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Abstract. The use in continuum mechanics of weak diffeomorphisms, Carte-
sian currents and curvature k-varifolds with boundary is discussed. The atten-
tion is focused on the analysis of the existence of minimizers for the energies
of elastic complex bodies and bodies admitting cracks. The interplay between
the analytical features and the physical needs is stressed.

1. Mechanical reasons and some historical remarks

The scenario opens on the problem of finding minimizers (ground states) of the
energy of elastic simple Cauchy bodies undergoing large deformations. Ingredients
are: (i) a minimalist description of the morphology of a body obtained only through
its gross place in the physical space, a geometrical picture defining the so-called
Cauchy bodies; (ii) an energy varying along transplacements describing changes of
places. Convenience suggests to manage two (isomorphic) copies of the physical

ambient space, say R
d and R̂

d. The first copy hosts a place B, an open, connected
set with Lipschitz boundary, that can be in principle occupied by the body and is
taken as a reference. One-to-one, differentiable, orientation-preserving maps

x �−→ u := u (x) ∈ R̂
d, x ∈ B,

allow one to reach new places u (B).
The constitutive assumption of a conservative setting for both material prop-

erties and external actions justifies the presumption of the existence of an energy
E (u,B). The adjective ‘simple’, used in specifying the bodies under scrutiny, un-
derlines that the bulk elastic energy depends on u through its spatial first derivative
only. The total energy to be analyzed is a 3-form over the first jet of the trivial
fiber bundle B × R̂

d with sections defined by the transplacement maps x �−→ u (x).
It reads

E (u,B) :=
∫
B
e (x,Du (x)) dx+

∫
B
ê (u (x)) dx,

2000 Mathematics Subject Classification. Primary 49J45, 49Q15, 74A30, 74A45, 74A60.
Key words and phrases. Graphs, Cartesian currents, curvature varifolds, mechanics of com-

plex bodies, continuum mechanics.

c©1997 American Mathematical Society
1



2 M. GIAQUINTA, P. M. MARIANO, G. MODICA, AND D. MUCCI

where e (·) is the bulk elastic energy and ê (·) the potential of external actions.
Boundary conditions of Dirichlet type are presumed here for the map x �−→ u (x).
The prescription of invariance with respect to isometric changes in observers, that
is, invariance with respect to the action of the Euclidean group R̂

d
� SO (d) over

R̂
d, implies that e (·) cannot be convex in Du (x), the gradient of deformation.

Such a result (see [39]) opened the problem of finding minimal physically signifi-
cant requirements allowing the existence of minimizers of E (·,B). The notion of
polyconvexity of e (·) [30] has been the decisive ingredient for proving the existence
of minimizers in nonlinear elasticity (see [4]). Minimizers have been found to be
only locally weak invertible maps. Global invertibility was established later under
appropriate Dirichlet boundary conditions [5]. Further results in that spirit are in
[37, 38, 33, 32]. A critical review of the subsequent work can be found in [6].
More precisely, W 1,p

(
B,R3

)
is the Sobolev space hosting naturally the minimizers

of E (·,B). Their existence accrues from classical results, e.g. De Giorgi’s semicon-
tinuity result [20], once the weak compactness with respect to sequences of minors
of the gradient of deformation Du is established. The condition is assured straight
away when deformations admit bounded energy in W 1,p, p > 3. In the case p = 3,
it has been found in [31] by using the orientation-preserving property of the defor-
mations. When p < 3 another problem arises: in fact, nonnegligible is the presence
of transplacement maps with graphs admitting boundaries with projections into
the interior of B. Such boundaries describe the formation of ‘holes’ and/or open
‘fractures’ of various natures. The need of avoiding the presence of singular sets,
a need dictated by the will of describing purely elastic deformations, which are
deformations with no material threshold allowing a phase transition which might
determine plastic flows or rupture of material bonds, opened a research program
leading to the notion of weak diffeomorphisms defined in [14]. Such maps are in
essence transplacements satisfying a special condition, the so-called condition of
zero boundary, which prevents the formation of undesired ‘holes’ or open ‘frac-
tures’. Weak diffeomorphisms are, in fact, orientation-preserving maps which allow
the frictionless contact of parts of the external boundary of the body and prevent
the self-penetration of the matter. The existence of minimizers of E (·,B) in the
class of weak diffeomorphisms has been established in [14].

The definition of weak diffeomorphisms is based, amid other things, on proper-
ties of the d-current integrations (currents, for short) over the graphs of them. The
current associated with the map x �−→ u (x) is, in essence, a linear functional, indi-

cated by Gu, over smooth d-forms with compact support in B× R̂
d. The boundary

∂Gu of Gu is defined by duality: ∂Gu (ω) = Gu (dω), where ω is a generic (d− 1)-

form with compact support over B×R̂
d, provided that ∂Gu (ω) = 0 on B×R̂

d. The
condition of zero boundary appearing in the definition of weak diffeomorphisms is
thus ∂Gu (ω) = 0. The analysis in terms of currents provides us with the weak
compactness with respect to the sequences of minors of Du for p ≤ 3 (see also
[16]). For p > 3, the condition ∂Gu (ω) = 0 is obviously satisfied.

Roughly speaking, the essential idea followed in defining currents is to control
the properties of the graphs of the maps under scrutiny by duality, that is, through
the properties of functionals involving the graphs themselves and forms over the
product space in which the graphs are defined. The technique is of interest per se
in the calculus of variations (see the treatise [17]). It is useful for the analysis of a
number of problems in different settings.
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In dealing with nonlinear elasticity of simple bodies, a problem is the pos-
sible appearance of a gap phenomenon (see related discussions in [18]). Results
describing the approximation of weak diffeomorphisms with regular maps are, in
fact, not available. A gap phenomenon appears in the case of energies constructed
over general manifold-valued maps. The physical setting falling within this scheme
is, for example, the one of spin structures admitting Dirichlet energy (also called
the Frank energy) when they self-organize and do not undergo gross deformation.
The mathematical scenario has deep features. The first result mentioned here dates
back to 1964: Every smooth map ν : X −→ Y between two compact, differentiable
Riemannian manifolds can be deformed in its own homotopy class into a minimizer
of the Dirichlet energy

1

2

∫
X

|Dν|2 dvolX,

provided that the sectional curvature, σY , of Y is nonnegative [16]. A distinguished
representation of the homotopy class can be constructed this way. The question
was whether the condition σY ≤ 0 could be dropped or weakened.

Consider a geodesic ball BR (p) in Y and suppose that (i) BR (p) is disjoint
from the cut locus of its centre p, (ii) the radius R satisfies the inequality

R <
π

2
√
k
.

The scalar k is determined by the supremum of the sectional curvature of Y in
BR (p). When such a supremum is negative, k is set equal to 0. A class Cϕ of maps
ν : Bn −→ BR (p) is defined over the unit ball Bn in R

n. The index ϕ indicates
that the members of Cϕ agree with a boundary datum ϕ over ∂BR. Results in
[21] show the existence of a unique harmonic map ν in Cϕ which is a minimizer
of the Dirichlet energy and is smooth. When Y is the standard n-dimensional unit
sphere Sn in R

n+1, minimizers of the Dirichlet energy amid maps with range in a
fixed hemisphere, say the upper hemisphere, are smooth. Moreover, if one considers
differentiable maps ν : Bn → Sn, the equator map(

0,
x

|x|

)

is a weak harmonic map. It is stable if n ≥ 8. In fact, every stationary harmonic
map from Bn into Sn is regular up to dimension 7 [19, 35] according to the fact
that the normal vector field to the minimal surface defines a harmonic map. If
one considers maps ν : Bn → S2, with n ≥ 3 and no further restriction, the map
ν (x) = x

|x| is also a minimizer of the Dirichlet energy [9].

The dimension of the base and the target manifold play a role in the analy-
sis. Consider, for example, differentiable maps ν : B3 → S2 and their associated
Dirichlet energies. Take a Lipschitz map ϕ : ∂B3 → S2 and define W 1,2

ϕ

(
B3, S2

)
to be the space of the W 1,2

(
B3, S2

)
-map with traces agreeing with ϕ on ∂B3. It

is not empty because at least ν (x) := ϕ (x/|x|) belongs to it. A gap phenomenon
occurs for the Dirichlet energy, namely

inf
W 1,2

ϕ (B3,S2)

∫
B3

|Dν (x)|2 dx < inf
W 1,2

ϕ (B3,S2)∩C0(B3,S2)

∫
B3

|Dν (x)|2 dx,

even when degϕ = 0 [20]. Notice that ϕ has no smooth extension to B3 with values
in S2 when degϕ �= 0.
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A question is the evaluation of the relaxed energy, that is, the limit value of
the Dirichlet energy obtained by using special sequences of maps, selected in some
way. Two strategies have been followed. The first one involves sequences {νk} in
C1

(
B3, S2

)
converging weakly in W 1,2, namely νk ⇀ ν in W 1,2

(
B3, S2

)
. In eval-

uating the relaxed Dirichlet energy as k → ∞, one finds an energy involving the
occurrence of point charges with degree equal to ±1 [9]. The second strategy is on
the geometric side: sequences {νk} in C1

(
B3, S2

)
are once more considered, but

their convergence is evaluated in terms of currents. A generic sequence {νk} is said
to be convergent when the associated sequence of currents converges weakly, that
is, when Gνk

⇀ T . In order to evaluate the relaxed energy one has first to write the
energy in terms of currents, precisely in terms of the 3-vector orienting the graph
of the generic ν, a 3-vector given by the Radon-Nikodým derivative of the current
associated with ν with respect to its total variation. The new representation of
the Dirichlet energy is called the parametric extension. A strong density result in
[15] shows that the relaxed Dirichlet energy evaluated as before over sequences
converging in terms of currents, namely for Gνk

⇀ T , coincides with its parametric
extension to T . Even in this case singularities appear. They are charges connected
by line defects where ‘fusion’ of the spin structures occurs: the spin field becomes
multi-valued over the line, at each taking as value the entire S2. A preference
between the two methods summarized above is addressed primarily by physical
instances. In fact, the selection of a functional space in which analyses are devel-
oped is essentially a constitutive prescription when one manages models with some
physical meaning.

From the abstract side, refinements and extensions of the theory of the currents,
namely the definition and the analysis of entities called the semi-currents (see [3])
and the Cartesian currents in cart2,1 (Bn × Y) ([23]), are tools for the analysis of
Dirichlet energies over differentiable maps ν : Bn → Y and ν : X → Y , where
X and Y are as above. Precisely, semi-currents over the trivial bundle Bn×Y with
basis Bn are currents evaluated by testing the graphs of the maps under analysis
over a compactly supported smooth form having at most two differentials in the
fiber Y . They represent limits of sequences of smooth maps ν : Bn → Y with
equibounded Dirichlet energies. When such currents have (i) no boundary, (ii)
finite Dirichlet energy and (iii) they admit a special representation of the weak
limit of sequences of graphs of smooth maps with bounded Dirichlet energies, they
are called Cartesian currents in cart2,1 (Bn × Y) (see [23]). Precisely, consider
smooth maps νk : Bn → Y and related bounded Dirichlet energies. Denote by

γ1...γR a basis of integral cycles in the spherical subgroup Hsph
2 (Y), by Lr (T ) an

(n− 2)-dimensional current in Bn and by ST a current which does not vanish only
on forms which have nonzero differential of the component of the forms with exactly
two differentials over Y . The statement that the limit T of Gνk

, as k → ∞, is in
cart2,1 (Bn × Y) means that there exists a W 1,2 (Bn,Y)-map νT such that

T = GνT
+

R∑
r=1

Lr (T )× γr + ST ,

when the second integral homology group H2 (Y) of Y is torsion-free. The map νT
defines uniquely the representation of T through its essential features. In such a
representation, the geometrical properties of the target manifold Y and the dimen-
sion of B have an influence. In fact, when n ≥ 3, an additional requirement is that
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for any generic 2-dimensional subspace K of Rn, the restriction of T to K ×Y is a
2-dimensional current in cart2,1 ((Bn ∩K)× Y).

Weak closedness of cart2,1 (Bn × Y) can then be proven (see the details of the
proof in [23]). Extensions of the strong density result mentioned above can be
achieved in terms of Cartesian currents (see [17, 18] and the references therein).
The final result (see [18] and the references therein) is that the relaxed Dirichlet
energy evaluated on sequences {νk} in C1 (Bn,Y) converging weakly (write νk ⇀ ν)
in W 1,2 (Bn,Y) equals the infimum of the parametric extension of the energy to
Cartesian currents with characteristic map νT equal to the limit ν of νk.

Additional aspects of the analysis of energies associated with maps between
manifolds opened further problems. For example, when X is the unit disc and Y
a compact manifold, lack of (sequential) compactness appears as a consequence
of invariance with respect to horizontal conformal changes, which are conformal
changes of X [35, 40].

The nontrivial homotopy of the target manifold Y plays a nontrivial role in the
analyses. Consider Y to be simply connected and such that its second homotopy
group π2 (Y) is trivial, namely π2 (Y) = 0. A problem is to check whether minimiz-
ers of the Dirichlet energy on maps ν : B1 −→ Y are regular. The positive answer
was presented in [24]: stationary points are regular; the result is a consequence of
the absence of the so-called harmonic spheres, which are forbidden by the condition
π2 (Y) = 0. Stationary harmonic maps have singular sets of dimension at most n−2
[7]. Nonstationary harmonic maps display moreover scattered discontinuities: in
1995, Rivière found harmonic maps that are everywhere singular [34].

The attention then shifted from the Dirichlet energy∫
X

|Dν|2 dvolX,

then to more complicated quadratic energies such as, for example, Oseen-Frank
energy for liquid crystals, the density of which is

e (ν,Dν) = k1 (div ν)
2
+ k2 (ν · curl ν + q)

+k3 |ν × curl ν|2 + γ
(
tr (Dν)

2 − (div ν)
2
)
,

which satisfies the head-to-tail symmetry ν → −ν for the map ν : B → P 2, with
P 2 the projective plane, and is objective in the sense that it is invariant with
respect to the action of the special orthogonal group over P 2. Intrinsic in this last
remark is a refinement of the standard notion of observer arising in the structure
of the mechanics of complex bodies (see [27]). Of course, since the macroscopic
deformation is not accounted for in the expression of e (ν,Dν), actual and reference

shapes are identified through an isomorphism i : Rd → R̂
d. For this reason, the

differential operator D can be considered as a spatial derivative with respect to
the actual places of the material elements. Oseen-Frank energy evaluated along
maps ν : B → S2 has been analyzed so far as a natural extension of the prototype
Dirichlet energy. As mentioned above, candidates to be minimizers of energies
with Dirichlet’s or Oseen’s-Frank’s structures display concentrations of energy over
co-dimension 2 sets. A natural manner of analyzing the essential characteristics of
these concentrations is to evaluate the graphs of the maps under scrutiny. Precisely,
one considers the values that graphs take over forms compactly supported over a
trivial bundle with basis B and typical fiber S2. Cartesian currents come then
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once more into play. Minimizers of the energies under analysis are then naturally
expressed in terms of them (see [17]).

The mixture of the result mentioned above has allowed the construction of a
tool for the investigation of the existence of ground states in elastic complex bodies.
They are bodies with complicated material texture admitting changes (mutations)
which have a drastic influence on the overall mechanical behavior. Such an influence
is exerted through interactions that can be hardly represented only by means of
standard stresses. Quasicrystals, ferroelectrics, polymeric bodies or magnetizable
materials are paradigmatic examples. A multifield description of their morphology
is called upon. It is intrinsically multi-scale and multidimensional. In fact, be-
sides the standard transplacement maps, describing the macroscopic deformation,
a manifold-valued map ν : B → M comes into play to account for the main fea-
tures of the material morphology inside the generic material element (the essential
elements of the mechanics of complex bodies can be found in [11, 26, 29]). The
existence result of minimizers of the pertinent elastic energy in large deformations
has been presented in [28]. The essential features of the procedure are summarized
below because they are a synthesis of both the results in finite elasticity of simple
bodies in terms of Cartesian currents and the ones on the energies associated with
maps between manifolds. What one obtains is not properly the trivial superpo-
sition of the two aspects because there is energetic coupling between macroscopic
deformation and changes in the material morphology at low scales in space. It is
recognized that minimizers are weak diffeomorphisms in terms of transplacements
and Sobolev maps in terms of morphological descriptors. Macroscopic deformations
are orientation-preserving maps that avoid the interpenetration of matter and the
formation of holes. Weak diffeomorphisms minimizing the energy have graphs with-
out boundary, in fact.

However, fractures occur in nature. When a variational description of cracked
bodies is adopted by following [19], minimality of the energy at every time among
all virtual crack-transplacement pairs at that time is required. When time evolution
occurs, energy conservation also has to be imposed throughout. The difficulty of
managing crack geometries in finding minimizers has suggested also the convenient
simplification of identifying cracks with the jump sets of displacement fields. BV
functions have then been involved [1, 14] as candidates to be minimizers of the
elastic energy of simple bodies. A difficulty arises: theorems allowing the selection
of fields with discontinuity sets describing reasonable (physically significant) crack
patterns seem to be not available, at least in the current literature; a detailed
review on this topic can be found in [8]. In any case, this kind of approach seems
not to be able to account for partially opened cracks. In fact, in this case, the
transplacement field is continuous across the closed part of the crack although
the material bonds are broken. A way to account for these aspects is to resort
to k-dimensional varifolds, which are measures on a fiber bundle based on B and
constructed taking as a prototype fiber a Grassmanian of k-planes selected over B.
Cracks are then intended as supports of varifolds which describe the lateral surfaces
of the cracks and the tips. If the treatment is restricted to the case of simple Cauchy
bodies for the sake of simplicity, an extended notion of weak diffeomorphisms has to
be used in order to represent the main properties of transplacement maps allowing
cracks. The possibility of boundaries in the graphs of such maps must be considered.
Each boundary accounts for a jump in the transplacement field. To assure that such
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jumps occur only within the cracked part of B, the mass of the relevant boundary
current is assumed to be bounded by the measure of the support of the varifolds
accounting for the potential crack patterns. Energy along the margins of the cracks
is considered, in accordance with Griffith’s original suggestion. Minimizers of the
overall energy; i.e., the sum of bulk, surface and tip contributions, are then pairs of
transplacement maps and varifolds. The control of minimizing sequences is assured
by presuming that the surface energy depends on the curvature of the crack, rather
than the sole area as in Griffith’s model. For B ⊂ R

3, the resulting energy is then

E (u, V,B) : =

∫
B
e (x,Du) dx+

2∑
k=1

αk

∫
Gk(B)

∣∣A(k)

∣∣pk dVk

+
2∑

k=1

βkM (Vk) + γM (∂V1) ,

where e (x,Du) is the bulk elastic energy, the potential of external bulk actions,
namely ẽ (u), can be added, and the term third addendum is the sum of the surface
and tip energies which are just proportional to the measure of the lateral surfaces
of the crack and the tip. These ingredients correspond to the standard Griffith’s
approach. The extension with respect to Griffith’s approach is constituted by the
presence of the second and the third addenda. Precisely, the second addendum
accounts for the dependence of the surface and line energies on the curvature, A(k)

is in fact the curvature of the k-dimensional varifold Vk, while the third addendum
measures the energy at possible corners along the tip. The functional dependence
on A(k) is intended as a measure of the macroscopic influence of low scale effects in
the debonding process. The symbol M (·) represents the ‘mass’ of the varifold intro-
duced in parentheses. Existence results of pairs of extended weak diffeomorphisms
and varifolds minimizing the energy introduced above have been collected in [22].
The minimization process is over a class of bodies. It is just this circumstance that
renders compatible the variational description sketched above with the intrinsic
dissipative nature of the fracture mechanics. An advantage of the formulation is
the possibility of deriving the weak form of balance equations even when one knows
only that the fracture set is just a k-dimensional rectifiable set.

Extensions to the case of complex bodies seems to be available under additional
conditions on the surface energy, which accounts for the morphological descriptor
fields.

The fast bird’s eye view of the functional methods to analyze various types of
energies describing crucial offsprings of condensed matter physics presented so far
has not touched on evolution phenomena. The analysis of the conservation laws
arising in the general model-building framework of the mechanics of complex bodies
is still an open issue. Open also is the description of the evolution of cracks in terms
of varifolds.

2. A first tool: Cartesian currents

The reasons for considering graphs of maps and the associated currents, in ana-
lyzing the energies of simple and complex deformable bodies, have been mentioned
above. Some details may clarify those remarks.

Let u : B → R̂
d be a member of W 1,1(B, R̂d). Denote by M (F ) the so-called d-

vector collecting all the minors of F (namely, the minors of Du (x)). M (F ) is then
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at each x ∈ B an element of Λd(R
d× R̂

d), the space of d-vectors with the associated

dual space Λd(Rd × R̂
d). Forms over B are then maps ω : B → Λd(Rd × R̂

d). Their

space is indicated by Dd(B× R̂
d). The map assigning to every point x the d-vector

M (F (x)) is of course of the type B → Λd(R
d × R̂

d).
It is possible to construct the d-current integration Gu over the graph of u, by

taking only the rectifiable part of the graph of u (see [17]). Precisely, Gu is the

linear functional on smooth d-forms ω with compact support in B × R̂
d defined by

Gu :=

∫
B
〈ω (x, u (x)) ,M (Du (x))〉 dx.

The boundary current associated with Gu is indicated by ∂Gu and defined by
∂Gu (ω) := Gu (dω), ω ∈ Dd−1(B×R̂

d) withDd−1(B×R̂
d) the space of (d−1)−forms

with compact support in B × R̂
d. Details on the nature and the properties of

Cartesian currents can be found in [17].
Currents, as recalled above, are essential tools to define weak diffeomorphisms,

the role of which in finding minimizers for the energy of deformable bodies, even
simple nonlinear elastic Cauchy bodies, has been introduced in the previous section.
Their formal definition reads as follows:

Definition 1. A map u ∈ W 1,1(B, R̂d) is said to be a weak diffeomorphism

(in short u ∈ dif1,1(B, R̂d)), when

(i): detDu (x) > 0 for almost every x ∈ B,
(ii): |M (Du)| ∈ L1 (B),
(iii): ∂Gu = 0 on Dd−1(B × R̂

d),

(iv): for any f ∈ C∞
c (B × R̂

d),

∫
B
f (x,u (x)) detDu (x) dx ≤

∫
R̂d

sup
x∈B

f (x,w) dw.

The conditions listed in the definition above have explicit physical meaning which al-
lows weak diffeomorphisms to be candidates for the description of standard deforma-
tions. Condition (i) is the standard requirement assuring that the map x �−→ u (x)
is orientation-preserving. The subsequent requirement prescribes that all the mi-
nors of Du are bounded in L1 (B). For example, it implies that the average volume
change be not infinite. In this way, if one think of u as a transplacement map-
ping, one is prescribing that global extreme deformations are prevented. The third
condition imposes that the graph of the map x �−→ u (x) has no boundary cur-

rent inside B × R̂
d. In other words, such a condition imposes that fractures do

not occur. The condition may appear more clear when one thinks of the standard
deformation of a body from its reference macroscopic place B to the actual place
Ba := u (B) as a d-dimensional surface S in R

d × R̂
d having one-to-one projections

into both factors of the cross product space. Elements of the tangent bundle of
S then describe infinitesimal deformations. At each point of S, namely the pair
(x, y), where now y = u (x), the tangent d−vector to S at (x, y) can be written
in terms of Du (x), adjDu (x) and detDu (x), or, alternatively, in terms of Dû (y),
adjDû (y) and detDû (y), where û is the inverse deformation with x = û (y). It is
then evident that the tangent d-vector to S is associated with M (Du). The current
Gu is then a global dual way to account for the multilinear algebra over the tangent
bundle of S. If the current has a boundary, this means that there are regions of S
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where all (d− 1)-forms are not exact (recall that ∂Gu := Gu (dω)), which means
that there are homological discontinuities in B.

Condition (iv) in Definition 1 has been proposed in [14] and is a generalization
of another condition suggested in [13]. It permits us to move B along u into a region
Ba in such a way that self-contact between parts of the boundary ∂B is allowed
while self-penetration is excluded.

The structure properties of dif1,1 are summarized in the theorem reported
without proof below.

Theorem 1 ([14, 17]).

(1) (Closure) Let {uk} be a sequence with uk ∈ dif1,1(B, R̂d) for any k. If

uk ⇀ u and M (Duk) ⇀ v

weakly in L1, then v = M (Du) a.e. and u ∈ dif1,1(B, R̂d).

(2) (Compactness) Let {uk} be a sequence with uk ∈ W 1,r(B, R̂d), r > 1.
Consider uk as weak diffeomorphisms. Assume that there exists a constant
C > 0 and a convex function ϑ : [0,+∞) → R

+ such that ϑ (t) → +∞ as
t → 0+, and

‖M (Duk)‖Lr(B) ≤ C,

∫
B
ϑ (detDuk (x)) dx ≤ C.

By taking subsequences {uj} with uj ⇀ u in W 1,r(B, R̂d), one gets uj → u
in Lr (B), M (Duj) ⇀ M (Du) in Lr and

∫
B ϑ (detDu (x)) dx ≤ C. In

particular, u is a weak diffeomorphism.

Although weak diffeomorphisms can appropriately describe standard deforma-
tions, for technical reasons the attention will be focused in the sequel on a subspace
of dif1,1(B, R̂d), namely

difr,1(B, R̂d) :=
{
u ∈ dif1,1(B, R̂d)| |M (Du)| ∈ Lr (B)

}
,

for some r > 1.
As remarked in the introduction, the existence of gap phenomena in relaxing

energies defined over jet bundles on the class of weak diffeomorphisms is still an
open problem.

3. Currents in the mechanics of complex bodies

As mentioned in the initial section, the combined use of the properties of weak
diffeomorphisms and Sobolev maps allows one to find minimizers of the elastic ener-
gies in complex bodies, simple Cauchy bodies being obtained when the macroscopic
influence of the material complexity is neglected.

Bodies are called complex when changes in their material texture at various
subscales (from nano-to-mesoscopic level) prominently influence the gross behavior
through peculiar interactions generated by the mutations of the substructure. Their
list includes liquid crystals, bodies with dense distributions of microcracks, quasi-
periodic alloys, materials with polarization (ferroelectrics or magnetoelastic bodies),
various types of composites and bodies with strain-gradient effects. Microstructures
can be exploited, even invented anew, to reach predetermined goals. An essential
problem in their description is that of bridging scales even from the atomic to the
macroscopic level, translating through the continuum limit the prominent aspects
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10 M. GIAQUINTA, P. M. MARIANO, G. MODICA, AND D. MUCCI

of the microstructural features. Inner dimensions are exploited. They are the
dimension of the manifold of substructural shapes which is used to represent the
peculiar features of the material microstructure.

The work developed so far on the foundations of the mechanics of complex
bodies has underlined a wide family of scientific questions of theoretical and applied
character (see [10, 11, 12, 26, 29, 15, 36, 27] and the references therein). In
classical field theories the starting point is to consider a body as an abstract set, the
elements of which are called the material elements. A model of a body starts then
from the attribution of geometrical structure to such a set. Essentially, at least a
rough idea of the material element must be at our disposal. The clear definition
of the nature of the generic material element is not a trivial task. However, in the
standard format of continuum mechanics, the problem is overcome by describing
the geometry of every material element only through the place in space it occupies.
The description is the minimalist one. One considers the material element as a
monad in Leibniz’ words, that is, a windowless box. No interest is shown for the
geometry of the structure of the material element and its changes. Information on
it are known just at the level of constitutive structures.

The analysis of complex bodies alters the standard paradigms of continuum
mechanics. Events at low scales influence, in fact, the gross behavior. To take into
account these effects the first step is to furnish a more detailed representation of
the material elements. They have to be considered as systems rather than monads.
The geometry of the inner microstructure must be represented. In fact, one selects
only some prominent geometric features and some morphological descriptor of the
inner geometry. Their choice is a structural part of the modeling process. The
description is multifield, so it is intrinsically multiscale and multidimensional. The
standard transplacement field

x �−→ u := u (x) ∈ R̂
d, x ∈ B,

pictures macroscopic deformations, while the morphological descriptor field

x �−→ ν := ν (x) ∈ M, x ∈ B,

describes the inner geometry of the microstructure. M is the so-called manifold of
substructural shapes.

Standard requirements are assumed to hold: x �−→ u is essentially an orienta-
tion-preserving piecewise C1-diffeomorphism, and the region u (B) has the same
geometrical structural properties of B. The field x �−→ ν is assumed to be piece-
wise differentiable. In order to construct the essential features of the mechanics of
complex bodies, it is not necessary to select some specific manifold M. The only
necessary assumption is that M is just a finite-dimensional differentiable manifold
(preferably without boundary).

Here, the discussion of standard and generalized measures of deformations, the
representation of macroscopic and microscopic actions through the external power,
the generalized notions of observers and their changes (notions which correspond
to a nontrivial sliding in the standard paradigm), the invariance requirements of
the external power (or the companion relative power) leading to balance equations
obtained independently of constitutive prescription are not recalled (relevant com-
ments can be found in [11, 26, 27]). The attention is focused only on elastic
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complex bodies. Their behavior is governed by an energy of the type

E (u, ν,B) :=
∫
B
e (x, u (x) , Du (x) , ν (x) , Dν (x)) dx,

where

e (x, u,Du, ν,Dν) = ê (x,Du, ν,Dν)− ŵ (u, ν) ,

with ê (x,Du, ν,Dν) the elastic energy and ŵ (u, ν) the potential of external bulk
actions; it admits the additive decomposition ŵ (u, ν) = ŵ1 (u) + ŵ2 (ν). Equilib-
rium states are described by minimizers of such an energy. Conditions assuring
their existence are sketched below.

Consider the energy density e as a map

e : B × R̂
d ×M×M+

d×d ×MN×d → R̄
+

with values e (x, u, F ,ν,N), where F := Du (x), N := Dν (x) and assume that the
properties (H1) and (H2) listed below hold.

(H1): e is such that there exists a Borel function

Pe : B × R̂
d ×M× Λd(R

d × R̂
d)×MN×d → R̄

+,

with values Pe (x, u, ν, ξ,N), which is

(a) l. s. c. in (u, ν, ξ,N) for a.e. x ∈ B,
(b) convex in (ξ,N) for any (x, u, ν),
(c) such that Pe (x, u, ν,M (F ) ,N) = e (x, u, ν, F ,N) for any list of entries

(x, u, ν, F ,N) with detF > 0.

In terms of Pe, the energy functional becomes

(3.1) E (u, ν,B) =
∫
B
Pe (x,u (x) , ν (x) ,M (F ) ,N) dx.

(H2): The energy density e satisfies the growth condition

(3.2) e (x, u, ν, F ,N) ≥ C1 (|M (F )|r + |N |s) + ϑ (detF )

for any (x, u, ν, F ,N) with detF > 0, r, s > 1, C1 > 0 constants and
ϑ : (0,+∞) → R

+ a convex function such that ϑ (t) → +∞ as t → 0+.

In essence, the assumption that Pe is convex in (M (F ) , N) for any (x, y, ν)
is an assumption of stability of the material. It accounts for a possible interplay
between the gradient of the gross deformation and the inhomogeneity of the dis-
tribution of the microstructure within the body. In fact, the inhomogeneity, that
is, the way in which the microstructure varies from place to place, is measured
by the gradient of the morphological descriptor. The growth condition (3.2) has a
constitutive nature. It prescribes that the energy admits a polynomial lower bound
which has the typical structure of a decomposed energy of Ginzburg-Landau type.
It describes only interactions between neighboring material elements and does not
account for the energy associated with the self-actions inside every material ele-
ment. For this reason, with (3.2) one is presuming in a sense that substructural
events within the generic material element may only increase the overall energy.

Dirichlet boundary conditions for u and ν are imposed here over portions of the
boundary ∂B indicated by ∂Bu and ∂Bν , respectively. In fact, it is assumed that
the field x �−→ u (x) takes assigned values x �−→ u0 (x) over ∂Bu while x �−→ ν (x)
is prescribed to be x �−→ ν0 (x) over ∂Bν .
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12 M. GIAQUINTA, P. M. MARIANO, G. MODICA, AND D. MUCCI

Under these conditions, existence of minimizers for the energy can be investi-
gated in the space

Wr,s :=
{
(u, ν) |u ∈ difr,1(B, R̂d), ν ∈ W 1,s (B,M)

}
.

From the closure theorem for weak diffeomorphisms reported above and stan-
dard semicontinuity results, an existence theorem can be derived.

Theorem 2 ([28]). Under the hypotheses (H1) and (H2), if there is a pair
(u0, ν0) ∈ Wr,s such that E (u0, ν0) < +∞, the functional E achieves the minimum
value in the classes

Wd
r,s := {(u, ν) ∈ Wr,s|u = u0 on ∂Bu, ν = ν0 on ∂Bν}

and

Wc
r,s :=

{
(u, ν) ∈ Wr,s | ∂Gu = ∂Gu0

on D2(R3 × R̂
3), ν = ν0 on ∂Bν

}
.

Like the constraints on the structure of the energy, even the choice of the
functional space Wr,s has a constitutive nature. Other possible choices of the
functional space can be made.

For example, one can imagine another lower bound for the energy density. Any
choice of lower bounds has a constitutive nature. The second one adopted here is
indicated by (H3).

(H3): The energy density satisfies the growth condition

(3.3) e (x, u, ν,F ,N) ≥ C2(|F |d−1
+ |adj F |d/d−1

+ |N |s) + ϑ (detF )

for any (x, u, ν, F,N) with detF > 0, C2 > 0 a constant and ϑ : (0,+∞) →
R

+ as above.

Consider the energy as defined over the functional class

Wd, d
d−1 ,s

: =
{
(u, ν) |u ∈ W 1,d−1(B, R̂d), adj(Du) ∈ Ld/d−1,

(iv.) in Def. 1 holds, ν ∈ W 1,s (B,M)
}
.

By taking into account the L logL estimate in [31] (see also [33]), one can find
a relevant existence result.

Theorem 3 ([28]). Under the assumptions (H1) and (H3) reported above, the
functional E achieves its minimum value in the class

Wd
d, d

d−1 ,s
:=

{
(u, ν) ∈ Wd, d

d−1 ,s
| u = u0 on ∂Bu, ν = ν0 on ∂Bν

}
,

provided that there exists a pair (u0, ν0) ∈ Wd, d
d−1 ,s

such that E (u0, ν0,B) < +∞.

The presence of the function ϑ in the lower bounds selected in (H2) and (H3) is
justified by the need of avoiding physically undesired behaviors such as the extreme
deformations obtained by letting detF go to zero on a set of positive measure.

Different special structural choices of the energy E (u, ν,B) can be made. A
couple of examples are reported here.

(1) Neglect macroscopic deformation and consider ν to be a scalar coinciding,
for example, with the volume fraction of a given phase in a two-phase
material. The density

ζ
(
ν2 − 1

)2
+ ς |N |2 ,
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with ζ and ς two constants, can be selected. With ν in R̃
m, the previous

density becomes
(
|ν|2 − 1

)2

+ μ |N |2. Both densities are of Ginzburg-

Landau type.
(2) Assume the existence of an internal constraint of the type

ν = ν (F ) .

In this case the microstructure is called latent (see [10]). The energy
density becomes that of a second-grade Cauchy body, that is,

e
(
x, u,Du,D2u

)
.

The special choice

e
(
x, u,Du,D2u

)
=

(
|Du|2 − 1

)2

+ ς2
∣∣D2u

∣∣2
is of Aviles-Giga type. It can be obtained even when (a) the macroscopic
deformation is neglected and (b) the morphological descriptor ν coincides
with the spatial derivative of some field, namely ν = Dφ, with x �−→ φ (x)
a differentiable map.

The existence theorems reported above apply to wide classes of complex bodies.
An extended list of prominent physical examples can be found in [28].

The first variation of the energy E (u0, ν0,B) can be obtained in different ways.
In the presence of regular minimizers admitting tangential derivatives, since

the energy density presented above is in essence a 3-form over the first jet bundle
of a bundle Y over B, namely π : Y → B, with π the canonical projection and the
typical fiber π−1 (x) = R̂× M, one can use the standard vertical lift of the first
jet bundle (canonical injection) to determine common Euler-Lagrange equations.
Elements of them are representations of standard and microstructural interactions
arising within the body. In particular, the derivative of the energy with respect
to F represents the standard Piola-Kirchhoff stress, the derivative with respect to
N the so-called microstress measuring contact interactions due to inhomogeneous
microstructural changes, and the derivative of ê with respect to ν indicates a self-
action within every material element. The derivatives of ŵ measure the external
bulk actions over the body in its whole (gravitational action) and the microstructure
(e.g., electric fields determining the polarization in a body).

The tangential derivative of maps in Wr,s or Wd, d
d−1 ,s

does not always exist.

Moreover, regularity theorems seem not to be available. However, horizontal vari-
ations can be computed. They are determined by diffeomorphisms of B into itself
such that their restriction over the boundary ∂B coincides with the identity. Hor-
izontal variations lead to balance equations called the balance of configurational
forces, the ones displaying the balance of actions on defects in solids, at least in the
conservative setting when dissipative actions are not present. When smooth mini-
mizers are at our disposal, the balance of configurational forces coincides also with
the pullback in the reference place B of the balances of standard and microstruc-
tural actions. For nonsmooth minimizers, the two classes of balance equations,
namely the ones obtained by vertical variations and the one following from hori-
zontal variations, have a different nature. Examples stressing this difference can be
found in [21], vol. I, pp. 152-153.
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4. Another tool: varifolds

Consider the dimension d of the ambient space greater than or equal to 2. For
a positive integer k, 1 ≤ k ≤ d, the Grassmann manifold of k-planes through the
origin in R

d is indicated by Gk,d and is also identified with the set of the projectors
Π : Rd → R

d onto k-planes. They have the well-known characterizing properties
Π2 = Π, Π2 = Π, RankΠ = k. Every projector is an element of a compact subset
of Rd ⊗ R

d.
It is then possible to construct a bundle Gk(B) with a natural projection π :

Gk(B) → B and typical fiber coinciding with the Grassmann manifold Gk,d.

Definition 2. A k-varifold over B is a nonnegative Radon measure V over
the bundle Gk(B).

In short-hand notation one writes V ∈ M (Gk(B)). Let π# be the projection
of measures over B associated with the natural projection π : Gk(B) → B. The
projection π# allows one to define the weighed measure of the varifold V , which
is the Radon measure over B defined by μV := π#V . Such a measure defines the
mass M (V ) of the varifold through the relation

M (V ) := V (Gk(B)) = μV (B) .
It is rather immediate to construct varifolds over a subset b of B. For the

purpose of the analysis developed here, some assumptions on the structure of b are
necessary. In fact, b is individuated by a measure which is absolutely continuous
with integer density θ with respect to the k-dimensional Hausdorff measure Hk in
R

d. It is then assumed that (i) b is an Hk-measurable, k-rectifiable subset of B
and (ii) the density θ belongs to L1

(
b,Hk

)
and takes integer values. All these

assumptions avoid the selection of too many exotic subsets b. For example, they
assure that for almost every x ∈ b, there exists the approximated (in the sense of
geometric measure theory, see [17]) tangent space Txb to b at x.

Under these conditions a varifold associated with the triple
(
b, θ,Hk

)
can be

defined through its action over the space of compactly supported C0 functions over
the fiber bundle Gk(B). Such a measure is indicated by Vb,θ (ϕ) and is defined by

Vb,θ (ϕ) :=

∫
Gk(B)

ϕ (x,Π) dVb,θ (x,Π) :=

∫
b

θ (x)ϕ (x,Π) dHk,

for any ϕ ∈ C0 (Gk(B)). The second-rank tensor Π (x) is the projection onto Txb at
all x’s where Txb is defined. This circumstance justifies the assumption of having
at disposal a set b admitting (an at least approximated) tangent space at almost
every x. Vb,θ is called the integer rectifiable k-varifold associated with

(
b, θ,Hk

)
.

When one selects vector-valued measures in the space of Radon measures over
Gk(B), it is done with the aim of defining a special class of varifolds: the varifolds
with curvature [23, 25]. The generalized curvature associated with b is a third-rank
tensor A which is at every x ∈ b the value of a tensor field defined over Gk(B) and
taking values over Rd∗ ⊗ R

d ⊗ R
d∗.

Definition 3. A varifold V is called a curvature k-varifold with boundary
if

(1) V is an integer, rectifiable k-varifold Vb,θ associated with the triple(
b, θ,Hk

)
,

Paolo Maria Mariano
Highlight

Paolo Maria Mariano
Note
Erase "the"

Paolo Maria Mariano
Highlight

Paolo Maria Mariano
Note
Change [23, 25] in [32, 34]

Paolo Maria Mariano
Highlight

Paolo Maria Mariano
Note
Erase "a"



CURRENTS, VARIFOLDS, CONTINUUM MECHANICS 15

(2) there exists a function A ∈ L1
(
Gk(B),Rd∗ ⊗ R

d ⊗ R
d∗), in components

A�i
j , and a vector Radon measure ∂V ∈ M

(
Gk(B),Rd

)
, the so-called var-

ifold boundary measure, such that, for every ϕ ∈ C∞
c (Gk(B)), one

gets∫
Gk(B)

(
ΠDxϕ+AtDΠϕ+AIϕ

)
dV (x,Π) = −

∫
Gk(B)

ϕ d∂V (x,Π) .

In the previous formula, I is the second-rank unit tensor. Indices are saturated
in such a way that (ΠDxϕ+AtDΠϕ+AIϕ) is a vector.

As a matter of notation, the subclass of curvature varifolds with curvature field
(x,Π) �−→ A (x,Π) in Lp

(
Gk(B),Rd∗ ⊗ R

d ⊗ R
d∗), with p ≥ 1, is indicated in what

follows by CV p
k (B). Moreover, in what follows, ∇b indicates the gradient along b.

The symbol Π# represents the projector acting over vector measures.
Essential properties of curvature varifolds are discussed in [23, 25]. Some of

them are summarized in the remarks below where V is a k-varifold with boundary
∂V and curvature A ∈ L1 (Gk(B)).

(1) The curvature tensor satisfies the following relations:

A�i
j = Aji

� , Aji
j = 0, A�i

j = Π�
hA

hi
j +Πh

jA
�i
h , A�h

j Πi
h = A�i

j , V − a.e.

(2) The vector Hi (x) := A�j
j (x,Π (x)) has the meaning of generalized mean

curvature for b, and is μV − a.e. x perpendicular to Txb.
(3) The projection map x �−→ Π (x) is μV − a.e. approximately differentiable

and (
∇bΠ�

j (x)
)i

= A�i
j (x,Π (x)) μV − a.e. x.

(4) The support of |∂V | is contained in the support of V , also |∂V | ⊥ V , and

∂V is tangential to b in the sense that Πi
#j (∂V )

j
= (∂V )

i
as measures.

(5) V is a varifold with locally bounded first variation and generalized mean
curvature in the sense of Allard with generalized mean curvature vector
H (x) and generalized boundary π#∂V . So, Allard’s regularity and com-
pactness theorems apply. In particular, it has been shown in [23] that
if V = Vb,θ ∈ CV p

k (B), with p > k, then it is locally the graph of a
multivalued function of class C1,α, α = 1− p

k , far from ∂V .

Theorem 4 (Compactness [25]). For 1 < p < ∞, consider a sequence {Vr} ⊂
CV p

k (B) of curvature varifolds with boundary and the corresponding sequences of
curvatures {Ar} and boundary measures {∂Vr}. For every open set Ω � B and for
every r, assume the existence of a constant c (Ω), depending on Ω, such that

μVr
(Ω) + |∂Vr| (Gk(B)) +

∫
Gk(B)

∣∣∣A(r)
∣∣∣p dVr ≤ c (Ω) .

Under these conditions, there exists a subsequence
{
V (rs)

}
of

{
V (r)

}
and a k-vari-

fold V ∈ CV p
k (B), with curvature A and boundary ∂V , such that

Vrs ⇀ V, ArsdVrs ⇀ AdV, ∂Vrs ⇀ ∂V,

in the sense of measures, as rs → ∞. Moreover, for any convex and lower semi-
continuous function f : Rd∗ ⊗ R

d ⊗ R
d∗ → [0,+∞], one gets∫

Gk(B)

f (A) dV ≤ lim inf
rs→∞

∫
Gk(B)

f (Ars) dVrs .
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5. An extended class of weak diffeomorphisms

A new class of weak diffeomorphims with boundary controlled by a varifold
can be defined. They are useful to describe cracks or dislocations in continuum
mechanics. An essential example of their physical meaning will be presented in the
ensuing section.

The basic idea is to have first at disposal a class of curvature varifolds with

boundary {Vk}d−1
k=1 such that (i) each element of the class is in CV pk

k (B) with pk > 1
and (ii) for k = 2, ..., d− 1,

π# |∂Vk| ≤ μVk−1
.

This last relation is not exotic: it is the weak version of the standard relation oc-
curring between a manifold and its boundary. Such a relation is here expressed in
terms of varifolds stratified over different dimensions and supported by rectifiable
sets. Once this family of varifolds has been selected, one aims to choose a special
class of maps which admit jump sets contained in the supports of the selected var-
ifolds and describe standard deformations outside these sets. Such maps are called
the extended weak diffeomorphisms with boundary controlled by stratified varifolds.
Essentially they are maps satisfying all items in the definition of weak diffeomor-
phism but the requirement to be without boundary. Boundaries in the graphs of
these maps are admitted but they have to satisfy conditions expressed in terms of
the selected family of stratified varifolds. These conditions are of two types and
are classified as type 1 and type 2 below. Their formal definitions are reported
in what follows.

Definition 4. Assigned a class {Vk}d−1
k=1 of curvature varifolds with boundary,

an extended weak diffeomorphism with controlled boundary of type 1 is
an a.e. approximately differentiable map which satisfies the conditions (i), (ii), (iv)
in Definition 1, and

π# |∂Gu| ≤
d−1∑
j=1

μVk
.

The condition above means that the Green formulas hold true outside the
support of the stratified varifolds involved in the previous definition. Moreover, it
indicates also that the boundary current ∂Gu has finite mass, and that u belongs
to the class SBV0(B, R̂d) (see [2]).

Definition 5. Assigned a class {Vk}d−1
k=1 of curvature varifolds with boundary,

an extended weak diffeomorphism with controlled boundary of type 2 is
an a.e. approximately differentiable map which satisfies the conditions (i), (ii), (iv)
in Definition 1, and

π# |∂Gu| ≤
d−1∑
j=1

μV (j) + π# |∂V1| .

Comments on the different physical situations described by the two classes are
reported in the ensuing section. Here the attention is mainly focused on the class
of extended diffeomorphisms with controlled boundary of type 1. To affirm that a
map u : B → R̂

d belongs to this class, one writes just u ∈ dif1,1(B, V, R̂d). The

structural properties of dif1,1(B, V, R̂d) are collected in the ensuing theorem.
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Theorem 5. Consider a sequence of varifolds {Vk} on B, chosen in CV p
1 (B),

p > 1, and with equibounded variation, i.e. supk μVk
(B) < ∞. Take a sequence

{uk} such that uk ∈ dif1,1(B, Vk, R̂
d). Assume that there exist u ∈ L1(B, R̂d),

υ ∈ L1(B,Λd(R
d×R̂

d)), and V ∈ CV p
1 (B), p > 1, such that uk ⇀ u, M (Duk) ⇀ υ,

and Vk ⇀ V as measures. The identity υ = M (Du) holds. Moreover, if detDu > 0

a.e., one also finds that u ∈ dif1,1(B, V, R̂d).

Proof. The assumptions imply that M (Gur
)+M (∂Gur

) ≤ C independently

of r. In particular, the sequence {uk} is equibounded in BV (B, R̂d) so that, by
passing eventually to subsequences, {uk} converges strongly in L1 and a.e. to u,
and Guk

converges to a current S. Moreover, S is an integer multiplicity rectifiable
current by the Federer-Fleming compactness theorem. For a more direct proof, see
[17]. It then follows that υ = M (Du) a.e. and S = Gu (see [17]). Properties (ii),

(iii), and (iv) in Definition 1 hold true. If u satisfies (i), then u ∈ dif1,1(B, V, R̂d).

In particular, the subclass

difp,1(B, V, R̂d) :=
{
u ∈ dif1,1(B, V, R̂d) | |M (Du)| ∈ Lp (B)

}
will be useful in the next section.

6. Describing cracks in term of varifolds

Varifolds are an essential tool for describing low-dimensional defects in solids
such as discontinuity surfaces, dislocations, cracks.

Assume also that a crack pattern can occur in a Cauchy body which is elastic-
brittle. The basic idea is to describe the crack pattern through a family of varifolds
of various co-dimensions. Consider the reference configuration B to be selected in R

3

for the sake of simplicity. Imagine a smooth single crack in the actual configuration
of the body which has as pre-image in B a piece of a certain surface C which can be
assumed smooth just to visualize the situation. A two-dimensional varifold can be
used to describe the surface. The Grassmanian is constructed by using the tangent
planes to the surface, and the surface itself is the support b of the varifold. The
boundary of C is then the support of the boundary of the varifold. A sketch of the
situation is described in Figure 1. It is possible to give a special status to a part of
the boundary of C, namely the part inside the body (the dashed line in Figure 1),
that, is the tip of the crack, with the aim of assigning a line energy to it. In this
case a one-dimensional varifold can be assigned. It should have support including
the tip. Part of the support of such a varifold could also describe line defects such
as dislocations occurring ahead of the crack tip. In evaluating the equilibrium of
such a body one has two unknowns: (i) the family of varifolds describing the crack

pattern, and (ii) the transplacement field. The latter is selected in difp,1(B, V, R̂d)
to assure that the boundary of its graph can be projected over the support of the
varifold only. In this way one wants to select a transplacement describing a standard
deformation outside the crack pattern.

Of course, a generic crack path is more complicated than the one described
above (see also Figure 1). Moreover, it is not necessary that the ambient space be
three-dimensional. The treatment proposed here can be set in an ambient space
with higher dimension, say d.

Energy is assigned to the lateral margins of the crack and to the tip. As an
extension of the classical Griffith scheme, the crack energy depends on the curvature
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Figure 1. Elastic-brittle simple body with a crack which has a
planar pre-image in the reference configuration depicted above.

of the crack. Special concrete examples justifying such an extension can be found in
[22]. The energy presented in the introduction is written for the sake of simplicity
in a three-dimensional ambient space to favour the physical visualization of the
meaning of the various terms. Its extension to higher-dimensional spaces is however
immediate. In this case, the geometry of the crack pattern is then described by a

family {Vk}d−1
k=1 of varifolds stratified over supports at various dimensions. Such a

family of varifolds is characterized by the ensuing formal definition.

Definition 6. A family {Vk}d−1
k=1 of curvature varifolds in CV pk

k (B), with pk >
1, is called stratified when

π# |∂Vk| ≤ μVk−1
, ∀k = 2, ..., d− 1.

Stratified cracks describe naturally the geometry of crack patterns in a body
placed in R̂

d. The associated energy, written in accordance with the remarks above,
reads

E (u, {Vk} ,B) : =

∫
B
e (x,Du) dx+

d−1∑
k=1

αk

∫
Gk(B)

∣∣A(k)

∣∣pk dVk

+
d−1∑
k=1

βkM (Vk) + γM (∂V1) .

Physical convenience suggests the introduction of a family of comparison var-

ifolds
{
Ṽk

}d−1

k=1
such that for any k one gets Ṽk ∈ CV pk

k (B) and μṼk
≤ μVk

. The

assignment of
{
Ṽk

}
does not mean that one is considering a preexisting crack pat-

tern because the comparison varifold family can be null. However, when an initial
crack exists, the condition assures that the competitors in the minimizing procedure
can only extend from the initial crack.
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The functional setting in which one tries to find minimizers of E (u, V,B) can
then be specified. The space

Aq,p,K,{Ṽk} (B) : =
{
(u, {Vk}) | Vk ∈ CV pk

k (B) , u ∈ difq,1(B, Vk, R̂
d),

{Vk} is stratified, ‖u‖L∞(B) ≤ K,μṼk
≤ μVk

, ∀k = 1, ..., d− 1
}

is then the natural ambient in which the existence of minimizers of the energy
E (u, V,B) can be investigated. In particular, the subspace

Au0

q,p,K,{Ṽk} (B) :=
{
(u, {Vk}) ∈ Aq,p,K,{Ṽk} (B) | u (x) = u0 (x) , x ∈ ∂Bu

}
,

with ∂Bu the part of the boundary of the body where the transplacement field is
prescribed, plays a role.

Theorem 6. Assume K > 0, q, pk > 1, and Ṽk ∈ CV pk

k (B) for any k. If

there exists
(
u0,

{
V 0
k

})
∈ Au0

q,p,K,{Ṽk} (B) such that E
(
u0,

{
V 0
k

}
,B

)
< +∞, then

E (u, {Vk} ,B) attains there the minimum value.

Further details, proofs and the evaluation of the first variation of E (u, V,B)
can be found in [22].

A final remark deserves mention: in fact, in managing an energy such as
E (u, V,B), one is in essence considering a cracked body such as a complex body,
the difference with the format described in the previous sections resting in the na-
ture of the morphological descriptor which is now a measure. CV p

k (B) plays here
the role of the manifold of substructural shapes.
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