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Abstract

We propose a new framework aimed at constructing approximations of different order to
static mechanical models with variational structure. Our starting point is a parameterized
family of functionals (a ‘theory’) and we are interested in approximating the global minimuma
of the energy when a secondary small parameter goes to zero. The goal is to develop a set
of increasingly accurate asymptotic variational models allowing one to deal with the cases
when this secondary parameter is ‘small’ but finite. At the basis of our approach is the idea
of Γ-equivalence, allowing one to divide the given set of ‘theories’ into classes of asymptotic
equivalence with respect to the small parameter. Since Γ-convergence may be nonuniform
within a ‘theory’ we pose a problem of finding a uniform approximation. To achieve this
goal we propose a method based on rectifying the singular points in the parameter space by
using the blow-up argument and then asymptotically matching the approximations around
such points with the regular approximation away from them. We illustrate the main ideas
with physically meaningful examples covering broad set of subjects from homogenization and
dimension reduction to fracture and phase transitions. The analysis of many of the examples
is new and presents an independent interest. In particular, we give considerable attention to
the problem of transition from discrete to continuum when the internal and external scales are
not well separated and one has to deal with the so called ‘size’ or ‘scale’ effects.

Introduction

Most of the models in continuum mechanics describing equilibrium configurations are based on the
minimization of functionals which contain a small parameter of either constitutive or geometrical
nature. It is then natural to try to use the smallness of the parameter to replace the original
model by a simpler one. The well-known examples of the limiting mechanical models which emerge
when the small parameter tends to zero include low-dimensional theories of thin-walled structural
elements (e.g [25]), the homogenized models of composite materials (e.g. [46]) and the continuum
models of crystal lattices (e.g.[10]). In all those cases the limiting models are more tractable than
their prototypes because they do not contain the small parameter and enjoy the advantages of
reduced dimensionality, homogeneity or continuity.

Often, the simplified model can be constructed by the more or less straightforward dropping
of the ‘small’ terms. While such point-wise limits can be rigorously justified in some situations
(e.g. [6]), there are other cases when the limit is nontrivial due to only weak convergence of the
minimizers (e.g. [63]). In those case in order to derive the limiting theory one has to use more
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sophisticated methods, in particular, the method of Γ-convergence, which was specially designed to
handle such situations [31]. In the last years the construction of Γ-limits proved to be a very useful
tool in dealing with otherwise intractable problems [27, 13].

The situations, however, are plentiful when the limiting models derived by the method of Γ-
convergence are degenerate and when it is clear that a physically meaningful model must necessarily
contain the original parameter even if it is considered small. It is enough to mention the plate
theories combining membrane deformations with bending [35], the theories of surface tension [47],
and the approaches in fracture mechanics assuming a nonzero toughness [37]. The small parameter
must also be preserved when the ratio of the internal to external scales is small but not too small
and when the main modeled phenomenon is associated with the ‘size’ or ‘scale’ effects [58].

Many asymptotic models containing a small parameter have been suggested in applications as a
heuristic way of simplifying the original “microscopic” descriptions. Moreover, it is not uncommon
that there exist several different approximate models with apparently overlapping domains of appli-
cation (e.g., Bernoulli and Timoshenko theories for rods [6, 41, 50], Kirchhoff and Mindlin-Reissner
models for plates [3, 6, 41], gradient and nonlocal continuum models of crystal elasticity [47, 39, 55],
various regularizations in the models with phase transitions or strain localization [5, 42]). In par-
ticular, the present study has been mostly motivated by the desire of the authors to rigorously
distinguish the theories of Griffith [37] and Barenblatt [4] in fracture mechanics under the assump-
tion that they represent various asymptotic limits of a lattice model with Lennard-Jones interactions
[60, 18].

As we have already mentioned, the asymptotic theories are typically aimed at capturing the
global minimum of the energy and in this case the most general approach to formalize the intuitive
derivations proposed in applications is to use the techniques of Γ-convergence [27, 13]. Furthermore,
to justify the higher order corrections rigorously, it is necessary to extend the idea of the Γ-limit
and formulate the concept of Γ-asymptotic expansion. Quite expectedly, this leaves one with a
variety of options.

In the current mathematical literature the issue is usually addressed by constructing a Γ-limit
in the proper limiting space and then improving it inside the same space through increasingly
more accurate approximation of the minimal value (Γ-development, see [2]). The obvious problem
with this approach is that the class of minimizers is decided already in the first step and after
this class is exhausted, the process of the improvement of the minimizer terminates (locking). In
addition, as we show in the paper, the corresponding higher-order Γ-limits may simply ceases to
exist (choking). Even more serious problems concern parameterized families of functional where
at certain values of parameters the Γ-convergence may not be uniform. In these cases we deal
with singular phenomena, associated, for instance, with nucleation, buckling or failure. Around
the singular points in the parameter space the precision of the straightforward Γ-development may
drop dramatically. Those (locking, chocking and nonuniformity) are probably the reasons why, as
a rule, the theories considered best in applications could not be reproduced by this formal method.

In this paper we propose a new methodology aimed at unifying the existing ad hoc approaches
and placing them into the formal framework of Γ-convergence. Our starting point is the concept
of Γ-asymptotically equivalent functionals of certain order which generalizes the corresponding
concept in the classical perturbation methods [34, 38]. We show that, outside the zero order Γ-
limit, the class of Γ-equivalent variational approximations of a given minimization problem may
be rather large. In particular, the equivalent theories may be very different with respect to the
degree of approximation for the minimizers, the general complexity, ‘computability’ and the ability
to capture local minima. We therefore raise the question of the additional criteria securing the
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uniqueness of the corresponding asymptotic expansions.
In search of such criteria we move from single functionals to ‘theories’ interpreting the latter as

parameterized sets of functionals, where parameters may characterize the geometry of the domain,
the boundary conditions, the bulk ‘loading’, or the constitutive behavior (see examples in [35, 44,
56, 26]). The presence of parameters raises the issues of continuity and uniformity of the successive
Γ-limits. As we show, in the typical cases the Γ-convergence is non-uniform and in this sense the
straightforward asymptotic theories based on Γ-development are not universal. The failure of such
asymptotic theories is due to the existence of the special points in the space of parameters where
the Γ-limit is singular (for instance, discontinuous). To deal with these points we propose particular
ways of rectifying the singular behavior by local blow up of the functional and constructing the
‘table’ of Γ-limit which fully characterizes the singular point. If the ‘tables’ in all singular points
are known, the only remaining problem is to match the boundary layer type Γ-expansions near the
singular points with the regular Γ-expansions outside these points.

Despite its mainly theoretical focus, the paper contains a series of illuminating examples of
equivalent theories and discusses the multiplicity of ways of generating uniform approximations with
respect to classes of boundary conditions. In our selection of examples we intentionally resisted the
temptation of dealing with the most general cases and instead limited ourselves to the problems
where a one dimensional, scalar version of a particular model could substitute its multi-dimensional,
tensorial analog. Some of our examples use arguments that can be derived from the known theories,
and in these cases the details are not included or only sketched. The full proofs are given only for
the cases that are not present in the literature.

The presentation is organized as follows. To motivate the subsequent definitions we review
in Section 1 the existing asymptotic procedures based on Γ-convergence and show that despite
their universality, they are not without significant flows. In Section 2 we introduce ‘theories’ and
then show in Section 3 that within a ‘theory’ the standard Γ-development can be nonuniform with
respect to the parameter. To deal with these problems we introduce in Section 4 the concept of
Γ-equivalence of functionals and study the main properties of the asymptotic factorization of the
set of functionals into equivalence classes. Some systematic methods of generating Γ-equivalent
functionals are proposed and discussed in Section 5. In Section 6 we extend the definition of Γ-
equivalence to ’theories’. The regular points within the ‘theories’ are studied in Section 7. The
structure of the singular points constitute the subject of Section 8 where we also formally define a
‘table of Γ-limits’ and present several detailed computations of various ‘tables’ in the problems of
physical interest. In Section 9 we pose the problem of rectifying singular points and produce a rather
general recipe for constructing uniformly equivalent theories. Our conclusions are summarized in
Section 10.

1 Background

As indicated in the Introduction, often the study of complex minimization problems involving a
small parameter ε can be simplified by approximating the original problem with a new one where
the dependence on this parameter has been either simplified or completely eliminated. Situations
like this are well known in the context of differential equations where the method of geometrical
optics and the theory of fluid boundary layers can serve as representative examples. The rigorous
theory of perturbation methods for differential equations is a mature field whose origin can be
traced to Poincaré (1886).
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In the situation where the main object of interest is the global minimum of a functional, the
adequate language has been developed by DeGiorgi [31, 29]. His approach is based on the notion of
Γ-convergence which we briefly review below to make our presentation self contained (see [27, 13, 14]
for more details).

The first requirement to Γ-convergence is that

Fε
Γ−→ F (0) (1)

implies
minFε → minF (0). (2)

The second requirement is that (almost) minimizers of Fε converge to minimizers of F (0)

uε −→ u(0), (3)

even though the meaning of convergence may be very weak. The third requirement concerns the
stability of the Γ-limit with respect to the addition of continuous perturbations

(Fε +G) Γ−→ (F (0) +G). (4)

In particular, if the condition (4) is satisfied, then, once the Γ-limit F (0) is computed, the result
can be used to describe a whole class of problems. This implies that Γ-convergence can deal with
some simple ’theories’.

We now proceed with the formal definition:

Definition 1.1 Let X be a first-countable space (e.g., a metric space) and let Fε : X → [−∞,+∞].
Then Fε Γ-converges to F0 as ε → 0 (and F0 is the Γ-limit of Fε) if the following two conditions
are satisfied for all x ∈ X:

(i) (lim inf inequality) for all xε → x F0(x) ≤ lim infε→0 Fε(xε);
(ii) (existence of a recovery sequence) there exists xε → x such that F0(x) = limε→0 Fε(xε).

From this definition one can see that implication (1) is valid if some equi-coerciveness assumptions
on Fε are satisfied (i.e., if we may find converging minimizing sequences) and throughout this paper
we suppose that such assumptions indeed hold.

We illustrate the notion of Γ-equivalence by the following examples. They deal with the deriva-
tion of a continuum elasticity theory as the asymptotic limit of different lattice models.

Example 1.2 For ε such that N = 1
ε ∈ N consider the functional

Fε(u) =
N∑
i=1

εW (ui) (5)

where u : {1, . . . , N} → R and
N∑
i=1

ε ui = 0. (6)
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The energy (5) describes a chain of springs connected in series. The springs can be viewed as not
interacting modulo the ‘mean field’ interaction with a loading device. Suppose that W is strictly
convex. Then one can show that (see [20])

F (0)(u) =
∫ 1

0

W (u) dt, (7)

with constraint ∫ 1

0

u(s) ds = 0. (8)

Example 1.3 To show that the previous result is stable with respect to adding long-range inter-
actions, we introduce a constant J > 0 and consider the following ‘elastic’ Ising model

Fε(u) =
N∑
i=1

ε
(
W (ui)− Juiui+1

)
, (9)

where we set uN+1 = u1 to avoid boundary effects. We again impose the constraint (6). If we now
rewrite the energy in the form

Fε(u) =
N∑
i=1

ε
(
W̃ (ui)− 2J

∣∣∣ui + ui+1

2

∣∣∣2),
it can be interpreted as the model of a chain with the nonlinear interaction of nearest neighbors
characterized by the convex potential

W̃ (z) = W (z) + J |z|2,

and an additional linear interaction of the next to nearest neighbors (NNN model). Suppose that
W (z) ≥ C(|z|2 − 1) with C > J , so that Fε are equi-coercive. Then, if the function

W (z) = W̃ (z)− 2Jz2 = W (z)− Jz2.

is convex one can show that (see [20] for more details)

F (0)(u) =
∫ 1

0

W (u) dt.

The two examples above represent the simplest cases of periodic convex homogenization where
the result could also be obtained by point-wise convergence. The next example shows the simplest
case where the notion of Γ-limit is essential.

Example 1.4 Consider again Example 1.2 and suppose now that W is a double-well potential as
shown in Fig. 1. We obtain (see [13] Theorem 4.3)

F (0)(u) =
∫ 1

0

W ∗∗(u) dt,
∫ 1

0

u dt = 0.

Here and often in the sequel we denote by W ∗∗ the convex envelope of W , whose appearance
highlights the formation of microstructure.
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Figure 1: A double-well potential

1.1 Γ-development

If the description given by F (0) is too coarse, further information can be obtained by iteration of
the Γ-limit procedure. More specifically if some α > 0 exists such that

F (α)
ε :=

Fε −minF (0)

εα
Γ−→ Fα, (10)

then, using again the fundamental property (2) of Γ-convergence we obtain

minF (α)
ε

(
=

minFε −minF (0)

εα

)
→ minF (α). (11)

In other words, one can write the more accurate development

minFε = minF (0) + εα minF (α) + o(εα). (12)

Remark 1.5 This convergence of minima can be deduced if we can find a precompact sequence of
minimizers of Fε, or, more in general, if there exists a precompact εα-minimizing sequence; i.e., xε
such that Fε(xε) = inf Fε + o(εα), which implies the equi-coerciveness of F (α)

ε .

We say that a Γ-development is complete if for all 0 < γ < α we have

F (γ)(u) := Γ- lim
ε→0

Fε(u)−minF (0)

εγ
=
{

0 if u is a minimizer of F (0)

+∞ otherwise

Note that if the Γ-development is not complete, i.e., F (γ) does not have the form above for some
γ, but minF (γ) = 0, then such F (γ) plays no role in (12).

The process of Γ-development [2] (or development by Γ-convergence) is formally resumed in the
equality

Fε
Γ= F (0) + εαF (α) + o(εα). (13)

The general equality (13) is only formal since the domains of the functionals may be different, and
even when they are equal the energy F (0) + εαF (α) is equal to +∞ outside the set of minimizers of
F (0); however, if the domains are equal, it suggests that we could expect the energy F (0) + εαF (α)

to be used in place of Fε at scale εα.
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This example illustrates a remarkable ‘stiffness’ of the classical elasticity theory.

In the next example we show the first manifestation of a ‘size’ effect when the the boundary
layers, due to lattice incompatibility with the ‘shape’ of the macroscopic boundary, contribute to
higher-order Γ limits.

Example 1.6 To capture the incompatibility effect in the one-dimensional setting we consider the
functional almost equivalent to the one in the Example 1.2

Fε(u) =
∑

{i:εi∈(0,1)}

εW (ui), (14)

again with constraint 6. In this case the identification of a discrete u with a piecewise-constant
function is not exact. We obtain

F 1
ε (u) =

∫ 1

0

W (u) dt+ cε, (15)

with constraint (8), and

cε = ε
([1
ε
− 1
]
− 1
ε

)
W (0).

Here [t] is the integer part of t.

Remark 1.7 In the computation of the higher-order Γ-limits some non trivial scale analysis must
be performed to understand what is the relevant scaling εα (or, more general, f(ε)). Note however
that, up to scaling, we can always suppose that F (0) is non trivial and, if needed, that the next
relevant scale is ε.

Once this first development is computed, the analysis at successively lower scales

1 >> f1(ε) >> . . . >> fm(ε)

can be performed by iteration (in these notations, in the development above we have taken f1(ε) =
f(ε), or εα). Then we obtain a development

Fε
Γ= F (0) + f1(ε)F (1) + · · ·+ fm(ε)F (m) + o(fm(ε)), (16)

where (with a little abuse of notation with respect to (13)) we have set

F (j) = Γ- lim
ε→0+

F (j)
ε , where F (j)

ε (u) :=
Fε(u)−

∑
i<j fi(ε)m

(i)

fj(ε)
, (17)

and m(i) = minF (i).

We now discuss some limitations of the straightforward Γ-development.
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1.2 Locking of minimizers

A rather unfortunate consequence of (11) is that this approximate energy is infinite outside the
set of minimizers of F (0). The latter may reduce to a trivial set (e.g. a single point) that cannot
be refined by the successive Γ-limits. In what follows we shall be referring to this property of the
straightforward Γ-development as the locking of the minimizers.

Remark 1.8 If F (0) has a unique minimum point u0 then the computation of F (α) reduces to that
of F (α)(u0). If Fε are equicoercive, then this amounts to computing

F (α)(u0)
(

= minF (α)
)

= lim
ε→0

minFε −minF (0)

εα
.

This observation will be frequently used in the sequel.

Example 1.9 To illustrate the locking phenomenon with a simplest example, consider

Fε(u) =
∫ 1

0

(|u′|2 + ε|u|2) dt, u(0) = 0, u(1) = 1. (18)

We can compute the Γ-development with respect to the strong L2 topology (or equivalently with
respect to the weak H1 topology), and obtain Iε = F (0) + εF (1) + o(ε), where

F (0)(u) =
∫ 1

0

|u′|2 dt, u(0) = 0, u(1) = 1. (19)

and

F (1)(u) =
{

1
3 if u = t
+∞ otherwise.

(20)

The computation of the last Γ-limit is trivial since the first one admits the only minimum point

u(t) = t.

This expression should be compared to the actual minimizer uε of the original problem, whose
formal asymptotic expansion goes as follows

uε(t) = t+ ε
1
6

(t3 − t)− ε3 1
18

(t− t3) + o(ε2).

One can see that the successive Γ-development locks the minimizer and does not allow to improve
its quality beyond what have been found in the first approximation even though finer and finer
information about the minimizer is needed to compute the higher-order Γ-limits.

The next example shows that the locking of the minimizer may not happen at the level of the
first approximation but may instead occur during the subsequent higher-order development.

Example 1.10 Let W : R→ R be a continuous double-well potential with wells (absolute minima)
in ±1 and growing more than linearly at ∞ (e.g., W (s) = min{(s+ 1)2, (s− 1)2}). Consider

Fε(u) =
∫

Ω

(W (u) + Cε2|∇u|2) dx, u ∈ H1(Ω),
∫

Ω

u dx = 0.
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If we use the weak L1-topology, suggested by the superlinear growth conditions of W at infinity,
then the first Γ-limit is (see, e.g., [14, 13])

F (0)(u) =
∫

Ω

W ∗∗(u) dx, u ∈ L1(0, 1),
∫

Ω

u dx = 0. (21)

Note that the minimizer is piecewise constant u = ±1 and due to the degeneracy of the energy (21)
it is not unique. In fact only the measures of the sets where u = 1 and u = −1 are known at this
stage. In particular the location of the interfaces (internal boundary layers) between the sates with
u = 1 and u = −1 and even their number remain unspecified. This information, however, can be
recovered in the next step of Γ-development, which finally locks the minimizer. Indeed, we obtain
(see, e.g., [14, 13])

F (1)(u) = cWHn−1(S(u)), |u| = 1 (22)

Here u ∈ {±1} is piecewise constant,
∫

Ω
u dx = 0 and

cW = 2
√
C

∫ 1

−1

√
W (s)−minW ds,

where S(u) denotes the interface between the phases {u = ±1} and Hn−1 the (n− 1)-dimensional
(surface) measure.

The minimization of the functional (22) allows one to fix the location of the interface which locks
the minimizer. In the subsequent approximations only the minimal value is changing. Interestingly,
the relevant scale successive to ε, is of exponential type εe−c1/ε and not of the form εα [22, 66].
Indeed, we recall that in the one-dimensional case with Ω = (0, 1) the set of ‘locked’ minimizers is
{u0,−u0}, where

u0(t) =
{
−1 if t < 1/2,
1 if t > 1/2.

The development reads as

Fε
Γ= F (0) + εF (1) + εe−1/2εF∞ + o(εe−1/2ε),

where

F∞(u) =
{
C∞ if u = ±u0

+∞ otherwise,

and the constant C∞ may be computed in terms of the limit of minimum problems as in Remark
1.8.

One can see that the first approximation locks the phase fractions, the second fixes the geometry
of the interface, while the higher-order approximations describe exponentially weak corrections due
to interaction of the interface with the external boundary (size effect). The latter will be the
subject of a detailed analysis in Example 8.4, where we consider the case when the size effect
becomes dominant.

Remark 1.11 Since the weak-L1 equi-coerciveness improves to strong-L1 coerciveness at scale ε,
then we may (a posteriori) choose to compute the first Γ-limit F (0) with respect to the strong
L1-topology, obtaining

F (0)(u) =
∫

Ω

W (u) dx,
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while F (1) remains unchanged. This shows that sometimes the Γ-limit may look superficially as a
point-wise limit even if the argumentation behind its derivation is entirely different.

1.3 ‘Choking’ of Γ-development

Locking of the minimizer is not the only problem which one may encounter while constructing the
Γ-development. Thus, the whole process may simply ‘choke’ if one of the higher-order limits does
not exist. We illustrate this phenomenon by the following examples.

Example 1.12 Consider a non-constant strictly positive and bounded one-periodic function a :
R→ R, and the functionals

Fε(u) =
∫ 1

0

a
( t
ε

)
|u′|2 dt (23)

defined on functions subject to the boundary conditions

u(0) = 0, u(1) = 1.

A standard argument shows that for all strictly positive and bounded f : [0, 1]→ R we have

min
{∫ 1

0

f(t)|u′|2 dt : u(0) = 0, u(1) = 1
}

= f, where
1
f

=
∫ 1

0

1
f(s)

ds; (24)

i.e., f is the harmonic mean of f on [0, 1]. We can now apply this computation to f(s) = aε(s) =
a(s/ε), and recalling that a−1

ε ⇀ (a)−1, obtain the well know fact that the Γ-limit of Fε is (see ,
for instance, [19])

F (0)(u) = a

∫ 1

0

|u′|2 dt, u(0) = 0, u(1) = 1. (25)

The unique minimum point of F (0) is u(t) = t, and in order to compute any further development it
suffices to compute it at this function (locking). The next meaningful order is ε. The Γ-limit can
be computed for sequences εj → 0 if there exists the limit (see Remark 1.8)

lim
j

1
εj

(
min

{∫ 1

0

a
( t
εj

)
|u′|2 dt : u(0) = 0, u(1) = 1

}
− a
)

= lim
j

1
εj

((∫ 1

0

1
a(s/εj)

ds
)−1

− a

)
= lim

j
a2

∫ 1/εj

[1/εj ]

(1
a
− 1
a(s)

)
ds. (26)

The value of the limit (26), which must be equal to F (1)(u), depends on the sequence (εj) which
means that the development at order ε does not exist. This obviously terminates the process
preventing one from improving upon the first approximation.

Here we encounter another example of the interaction between the boundary of a body and the
homogenization procedure. In the case when the scales are well separated ε� 1 (i.e., we consider
only the development at order 1) the energy associated with the boundary layers is negligible. As
the external and internal scale get closer to each other, we enter the domain of a size effect where
the oscillatory structure of the corrections to the homogenized theory, preventing the minimal value
of the approximate functional from converging, becomes more and more noticeable.
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The next example shows that the Γ-development may not terminate till sufficiently high order
of the approximation.

Example 1.13 Consider again Example 1.4 where the functional Fε (see 5) can be thought as the
discretization of the continuum energy

∫ 1

0
W (u) dt. We assume that the discretization is perfectly

compatible with the ‘shape’ of the body, meaning that we set ε = 1/N . Suppose that W is a
double-well potential. In Example 1.4 we have obtained the following result

F (0)(u) =
∫ 1

0

W ∗∗(u) dt,
∫ 1

0

u dt = 0.

One can also show that Fε is equivalent to F (0) also at order ε, as in the convex case but not
at order ε2. To check this we may refer to the study of the parameterized minimum problems

mε(λ) = min{Fε(u) :
∑
i εui = λ}.

An analysis of the exact solution of the discrete problem (e.g. [33, 53]) pictures the dependence on
λ as in Fig. 2 for the case W (s) = (s − 1)2 ∧ (s = 1)2, from which we see that ε−2mε(0) does not
converge to 0 = minF (0).

-1 1

1
mε (λ)
ε2

Figure 2: Minimal energy of a chain of bi-stable springs.

It is easy to see that the minimal value at, say, λ = 0 fluctuates as the small parameter goes
to zero, and therefore the limit does not exist. This example shows that for non-convex energies
homogenization methods must take into account the scale of the approximation and that different
theories may have to be used at different scales (contrary to what we have observed in the convex
case).

Now, observe that if parameter λ in Example 1.13 is allowed to vary, the fact of the non-
existence of the second order Γ-limit remains true for the whole interval (−1, 1) of parameters λ.
In the next Section we discuss more systematically some other typical problems which arise when
the Γ-development is applied to parameterized family of functionals.
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2 Theories

We recall that Γ-convergence has been designed to handle automatically the functionals parameter-
ized by ‘lower-order terms’. In this case the parametrization does not affect the first order Γ-limit
in the essential way, with the corresponding terms being either continuous perturbation or in some
way ‘compatible’ with Γ-convergence. However the higher-order Γ-limits do not enjoy the same
‘invariance’ property with respect to the same ‘continuous’ extensions. Moreover, in the typical
problems of interest the parameter enters the functional in a variety of ways that are not at all
‘compatible’ with Γ-convergence.

In what follows we shall refer to a class of minimization problems originating from a param-
eterized family of functionals as a ‘theory’. This terminology comes from applications where one
encounters, for instance, a multiplicity of theories of beams, plates and shells, theories of low or
high frequency vibrations, quasi-continuum theories of crystals and cohesive theories of cracks. We
adopt the following formal definition

Definition 2.1 Let E be a set of positive real numbers with 0 ∈ E, and let Λ be a subset of a
topological space. Then a family of functionals Fλε is called a parameterized family on Λ (the space
of parameters) or a ‘theory’.

We begin the analysis of the ‘theories’ by listing a series of examples.

1. Van der Waals’s theory of phase transitions ([65]). Suppose that W is a double-well potential
as in Example 1.10. Take Λ = R or Λ = [−1, 1] and define

Fλε (u) =
∫ 1

0

(
W (u) + ε2|u′|2

)
dt,

∫ 1

0

u(t) dt = λ. (27)

In this case λ represents an imposed integral constraint representing, for instance, average strain in
a bar if v′ = u. A typical problem in this theory is to determine the function

m(λ, ε) = mε(λ) = min
{∫ 1

0

(W (u) + ε2|u′|2) dt :
∫ 1

0

u dt = λ
}
. (28)

whose first derivative in λ gives the effective stress-strain relation. When ε = 0, we obtain the
famous Maxwell ’common-tangent’ construction (e.g.[6]), which does not handle nucleation appro-
priately even under the assumption of global minimization. Indeed, at finite ε the first nucleus of
the new phase appears with finite ‘size’ and this effect is lost in the limit ε → 0. It is then of
interest to construct an approximate theory corresponding to the case when ε is small but finite
which captures the above effect.

Different theories of the type (27) have recently been unified under the general title of a ‘phase
field’ model (e.g. [23]). The main goal of the phase field theory is numerical capturing of the sharp
discontinuities. In this framework our task is to construct an intermediate theory which avoids
the drawbacks of the sharp interface limit but does not have to resolve the higher derivative terms
where it is not absolutely necessary.

2. 1D Lattice theory of fracture ([60]). Let J : [0,+∞) → [0,+∞) be a Lennard-Jones
interatomic potential with minimum in 1 (see Fig. 3), and consider the scaled energy

Fλε (u) =
N∑
i=1

ε J
(ui − ui−1

ε

)
(29)
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with boundary conditions u0 = 0, uN = λ. In this case λ represents an imposed displacement in a
hard device. A problem of interest is again to compute

m(λ, ε) = ..

whose first derivative defines the effective stress-strain relation. When ε = 0, we obtain a material
that does not support tension and breaks at infinitesimal tension ([60, 18]). Real cracks, on the
contrary, appear only at finite tension. The challenge is then to capture this effect when ε is small
but finite.

While the theory of fracture in this example looks superficially very different from the theory
of phase transitions discussed above, we show in what follows that the two theories are in fact
remarkably similar.

Figure 3: a Lennard-Jones potential.

3. Homogenization theory (e.g. [46]). Take Λ = (0,+∞) and consider a functional

Fλε (u) =
1
λ

∫ λ

0

a
( t
ε

)
|u′|2 dt u(0) = 0, u(λ) = λ. (30)

In this case λ is a geometrical parameter (the length of a bar). The typical problem in this theory
is to find the minimum m(λ, ε) of Fλε and then compute effective elastic modulus ā = 2m(λ, ε)/λ2.
The problem has a classical solution when ε = 0. The computation of a correction to this result at
ε ∼ λ constitutes the main task of the theory of ‘size’ effect in homogenization.

4. Theory of finite scale micro-structures (e.g. [54]). This title refers to the broad class of models
with competing interactions where certain factors drive the coarsening of the microstructure while
the other factors facilitate its refinement. Here we consider the simplest model of this type [61, 1].
Suppose that Λ = [0,+∞) and define

Fλε (u) =
∫ 1

0

(
W (u′) + ε2|u′′|2 + λu2

)
dt, u(0) = u(1) = 0 (31)

In this case λ represents a combination of material and geometrical parameters and characterizes the
‘anti-ferromagnetic’ component of the interactions which drives the system towards the refinement
of the microstructure. This interaction competes with a ‘ferro-magnetic’ contribution due to ε term
in the energy, which drives the system towards coarsening. The problem is to characterize the
scale of the microstructure in the limit when ε → 0 and due to almost periodic arrangement of
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the optimal microstructure, the adequate parameter is the density of interfaces for the minimizer
N(λ, ε). If λ is finite, then N(λ, 0) =∞. An interesting question is to predict the value of N(λ, ε)
when ε ∼ λ and λ is small but finite.

In the next Section we further elaborate on the first two of these examples in order to illustrate
the typical problems encountered by the straightforward Γ-development applied to ‘theories’. The
last two examples will be studied in the subsequent Sections.

3 Non-uniformity of Γ-developments

We begin with the theory of phase transitions.

Example 3.1 Consider the family of functionals(27)). It is well known (see [48, 14]) that the
volume constraint

∫
u dt = λ is compatible with the Γ-limit procedure within the gradient theory

of phase transitions. Let mε(λ) be defined by (28). If |λ| ≥ 1 then the unique minimizer of
Fλε is the constant state u = λ for all ε, the Γ-development consist only of the first term, and
mε(λ) = m(0)(λ) = W ∗∗(λ). For all λ ∈ (−1, 1) the development of the minimum values is given
by m(0)(λ) + εm(1)(λ) + o(ε), where

m(1)(λ) = cW min
{

#(S(u)) : u ∈ {±1},
∫ 1

0

u dt = λ
}

= cW .

The plot of the function m(0)(λ)+εm(1)(λ) giving the Γ-development for the minimum values of
the functional (27)) is given in Fig. 4 together with the corresponding effective stress-strain relation.
The horizontal region on the stress-strain curve corresponds to Maxwell construction. Observe that
the nucleation (annihilation) takes place at points 1 and −1 and the newly forming nucleus has
infinitesimal ‘size’. This result can be compared with the exact solution of the problem at finite
ε (e.g. [61, 64]) showing that the nucleation starts at a finite distance from the points 1 and −1
and that the first nucleus is finite. More precisely, our approximate theory of order ε, needs to be
corrected near these points at the same order ε.

εcW
-1 1

W

λ

Figure 4: Approximate minimum values by Γ-development .

In the more formal language, we can reformulate the above observations as follows. We first
recall that the value mε(λ) is continuous with respect to λ. Then one can write

lim
λ→1−

(mε(λ)−m(0)(λ)− εm(1)(λ)) = εcW ,
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from which we argue that the description given by the Γ-development at scale ε is not accurate
close to the point −1. Similar result can be obtained for point 1.

The key point is that near both limits λ = ±1 the external and internal length scales are no
longer well separated. The external length scale here is given by the distance between the location
of the interface and the exterior boundary of the body: during nucleation both scales become
comparable. One encounters similar non-uniformity in the multi-dimensional setting when the two
interfaces get sufficiently closer to each other or when the curvature of one of the interface increases
considerably (say, in the neighborhood of a topological transition).

Despite its rather different formal appearance, the next example is very similar to the previous
one. Here instead of the new phase we deal with the nucleation of a crack.

Example 3.2 Consider a lattice theory of fracture with the energy (29). After identifying discrete
functions with their piecewise-affine interpolations the Γ-limit at order 1 can be computed as in the
other cases involving the passage from discrete to continuous and is simply

F 0
λ(u) =

∫ 1

0

J∗∗(u′) dt

with boundary conditions u(0) = 0, u(1) = λ, defined on all increasing functions u : [0, 1]→ R such
that u(0) = 0 and u(1) = λ (see e.g. [60, 13]; see also Example 6.5). Note that such functions may
be discontinuous, but the derivative u′ is defined almost everywhere. The integrand J∗∗ is constant
and equal to min J = J(1) on [1,+∞), so that

minF 0
λ = J∗∗(λ) =

{
J(λ) if λ ≤ 1
J(1) if λ > 1.

Indeed by Jensen’s inequality minF 0
λ ≥ J∗∗(λ). If λ ≤ 1 then uλ(t) = λt is the only test function

for which we have equality. If λ > 1 then all increasing functions satisfying the boundary conditions
and with u′ ≥ 1 are minimizers; in particular the function

ûλ(t) =
{
t if 0 ≤ t < 1
λ if t = 1,

which satisfies the boundary conditions, jumps at t = 1, but has u′ = 1 almost everywhere. One
can see that in this approximation the effective material does not support any tension.

The next scale is ε, for which we have

F 1
λ(u) =

{ 0 if u = uλ
+∞ otherwise

if λ ≤ 1, and

F 1
λ(u) =

{
−J(1)#(S(u)) if u is piecewise affine and u′ = 1 a.e.
+∞ otherwise

for λ > 1. Here it is understood that u is increasing and satisfies the boundary values (see [13] for
more details). In particular we see that ûλ above is a minimizer for F 1

λ and minF 1
λ = −J(1).

Again we can compute the approximation of mε(λ) = minFλε given by the development by
Γ-convergence m(0)(λ) + εm(1)(λ), and we get

m(0)(λ) + εm(1)(λ) =
{
J(λ) if λ ≤ 1
J(1)− εJ(1) if λ > 1.
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−εJ(1)

J

λ
1

Figure 5: Approximate minimum values by Γ-development.

The plot of the approximate minimum values obtained by Γ-development is given in Fig. 5
together with the effective stress-strain relation. One can see that the first order refined theory
again delivers the same physically absurd result that the fracture occurs at zero tension. More
formally, as in the previous example we can write

lim
λ→1+

(mε(λ)−m(0)(λ)− εm(1)(λ)) = −εJ(1),

from which one can argue that the description given by the Γ-development at scale ε is not accurate
close to the point 1. Here again, we deal with the phenomenon of nucleation, this time of a crack.
For the newly formed micro-crack the opening is comparable to the small parameter ε, which breaks
scale separation legitimizing the Γ-development.

It is again instructive to compare the approximation of the minimal value delivered by the Γ-
development and shown in Fig. 5 with the exact solution of the fracture problem at finite ε (see
[60, 18] for more details). The local picture near the singular point λ = 1 is exactly the same as
in the case of phase transition problem near the points λ = ±1. Thus, again, at small but finite ε,
one can always get sufficiently close to the nucleation point in order to find that the approximation
which is supposed to capture the terms of the order ε makes an error which is at least of the same
order. The resulting non uniformity of the Γ-development is illustrated in Fig. 6, where we show
the ε dependence of the function mε(λ) in the case of fracture as λ→ 1. This picture can obviously
be repeated for both singular points λ = ±1 appearing in the case of a phase transition.

Remark 3.3 Recall that the breakdown of uniform convergence (non uniformity) in conventional
asymptotic expansions for the functions fε(x) is often due to the formation of the boundary layers in
x space. As our examples show, in the case of functionals, the non-uniformity of the Γ-development
can also present itself through the formation of boundary layers, but now for the function describing
the distribution of the minimal values of the functional (function mε(λ)) in the space of parameters
(λ space).

Based on the analysis of the examples in the previous sections, we can conclude that despite
the universal nature of the Γ-development method, it does not offer a fully satisfactory solution to
the problem of the asymptotic approximation for variational problems encountered in applications.
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m0(λ)+εm1(λ)

mε(λ)

mε(1)
∼ (λ−1)2

ε

Figure 6: Non-uniformity of the Γ-development associated with the phenomenon of nucleation.

Most disturbing, if the method is applied to ‘theories’ it may generate an approximation that
is not uniform with respect to the parameter leading to rather poor quality of approximation in
certain regimes even if it is good in the others. This may be one of the main reasons, why the
general paradigm of Γ-development is often in conflict with the approximate methods used by the
practitioners.

Our main goal in the rest of the paper is to develop an adequate vocabulary aimed at overcoming
the above drawbacks of the straightforward Γ-convergence and to find the way of reinterpreting
rigorously the ‘good’ approximate theories used in applications.

4 Γ-equivalence

Our first observation is that equality of Γ-limits gives an equivalence relation between families of
energies; i.e., if Γ-limFε = Γ-limGε then we may say that Fε is equivalent to Gε. In this way
the concept of Γ-limit can be replaced by that of an equivalence class. Note that the domain of
equivalent Fε and Gε may be completely different.

Remark 4.1 In order not to make the extraction of a Γ-converging sequence a loss of generality,
from now on we will tacitly assume that our Γ-limits are computed with respect to a separable
metrizable convergence (which is usually the case in applications).

Definition 4.2 Fε and Gε are equivalent at order εα if there exist translations mε such that for
all sequences εj for which the limits exist we have

Γ- lim
j

Fεj
−mεj

εαj
= Γ- lim

j

Gεj −mεj

εαj
,

and these limits are non trivial (i.e., they do not take the value −∞ and are not identically +∞).

Observe, that in the spirit of (13) we may write

Fε
Γ= Gε + o(εα),
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even when no Γ-development of either functional exists. If α = 0 within this definition, Fε is
equivalent to itself, even when (Fε) does not converge, and two sequences converging to +∞ are not
always equivalent. Note moreover that in the definition above we may always choose mε = minFε.

While we may also define ‘equivalence at order f(ε)’, where f(ε) is any function of ε, we limit
ourselves to the scaling εα for the sake of simplicity.

Theorem 4.3 Let Hε, H
′
ε converge continuously to H (i.e, Hε(xε)→ H(x) if xε → x; e.g., Hε = H

a continuous function) and let Fε and Gε be equivalent at order εα; then Fε+ εαHε and Gε+ εαH ′ε
are equivalent at order εα

Proof. This follows immediately from the definition, and reduces to the compatibility of the Γ-limit
with respect to continuous perturbations if α = 0.

Theorem 4.4 Let (Fε) and (Gε) be equi-coercive and equivalent at order εα; then we have

inf Fε = inf Gε + o(εα).

Proof. The functionals

Fαε =
Fε −mε

εα
, Gαε =

Gε −mε

εα

are equicoercive. Given (εj) converging to 0, upon extraction of a subsequence, by the compactness
of Γ-convergence, Fαεj

→ H and Gαεj
→ H for some coercive H and hence we have

lim
j

inf Fεj
− inf Gεj

εαj
= lim

j

( inf Fεj −mεj

εαj
−

inf Gεj −mεj

εαj

)
= minH −minH = 0.

Hence the thesis follows by the arbitrariness of (εj).

Note that, since we do not require the existence of the Γ- limits , minimizers may not converge.
However, arguing by subsequences, we still deduce that the cluster points of minimizers of Fε are
the same as those of Gε. In the particular case when the functional H in the proof above has a
unique minimizer, then we may conclude that minimizers of converging subsequences of Fε and Gε
indexed by the same (εj), have the same limits, and in this sense are close.

Below we present several examples of equivalent functionals of different order.

Example 4.5 The first example illustrates the fact that already in the linear case a multiplicity
of equivalent functionals can always be found without modifying the principal structure of the
original problem. Thus, an equivalent energy at order ε to Fε in Example 1.9 can be searched
among quadratic functionals of the form

Gε(u) =
∫ 1

0

(aε|u′|2 + bε|u|2) dt, u(0) = 0, u(1) = 1, (32)

The condition of equivalence at order 1 gives aε = 1 + o(1) and bε = o(1) and the condition of
equivalence at order ε gives

3aε + bε = 3 + ε+ o(ε).
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One can choose for example either

Gε(u) =
(

1 +
ε

3

)∫ 1

0

|u′|2 dt, u(0) = 0, u(1) = 1, (33)

or

Gε(u) =
∫ 1

0

((1 + ε)|u′|2 − 2ε|u|2) dt, u(0) = 0, u(1) = 1. (34)

Example 4.6 The next example shows that also in nonlinear case, equivalent problems may have
the same general form and differ only in details. For instance, let

Fε(u) =
∫

Ω

(
W (u) + Cε2|∇u|2

)
dx

and
F̃ε(u) =

∫
Ω

(
W̃ (u) + C̃ε2|∇u|2

)
dx

be two energies as in Example 1.10 with W and W̃ two double-well potentials with wells in ±1.
Then F̃ε and Fε are equivalent at order ε if and only if minW = min W̃ and

√
C

∫ 1

−1

√
W (s)−minW ds =

√
C̃

∫ 1

−1

√
W̃ (s)−min W̃ ds.

In this case, by Example 1.10 they are both equivalent to

F(u) = |Ω|minW + εF (1)(u),

with F (1) given by (22). The conditions of equivalence at order 1 are different if we take the weak or
the strong L1-topology. In the first case the condition is W ∗∗ = (W̃ )∗∗; in the second one W = W̃ .

The next two examples illustrate the fact that the equivalent theories may also have a rather
different structure.

Example 4.7 Consider the discrete model (9) with the double-well energy

W (z) = min{(z − 1)2, (z + 1)2},

and J < 1, so that Fε are equi-coercive. It is easy to see that W from Example 1.3 is itself a double-
well potential, with symmetric wells that we denote by ±a. Let m0 = minF (0) = minW = W (a).

Remark 4.8 In the case of a general W the ‘effective’ potential W is given by the more complex
formula

W (z) =
1
2

inf{W (z1) +W (z2) : z1 + z2 = 2z} − 2Jz2

(see [20, 13]) highlighting oscillations at microscopic scale. Some equivalent energies in this case
can be deduced from the analysis in [15].
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We may apply to Fε the first-order analysis of [15] obtaining that the next meaningful scale is
ε, and that the next term in the development is

F (1)(u) = KW#(S(u)), u ∈ {±a},

where

KW = inf
{ +∞∑
i=−∞

(1
2
(
W (vi) +W (vi−1)− 2Jvivi+1

)
−m0

)
:

v : Z→ R, vi = −a if i ≤ −N, vi = a if i ≥ N, N ∈ N
}

The value KW represents the energy of an interface by means of a ‘discrete optimal-profile problem’
between the two constant (minimal) states ±a. Note that for fixed N the terms in the sum in the
minimum problem are 0 for i ≥ N and i < −N − 1; moreover the function vi = a sign i is an
admissible test function for all N ≥ 1, from which we obtain KW ≤ 4Ja2.

This development gives the equivalent energy at scale ε

Gε(u) =
{
m0 + εKW#(S(u)) if u ∈ {±a}
+∞ otherwise.

A comparison with the gradient theory of phase transitions shows that the functional

G̃ε(u) =
∫ 1

0

(W (u) + ε2C|u′|2) dt, (35)

is also equivalent to Fε at order ε, provided that C is chosen such that

KW = 2
√
C

∫ a

−a

√
W (s)−minW ds.

The minimizers of the approximate energy (35) agree with the exact solution of the original problem
which is known in the explicit form for finite ε [62]. It is interesting that another approximation at
order ε with the same structure as in (35) but different W (u) and C can be formally obtained by
a point-wise limit [62], however it appears to be working only in the limited domain of parameters
J and its rigorous status remains to be clarified (see [9] for more general results in this direction).

The next example shows that even the number of variables in equivalent theories with otherwise
similar structure may be different.

Example 4.9 Consider a functional which one encounters in the Timoshenko theory of beams

Fε(u, φ) =
∫ l

0

(
E|φ′|2 +

H

ε2
(φ− u′)2

)
dt.

Below we prove (see also [6]) that the corresponding minimization problem is Γ-equivalent at order
1 to the more conventional Euler-Bernoulli bending problem characterized by the functional

G(u) = E

∫ l

0

|u′′|2 dt.
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Here we have assumed the identification of G with

G(u, φ) =

E

∫ l

0

|u′′|2 dt if φ = u′

+∞ otherwise.

To justify the claim we have to show that Γ-limε→0+ Fε = G. It suffices to prove that if uε, φε
are such that supFε(uε, φε) < +∞, then, up to subsequences and translations by constants (for
φε) and affine functions (for uε), we have φε ⇀ φ and uε ⇀ u weakly in H1(0, l), with u ∈ H2(0, l)
and u′ = φ, and

lim inf
ε→0

Fε(uε, φε) ≥ E
∫ l

0

|u′′|2 dt.

Now, from sup
∫ l

0
|φ′ε|2 dt < +∞ we deduce φε ⇀ φ, while from∫ l

0

|u′ε|2 dt ≤ C
∫ l

0

(|φε|2 + |u′ε − φε|2) dt ≤ C(1 + ε2)

we deduce that uε ⇀ u. By the lower semi-continuity of the norm then∫ l

0

|u′ − φ|2 dt ≤ lim inf
ε→0

∫ l

0

|u′ε − φε|2 dt = 0,

so that u′ = φ and u ∈ H2(0, l). Finally,

E

∫ l

0

|u′′|2 dt = E

∫ l

0

|φ′|2 dt ≤ lim inf
ε→0

E

∫ l

0

|φ′|2 dt ≤ lim inf
ε→0

Fε(uε, φε).

The obtained result is stable with respect to the addition of the boundary conditions, prescribing,
for instance, displacements (hinging) and rotations (clamping) at the end points.

5 Systematic methods

Although a sufficiently general method of generating the whole class of Γ- equivalent functional
does not exist, we discuss in this Section three rather systematic approaches of producing equivalent
functionals.

5.1 ‘Taylor’ expansion

First we observe that if a Γ-development exists then it is easy to construct an equivalent family as
follows.

Theorem 5.1 Let Fε and mα
ε be such that the limit

F (α) = Γ- lim
ε→0+

Fε −mα
ε

εα

21



exists and is not trivial. Then (Fε) is equivalent to

Gε(u) := mα
ε + εαF (α)(u)

at order εα. In particular, if a Γ-development F (0) + εβ1F (1) + · · ·+ εβMF (M) + εαF (α) exists, with
0 = β0 < · · · < βM < α, then we may take

Gε(u) :=
M∑
k=0

εβkm(k) + εαF (α)(u),

with m(k) = minF (k).

Proof. It suffices to apply Definition 4.2 above, with mα
ε =

∑M
k=0 ε

βkm(k) in the case of a Γ-
development.

Remark 5.2 It must be noted that in the case of a Γ-development only the values m(k) = minF (k)

take part in the definition of Gε and not the actual form of each F (k). In particular, energies with
different developments may be equivalent at scale εα.

Example 5.3 An equivalent energy at order ε to Fε in Example 1.9 can be obtained directly from
the development as

Gε(u) =
{ 1 + ε

3 if u = t
+∞ otherwise.

(36)

Example 5.4 An equivalent energy at order 1 and ε in Example 1.12 is given by

Gε(u) =
(
a+ εa2b

(1
ε

))∫ 1

0

|u′|2 dt, u(0) = 0, u(1) = 1, (37)

where

b(t) =
∫ t

0

(1
a
− 1
a(s)

)
ds (38)

(note that b is 1-periodic, so that we may remove the integer part in the lower extreme of the

integral in (26)). Also, note that
(∫ 1

0
1

a(s/εj) ds
)−1

can be developed in a power series in terms of

ε, a and b, obtaining equivalent energies up to order εk for all k ∈ N of the form

Gε(u) = a
(

1 + εab
(1
ε

)
+ · · ·+ εkak

(
b
(1
ε

))k)∫ 1

0

|u′|2 dt, u(0) = 0, u(1) = 1.

We reiterate here that despite its systematic nature, the straightforward Γ-development suf-
fers from the rather poor representation of the minimizers and potential non-uniformity in the
representation of the minimal values.
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5.2 ‘Stretched’ variables and Ansätze

Another scheme of constructing equivalent energies, usually much more relevant for applications,
is by the computation of the Γ-development of functionals obtained through a special change of
variables (ansatz) which anticipates the structure of the minimizer.

To illustrate the subsequent formal development, we first consider the simplest case where one
seeks to construct the lowest order of approximation to a family of functionals Fε(u). Suppose that
the Γ-limit of Fε(u) is either trivial or does not exist. Suppose further that one can find a new
variable v, such that

u =
1

φ(ε)
Φ(v) (39)

and that a re-scaled functional

Ψε(v) = ψ(ε)Fε
(Φ(v)
φ(ε)

)
(40)

has a nontrivial Γ-limit. Then the functional Ψε expressed in terms of u will deliver the desired
equivalent theory. The nontrivial limits of the type (40) reveal the so called self-similar structure
of the singularity at ε = 0.

A more general formal procedure goes as follows:

1. Find a bijective change of variables Φε : V → X and define Hε(v) = Fε(Φε(v));
2. Compute the Γ-limit H : V → X of Hε;
3. Define Gε(u) = H(Φ−1

ε (u)) and prove that Gε is equivalent to Fε.

We remark that sometimes the last passage is not straightforward since the domain of H may be
different from that of Hε. It becomes feasible, however, if other invertible changes of variables
exist Θε : V → V carrying the domain of H into the domain of Hε. In this case we need to put
Gε(u) = H(Θ−1

ε (Φ−1
ε (u))).

In many cases, a possible change of variable is of the type u = u0 + εγv where u0 is a minimizer
for F (0); i.e., Φε(v) = u0 + εγv in the remark above. It is clear that finding the relevant scaling
(stretching) requires a deep understanding of the solution to the original problem and can not
be fully formalized even though one can of course try to make an exhaustive search through the
particular classes of ansatzes. The well know examples of the use of stretched variables can be
found in various derivations for the theories of plates and rods (see, for instance, [6, 41, 52, 35]).
Another nontrivial applications of the method can be found in the higher-order approximations for
composites [7, 57].

We illustrate this approach by the following simple examples.

Example 5.5 Consider again Example 1.9. Our goal is to obtain an equivalent energy at scale ε2

to Fε. In this case the locked minimizer is u0(t) = t, so we may choose a change of variables of the
form Φε(v) = u0 + εγv with v(0) = v(1) = 0, and compute the Γ-limit of

Hε(v) =
1
ε2

(
Fε(Φε(v))− 1− 1

3
ε
)
. (41)

If γ < 1 this limit is identically 0, while if γ > 1 it is trivial. We then choose and the change of
variables u = u0 + εv, for which the Γ-limit of Hε is

H(v) =
∫ 1

0

(|v′|2 + 2tv) dt.
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By inverting the change of variables v = (u− t)/ε we get the integral 1
ε2

∫ 1

0
(|1−u′|2 + 2εt(u− t)) dt,

and, after integrating by parts using the boundary condition, an equivalent energy at scale ε2 to
Fε of the form

Gε(u) =
∫ 1

0

(|u′|2 + ε(|u|2 − |u− t|2) dt.

Example 5.6 The same scheme can be applied for the linearization of finite elasticity, where the
starting energy is of the form

Fε(u) =
∫

Ω

f(∇u) dx, u(x) = x+ εφ(x) on ∂Ω

with f a hyperelastic energy density with its minimum on SO(3). The Γ-limits of higher order
are locked on the identity u0(x) = x. A change of variables Φ(v) = u0 + εv allows to express a
functional equivalent to Fε at order ε2 in terms of the functionals of linearized elasticity. For details
we refer to [28].

A nontrivial application of the method will be given in the Example 8.5.

5.3 Matched expansions

Another rather general approximation scheme assumes that the original functional is restricted to
the part of the domain (say, around the singularities in the original problem) while the truncated
Γ-development of a finite order is operative in its complement (say, far away from the singularities).
In this case the full description corresponding to finite ε is preserved in the domain which is
shrinking as ε → 0, while an approximate description is used in the domain which is enlarging
as the small parameter diminishes. The matching of the two pictures is achieved automatically
with the variational principle delivering the ’natural’ matching conditions . This approach is often
used for the the fully discrete resolution of the cores of the defects within continuum elasticity
(quasi-continuum method, [59])

This method is illustrated by the following simplest examples. The first example deals with the
boundary layers in homogenization.

Example 5.7 Consider again Example 1.12. It is not difficult to see that an equivalent theory of
arbitrary order can be obtained if we take

G̃ε(u) =
∫ 1

0

aε(t)|u′|2 dt, u(0) = 0, u(1) = 1

where

aε(t) =

{
a if t′ε ≤ t ≤ t′′ε
a
( t
ε

)
otherwise,

where 0 ≤ t′ε ≤ t′′ε ≤ 1 and t′′ε − t′ε ∈ εN. To prove this we need to observe that under the imposed
conditions the minimum values of the approximate and original functional simply coincide.

The second example, instead of external boundary layers in a linear setting is dealing with
internal boundary layers emerging due to the non-convexity of the energy.
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Example 5.8 Consider the energy in Example 4.7 with conditions
∑
i ui = 0 and set for simplicity

uN+1 = uN . In this case a minimizer of the Γ-limit at order ε has a unique phase transition at the
point 1/2. To resolve the fine features of the transition we can use the discrete formulation close
to 1/2, while using the continuous description ‘far’ from 1/2. This can be done by considering the
equivalent functional

Gε(u) =
∫

(0,1)\Iε

(W (u) + Cε2|u′|2) dt+
Nε−1∑
i=−Nε

ε(W (ui)− Juiui+1),

defined on H1 functions coinciding in Iε with their interpolations on the lattice εZ, where we have
chosen Nε ∈ N with Nε → +∞ and εNε → 0, and set Iε = {|t− 1/2| ≤ εNε}.

The main difficulty in applying this method is that the exact location of the domain where the
full description should be used, is unknown a priori. This poses an additional ‘localization’ problem.
An interesting example of the matching method involving first the localization of the fully resolved
domain in the case of 1D fracture can be found in [8].

6 Uniform Γ-equivalence

In this Section we present a more systematic analysis of the parameterized families of functionals
(’theories’). We begin with a definition of equivalence for parameterized functionals.

Definition 6.1 Two families of functionals Fλε and Gλε are equivalent at order εα at λ0 ∈ Λ if
Fλ0
ε and Gλ0

ε are equivalent at order εα

The definition is illustrated by an example dealing with a size effect in composites.

Example 6.2 Let λ > 0 and consider the one-dimensional homogenization problem of the form

min
{ 1
λ

∫ λ

0

a
(x
ε

)
|u′|2 dx : u(0) = 0, u(λ) = λ

}
, (42)

where the function a is 1-periodic, bounded and strictly positive. It is convenient to rewrite these
problems as minimum problems with the energies

Fλε (u) =
∫ 1

0

a
(λx
ε

)
|u′|2 dx, u(0) = 0, u(1) = 1. (43)

As shown in Example 1.12 the Γ-limit of Fλε is

F 0
λ(u) = a

∫ 1

0

|u′|2 dx, u(0) = 0, u(1) = 1, (44)

independent of λ, while the Γ-development does not exist at scale ε. An equivalent parameterized
functional for all λ > 0 at scale 1 and ε is

Gλε (u) =
(
a+ εa2b

(λ
ε

))∫ 1

0

|u′|2 dt, u(0) = 0, u(1) = 1. (45)
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In unscaled variables we obtain

F 0
λ(u) =

a

λ

∫ λ

0

|u′|2 dx, u(0) = 0, u(λ) = λ, (46)

and

Gλε (u) =
(a
λ

+ ε
a2

λ
b
(λ
ε

))∫ λ

0

|u′|2 dt, u(0) = 0, u(λ) = λ. (47)

Note that for all ε fixed we have

lim
λ→0+

minFλε = min
{∫ 1

0

a(0)|u′|2 dt : u(0) = 0, u(1) = 1
}

= a(0) 6= a = lim
λ→0+

minF 0
λ ,

and
lim
ε→0

lim sup
λ→0

∣∣a−minGλε
∣∣ = 0.

As we see the equivalence is not uniform because in the case of sufficiently small bodies homog-
enization starts to interfere with the boundaries and in the limit λ→ 0 the boundary layers at the
external boundaries dominate the effective response of the body. This phenomenon in the case of
discrete lattices was studied in more detail in [24, 21].

In view of the previous example it is of interest to upgrade Definition 6.1 to a uniform equivalence
of parameterized functionals.

Definition 6.3 Two families of functionals Fλε and Gλε are (uniformly) equivalent at order εα at
λ0 ∈ Λ if there exist translations mλ

ε such that for all εj → 0, λ0 ∈ Λ and all λj → λ0 we have,
upon extraction of subsequences,

Γ- lim
ε→0

F
λj
εj −m

λj
εj

εα
= Γ- lim

ε→0

G
λj
εj −m

λj
εj

εα
, (48)

and these Γ-limits are non trivial.
We say that Fλε and Gλε are uniformly equivalent at order εα on Λ if they are uniformly equivalent

at all λ0 ∈ Λ.

Note again that the space on which (uniformly) equivalent functionals may be different, and
may vary with ε and λ.

Theorem 6.4 Let Λ be sequentially compact, and let Fλε and Gλε be uniformly coercive and uni-
formly equivalent at order εα on Λ. Then

sup
λ∈Λ

∣∣inf Gλε − inf Fλε
∣∣ = o(εα). (49)
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Proof. By contradiction, suppose that a sequence (λj) exists such that

| inf Gλj
εj
− inf Fλj

εj
| ≥ Cεjα.

By the compactness of Λ we may suppose that λj → λ0, and by the definition above that (48)
holds. By coerciveness we then obtain that

lim
ε→0

inf Fλj
εj −m

λj
εj

εα
= lim
ε→0

inf Gλj
εj −m

λj
εj

εα
,

and that the limit is finite. From this we immediately obtain a contradiction.

To give another illustration of the notion of uniform Γ-equivalence we revisit the problem of
discretization for non-convex energies (see our Example 1.2).

Example 6.5 For ε such that N = 1
ε ∈ N, and for λ ∈ R we consider again the parameterized

functional

Fλε (u) =
N∑
i=1

εW (ui)
N∑
i=0

ε ui = λ (50)

where u : {1, . . . , N} → R. We recall that this problem can be viewed as the ’naive’ discretization of∫ 1

0
W (u) dt with the same boundary conditions, after the identification of u with a piecewise-affine

function on (0, 1) and ui = u(i/N).
If W is strictly convex then ‘naive’ approach works and Fλε is uniformly equivalent at all orders

to the parameterized continuous functional

Gλε (u) = Gλ(u) =
∫ 1

0

W (u) dt
∫ 1

0

u(s) ds = λ (51)

(independent of ε).
If W is not convex then the situation is different and Fλε and Gλε are not equivalent at order ε2,

as we have shown in Example 1.13 for λ = 0. In fact none of the points in the interval λ ∈ (−1, 1)
is a point of uniformity. To construct a uniformly equivalent functional at order ε2 in the case
W (z) = min{(z − 1)2, (z + 1)2} we can, for instance, take

Wε(z) = min
{(
z − 1 +

2i
N

)2

: i = 0, . . . , N
}
, (52)

and define

Gλε (u) =
∫ 1

0

(
Wε(u) + |u′|2

)
dt

∫ 1

0

u(s) ds = λ. (53)

This construction is in some sense trivial, because it presupposes the complete knowledge of the
minimizer for the original discrete problem at finite ε. The development of a nontrivial continuum
model with the same degree of approximation poses considerable challenge because in the interval
λ ∈ (−1, 1) the system behaves as ‘strongly discrete’. Indeed in this regime the individual elements
transform independently, one after another, so even the weakest forms of the Cauchy-Born rule
[32], which is usually the basis of a continuum approximation, can not be hoped to be true. In the
more mathematical language, the difficulty here arises from the fact that we are dealing with a case
when there is a whole interval of singular points.
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To summarize, as we have seen in the preceding examples, for parameterized families of mini-
mization problems one can distinguish (in the space of parameters) the regular points, where the
approximation is uniform, and the singular points, where it is not. Below we introduce the formal
definitions and treat the regular and singular cases separately.

7 Regular points

We begin with the formal definition of a regular point in the λ− ε space.

Definition 7.1 Let (Fλε ) be a family of parameterized functionals. A point λ0 ∈ Λ is a regular
point for (Fλε ) at scale εα if for all εj → 0 and sequences mj, λj → λ0, λ

′
j → λ0 we have, upon

extraction of a subsequence, that

Γ- lim
j

F
λj
εj −mj

εαj
= Γ- lim

j

F
λ′j
εj −mj

εαj
. (54)

Remark 7.2 We may take mj = inf Fλj
εj so that for this sequence (mj) the first limit in (54) is

non trivial.
Note that we may take λ′j = λ0 so that for all λj → λ0

Γ- lim
j

F
λj
εj −mj

εαj
= Γ- lim

j

Fλ0
εj
−mj

εαj
. (55)

Theorem 7.3 Let (Fλε ) be an equi-coercive parameterized family such that all λ are regular points
at scale εα, and let

Fαλ = Γ- lim
ε→0

Fλε −mλ
ε

εα
(56)

exist and be non trivial, where
mλ
ε = inf Fλε .

Then λ 7→ Fαλ is continuous with respect to Γ-convergence

Proof. Since we suppose that our energies are equi- coercive, the topology of Γ-convergence is
metrizable and compact (see [27]). Let λk → λ0 be such that Fαλk

Γ-converge to some F . By a
diagonal argument we can find a sequence εk such that

F = Γ- lim
ε→0

Fλk
εk
−mλk

εk

εkα
. (57)

We then have

F = Γ- lim
k

Fλk
εk
−mλk

εk

εkα

= Γ- lim
k

Fλεk
−mλk

εk

εkα
= Fαλ0

+ lim
k

mλ
εk
−mλk

εk

εkα
.
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Hence, F and Fαλ0
differ by a constant. Note however that by the property of convergence of minima

and the renormalization by mλ
ε we have minF = minFαλ0

= 0, so that F = Fαλ0
.

Theorem 7.4 Let (Fλε ) be a equi-coercive parameterized family such that all λ are regular points
at scale εα. If for all λ fixed a development of the form

Fλε = εβ0F
(0)
λ + εβ1F

(1)
λ + · · ·+ εβMF

(M)
λ + εαF

(α)
λ + o(εα) (58)

exists with β0 < . . . < βM < α, and we set

mα
ε (λ) =

M∑
k=0

εβk minF (k)
λ , (59)

then Fλε is uniformly equivalent to the family

Gλε (u) = mα
ε (λ) + εαF

(α)
λ (u) (60)

at scale εα.

Proof. This immediately follows from Theorem 7.3 above, setting mλ
ε = mα

ε (λ).
Our next example illustrates the effect of the regular interference between the size of the support

of a distributed force and the scale of homogenization.

Example 7.5 Consider the one-dimensional homogenization problem

min
{∫ 1

−1

a
( t
ε

)
dt+

1
2λ

∫ λ

−λ
u dt : u(±1) = 0

}
.

Here λ ≥ 0 represents the size of the region where forces are applied; in the singular case λ = 0,
which will be considered in more detailed in the next Section, the second integral is replaced by
u(0). Consider the related family of parameterized functionals

Fλε (u) =
∫ 1

−1

a
( t
ε

)
|u′|2 dt+

1
2λ

∫ λ

−λ
u dt, u(±1) = 0, (61)

if λ > 0, and

F 0
ε (u) =

∫ 1

−1

a
( t
ε

)
|u′|2 dt+ u(0), u(±1) = 0, (62)

if λ = 0. Since the second terms are continuous perturbations, the corresponding Γ-limits are
simply

F 0
λ(u) = a

∫ 1

−1

|u′|2 dt+
1

2λ

∫ λ

−λ
u dt, u(±1) = 0, (63)

if λ > 0, and

F 0
0 (u) = a

∫ 1

−1

|u′|2 dt+ u(0), u(±1) = 0, (64)
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if λ = 0. Note that F 0
λ has a unique minimizer for all λ ≥ 0, which we denote by uλ0 , giving a

minimum value m(0)(λ). A straightforward calculation shows that

m(0)(λ) =
1
8a

(
−1 +

2
3
λ
)

Suppose that a is even, so that by a reflection argument also the minimizer uλε of Fλε is even. In
this case the computation are easily carried over. We have (uλε )′(0) = 0, while uλε is characterized
by the Euler-Lagrange equation 

a
( t
ε

)
u′ =

t

4λ
for 0 < t < λ

a
( t
ε

)
u′ =

1
4

for λ < t < 1,

and the only boundary condition uλε (1) = 0. After computing this solution, we obtain

mε(λ) := minFλε = − 1
8λ2

∫ 1

0

min{s2, λ2}
a(s/ε)

ds.

At scale ε the Γ-limit is

F 1
λ(u) = Γ- lim

j

Fλεj
(u)−m(0)(λ)

εj
=
{
K if u = uλ0
+∞ otherwise,

where K = − 1
8 limj b(1/εj) (b as in (38)). Since we want to analyze the dependence on λ we fix a

sequence εj such that this limit K exists. In this case all points λ > 0 are easily seen to be regular.
As we show below the point λ = 0, on the contrary, is not regular and its appropriate neigh-

borhood represents the domain of the size effect. This singular case will be treated in Example
7.5.

Now, we formulate a simple necessary condition of regularity.

Theorem 7.6 If (Fλε ) is a equi-coercive parameterized family which for each λ admits a Γ-development
of the form (58), is regular for all scales εβ with β < α and is regular at λ0 at scale εα, then
λ 7→ minF (M)

λ is continuous at λ0.

Proof. The proof can be performed by induction. It suffices to check the case M = 0 and β0 = 0, in
which case the thesis is that λ 7→ minFλ is continuous at λ0, where Fλ = Γ- limε→0+ Fλε . Indeed, if
λk → λ0 then minFλk

= limε→0+ minFλk
ε . By a diagonal argument we may find εk → 0 such that

limk minFλk
= limk minFλk

εk
. By the regularity at λ0 we have that the Γ-limit of Fλk

εk
is the same

as that of Fλεk
; i.e., Fλ. By the convergence of minima we then obtain minFλ = limk minFλk

.
In the next example we list several cases studied above where the necessary condition of regu-

larity suggested by Theorem 7.6 fails.

Example 7.7 If Fλε is as in Example 3.1 then all λ different from ±1 are regular points. From the
study of minimum problems for the limit as summarized in Fig. 5, by Theorem 7.6 we deduce that
±1 are not regular points for Fλε at scale ε. Similarly, for Example 3.2 we deduce that 1 is not a
regular point, and for Example 6.2 that 0 is not a regular point.
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8 Singular points and ‘tables’ of Γ-limits

We are now in the position to give the formal definition of a singular point.

Definition 8.1 Let Fλε be a family of parameterized functionals, with λ ∈ Λ. We say that λ0 is a
singular point at scale εα if it is not regular; i.e., if there exist mε, λ′ε → λ0 and λ′′ε → λ0 such that
(up to subsequences)

Γ- lim
ε→0

F
λ′ε
ε −mε

εα
6= Γ- lim

ε→0

F
λ′′ε
ε −mε

εα
. (65)

Example 8.2 In Example 3.1 the points ±1 are singular at scale ε; in Example 3.2 the point 1 is
singular at scale ε. In both cases the theorem does not hold even though the limit F (1)

λ exists, and
we have (taking e.g. Λ a compact set containing a neighbourhood of 1)

sup
Λ

∣∣∣minFλε −m(0)(λ)− εminF (1)
λ

∣∣∣ ≥ Cε;
At a singular point λ0 the computation of the Γ-limit or Γ-development with fixed λ0 is not sufficient
to accurately describe the behavior of minimum problems. We have then to look at the possibility
of different limits along different paths λε → λ0. To simplify the bookkeeping of various distinct
limits around the singular point we introduce the notion of a ‘table’ of Γ-limits. Below we limit
ourselves to the analysis at scale 1 and ε; the general case requiring only a more complex notation.

Definition 8.3 The table of Γ-limits at scale 1 for Fλε at λ0 are all sequences (εj , λj), and func-
tionals F (0)

(εj ,λj) with εj → 0, λj → λ0, and

F
(0)
(εj ,λj) = Γ- lim

j
Fλj
εj
.

The table of Γ-limits at scale ε for Fλε at λ0 are all sequences (εj , λj), and functionals F (1)
(εj ,λj)

with εj → 0, λj → λ0, and

F
(1)
(εj ,λj) = Γ- lim

j

F
λj
εj −minF (0)

(εj ,λj)

εj
,

etc.

Note that if λ0 is regular then

F
(1)
(εj ,λj) = Γ- lim

j

F
λj
εj −minF (0)

λ0

εj
,

Below we give several examples of singular points which can be fully rectified. We begin with
the situations when the boundaries between different entries in the table are sharp as in the case of
nucleation (see below), fracture (see below) or buckling (not discussed here, see [49, 40, 36]), when
the table is nontrivial due to the existence of several drastically different regimes in the behavior
of the system.

The first example summarizes what we have learned about the phenomenon of nucleation in the
case of gradient theory of phase transitions.
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Example 8.4 Consider again the energy (27). Suppose that W is of class C2, with minimum 0 and
that W ∗∗(z) = W (z) if |z| ≥ 1. We focus on the singular point λ0 = 1. Note that the functionals
F

(1)
(εj ,λj) are finite only at the constant function u = 1, so that it suffices to compute the limit

F
(1)
(εj ,λj)(1) = lim

j
min

{∫ 1

0

(W (v)
εj

+ εj |v′|2
)
dt :

∫ 1

0

u dt = λj

}
= lim

j
min

{
α

(1− λj)2

εj
, β
}
, (66)

where
α =

1
2
W ′′(1), β = cW . (67)

In this case the existence of the Γ-limit F (1)
(εj ,λj) is equivalent to the existence of the last limit

depending on the ratio (1−λj)2/εj . The proof of the second inequality in (66), which is a bit more
technical, can be found in the Appendix A1.
We can summarize our findings in a form of the following table:

1. If (1− λ)2 = Cε, where C ≤ β
α , then m1 = αC

2. If (1− λ)2 ≥ β
α then m1 = β

The behavior of the system close to the point ε = 0 and λ = 1 can be pictured in the ε–λ plane,
where the line ε = α

β (1 − λ)2 (for λ < 1) (nucleation threshold) separates the zone with phase
mixture from the one where the stable configuration is homogeneous.

1 λ

ε

nucleation curve

homogeneous state

phase mixtures

Figure 7: Nucleation curve in the ε–λ space

The next example concerns the nucleation of cracks in the discrete lattices with Lennard-Jones
interactions.

Example 8.5 We consider the theory (29) and focus as in the Example 3.2 on the singular point
λ0 = 1. Observe that the functionals F (1)

(εj ,λj) are finite only at the affine function u(t) = t. Then
to find the limit along arbitrary sequence in the parameter space it suffices to compute

F
(1)
(εj ,λj)(u) = lim

j
min

{∑
i

(
J
(ui − ui−1

εj

)
− J(1)

)
: u0 = 0, uN = λj

}
. (68)
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In this case, following the method of Section 5.2 we may change variables around u, setting

vi =
ui − εji√

εj
, ψj(z) =

1
εj

(J(1 +
√
εjz)− J(1)),

so that

F
(1)
(εj ,λj)(u) = lim

j
min

{∑
i

εjψj

(vi − vi−1

εj

)
: v0 = 0, vN =

λj − 1√
εj

}
. (69)

After this change of variables we are in the position of describing the behavior of these minimum
problems via the computation of the Γ-limit of the corresponding functionals in the variable v. This
Γ-limit has been computed in [21] (see also [20]), from which we then get

F
(1)
(εj ,λj)(u) = lim

j
min

{
α

∫ 1

0

|v′|2 dt+ β#(S(v)) : v(0) = 0, v(1) =
λj − 1√

εj

}
= lim

j
min

{α(λj − 1)2

εj
, β
}
,

where
α =

1
2
J ′′(1), β = −J(1). (70)

Note the similarity of this case with the previous example even though our methodologies of finding
the final result have been (superficially) different. Indeed in the case of phase transitions we used
the direct method, while in the case of fracture we used the method of ‘stretched’ variables.

We can now summarize our results concerning fracture in discrete lattice in a form of the
following ‘table’ :

1. If (1− λ)2 = Cε, and C ≤ β
α , then m1 = αC

2. If (1− λ)2 ≥ β
αε then m1 = β

The behavior of the system close to the point ε = 0 and λ = 1 can be again pictured in the ε–λ
plane, where the line ε = α

β (1− λ)2 (for λ < 1) (fracture threshold) separates a zone where there is
a crack from one where the stable configuration is homogeneous.

ε

1 λ

Elastic
Fractured

Failure
curve

Figure 8: Failure curve in the ε–λ space
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The next example shows that there may be an infinity of distinct entries characterizing a ‘table’
of a particular singular point. This example deals with the theory of finite-scale micro-structures
introduced in Section (2 ), which we simplify here a little bit to avoid inessential technical difficulties.

Example 8.6 Taking the gradient theory of phase transitions into account, we may simplify the
functional in (31) (the equivalence in some regimes of these functionals can be deduced from [51, 1])
and analyze the simplified functional

Fλε (u) = 2ε#(S(u′)) + λ

∫ 1

0

u2 dt, u(0) = u(1) = 0, |u′| = 1,

where the first two terms of the integral in (31) have been replaced by (twice) the number of
jump points of the derivative and the additional constraint that u is piecewise affine with gradient
u′ ∈ {±1}.

The Γ-limit of Fλε is

Fλ(u) = λ

∫ 1

0

u2 dt, u(0) = u(1) = 0, |u′| ≤ 1,

with minimum equal to 0. If λ > 0 the unique minimizer is u(t) = 0, while the limit is identically
0 on all admissible functions if λ = 0.

We may explicitly compute the minimum mε(λ) = minFλε , which is obtained on the function
uN with N creases in (0, 1), 2/N=periodic, odd, and equal to (|2Nt − 1| − 1)/2N on [0, 1/N ], for
which we have

Fλε (uN ) = 2εN +
λ

12N2
.

The optimal N = N(ε, λ) is obtained by minimizing this quantity for N ∈ N, N ≥ 1, obtaining

N(ε, λ) ∈

{[
3

√
λ

12ε

]
∨ 1,

[
3

√
λ

12ε

]
+ 1

}
,

and

minFλε = min

{
2ε+

λ

12
, 2ε
[

3

√
λ

12ε

]
+

λ

12
[

3

√
λ

12ε

]2 , 2ε([ 3

√
λ

12ε

]
+ 1
)

+
λ

12
([

3

√
λ

12ε

]
+ 1
)2

}
. (71)

For fixed λ we then have that

N(ε, λ) ∼ 3

√
λ

12ε
and minFλε ∼ ε2/3λ1/3 3

√
2
3
.

We can examine the behavior at λ = 0. The next meaningful scale here is ε. The scaled energy
is then simply

1
ε
Fλε (u) = 2#(S(u′)) +

λ

ε

∫ 1

0

u2 dt, u(0) = u(1) = 0, |u′| = 1, (72)
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whose Γ-limit depends indeed on the ratio λ/ε. If λε/ε → p ∈ [0,+∞) then the corresponding
Γ-limit is

F 1
p (u) = 2#(S(u′)) + p

∫ 1

0

u2 dt, |u′| = 1.

This shows that λ = 0 is a singular point at scale ε and gives the table of Γ-limits.
We can now summarize our results concerning fracture in discrete lattice in a form of the

following ‘table’:
if Ck−1ε ≤ λ ≤ Ckε, then N = k,

where Ck is an increasing sequence tending to +∞ with C0 = 0, whose values can be computed
from (71). The behavior of F 1

λ/ε is pictured in Fig. 9 through the number of interfaces of the
minimizer. Note that the behavior of this functional differs from that of functional (31) close to
p = 0, where the original functional admits homogeneous minimizers (e.g. [61]) that are nor allowed
by the simplified one.

(Young measures)
λ

ε

N=1
N=2

N=3

Figure 9: Boundaries in the parameter space separating microstructures with different number of
interfaces

The next two examples illustrate the case when the boundary between different entries in a
given table is not sharp but diffuse. The first example deals with size-effects in homogenization.

Example 8.7 We consider Fλε as in (43). Note that the definition can be extended by continuity
to λ = 0 setting

F 0
ε (u) =

∫ 1

0

a(0)|u′|2 dt, u(0) = 0, u(1) = 1,

independent of ε.
The point λ = 0 is the only singular point at scale 1. The table of Γ-limits as 0 is obtained by

looking at the Γ-limits of functionals

Fλε
ε (u) =

∫ 1

0

a
(λεt
ε

)
|u′|2 dt, u(0) = 0, u(1) = 1.

Essentially, we have here two cases which can be presented in a form of a table:
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1) If λε/ε→ p ∈ [0,+∞), then F 0(u) =
∫ 1

0
a(pt)|u′|2 dt with u(0) = 0, u(1) = 1;

2) If λε >> ε, then F 0(u) = a
∫ 1

0
|u′|2 dt with u(0) = 0, u(1) = 1.

Notice that the two approximations may overlap and therefore the boundary between different
asymptotic regimes is ‘diffuse’.

Finally we observe that at scale ε all λ > 0 are singular points, and the Γ-limits of the table at
order ε are characterized by the existence (upon subsequences) of the limit

K0 = lim
ε→0

b
(λε
ε

)
(λε → λ) and equal to

F 1
λ(u) =

{
a2K0 if u(t) = t
+∞ otherwise.

(73)

The next example, illustrating the same effect, deals with a concentrated force in a composite.

Example 8.8 We consider Example 7.5 and construct the table of Γ-limits at the singular point 0
for the sequence εj = 1

j , for which b(1/εj) = 0 = K. First, we observe that the Γ-limit

F 1 = Γ- lim
ε→0+

F
λj
εj −m(0)(λj)

εj

is finite only at u0
0. The Γ-limit exists if the limit

K1 = lim
j

ε2
j

8λ2
j

∫ λj/εj

0

(
t2 −

(λj
εj

)2)(1
a
− 1
a(t)

)
dt

exists, in which case we have the two regimes. They may be presented in the form of a table:

1) If λj/εj → p ∈ [0,+∞), then

F 1(u0
0) =


0 if p = 0

1
8p2

∫ p

0

(
t2 − p2

)(1
a
− 1
a(t)

)
dt if p > 0;

2) If λj >> εj , then F 1(u0
0) = 0.

We observe that again, since we are dealing with a singular point,

sup
λ≥0

∣∣∣minFλε −m(0)(λ)− εm(1)(λ)
∣∣∣ ≥ cε,

which means that the straightforward Γ-development can not be used. The general division of
the parameter space into domains of applicability of different asymptotic theories remains in the
present case basically the same as in the previous example.

Another set of examples, showing overlapping domains of validity of different asymptotic theories
in the parameter space, can be found in the problems involving dimension reduction. In this case the
role of λ is played by applied loads which have to be scaled with ε if one wants to get a nontrivial
Γ-limit. There may be several such directions and in [35, 50], one can find some partially filled
‘tables’, which are based on the rigorous justification of the semi-empirical ansatzes first proposed
by engineers (Kirchoff, von Karman, etc.) but also contain some new entries.
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9 Uniform approximations

To construct a uniform approximation for a given theory one has to know the location of the singular
points because they have to be treated differently than the regular points. This general observation
is illustrated by the following example.

Example 9.1 We may construct equivalent theories at scale 1 to Fλε in (43) in Example 6.2,
removing the singular behavior at λ = 0 by setting

Gλε (u) =
∫ 1

0

aε

(λ
ε
x
)
|u′|2 dx,

where

aε(y) =
{
a(y) if |y| ≤ ρε
a if |y| > ρε

and ρε → +∞ are such that ερε → 0. In this case the homogenized description with the modulus
a is used only at a sufficiently large scale, while we are resolving all the microscopic details at the
small scale.

In most cases, one needs to know not only the location of the singular points but also their
structure. We have seen how the behavior of parameterized energies at singular points may be
sometimes analyzed in terms of curves in the ε–λ space, along which a regular Γ-development
exists. Although this is not the general case (for example, when we have oscillating behaviors as in
Example 1.13 at scale ε2, or in Example 8.7 at scale ε), it is frequent in applications. Now, if all
singular points are rectifiable in this sense, then there exists a specific way to construct a uniform
approximation.

To formulate the method we would need the following definition of a blown-up (or rectified)
functional:

Definition 9.2 Let λ0 be a singular point for Fλε at scale 1. We say that Fλε admits a blow up at
λ0 at order 1 if energies Hp

ε exist and a continuous function p = p(λ, ε) such that
(i) Hp

ε Γ-converge to Hp, and all p are regular points;
(ii) Fλε = H

p(λ,ε)
ε for (λ, ε) in a neighbourhood of (0, λ0).

The definition can be easily extended to the scales εα.

We have already seen several examples of singular points where the singular behavior in original
variables can be replaced by a regular behavior of a ‘blow up’ functional. It will be convenient to
have the rectified functionals ready in the following two cases.

Example 9.3 In Example 8.4 we may ‘blow up’ the functionals Fλε at the point λ0 = 1 at order
ε. This is equivalent to blowing up the functionals 1

ε (Fλε −minF (0)
λ ) at order 1. We may then take

p = (1− λ)2/ε, and define

Hp
ε (u) =

∫ 1

0

(W (v)
ε

+ ε|v′|2
)
dt,

∫ 1

0

u dt = 1−√εp.

The rectified functional then takes the form

Hp(u) =
{

min{αp, β} if u(t) = 1
+∞ otherwise

where parameters α and β have been defined in (67).
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Example 9.4 As above, in Example 8.5 at λ = 1 we can take p = (1− λ)2/ε and define

Hp
ε (u) =

∑
i

(
J
(ui − ui−1

ε

)
− J(1)

)
, u0 = 0, uN = 1 +

√
εp.

The rectified functional can then be written in the form

Hp(u) =
{

min{αp, β} if u(t) = t
+∞ otherwise

where parameters α and β have been defined in (70).

The following theorem states that for Fλε which admits a blow up a simple uniformly-equivalent
family is given by Hp computed for p = p(λ, ε).

Theorem 9.5 Let Fλε admit a blow up at λ0 by means of energies Hp
ε with p ∈ Π and Π compact;

then Fλε is uniformly equivalent to Gλε = Hp(λ,ε) at λ0

Proof. Let λε → λ0; up to subsequences we may suppose there exists the limits lim
ε→0+

p(λε, ε) = p0

and
Γ- lim

ε→0+
Fλε
ε = Γ- lim

ε→0+
Hp(λε,ε)
ε = Hp0 = Γ- lim

ε→0+
Hp(λε,ε)

by the regularity of p0.

Now it is clear that in some cases a uniform approximation can be constructed by asymptotic
matching of the rectified structures of the functional around the isolated singular points with the
standard Γ-development around the regular points. Here by matching we mean construction of the
energies that are equivalent to the Γ-limit (or Γ-development) far from singular points, and to the
‘rectified’ energies close to singular points. We may apply this method to a generic theory Fλε by
using the following algorithm:

1. Compute the table of Γ-limits of Fλε at every point λ. This actually often subdivides into
two steps

1a) identify regular points and compute Γ-developments;
1b) identify singular points and compute the complete table;

2. Choose the classes of theories which are compatible with the tables of Γ-limits; i.e., such that
in those classes we may find parameterized

3. Tune the parameters in the class of theories chosen in the previous step to obtain an equivalent
Gλε of the desired form. In practice this is often done separately on regular and singular points.
The method is applicable if the corresponding (locally) equivalent theories can be matched.

Of course, the choice of the functionals at Step 2 is not unique, and additional criteria (simplicity,
computability, closeness to well-known theories, ability to describe local minimizers, etc) can drive
the final selection. In general those functionals will range from ‘locked’ energies which only bear
information about limit minimizers, or little more detail, to theories as complex as the original
functionals Fλε , so that we may either enlarge the domain of ‘locked’ equivalent theories; or choose
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parameterized functionals on a large class that we know have the same Γ-limits as (or include) the
class of Fλε ;

We conclude with two examples showing how the above algorithm can be actually implemented.
The first example deals with the lattice model of fracture.

Example 9.6 In the case of a 1D lattice with Lennard-Jones interactions (see 2) the interesting
interval of boundary conditions is λ > 1 because for λ ≤ 1 the Γ-limit already gives a uniformly-
equivalent theory. Indeed one can write a class of uniformly equivalent theories at λ ≤ 1 at all
orders in the form

Gλε (u) =
∫ 1

0

ψ(u′) dt, u(0) = 0, u(1) = λ, (74)

provided that ψ(z) = J(z) and ψ∗∗(z) ≥ J∗∗(z) for z ≤ 1.
A singular point is located at λ = 1 and we know that to rectify the behavior at this point one

has to look at the Γ-limits of the scaled functionals in (68) in the variable v(t) = (u(t)− t)/
√
ε. In

the limit we obtain the Mumford-Shah functional

α

∫ 1

0

|v′|2 dt+ β#(S(v))

with the additional constraint of ‘increasing jumps’ v+ > v− on S(v) (see [21]). Now, we follow our
algorithm and formally pull back the variable u = t+

√
εv in the limiting functional. We obtain

ε
(
α

∫ 1

0

|v′|2 dt+ β#(S(v))
)

= α

∫ 1

0

|u′ − 1|2 dt+ εβ#(S(u)).

This approximation of the singular behavior has to be matched with our approximation in the
regular points λ ≤ 1 (see (74)) and another regular approximation at λ > 1

Having in mind the blown-up energies at λ = 1 computed above, a class of equivalent theories
at λ > 1 at scale ε (and uniformly equivalent on all compact sets of (0,+∞)) can be chosen in the
same general form. Thus, if we consider the class of energies

Gλε (u) =
∫

0

1ψε(u′) dt+ ε
∑
S(u)

gε(u+ − u−), u(0) = 0, u(1) = λ,

there are two conditions of equivalence: ψε = ψ with a unique minimum in 1 of value J(1) and
limε→0 gε(z) = β. In our case these conditions are satisfied by the same energy densities as in the
blown-up functional; i.e., ψ(z) = J(1) + (z − 1)2 and gε = β. This gives us a uniformly-equivalent
theory for λ ≥ 1 in the form

Gλε (u) = J(1) + α

∫
0

1|u′ − 1|2 dt+ ε β#(S(u)), u(0) = 0, u(1) = λ (75)

with the condition u+ > u− on S(u). For λ ≤ 1 we may directly use (74) with ψ(z) = J(z).
One can see that we obtained the Griffith’s theory of brittle fracture with a unilateral condition

on the opening. We reiterate, that this theory contains an internal parameter ε and therefore cannot
be obtained as a Γ-limit. The dependence of the minimum values of Gλε on λ and the corresponding
stress-strain relation are shown in Fig. 10. We see that fracture in this approximate theory does not
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−εJ(1)

λ

1

−J(1)

Figure 10: Approximate minimum values for Gλε .

take place at infinitesimal tension, as in the straightforward Γ-development (see our Fig. 5), and
that the nucleated crack has a finite opening. These features can be easily verified by computing
the exact solution of the discrete problem at finite ε (see [60]).

Once the structure of one uniformly equivalent theory is established, other fracture energies may
be constructed that belong to the same equivalence class but may have additional beneficial features.
The corresponding development is usually not systematic and requires additional knowledge about
the structure of the minimizers in the original problem at finite ε. For instance, one may consider
the cohesive zone theories of the form

Gλε (u) = J(1) + α

∫ 1

0

|u′ − 1|2 dt+ ε β
∑
t∈S(u)

g
(u+ − u−

ε

)
, u(0) = 0, u(1) = λ.

Within the class of functions g ≥ 0, which are also concave and non-decreasing, the conditions of
equivalence are: g′(0) > 0 and lim

z→+∞
g(z) = β = −J(1). In the case (75) we had g(z) = 0, z = 0,

and g(z) = β, z > 0. By modifying appropriately the singular behavior of the function g(z) near
z = 0 one can hope to avoid some known limitations of the Griffith’s theory regarding the poor
resolution of the nucleation threshold and prediction of the singularity near the tip of the crack
[45, 43]. For example one can take take g(z) = min{z, 1} as in the Dugdale’s theory of fracture. The
Dugdale’s theory does a much better job in approximating the local minimizers than the Griffith’s
theory [43]. It can be further improved if g(z) is taken to coincide with a particular rescaling (and
translation) of a concave branch of the function J(z), as shown in ([60]). In this case the resulting
uniformly equivalent theory, which now adequately describes the fine structure of the bifurcation
of a solution with a crack from a homogeneous (Cauchy-Born) one ([60, 18]), coincides with the
Barenblatt’s model. The latter was originally obtained from heuristic considerations (see [4]) and
its asymptotic status has been obscure.

Our second example concerns the gradient theory of phase transitions (see Section 2) and here
the goal of a uniformly equivalent theory is to describe interfaces that are not well separated from
each other and/or from the exterior boundaries. Such approximation should be able to take into
account that an interface adjusts its internal structure while approaching an obstacle. Due to
the mentioned similarity between the fracture problem and the phase transition problem, we will
use below the insights obtained from the formal matching procedure described in the preceding
example.
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Figure 11: approximate minimum values for Gλε .

Example 9.7 Consider again the ‘theory’ given by (27). To construct the simplest uniformly
equivalent theory one can try to modify the straightforward development of Fλε at the singular
points at λ = ±1. For simplicity we suppose minW = 0 and define the following parameterized
family of functionals

Gλε (u) =


{
W (λ) if u = λ
+∞ otherwise

if |λ| ≥ 1{
min

{
εcW ,

1
2

((
W ′′(1)(λ− 1)2

)
∧
(
W ′′(−1)(λ+ 1)2

))}
#(S(u)) if |u| = 1 a.e.

+∞ otherwise
if |λ| < 1.

(76)
Observe that we have matched the regular approximation at |λ| ≥ 1 at order ε given by

Gλε (u) =
{
W (λ) if u = λ
+∞ otherwise

with the one at |λ| < 1 , given by

Gλε (u) =
{
εcW#(S(u)) if |u| = 1 a.e.
+∞ otherwise

and, finally, with the rectified singular approximation at λ = 1 (and similarly at −1) given by

Gλε (u) =

{
min

{
εcW ,

1
2

(
W ′′(1)(λ− 1)2

)}
#(S(u)) if |u| = 1 a.e.

+∞ otherwise.

(see Example 9.4) The uniform equivalence of the resulting theory (76) and the original theory (27)
is immediately proven by Remark 1.8. The dependence of the minimum values of Gλε on λ and
the corresponding stress-strain relation are shown in Fig. 9.7. We see that the phase transition
in this approximate theory takes place at finite stress, contrary to what has been suggested by
the straightforward Γ-development (see our Fig. 4), and that the nucleus has a finite size. These
features can be easily verified by computing the exact solution of the discrete problem at finite ε
(see [61, 64]).

The main defect of the constructed approximate ‘theory’ is its rigid structure adopted to the
given boundary conditions. Such theory can not be easily generalized to cover other types of
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boundary conditions, describe higher dimensional cases or deal with local minimizers. The origin of
the problem is that the equivalent energy, which we have chosen for the singular point, is excessively
simple. To improve the situation we can choose a broader class of energies with the correct structure
of the singularities which would then generates a different uniformly equivalent theory. This choice
should be driven by the computation of the energy singularity at ±1 and in our case it implicitly
suggests enlarging the functional space to piecewise-constant functions or to SBV functions.

Indeed, we can follow the pattern of the fracture theory and take

Gλε (u) =
∫ 1

0

(W (u) + Cε2|u′|2) dx+ εβ#(S(u)),
∫ 1

0

u dx = λ (77)

defined on SBV (0, 1).
Moreover, since only equivalence at scale ε is required, the potential W may be replaced by its

piece-wise quadratic analog

W0(z) =
1
2

min{W ′′(−1)(z + 1)2,W ′′(1)(z − 1)2},

provided that C is chosen such that

2
√
C

∫ 1

−1

√
W0(s) ds ≥ cW

(see Appendix A.2(c)). The analysis of the resulting expression shows that the convex component
of W is now represented by the bulk term in (77) while the concave component (the ‘spinodal
region) is described by a (constant) surface energy. We emphasize once again that the resulting
theory contains a small parameter ε and therefore cannot be obtained as a Γ-limit.

Now, as in fracture mechanics we may try to modify our surface energy further in order, for
instance, to capture the local minimizers. We begin by characterizing the classes of eligible surface
energies in the general case of n-dimensions. By enlarging the space of competing functions from
piecewise-constant functions with values ±1 to all piecewise-constant functions we obtain the class
of functionals

Gε(u) =
∫

Ω

W (u) dx+ ε

∫
S(u)

g(u+, u−)dHn−1, (78)

where u± are the traces on both sides of the set S(u) of discontinuity points of u, and g ≥ 0 is a
subadditive function. Clearly, Gε is equivalent to Fε at scale 1. Sufficient conditions on g for Gε to
be equivalent to Fε at scale ε are

g(u, v) ≥ 2
√
C
∣∣∣∫ v

u

√
W (s) ds

∣∣∣ for all u, v,

and g(1,−1) = g(−1, 1) = cW ; for example, g(u, v) ≡ cW (see Appendix A.2(a)). An even larger
space allowing for discontinuities is the space SBV (Ω) (see [30, 12]), where we may take

Gε(u) =
∫

Ω

(W (u) + Cε2|∇u|2) dx+ ε

∫
S(u)

g(u+, u−) dHn−1 (79)

for u ∈ SBV (Ω), with g as above and C ≥ C (see Appendix A.2(b)). If C > C then sharp phase
transitions are favored. Inside this class a uniformly equivalent theory can be obtained if we take
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{u ∈ SBV (0, 1) : |u| ≥ T} for some 0 < T < 1 together with the constraint that u− ≤ −T and
u+ ≥ T (or the converse) on S(u) and write a functional

Gλε (u) =
∫

Ω+(u)

(1
2
W ′′(1)(u− 1)2 + ε2C|u′|2

)
dt+

∫
Ω−(u)

(1
2
W ′′(−1)(u+ 1)2 + ε2C|u′|2

)
dt

+ε
∑
S(u)

g(u−, u+),

where Ω±(u) = {±u ≥ T}. In this case some more technical conditions must be imposed on T , C
and g , involving the notion of subadditive envelope (see Appendix A.2(d)). As we have already
seen those conditions are satisfied by taking g to be equal to constant cW , however,the example of
fracture shows, that one can do better to capture the local minimizers. For instance, if we identify
g with appropriately re-scaled and translated spinodal component of the function W we obtain an
approximate theory with a much broader reach .

10 Conclusions

The goal of this paper is twofold. First, we wanted to show that the previous attempts to extend the
idea of Γ-convergence beyond the first Γ-limit have not been fully satisfactory. Second, we wanted
to find the way of constructing a rigorous asymptotic Γ-expansion which is devoid of the detected
flaws by extending to functionals the corresponding machinery developed by Poincare for solutions
of differential equations. This has placed the main focus of the paper on definitions rather than
theorems.

Along the way, we have found it necessary to extended to functionals the concept of an asymp-
totic equivalence at a particular order. This allowed us to represent the whole set of functionals
depending on a small parameter as a union of the classes of equivalence. The realization of the rich
structure of each of these classes makes the task of constructing a unique approximation hopeless,
unless additional criteria have been specified. While one can propose many different criteria (an-
alytical simplicity, computability, ability to capture local minimizers, etc.), we have selected the
one which emphasizes that in application the particular functionals usually appear as the repre-
sentatives of the parameterized families (e.g., Von-Karman theory of plates, lubrication theory, the
theory of incompressible elastic solids, etc.) To deal with such ‘theories’, we had to extended to
parameterized families of functionals the concept of Γ-equivalence. Since the so defined equivalence
may not be uniform with respect to parameters, we have been naturally led to the important dis-
tinction between the regular and singular values of parameters. Behind the concept of a singular
point is a realization that in theories one generically encounters the values of parameters where
the conventional Γ-limits ceases to exist. Such points in the parameter space often correspond to
interesting physical phenomena (buckling, nucleation, size effect, etc.)

Following the corresponding methodology developed for functions, we have shown that even
if a limit does not exist, one can often reconstruct the structure of the singularity by the blow
up procedure and give the complete characterization of the singular structure of the asymptotic
expansion in terms of the corresponding ‘table’ of limits. We have then showed that the knowledge
of the full table for all critical point allows one to construct matched asymptotic Γ-expansions
delivering globally uniform approximation of a given order. Although the uniformity principle still
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does not provide us with a unique approximation of a given order, it considerably narrows the class
of admissible approximate theories.

We have applied the proposed methodology to problems of practical interest and produced sev-
eral interesting approximate theories. In some cases our formal development has given a rigorous
justification for the existing semi-empirical procedures used by practitioners (e.g. cohesive models
of fracture, quasi-continuum models in elasticity, etc.). In the other cases, the entirely new approx-
imate theories have been advanced (e.g. a theory of phase transitions with surface energy combined
with a possibility of a generic discontinuity in the gradients).

In conclusion we mention several limitations of our approach. The main problem is that Γ-
convergence deals with the global minima while in applications the situations are plentiful when
the energy landscape is rather rugged and it is the knowledge of the local minima which is crucial.
Then, the proposed methodology is not universal and its implementation depends on the detailed
knowledge of the minimizers of the original functional, which is seldom readily available. Finally,
even if successful, the method delivers only one particular approximate theory which may well
coexist in applications with other equivalent theories. In those cases one needs to find additional
criteria which would justify the use of a particular theory in the physical problem of interest.

Appendix

A.1 We prove the second inequality in (66), namely that

lim
j

min
{∫ 1

0

(W (v)
εj

+ εj |v′|2
)
dt :

∫ 1

0

u dt = λj

}
= lim

j
min

{
cW ,

1
2
W ′′(1)

(1− λj)2

εj

}
.

We first note that

mj := min
{∫ 1

0

(W (v)
εj

+ εj |v′|2
)
dt :

∫ 1

0

u dt = λj

}
≤ W (λj)

εj
=

1
2
W ′′(1)

(1− λj)2

εj
+ o
( (1− λj)2

εj

)
(80)

by testing with v = λj , This shows that if (1−λj)2 << εj then limjmj = 0 as desired. Conversely,
let

(1− λj)2 ≥ Cεj (81)

for some C > 0. Note that in this case we can construct a sequence of the form

v̂j(t) = u
( t− tj

εj

)
,

where u is a solution of the optimal profile problem

min
{∫ +∞

−∞
(W (u) + |u′|2) dt : u(±∞) = ±1

}
= cW ,

and tj are suitable translations in order to match the integral constraint, such that limj
1
εj
F
λj
εj (v̂j) =

cW . By this computation and (80) we then get

lim
j
mj ≤ lim

j
min

{
cW ,

1
2
W ′′(1)

(1− λj)2

εj

}
.
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To prove the converse inequality, consider vj a minimizer for mj . If limj inf vj ≤ −1 then there
exit points x−j , x+

j such that limj vj(x±j ) = ±1, and then

lim
j
mj ≥ lim inf

j

∣∣∣∫ x+
j

x−j

(W (vj)
εj

+ εj |v′j |2
)
dt
∣∣∣ ≥ lim inf

j

∣∣∣∫ x+
j

x−j

√
W (vj)|v′j | dt

∣∣∣ = cW .

If otherwise, limj inf vj ≥ C > −1 then for fixed η > 0 we have

|{vj < 1− η}| ≤ ε

Cη

∫ 1

0

(W (vj)
εj

+ εj |v′j |2
)
dt ≤ εcW

Cη
, (82)

where Cη = min{W (s) : C ≤ s ≤ 1 − η}. Note moreover that it is not restrictive to suppose that
vj < 1 + η. Let cη = o(1) as η → 0 be such that W (z) ≥ 1

2 (W ′′(1) − cη)(1 − z)2 on [1 − η, 1 + η];
then, by Jensen’s inequality and (81)

lim
j
mj ≥ lim

j

∫
{vj>1−η}

W (vj)
εj

dt ≥ lim
j

1
2

(W ′′(1)− cη)
1
εj

(1− λj +O(ε))2

≥ lim
j

1
2

(W ′′(1)− cη)
1
εj

(1− λj)2.

Letting η → 0 we have the desired inequality.

A.2 We sketch here the proofs for the equivalence statements in Example 9.7 .
(a) After noting that the domain of the Γ-limit at order 1 consists of functions in BV (Ω; {−1, 1})
we remark that

Γ- lim
ε→0

Gε −minW
ε

≥ H, (83)

where H is the lower-semicontinuous envelope of

H(u) =
∫
S(u)

g(u+, u−)dHn−1

defined on piecewise-constant functions. From the relaxation theory for those functionals (see, e.g.,
[11, 17, 16]) we deduce that the conditions on g imply that H(u) = H(u) = cWHn−1(S(u)) if
u ∈ BV (Ω; {−1, 1}), which gives the liminf inequality. Finally, we note that a recovery sequence
for such u is simply given by uε = u.
(b) As for (a) we can use the same relaxation argument, taking now

H(u) = 2
√
C

∫
Ω

√
W (u)|Du| dx

∫
S(u)

g(u+, u−)dHn−1.

(c) We can follow the argument in A.1 above. The condition of equivalence at scale ε is then that

cW = min
{∫ +∞

−∞
(W0(u) + C|u′|2) dt+

∑
S(u)

g(u+, u−) : u(±∞) = ±1 or ∓ 1
}
,

which is implied by the conditions assumed.
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(d) As in (c) we may use the argument in A.1, provided that

cW = min
{∫

R+(u)

(1
2
W ′′(1)(u− 1)2 + ε2C|u′|2

)
dt

+
∫
R−(u)

(1
2
W ′′(−1)(u+ 1)2 + ε2C|u′|2

)
dt+

∑
S(u)

g(u+, u−) : u(±∞) = ±1 or ∓ 1
}
,

where the infimum is taken over all u ∈ SBV (R) such that |u| ≥ T and u− ≤ −T and u+ ≥ T (or
the converse) on S(u), and R±(u) = {±u ≥ T}.

Note that if we set

gT,C(u, v) =



g(u, v) if u ≤ −T and v ≥ T or the converse

2
√
C
∣∣∣∫ v

u

|s− 1|ds
∣∣∣ if u, v ≥ T

2
√
C
∣∣∣∫ v

u

|s+ 1|ds
∣∣∣ if u, v ≤ T

+∞ otherwise,

then the above condition can be equivalently expressed as

cW = min
{ N∑
i=1

gT,C(zi, zi−1) : z0 = ±1, zN = ∓1, N ∈ N
}

;

i.e., that the subadditive envelope of gT,C computed in (−1, 1) and (1,−1) is cW (see [13]).
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and V. Chiadò Piat eds.), Springer-Verlag, Berlin, 2006.

[21] A. Braides, A. Lew and M. Ortiz. Effective cohesive behavior of layers of interatomic planes.
Arch. Ration. Mech. Anal. 180 (2006), 151-182

[22] A. Braides and C.I. Zeppieri. Multiscale analysis for a prototypical model for the interaction
between microstructure and surface energy. Manuscript, 2007.

[23] L.Q. Chan Phase field models for microstructural evolution Ann. Rev. Mater. Res., 32 2002,
113-140

[24] Charlotte M., Truskinovsky L. Linear chains with a hyper-pre-stress, J. Mech. Phys. Solids,
50, 2002, 217-251.

[25] P. Ciarlet Mathematical Elasticity Volume II: Theory of Plates. North-Holland, Amsterdam,
1997.

[26] S. Conti, M. Ortiz. Dislocation microstructures and the effective behaior of single crystals.
Arch. Ration. Mech. Anal. 176 (2005), 103-147

[27] G. Dal Maso, An Introduction to Γ-convergence, Birkhäuser, Boston, 1993.
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