f
R
(z)−O(

1
n

).

Taking the in�mum with respect to v and then letting n tend to +∞, we obtain
(5.41).

5.2 Homogenization in L∞

Let fξ
ε be as in (5.31) where fξ(·, u, v) is [0, k]n-periodic for any u, v ∈ Rm. In this

case hypotheses (H4), (H5), (H6) read:
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(H9) For all α and ξ, fξ(α, u, v) = +∞ if (u, v) 6∈ K2.

(H10) For all α and ξ, there exists Cξ ≥ 0 such that |fξ(α, u, v)| ≤ Cξ for all
(u, v) ∈ K2, and

∑
ξ Cξ < ∞.

The following theorem holds.

Theorem 5.3 Let {fξ
ε }ε,ξ satisfy (5.31), (H9) and (H10). Then Fε Γ(w ∗−L∞)-

converges to
F (u) =

∫

Ω

fhom(u(x))dx

for all u ∈ L∞(Ω;K), where fhom is given by the homogenization formula

fhom(z) = lim
ρ→0

lim
h→+∞

1
hN

inf





∑

ξ∈ZN

∑

β∈Rξ
1(Qh)

fξ(β, v(β), v(β + ξ)), 〈v〉dQh
∈ B(z, ρ)



 .

(5.43)

Proof. Let (εn) be a sequence of positive numbers converging to 0. Then, by
Theorem 3.14, we can extract a subsequence (not relabeled) such that (Fεn(·, A))
Γ-converges to a functional F (·, A) de�ned as in (3.9). The theorem is proved if we
show that the density function f does not depend on the space variable x and if
f ≡ fhom. The proof of the independence on the space variable proceeds as in the
Lp case. In order to prove that f ≡ fhom we �rst observe that, by the convexity
of f and Corollary 4.6 it holds

f(z) = limρ→0
1

rN
min

{∫

Qr

f(u)dx, 〈u〉Qr ∈ B(z, ρ)
}

= limρ→0 lim
n

1
rN

inf
{

Fεn(u,Qr), 〈u〉d,εn

Qr
∈ B(z, ρ)

}
.

(5.44)

Analogously to the Lp case we scale the problem as follows. Setting hn =
[

r

εn

]
+ 1,

through the change of variable

β =
α

ε
, v(β) = u(εβ),

equality (5.44) becomes

f(z) = lim
ρ→0

lim
n→+∞

1
hN

n

inf





∑

ξ∈ZN

∑

β∈Rξ
1(Qhn )

fξ(β, v(β), v(β + ξ)), 〈v〉dQhn
∈ B(z, ρ)



 .

The conclusion follows by proving the existence of the �rst limit in (5.43) for any
ρ > 0. This can be done by repeating the same construction used in the Lp case.
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6 Ferromagnetic-antiferromagnetic systems: exis-
tence of the bulk limit

In this section, we recall the model dealt with in [19] and prove that it can be recast
in our setting and that the family of energies that arise satisfy the hypotheses of
Theorem 5.3.

Given an integer N , let ΛN denote [−N, N [d∩Zd. Then the energy of a ΛN -
periodic con�guration v : ΛN → {−1, 1} is given by

HN (v) = −J

d∑

k=1

∑

i∈ΛN

v(i)v(i + ek) +
∑

i,j∈ΛN ,i 6=j

v(i)Jp(j − i)v(j), (6.45)

where J > 0 (if i+ek 6∈ ΛN we assume v(i+ek) = v(i−2Nek)), and Jp is de�ned,
for p > 1, by

Jp(j − i) =
∑

k∈Zd

1
|i− j + 2kN |p .

The �rst term of (6.45) models the ferromagnetic interactions between nearest
neighbors (with periodic conditions, which means that the whole space Zd is cov-
ered by the periodic replication of ΛN ) and is denoted by the `exchange energy'.
The second term models the antiferromagnetic interactions at long range (also with
periodic boundary conditions). It is the `dipolar energy'. Heuristically, short range
interactions prefer uniform states (either of +1 or −1), and long range interactions
favor alternating states (+1,−1).

The problem of the variational convergence of HN (v)
Nd as N → +∞ can be

equivalently studied on a �xed domain Λ = [−1, 1)d. To this end let us set ε = 1
N

and, for any v : ΛN → {−1, 1} let us set u(α) := v(α
ε ) for all α ∈ εZd ∩ Λ. Then,

up to lower order terms, we can rewrite HN (v)
Nd as follows:

Fε(u) = F 1
ε (u) + F 2

ε (u),

where

F 1
ε (u) = −J

d∑

k=1

∑

α∈R
ek
ε (Λ)

εdu(α)u(α + εek) +
∑

α,β∈εZd∩Λ: α 6=β

εdεp u(α)u(β)
|α− β|p ,

and

F 2
ε (u) =

∑

α,β∈εZd∩Λ: α 6=β

εd
∑

k∈Zd\{0}
εp u(α)u(β)
|α− β + 2k|p

=
∑

α,β∈εZd∩Λ: α 6=β

εd(fε
1 (α− β, u(α), u(β)) + fε

2 (α− β, u(α), u(β))),
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where

fε
1 (z, u, v) =

∑

k∈Zd,|k|>
√

d+1

εpuv

|z + 2k|p ,

fε
2 (z, u, v) =

∑

0<|k|≤
√

d+1

εpuv

|z + 2k|p .

In what follows we will prove that, if p > d,

lim
ε→0

F 2
ε (u) = 0 (6.46)

uniformly with respect to u. If we assume (6.46) proved, we have that

Γ− lim
ε→0

Fε(u) = Γ− lim
ε→0

F 1
ε (u).

Moreover F 1
ε (u) can be rewritten as

F 1
ε (u) = −J

d∑

k=1

∑

α∈R
ek
ε (Λ)

εdu(α)u(α + εek) +
∑

ξ∈Zd

∑

α∈Rξ
ε(Λ)

εd u(α)u(α + εξ)
|ξ|p

and turns out to satisfy the hypotheses of Theorem 5.3 for p > d. This implies an
integral representation for its Γ-limit.

To prove (6.46) we �rst estimate the term in the energy with fε
1 . Since |α−

β| < 2
√

d and k >
√

d + 1, by applying the triangular inequality, we have that

|α− β + 2k|p ≥ ||2k| − |α− β||p ≥ |2k|p
∣∣∣∣1−

|α− β|
|2k|

∣∣∣∣
p

≥ C|2k|p.

Then, for p > d

|fε
1 (z, u, v)| ≤ Cεp

∑

k∈Zd, |k|6=0

1
|2k|p ≤ Cεp

and
∑

α,β∈εZd∩Λ: α 6=β

εd|fε
1 (α− β, u(α), u(β))| ≤ εd

∑

α,β∈εZd∩Λ: α 6=β

εp
∑

k∈Zd, |k|6=0

1
|2k|p

≤ Cεd+pε−2d = Cεp−d.

To estimate the term with fε
2 one has to be more precise. Noting that |α−β+2k| ≥

ε we collect the interactions according to a logarithmic scale in ε as follows:
∑

α,β∈εZd∩Λ: α6=β

εd|fε
2 (α− β, u(α), u(β))|
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≤ εd+p
∑

0<|k|<
√

d+1

N−1∑

i=0

∑

α,β∈Ii

1
|α− β + 2k|p

+εd+p
∑

0<|k|<
√

d+1

∑

|α−β+2k|≥1

1
|α− β + 2k|p , (6.47)

where, for i ∈ {0, 1, . . . , N − 1}, we have set

Ii = {(α, β) ∈ (εZd ∩ Λ)2 : ε
i+1
N ≤ |α− β + 2k| < ε

i
N }.

Since Ii ⊂ Ĩi := {(α, β) ∈ (εZd ∩ Λ)2 : |α− β + 2k| < ε
i
N }, we have that

#(Ii) ≤ #(Ĩi) ≤ Cε
(d+1)i

N ε−2d. (6.48)

Indeed, set, for η > 0 Iη := {α, β ∈ εZd ∩ Λ : |α − β + 2k| ≤ η}, one can show
that #(Iη) ≤ C

(
η
εd

) (
ηd

εd

)
. Since

εd+p
∑

0<|k|<
√

d+1

∑

|α−β+2k|≥1

1
|α− β + 2k|p ≤ Cεp−d

to conclude we need to estimate the �rst term in the right hand side of (6.47). By
(6.48) we have

εd+p
∑

0<|k|<
√

d+1

N−1∑

i=0

∑

α,β∈Ii

1
|α− β + 2k|p ≤ Cεd+p

N−1∑

i=0

#(Ii)

ε
p(i+1)

N

≤ Cεp−d
N−1∑

i=0

ε
(d+1−p)i

N ε−
p
N

= Cεp−d− p
N

N−1∑

i=0

(
ε

(d+1−p)
N

)i

=: L(ε,N). (6.49)

If p = d + 1 we have
L(ε,N) ≤ CNε1− d+1

N

which converges to zero as ε → 0 provided N is chosen large enough. If p 6= d + 1,
let us set q = ε

d+1−p
N . By recalling that

∑N−1
i=0 qi = 1−qN

1−q we have

L(ε,N) ≤ Cεp−d− p
N

(
1− εd+1−p

1− ε
d+1−p

N

)
.

It is easy to verify that the last term converges to zero as ε → 0 for N large
enough.
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7 Non-pairwise-interaction energies
In this section we deal with more general discrete systems driven by non pairwise-
interaction energies. Given k ∈ N, the energy for such a discrete system, is de�ned,
for any u ∈ Cε(Ω,Rm), as

Fε(u) =
k∑

j=1

∑

ξ∈ZjN

∑

α∈Rξ
ε(Ω)

εNfξ
ε (α, u(α), u(α + εξ1), . . . , u(α + εξj)) (7.50)

where ξ = (ξ1, ξ2, . . . , ξj) ∈ ZjN and

Rξ
ε(Ω) = {α ∈ Zε(Ω) : α, α + εξ1, . . . , α + εξj ∈ Zε(Ω)}.

It may be easily checked that all the arguments we have used so far to prove our
results in the case of pairwise-interacting discrete systems can be exploited in order
to treat more general systems driven by energies of the form (7.50) provided that
we modify assumptions (H1)-(H6) by substituting in each formula ξ by ξ and |ξ|
by ‖ξ‖∞ := max

i∈{1,...,j}
|ξi|. More precisely, in the Lp case, conditions (H1)-(H3) are

replaced by:
(H11) For all j ∈ {1, 2, . . . , k}, ξ ∈ ZjN , α ∈ Zε(Ω) and ε > 0, there exist cξ

ε,α ≥ 0
and dξ

ε ∈ Cε(Ω,R), dξ
ε(α) ≥ 0 such that

fξ
ε (α, u1, u2, . . . , uj) ≥ cξ

ε,α

(
j∑

i=1

|ui|p − dξ
ε(α)

)
for all (u1, u2, . . . , uj) ∈ Rjm,

lim
R→∞

lim inf
ε→0

inf
α∈Zε(Ω)

k∑

j=1

∑

ξ∈ZjN :

‖ξ‖∞≤R

cξ
ε,α ≥ c > 0

and the function dε ∈ Cε(Ω,R) de�ned by dε(α) =
k∑

j=1

∑

ξ∈ZjN

dξ
ε(α) weakly

converges to d in L1(Ω).

(H12) For all j ∈ {1, 2, . . . , k}, ξ ∈ ZjN , α ∈ Zε(Ω) and ε > 0 there exist Cξ
ε,α ≥ 0

and Dξ
ε ∈ Cε(Ω,R), Dξ

ε(α) ≥ 0 such that

fξ
ε (α, u1, u2, . . . , uj) ≤ Cξ

ε,α

(
j∑

i=1

|ui|p + Dξ
ε(α)

)
for all (u1, u2, . . . , uj) ∈ Rjm,

lim sup
ε→0

sup
α∈Zε(Ω)

k∑

j=1

∑

ξ∈ZjN :

‖ξ‖∞≤R

Cξ
ε,α ≤ C < ∞
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and the function Dε ∈ Cε(Ω,R) de�ned by Dε(α) =
k∑

j=1

∑

ξ∈ZjN

Dξ
ε(α) weakly

converges to D in L1(Ω).

(H13) For all δ > 0, there exists Mδ > 0 such that

lim sup
ε→0

sup
α∈Zε(Ω)

k∑

j=1

∑

ξ∈ZjN :

‖ξ‖∞≥Mδ

Cξ
ε,α ≤ δ.

Under hypotheses (H11)-(H13) the analogue of Theorems 3.1 and 3.13 hold.
In the L∞ case hypotheses (H4)-(H6) are replaced by:

(H14) For all j ∈ {1, 2, . . . , k}, ξ ∈ ZjN , α ∈ Zε(Ω) and ε > 0,

fξ
ε (α, u1, u2, . . . , uj) = +∞ if (u1, u2, . . . , uj) /∈ Kj .

(H15) For all j ∈ {1, 2, . . . , k}, ξ ∈ ZjN , α ∈ Zε(Ω) and ε > 0, there exists Cξ
ε,α ≥ 0

such that

|fξ
ε (α, u1, u2, . . . , uj)| ≤ Cξ

ε,α for all (u1, u2, . . . , uj) ∈ Kj ,

lim sup
ε→0

sup
α∈Zε(Ω)

k∑

j=1

∑

ξ∈ZjN

Cξ
ε,α < ∞.

(H16) For all j ∈ {1, 2, . . . , k}, ξ ∈ ZjN , α ∈ Zε(Ω), ε > 0 and δ > 0, there exists
Mδ > 0 such that

lim sup
ε→0

sup
α∈Zε(Ω)

k∑

j=1

∑

ξ∈ZjN :

‖ξ‖∞≥Mδ

Cξ
ε,α ≤ δ.

Under hypotheses (H14)-(H16) the analogue of Theorems 3.3 and 3.14 hold.
If in addition to the previous assumptions we consider periodicity hypothe-

ses on fξ
ε , the homogenization theory developed in Sections 5.1 and 5.2 can be

extended to the present case.

Remark 7.1 (More general lattices)
Our result can be extended to the case when energies of the type (7.50) are

de�ned on more general lattices. In particular, given {η1, η2, . . . , ηN} a base in
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RN , the case of a discrete spin system on the simple lattice Z̃ :=
⊕N

i=1 ηiZ can
be easily addressed by following the same strategy we have used to treat the ZN

case. Note that for the simple lattice Z̃, one may identify any u : εZ̃ ∩ Ω → Rm

with the piecewise constant function u belonging to the set

C̃ε(Ω,Rm) := {u : RN → Rm : u(x) = u(α) ∀x ∈ α + εQ̃, α ∈ εZ̃},

where Q̃ := {x ∈ RN : x =
∑N

i=1 λiηi, λi ∈ [0, 1)}.

7.1 Multiple-spin exchange energies
An important class of non pairwise-interacting discrete system to which all the
previous result apply, is provided by those Heisenberg spin systems driven by
energies containing multiple-spin exchange terms, namely energies that, for any
u ∈ Cε(Ω,K), are of the form

Fε(u) =
k∑

j=2

Jj

∑

Ij

εNu(α1)u(α2) . . . u(αj), (7.51)

where K ∈ Rm is a bounded set, k ≥ 3 and for all j ∈ {1, . . . , k}, the constant Jj is
also known as the exchange constant of the j-body nearest-neighbors interaction.
Here Ij denotes a set of j-ples of points of the lattice subject to some constraints
which further specify the model.

To give some examples of constraints in some case of interest, we introduce
some additional de�nitions. With the same notation used in Remark 7.1, we denote
by Z̃ a N -dimensional simple lattice and we set Z̃ε(Ω) = εZ̃∩Ω. Given k ≥ 3 and
a k-ple (α1, α2, . . . , αk) ∈ (Z̃ε(Ω))k with αi 6= αj , we say that the k-ple is a k-body
chain of nearest-neighbors (or shortly a k-chain) if, for all j ∈ {2, 3, . . . , k−1}, each
αj is a nearest neighbour for αj−1 and αj+1 (see Figure 7.1). We say that a k-chain
is a k-cycle of nearest neighbors (or shortly a k-cycle) if, α1 is a nearest neighbour
for αk (see Figure 7.1). Given a set V ⊂ Ω, we say that a k-chain (α1, α2, . . . , αk)
is contained in V if {α1, α2, . . . , αk} ⊂ V .

Discrete systems driven by energies of the form (7.51) with

Ik := {(α1, α2, . . . , αk) ∈ (Z̃ε(Ω))k : (α1, α2, . . . , αk) is a k-chain},
or

Ik := {(α1, α2, . . . , αk) ∈ (Z̃ε(Ω))k : (α1, α2, . . . , αk) is a k-cycle},
have been extensively studied for di�erent values of the exchange constants both
from the analytical and the computational point of view (see e.g. [6], [20], [25]).
Even if in general it is not easy to guess the explicit formula for the bulk limit, we
remark that our homogenization result holds in this two cases and that it provides
the existence of a local limit energy of integral type and an implicit asymptotic
formula for its energy density.
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Figure 1: an example of 8-chain (left) and 8-cycle (right)
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We conclude this section with an example of a two-dimensional ferromagnetic
model with 3-spin exchange energy in which it is possible to explicitly write the
limit energy.

Example 7.2 Let us consider Ω ⊂ R2 and K = {−1, 1}. In what follows we will
consider a spin system driven by an energy of the form (7.51) both on a triangular
lattice and on a square lattice. After providing an explicit formula for the limit
energy density in both cases, we discuss its dependence on the geometry of the
lattice.

Let us consider a regular triangular lattice, that is Z̃ = η1Z ⊕ η2Z where
η1 = (1, 0) and η2 = ( 1

2 ,
√

3
2 ). By analogy with the Z2 lattice, where a cell is the

minimal square with vertices in Z2, in the triangular case we will call a cell the
minimal equilateral triangle with vertices in Z̃. Then, for k = 3, J2 = 0 (the case
J2 6= 0 can be dealt with similarly) and J3 = −1 we consider the energy in (7.51)

Fε(u) = −
∑

(α1,α2,α3)∈I

ε2u(α1)u(α2)u(α3). (7.52)

where I is the set of all 3-chains contained in a cell of the lattice.
Case (i): triangular lattice. The energies in (7.52) are of the type (7.50) with
N = 2, Z̃ in place of Z2 and

fξ
ε (α, u1, u2, u3) =

{
−u1u2u3 if ξ = ±(η1, η2)
0 otherwise.

To �nd the explicit form of the Γ-limit we may use an approach similar to that
exploited in [2]. The energy in (7.52) can be rewritten as parameterized on the
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centers of the cells of Z̃; that is, on the points β = α1+α2+α3
3 , with α1, α2, α3 ∈ Z̃

being the vertices of a cell. Then

Fε(u) =
∑

β

ε2g(v(β))

with v(β) =
∑3

i=1 u(αi). Here v ∈ {−1,− 1
3 , 1

3 , 1} and g : {−1,− 1
3 , 1

3 , 1} → R is
given by

g(z) =

{
−1 if z ∈ {− 1

3 , 1}
+1 if z ∈ {−1, 1

3}.
Observe that this change of variables allows us to regard the multiple-exchange
spin-type energy in (7.52) as an energy of a non-interacting spin system. Moreover
note that if uε ⇀∗ u in L∞(Ω), then vε (extended to RN with constant value vε(β)
in the triangle centered in β) still converges to u in the w∗-topology of L∞(Ω).
This argument shows that the Γ-limit of Fε is given by a convexi�cation procedure.
Indeed it can be proved that

Γ(w∗-L∞)- limFε(u) =
∫

Ω

g∗∗(u(x)) dx,

where g : R→ R ∪+∞ is given by

g(z) =

{
g(z) if z ∈ {−1,− 1

3 , 1
3 , 1}

+∞ otherwise

and g∗∗ stands for the convex envelope of g; i.e.

g∗∗(z) =





−3z − 2 if −1 ≤ z ≤ − 1
3

−1 if − 1
3 ≤ z ≤ 1

+∞ otherwise.

Case (ii): square lattice In this case the energies in (7.52) are of the type (7.50)
with N = 2 and

fξ
ε (α, u1, u2, u3) =

{
−u1u2u3 if ξ ∈ {±(e1, e2),±(e1,−e2)}
0 otherwise.

Arguing as before, we may rewrite the energy as parameterized on the centers
of each cell of the lattice Z2; that is, on the points β = α1+α2+α3+α4

4 , with
α1, α2, α3, α4 ∈ Z2 being the vertices of a cell. Then

Fε(u) =
∑

β

ε2h(v(β))

34



with v(β) =
∑4

i=1 u(αi). Note that v ∈ {−1,− 1
2 , 0, 1

2 , 1} and that h : {−1,− 1
2 , 0, 1

2 , 1} →
R is given by

h(z) =





4 if z = −1
−2 if z = − 1

2

0 if z = 0
2 if z = 1

2

−4 if z = 1

As in the previous case, if uε ⇀∗ u in L∞(Ω), then, after extending vε to a
piecewise-constant function on the cells of the lattice Z2, we have that vε ⇀∗ u in
L∞(Ω). In this case it can be proved that

Γ(w∗-L∞)- lim Fε(u) =
∫

Ω

h
∗∗

(u(x)) dx,

where h : R→ R ∪+∞ is given by

h(z) =

{
h(z) if z ∈ {−1,− 1

2 , 0, 1
2 , 1}

+∞ otherwise

and h
∗∗ is given by

h
∗∗

(z) =





−12z − 8 if −1 ≤ z ≤ − 1
2

− 4
3z − 8

3 if − 1
2 ≤ z ≤ 1

+∞ otherwise.

We remark that some features of the energy density obtained in the two
cases are peculiar of the geometric frustration of the system (see [18] and [23]
for an introduction to the subject). For the type of energies considered here, the
triangular case is an example of non-frustrated system, while the square case is
a frustrated spin system (here the geometric frustration can be read in the fact
that the triple of values (−1,−1, 1) minimizes the energy density but it cannot be
repeated on the square lattice in order to be minimal on each cell of the lattice).
The frustration is responsible of the fact that in this case the minimum of the
limit-energy density is non-degenerate (see �gure 7.2). This can be shown to imply
that no phase-transition phenomena take place at scale ε as in the triangular case
where, on the contrary, the limit energy-density ḡ∗∗ has multiple minima.
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Figure 2: the energy densities in the triangular (left) and square (right) cases in
example 7.2
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