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Abstract. We study the Γ-limit of sequences of variational problems for straight, transversely
curved shallow shells, as the width of the planform ε goes to zero. The energy is of von Kármán
type for shallow shells under suitable boundary conditions. What distinguishes the various regimes
is the scaling of the stretching energy ∼ ε2β , with β a positive number. We derive two one-
dimensional models as β ranges in (0, 2]. Remarkably, boundary conditions are essential to get
compactness.
We show that for β ∈ (0, 2) the Γ-limit leads to relaxation: the limit membrane energy vanishes
on compression. For β = 2 there is no relaxation, and the limit model is a nonlinear energy
coupling four kinematical descriptors in a nontrivial way. As special cases of the latter limit model,
a nonlinear Vlasov torsion theory and a nonlinear Euler-Bernoulli beam theory can be deduced.
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1. Introduction

The rigorous derivation of one-dimensional mechanical theories from higher-dimensional frame-
works has seen significant development in recent years.

In this work, we focus on straight, transversely curved ribbons in their natural configuration.
That is, we consider transversely curved shallow shells whose planform projection is a rectangle. In
this setting, the rigorous derivation of limiting one-dimensional models, as the width of the ribbon
planform tends to zero, was first addressed in [31] (see also [11]), inspired by the bending behavior
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of a carpenter’s tape measure, where deformation can localize. The resulting limit model captures
curvature concentration (i.e., the formation of elastic hinges). However, the starting point in that
work was a relatively strong energy, whereas more realistic models, such as those based on von
Kármán energies, have weaker compactness properties, posing additional challenges.

For completeness, we note that several one-dimensional models have been heuristically proposed
in the literature for transversely curved shallow shells; see, e.g., [8, 21, 24, 27, 32]. Rigorous
derivations of one-dimensional models for ribbons with a curved cross-section starting from three-
dimensional nonlinear elasticity can be found in [13, 28], while the case of flat cross-sections has
been addressed in [17, 18]. Derivations starting instead from two-dimensional theories are presented
in [15, 16].

Here, we consider families of von Kármán-type energies, as commonly used for modeling shallow
shells and prestrained plates [4, 5, 7, 9, 14, 22, 23, 26, 33, 35, 36]. In particular, we impose a
specific scaling for the stretching energy: as the ribbon width ε tends to zero, we assume the
natural curvature scales like 1/ε, and the stretching energy is of order ε2β, with β a non-negative
real number.

Additionally, we assume that one short end of the shell is clamped, while the other undergoes a
rigid roto-translation at a suitable scale. As it will become evident, the order of the longitudinal
displacement plays a crucial role in determining the limit behavior. Specifically, we obtain com-
pactness for appropriately scaled displacement sequences, of order εβ for in-plane displacements
and εβ/2 for out-of-plane ones. Furthermore, for β ∈ (0, 2), the problem exhibits relaxation. In
contrast, when β = 2, the energy functional is sufficiently rigid to prevent relaxation. In all cases,
a shared feature is compactness in relatively weak topologies, alongside surprisingly regular limit
displacements.

It is well known that boundary conditions can significantly influence the resulting limit models.
In the context of three-dimensional nonlinear elasticity, for instance, clamping a plate along its
boundary can (under suitable scalings) lead to a membrane theory whose energy vanishes on con-
tractions [10]. A broader overview of how various scaling regimes interact with boundary conditions
is presented in [20].

In our setting, a similar phenomenon occurs, arguably in an even more evident way. When
natural boundary conditions are imposed, a wide class of displacements yields zero membrane
energy, resulting in a soft response dominated by out-of-plane bending. However, for β ∈ (0, 2),
introducing the additional boundary condition stiffens the shell considerably: the kernel of the
membrane energy is reduced or even eliminated. The practical consequence is that the out-of-plane
bending term becomes negligible in the limit model (i.e., the second derivative of the transversal
displacement disappears).

The case β = 2 is critical: both the membrane and bending contributions are retained, and
a “complete” limit theory is obtained. In this regime, the four kinematic descriptors of the limit
displacement are nontrivially coupled. Interestingly, it also includes, as a particular case, a nonlinear
version of Vlasov’s torsion theory.

To the best of our knowledge, the two limit models obtained in the present work are new.
The paper is structured as follows. Section 2 reviews the main technical tools and establishes

notation. In Section 3, we introduce the sequence of variational problems under consideration.
Section 4 is devoted to compactness results. Section 5 proves the Γ-convergence result in the
case β = 2, while Section 6 addresses the case β < 2.

2. Preliminaries and notation

The Euclidean (Frobenius) product in RN is indicated with · and the corresponding induced
norm by | · |. If x = (x1, x2) ∈ R2, x⊥ := (−x2, x1).
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Let us summarize some useful properties of matrices. For every A,B ∈ R2×2
sym:

det(A±B) = detA+ detB ±A · cof B,
|A|2 ≥ 2|detA|,

A · cof A = 2detA.

(1)

where (cof A)αβ := EαγEβδAγδ and E is the Levi-Civita symbol. The dyadic product of two vectors
a, b ∈ Rn, written as a ⊗ b, is defined by (a ⊗ b)(c) = (c · b)a for every c ∈ Rn. If not specified,
we adopt Einstein’ summation convention for indices, and C denotes a positive constant that may
vary from line to line.
We denote the integral average by

∫
Ω f dx := 1

|Ω|
∫
Ω f dx. If f, g : R → R, their convolution f ∗ g is

given by (f ∗ g)(x) :=
∫
R f(x− y)g(y) dy =

∫
R f(y)g(x− y) dy (whenever the integrals exist).

The characteristic function of the set A ⊂ RN is denoted by

1A(x) :=

{
1 x ∈ A

0 x ∈ RN \A.

The positive part of a is denoted by a+ := max{a, 0} while the negative part of a is a− :=
−min{a, 0}, so that a = a+ − a−.

Let Ω ⊂ RN be an open, bounded, Lipschitz domain. If k ∈ N ∪ {∞}, then Ck(Ω) denotes
the space of real-valued, k-times continuously differentiable functions on Ω and Ck(Ω) denotes the
space of real-valued, k-times continuously differentiable functions up to the boundary of Ω. Ck

0 (Ω)
denotes the completion with respect to the sup-norm of Ck

c (Ω), the space of functions belonging to
Ck(Ω) that have compact support in Ω. The dual space of infinitely differentiable functions with
compact support on Ω (space of distributions) is denoted by D′(Ω).

The Lebesgue spaces of p-integrable functions on Ω are denoted by Lp(Ω) for 1 ≤ p ≤ ∞. We
endow L2(Ω) with the canonical scalar product (f, g) 7→

∫
Ω fg dx for every f, g ∈ L2(Ω).

The Sobolev’ spaces of Lp(Ω) functions whose derivatives up to the order k are in Lp(Ω) are denoted
by W k,p(Ω). We denote strong convergence (convergence in norm) with the symbol →, while weak
convergence will be denoted by ⇀.

The strain of a vector-valued function u ∈ H1(Ω,R2) is defined as

Eu =
1

2
(∇uT +∇u).

Let H2
0 (Ω) be the closure of C∞

c (Ω) with respect to the H2 norm. The dual space of H2
0 (Ω) is

denoted by H−2(Ω). The latter is endowed with the usual dual norm

∥v∥H−2(Ω) = sup
φ∈H2

0 (Ω),∥φ∥H2(Ω)=1

|⟨v, φ⟩|.

We introduce the operator curl curl : L2(Ω,R2×2
sym) → H−2(Ω) defined as

curl curl A = ∂11A22 + ∂22A11 − 2∂12A12 ∀ A ∈ L2(Ω,R2×2
sym).

We recall that curl curl and cof ∇2 : H2
0 (Ω) → L2(Ω,R2×2

sym) are adjoint operators, in the sense that

⟨curl curl A,φ⟩ =
∫
Ω
A · cof ∇2φ dx ∀ A ∈ L2(Ω,R2×2

sym), ∀ φ ∈ H2
0 (Ω). (2)

In particular, we have in H−2 (see for instance [12]) that

curl curl (Eu) = 0 ∀ u ∈ H1(Ω,R2) (3)

and that

curl curl (∇w ⊗∇w) = −2 det∇2w ∀ w ∈ H2(Ω). (4)
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We denote by M(Ω) the space of finite Radon measures on Ω, and by M+(Ω) the subset of
the non-negative ones. The restriction of a measure µ on RN to a measurable set E ⊂ RN is the
measure µ E defined as µ E(F ) := µ(F ∩ E) for all measurable sets F ⊂ RN . Let A,B be
two sets and let µ ∈ M(A), ν ∈ M(B). The product measure µ ⊗ ν ∈ M(A × B) is the measure
satisfying (µ⊗ ν)(E × F ) = µ(E)ν(F ) for every Borel set E ∈ A and F ∈ B.
With Ln we denote the n-dimensional Lebesgue measure. If I is an interval and µ ∈ M(I), by the

Radon-Nikodym decomposition we can write uniquely µ = dµ
dLL + µs where dµ

dLL is the part of µ

which is absolutely continuous with respect to L, dµ
dL is the Radon-Nikodym derivative of µ with

respect to L, and µs is the singular part of µ (with respect to L).
Indicating by Du the distributional derivative of u, the spaces of functions of bounded variation,

bounded Hessian, and bounded deformation are defined as

BV (Ω) := {u ∈ L1(Ω) : Du ∈ M(Ω,RN )},
BH(Ω) := {u ∈W 1,1(Ω) : D2u ∈ M(Ω,RN×N

sym )},

BD(Ω,R2) := {u ∈ L1(Ω,R2) :
1

2
(Du+DuT) ∈ M(Ω,R2×2

sym)}.

(5)

The (total) variation measure of a function in u ∈ BV (Ω) is defined as

|Du|(Ω) := sup{
∫
Ω
u divφdx : φ ∈ C1

c (Ω,RN ), ∥φ∥∞ ≤ 1}.

According to the Riesz’s representation theorem, M(Ω) can be identified with the topological dual

of C0(Ω). We say that (µn) ⊂ M(Ω) converges weakly∗ to µ ∈ M(Ω) (and we write µn
∗
⇀ µ in

M(Ω)) if for every φ ∈ C0(Ω) lim
n↑∞

∫
Ω φdµn =

∫
Ω φdµ.

We say (un) ⊂ BD(Ω,R2) converges weakly∗ in BD(Ω,R2) to u ∈ BD(Ω,R2) (and we write un
∗
⇀ u

in BD(Ω,R2)) if un → u in L1(Ω,R2) and Dun+DuTn
2

∗
⇀ Du+DuT

2 in M(Ω,R2×2
sym).

We further recall the continuous embedding BD(Ω,R2) ↪→ L2(Ω,R2) (see [34] for details).
If (aε)i is a component of an ε-parameterized vector- (or matrix-) valued sequence, from time to

time we may write equivalently (aεi) or (a
ε
i ).

3. The Problem

Let ε be a sequence of positive numbers converging to zero. We consider a family of shells,
parameterized by ε, obtained by translating a planar curve (the cross-section) lying in the x2–x3
plane along the x1-axis.

Let ℓ > 0, define the domains

I :=

(
− ℓ
2
,
ℓ

2

)
, Wε :=

(
−ε
2
,
ε

2

)
, Ωε := I ×Wε.

The region Ωε is the projection of the shell onto the x1–x2 plane.
We also define

W :=W1, Ω := Ω1 = I ×W.

To describe the cross-section, we consider a non-affine, even function ẘ ∈ C2(W ) satisfying∫
W
ẘ(x2) dx2 = 0 (6)

and such that ẘ′′ = 0 only in a finite number of points of the interior part of W . Let Y be the set
of points in W in which the curvature of the cross-section is zero:

Y := {y ∈W : ẘ′′(y) = 0}, (7)
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and

I × Y = {(x1, x2) ∈ Ω : x2 ∈ Y }.
Whenever Y is not nonempty, I×Y is the union in Ω of a finite number of disjoint segments parallel
to e1 of length ℓ. We define the shell’s natural configuration v̊ε ∈ C2(W ε) as

v̊ε(x2) := εẘ(
x2
ε
).

Then, the cross-section of the shell parameterized by ε is described by the curve x2 7→ (x2, v̊ε(x2))
in the x2–x3 plane.

Ωε

v̊ε

x3

x1

x2

Figure 1. Reference configuration and shell planform

Let β ∈ (0, 2]. For an out-of-plane displacement v ∈ H2(Ωε) (in the x3 direction) and an in-plane
displacement y ∈ H1(Ωε;R2), we define the von Kármán-type energy functional

F β
ε (y, v) :=

∫
Ωε

1

2
|∇2v −∇2v̊ε|2 +

1

2

1

ε2β

∣∣∣∣Ey + 1

2
∇v ⊗∇v − 1

2
∇v̊ε ⊗∇v̊ε

∣∣∣∣2 dx, (8)

subject to the following set of boundary conditions

y(− ℓ
2
, x2) = (0, 0), v(− ℓ

2
, x2) = v̊ε(x2), ∂1v(−

ℓ

2
, x2) = 0,

y(
ℓ

2
, x2) = (εβΛ1 − εβ/2Φ2v̊ε(x2)− εβ/2Φ2Φ1x2 − εβ−1Φ3x2,

εβ−1Λ2 − Φ1v̊ε(x2)−
Φ2
1x2
2

),

v(
ℓ

2
, x2) = v̊ε(x2) + εβ/2Λ3 + x2Φ1, ∂1v(

ℓ

2
, x2) = εβ/2Φ2.

(9)

for a.e. x2 ∈ ε(−1
2 ,

1
2) and for given real constants Λ1,Λ2,Λ3,Φ1,Φ2,Φ3. The choice of the expo-

nents of ε appearing in (9) will become transparent in Section 4.
Mechanically, we may think the thickness of the shell to scale like εβ. The further condition β ≥ 1
ensures the thickness vanishes at least as fast as the width ε. However, from a mathematical
viewpoint, we need not to restrict β to the interval [1, 2].

The boundary conditions (9) ensure that the end of the shell at x1 = − ℓ
2 is clamped. The

constants Λi can be interpreted as the average translation of the cross section at x1 = ℓ/2 along ei,
while the constants Φi represent rotations (slopes) of the endmost section around ei.

We introduce the scaled out-of-plane displacement w : Ω → R

w(x1, x2) := v(x1, εx2),
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the scaled cross-section ẘε : Ω → R

ẘε(x1, x2) := v̊ε(εx2) = εẘ(x2),

and the scaled in-plane displacements u : Ω → R2

u1(x1, x2) := y1(x1, εx2), u2(x1, x2) := εy2(x1, εx2).

We also define the scaled operators as

∇εz :=
(
∂1z, ε

−1∂2z
)T
, ∇2

εz :=

(
∂11z ε−1∂12z

ε−1∂21z ε−2∂22z

)
,

Eεz :=

(
(Ez)11 ε−1(Ez)12

ε−1(Ez)21 ε−2(Ez)22

)
.

Changing variables in (8) and (9), and dividing by the Jacobian, we obtain the rescaled energy

F̂ β
ε (u,w) :=

1

2

∫
Ω

∣∣∣∣∇2
εw − 1

ε
ẘ′′ e2 ⊗ e2

∣∣∣∣2 dx

+
1

2

∫
Ω

1

ε2β

∣∣∣∣Eεu+
1

2
∇εw ⊗∇εw − 1

2
ẘ′2 e2 ⊗ e2

∣∣∣∣2 dx, (10)

under the constraints

u(− ℓ
2
, x2) = (0, 0), w(− ℓ

2
, x2) = εẘ, ∂1w(−

ℓ

2
, ·) = 0,

u(
ℓ

2
, x2) = (εβΛ1 − ε1+β/2Φ2ẘ − ε1+β/2Φ2Φ1x2 − εβΦ3x2,

εβΛ2 − ε2Φ1ẘ − ε2
Φ2
1x2
2

),

w(
ℓ

2
, x2) = εẘ + εβ/2Λ3 + εx2Φ1, ∂1w(

ℓ

2
, x2) = εβ/2Φ2

(11)

valid for a.e. x2 ∈ (−1
2 ,

1
2). Note that, in particular, the first and the fourth prescription in (11)

imply that ∫
Ω
∂1u1(x1, x2) dx = Λ1ε

β ∀ε > 0. (12)

This constraint has a pivotal role in Section 4.
With the function space X := L1(Ω;R2)× L2(Ω) we define the extended functional on X :

F β
ε (u,w) :=

{
F̂ β
ε (u,w) if (u,w) ∈ H1(Ω;R2)×H2(Ω) and (11) holds,

+∞ otherwise.
(13)

3.1. Geometric Quantities. It is helpful to introduce the following constants, which depend on
the domain Ω:

J0 =

∫
Ω
|x|2 dx, J1 =

∫
W
x22 dx2 =

1

12
, J2 =

∫
W

(
x22
2

− 1

24

)2

dx2 =
1

720
. (14)

We also define two functions that depend on ẘ:

˚̊w(x2) :=

∫ x2

0

(
tẘ′(t)− ẘ(t)

)
dt, ˚̊w⟨0⟩(x2) := ˚̊w(x2)− c1x2, (15)

where

c1 =
1

J1

∫
W
s̊ẘ(s) ds. (16)



TWO ONE-DIMENSIONAL MODELS FOR TRANSVERSELY CURVED SHALLOW SHELLS 7

Additionally, the following constants—dependent on the cross-section profile—will be useful:

c2 :=
1

J2

∫
W

(
t2

2
− 1

24

)
ẘ(t) dt,

J3 :=

∫
W

(
ẘ(t)− c2

(
t2

2
− 1

24

))2

dt, J4 :=

∫
W
˚̊w2

⟨0⟩(t) dt.

(17)

It is noteworthy that J3 = 0 if and only if

ẘ = κ

(
x22
2

− 1

24

)
, for some κ ∈ R

(in this case, c2 = κ). Moreover, c2 and J3 cannot both be zero. Also, J4 = 0 if and only if ẘ is
affine, which is excluded by assumption. In fact, J4 = 0 if and only if ˚̊w⟨0⟩ = 0, i.e.,∫ x2

0

(
tẘ′(t)− ẘ(t)

)
dt = c1x2,

which implies tẘ′(t) − ẘ(t) = c1. The general solution of this ordinary differential equation is
ẘ(t) = at− c1, with a ∈ R.

We conclude this section by stating some useful properties of ˚̊w and ˚̊w⟨0⟩.

Lemma 3.1. Let ˚̊w and ˚̊w⟨0⟩ be defined as in (15). Then:

(i) ˚̊w is odd;
(ii) ˚̊w⟨0⟩ and ẘ˚̊w⟨0⟩ are odd;

(iii)

∫
W
t˚̊w⟨0⟩(t) dt = 0;

(iv) The functions 1, x2, ẘ(x2), and ˚̊w⟨0⟩(x2) are mutually orthogonal in L2(W );

(v) The functions 1, x2,
x22
2

− 1

24
, ẘ(x2)− c2

(
x2
2
2 − 1

24

)
, and ˚̊w⟨0⟩(x2) are mutually orthogonal in

L2(W ).

Proof. Integration by parts yields:

˚̊w(x2) = x2ẘ(x2)− 2

∫ x2

0
ẘ(t) dt.

Since ẘ is even, both x2 7→ x2ẘ(x2) and x2 7→
∫ x2

0 ẘ(t) dt are odd, hence ˚̊w is odd. Therefore, ˚̊w⟨0⟩
is also odd. Moreover, since ẘ is even, the product ẘ˚̊w⟨0⟩ is odd.

For the third point, using the definition of c1:∫
W
t̊ẘ⟨0⟩(t) dt =

∫
W
t̊ẘ(t) dt− c1

∫
W
t2 dt = 0.

The fourth claim follows from points (i)–(iii) and from (6).
For the fifth point, the first three functions are orthogonal in L2(W ) as they correspond to

Legendre polynomials on W . By point (iv), 1, x2, ẘ(x2), and ˚̊w⟨0⟩(x2) are mutually orthogonal.

Furthermore, since ˚̊w⟨0⟩ is odd, it is orthogonal to the even function
x2
2
2 − 1

24 . The result follows.

4. Compactness

Throughout the section we consider a sequence (uε, wε) ⊂ X such that

sup
ε
F β
ε (uε, wε) <∞. (18)
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This bound implies that supε F̂
β
ε (uε, wε) < +∞, where

F̂ β
ε (uε, wε) =

1

2

∫
Ω

∣∣∣∇2
εwε −

ẘ′′

ε
e2 ⊗ e2

∣∣∣2 dx
+

1

2

∫
Ω

∣∣∣Eε(
uε
εβ

) +
1

2
∇ε

wε

εβ/2
⊗∇ε

wε

εβ/2
− ẘ′2

2εβ
e2 ⊗ e2

∣∣∣2 dx.
For convenience, we set

Sε := Eε(
uε
εβ

) +
1

2
∇ε

wε

εβ/2
⊗∇ε

wε

εβ/2
− ẘ′2

2εβ
e2 ⊗ e2. (19)

Our first result establishes partial compactness properties for all 0 < β ≤ 2.

Lemma 4.1. Let 0 < β ≤ 2. Let (uε, wε) ⊂ X be a sequence that satisfies (18). Then there exist
r ∈ H1(I), ϑ ∈ H1(I), γ11, γ22 ∈ L2(Ω) such that, up to a subsequence,

∂2
wε

ε
− ẘ′ ⇀ ϑ in H1(Ω), (20)

∇2
εwε −

ẘ′′

ε
e2 ⊗ e2 ⇀

(
γ11 ϑ′

ϑ′ γ22

)
in L2(Ω,R2×2

sym), (21)

wε

εβ/2
⇀ w =

{
r if β < 2

r + x2ϑ+ ẘ if β = 2
in H1(Ω). (22)

Also, there exist S ∈ L2(Ω,R2×2
sym), (ξ1, ξ2) ∈ BV (I)×BH(I), such that, up to a subsequence,

Sε ⇀ S in L2(Ω,R2×2
sym), (23)

uε
εβ

∗
⇀ u in BD(Ω,R2), (24)

with u given by

u =


(ξ1 − x2ξ

′
2, ξ2) if β < 2

(ξ1 − x2(ξ
′
2 + r′ϑ+ c1ϑ

′)− ẘr′ − ˚̊w⟨0⟩ϑ
′,

ξ2 − 1
2x2ϑ

2 − ẘϑ) if β = 2.

(25)

Proof. Let (uε, wε) ⊂ X be a sequence that satisfies (18). Then

sup
ε

∥∥∥∇2
εwε −

ẘ′′

ε
e2 ⊗ e2

∥∥∥
L2(Ω,R2×2

sym)
<∞ and sup

ε
∥Sε∥L2(Ω,R2×2

sym) <∞, (26)

with Sε as defined in (19). From the first of (26), we deduce that up to a subsequence

∂11wε ⇀ γ11 in L2(Ω), ∂12
wε

ε
⇀ γ12 in L2(Ω), ∂22

wε

ε2
− ẘ′′

ε
⇀ γ22 in L2(Ω), (27)

with γ11, γ12, γ22 ∈ L2(Ω). By the second and the third of (27), and the fact that ẘ is independent
of x1, it follows that ∇(∂2wε/ε− ẘ′) is a bounded sequence in L2(Ω,R2). By Poincaré-Wirtinger’s
inequality, ∂2wε/ε− ẘ′ is bounded in H1(Ω), and hence

∂2
wε

ε
− ẘ′ ⇀ ϑ in H1(Ω), (28)

up to a subsequence, for some ϑ ∈ H1(Ω). From the third of (27), we deduce that ϑ is independent
of x2 and therefore ϑ ∈ H1(I). Also, from the second of (27) we have that γ12 = ϑ′.

The 11-component of Sε is

Sε
11 =

∂1u
ε
1

εβ
+

1

2
(
∂1wε

εβ/2
)2.
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From the second of (26) and Jensen’s inequality, we find

sup
ε

(∫
Ω

∂1u
ε
1

εβ
+

1

2
(
∂1wε

εβ/2
)2 dx

)2
<∞,

and by using condition (12) it follows that

sup
ε

(
Λ1 +

∫
Ω
(
∂1wε

εβ/2
)2 dx

)2
<∞

and

sup
ε

∥∂1
wε

εβ/2
∥L2(Ω) <∞. (29)

This inequality, the fact that β ≤ 2, (28), and Poincaré’s inequality, imply that ( wε

εβ/2
) is a bounded

sequence in H1(Ω). Hence, up to a subsequence,

wε

εβ/2
⇀ w in H1(Ω),

for some w ∈ H1(Ω). By (28) it follows that ∂2w = ẘ′ + ϑ if β = 2 and ∂2w = 0 if β < 2. Thence,

w(x1, x2) =

{
r(x1) if β < 2

r(x1) + x2ϑ(x1) + ẘ(x2) if β = 2

for some r ∈ H1(I).
From the second of (26) it immediately follows (23), and also that

sup
ε

∥∥∥Euε
εβ

+
1

2
∇ wε

εβ/2
⊗∇ wε

εβ/2
− 1

2
ε2−βẘ′2e2 ⊗ e2

∥∥∥
L2(Ω)

< +∞.

This inequality and (22) imply that

sup
ε

∥∥∥Euε
εβ

∥∥∥
L1(Ω,R2×2

sym)
< +∞.

Since (uε) ⊂ H1(Ω,R2) and (11) hold, we can apply the Korn’s inequality [34, Sec. 2.4] to deduce

that (uε

εβ
) is bounded in BD(Ω,R2) and that uε

εβ
∗
⇀ u in BD(Ω,R2) for some u ∈ BD(Ω,R2).

Since (Sε) is uniformly bounded in L2(Ω), we have

εSε
12 =

∂1u
ε
2 + ∂2u

ε
1

2εβ
+

1

2

∂1wε

εβ/2
∂2wε

εβ/2
→ 0 in L2(Ω)

ε2Sε
22 =

∂2u
ε
2

εβ
+

1

2

(∂2wε

εβ/2
)2 − 1

2
ε2−βẘ′2 → 0 in L2(Ω).

(30)

For β = 2, (20) implies that ∂2wε

εβ/2
→ ϑ+ ẘ′ = ∂2w in Lp(Ω) for every 1 ≤ p < +∞, while for β < 2

(20) implies that ∂2wε

εβ/2
→ 0 = ∂2w in Lp(Ω) for every 1 ≤ p < +∞. Thus from (22) and (30) we

deduce that

∂1u
ε
2 + ∂2u

ε
1

2εβ
→ −1

2
∂1w∂2w =

∂1u2 + ∂2u1
2

in Lp(Ω) for 1 ≤ p < 2,

∂2u
ε
2

εβ
→ −1

2
(∂2w)

2 +
1

2

{
0 β < 2

ẘ′2 β = 2
= ∂2u2 in L2(Ω).

By integration and arguing as in Lemma A.3, we deduce that there are functions (ξ1, ξ2) ∈ BV (I)×
BH(I) such that (u1, u2) is as in the statement of the lemma.

We now state a Lemma that we will systematically take advantage of.
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Lemma 4.2. Let 0 < β ≤ 2. Let (uε, wε) ⊂ H1(Ω,R2) × H2(Ω) and let Sε as defined in (19).
Then for every ε > 0∫

Ω
−φ det∇2 wε

εβ/2
dx = ∫

Ω
Sε
11∂22φ− 2εSε

12∂12φ+ ε2Sε
22∂11φdx ∀ φ ∈ H2

0 (Ω). (31)

If additionally Sε is such that supε ∥Sε∥L2(Ω) < ∞, there exists a constant C > 0 such that for
every ε > 0∣∣∣ ∫

Ω
φ det∇2 wε

εβ/2
dx

∣∣∣ ≤
C
(
∥∂22φ∥L2(Ω) + ε∥∂12φ∥L2(Ω) + ε2∥∂11φ∥L2(Ω)

)
∀ φ ∈ H2

0 (Ω). (32)

If supε
∥∥∇2

εwε − ẘ′′/εe2 ⊗ e2
∥∥
L2(Ω)

<∞, there exists a sequence (dε) bounded in L1(Ω) for which

det∇2 wε

εβ/2
= ε2−βdε + ε1−β/2∂11

wε

εβ/2
ẘ′′ (33)

for every ε > 0.

Proof. By (2), (3), (4), and since det∇2ẘ = 0, we have the identity∫
Ω
φ det∇2wε dx = −

∫
Ω
(Euε +

1

2
∇wε ⊗∇wε −

1

2
ε2ẘ′2e2 ⊗ e2) · cof ∇2φ dx

= −ε2
∫
Ω
(Eεuε +

1

2
∇εwε ⊗∇εwε −

1

2
ẘ′2e2 ⊗ e2) · cof ∇2

εφdx

= −ε2+β

∫
Ω

1

εβ
(Eεuε +

1

2
∇εwε ⊗∇εwε −

1

2
ẘ′2e2 ⊗ e2) · cof ∇2

εφdx

(34)

which is equivalent to (31) after a little manipulation.
Inequality (32) follows from (31) by Hölder’sinequality and the boundedness of Sε in L2(Ω).
The identity (33) can be easily verified by posing

dε = det
(
∇2

εwε −
ẘ′′

ε
e2 ⊗ e2

)
.

That dε is bounded in L1(Ω) follows by recalling the second and the first of (1).

Remark 4.3. Let Ω̃ be the extended domain (−3
2ℓ,

3
2ℓ) × (−1

2 ,
1
2) =: Ĩ ×W . For every ε > 0 and

for every (uε, wε) ∈ H1(Ω,R2)×H2(Ω) we consider the following extension

ũ1ε(x) :=



0 if x1 ∈ (−3
2ℓ,−

ℓ
2)

u1ε(x) if x1 ∈ (− ℓ
2 ,

ℓ
2)

εβΛ1 − ε1+β/2Φ2Φ1x2 − ε1+β/2Φ2ẘ

− εβ
Φ2
2

2
(x1 −

ℓ

2
)− εβΦ3x2

if x1 ∈ ( ℓ2 ,
3
2ℓ) , (35)

ũ2ε(x) :=


0 if x1 ∈ (−3

2ℓ,−
ℓ
2)

u2ε(x) if x1 ∈ (− ℓ
2 ,

ℓ
2)

εβΛ2 − ε2
Φ2

1
2 x2 − ε2Φ1ẘ + εβΦ3(x1 − ℓ

2) if x1 ∈ ( ℓ2 ,
3
2ℓ)

, (36)

w̃ε(x) :=


0 if x1 ∈ (−3

2ℓ,−
ℓ
2)

wε(x) if x1 ∈ (− ℓ
2 ,

ℓ
2)

εβ/2Λ3 + εẘ + εx2Φ1 + εβ/2Φ2(x1 − ℓ
2) if x1 ∈ ( ℓ2 ,

3
2ℓ)

. (37)
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By (11), (ũε, w̃ε) ⊂ H1(Ω̃,R2)×H2(Ω̃). Moreover, we define

S̃ε := Eε(
ũε
εβ

) +
1

2
∇ε

w̃ε

εβ/2
⊗∇ε

w̃ε

εβ/2
− ẘ′2

2εβ
e2 ⊗ e2 (38)

and

F̃ β
ε (ũε, w̃ε) :=

1

2

∫
Ω̃

∣∣∣∇2
εw̃ε −

ẘ′′

ε
e2 ⊗ e2

∣∣∣2 dx
+
1

2

∫
Ω̃

∣∣∣Eε(
ũε
εβ

) +
1

2
∇ε

w̃ε

εβ/2
⊗∇ε

w̃ε

εβ/2
− ẘ′2

2εβ
e2 ⊗ e2

∣∣∣2 dx. (39)

The main property of such an extension is that the energy on Ω̃ \ Ω is null, in the sense that

F̂ β
ε (uε, wε) = F̃ β

ε (ũε, w̃ε) ∀ε > 0. (40)

Moreover, the analogous counterpart of (12) holds for ũ1ε. Arguing as in the proof of Lemma 4.1,

we deduce the existence of functions ξ̃1 ∈ BV (Ĩ), ξ̃2 ∈ BH(Ĩ), r̃ ∈ H1(Ĩ), ϑ̃ ∈ H1(Ĩ) such that

∂2w̃ε

ε
⇀ ϑ̃ in H1(Ω̃), (41)

w̃ε

εβ/2
⇀ w̃ =

{
r̃ if β < 2

r̃ + x2ϑ̃+ ẘ if β = 2
in H1(Ω̃), (42)

and ũε

εβ
∗
⇀ ũ in BD(Ω̃,R2) with ũ given by

ũ(x1, x2) =


(ξ̃1 − x2ξ̃

′
2, ξ̃2) if β < 2

(ξ̃1 − x2(ξ̃
′
2 + r̃′ϑ̃+ c1ϑ̃

′)− ẘr̃′ − ˚̊w⟨0⟩ϑ̃
′,

ξ̃2 − 1
2x2ϑ̃

2 − ẘϑ̃) if β = 2

. (43)

Equivalently, if (ξ1, ξ2, r, ϑ) ∈ BV (I)×BH(I)×H1(I)×H1(I) are as in Lemma 4.1 it can be easily
seen by passing to the limit in (35)–(37) that

ξ̃1 =


0 if x1 ∈ (−3

2ℓ,−
ℓ
2)

ξ1 if x1 ∈ (− ℓ
2 ,

ℓ
2)

Λ1 − 1
2Φ

2
2(x1 − ℓ/2) if x1 ∈ ( ℓ2 ,

3
2ℓ)

, (44)

ξ̃2 =


0 if x1 ∈ (−3

2ℓ,−
ℓ
2)

ξ2 if x1 ∈ (− ℓ
2 ,

ℓ
2)

Λ2 +Φ3(x1 − ℓ/2) if x1 ∈ ( ℓ2 ,
3
2ℓ)

, (45)

r̃ =


0 if x1 ∈ (−3

2ℓ,−
ℓ
2)

r if x1 ∈ (− ℓ
2 ,

ℓ
2)

Λ3 +Φ2(x1 − ℓ/2) if x1 ∈ ( ℓ2 ,
3
2ℓ)

, (46)

ϑ̃ =


0 if x1 ∈ (−3

2ℓ,−
ℓ
2)

ϑ if x1 ∈ (− ℓ
2 ,

ℓ
2)

Φ1 if x1 ∈ ( ℓ2 ,
3
2ℓ)

. (47)

4.1. Finer compactness for 0 < β < 2. The main efforts are now to show the enhanced regularity
(than naively expected) of the limit functions and to characterize the boundary value traces. When
0 < β < 2 it is convenient to work with the extension defined in Remark 4.3.

Lemma 4.4. Let 0 < β < 2. Let (uε, wε) ⊂ X and (ξ1, ξ2, r, ϑ) ∈ BV (I)×BH(I)×H1(I)×H1(I)
as in Lemma 4.1. Then, with the notation of Remark 4.3,

(i) r(− ℓ
2) = 0, r( ℓ2) = Λ3, ϑ(− ℓ

2) = 0, ϑ( ℓ2) = Φ1;
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(ii) (ξ1, r) ∈ B := {(ξ1, r) ∈ BV (I)×H1(I) : ∃λ̃ ∈ M+(Ĩ), ξ̃1 + λ̃+ 1
2 r̃

′2 ∈ L2(Ĩ)};

(iii) S̃ε
11 ⇀ S̃11 in L2(Ω̃) where S̃11 = (ξ̃′1 +

1
2 r̃

′2L+ λ̃)⊗ L− ξ̃′′2 ⊗ x2L where λ̃ ∈ M+(Ĩ);

(iv) ξ2 ∈ H2(I);
(v) ξ2(− ℓ

2) = 0, ξ2(
ℓ
2) = Λ2; ξ′2(− ℓ

2) = 0, ξ′2(
ℓ
2) = Φ3.

Proof. Let (uε, wε) ⊂ X as in Lemma 4.1.

Claim (i). The claim follows from (46), and (47), since r̃ and ϑ̃ belong to H1(Ĩ).

Claims (ii) and (iii). By (40) and the uniform bounds (26) and (29) we deduce that (∂1
w̃ε

εβ/2
)2 is

uniformly bounded in L1(Ω̃). Thus, up to subsequences, (∂1
w̃ε

εβ/2
)2 converges weakly* in the sense

of measures to some ν̃ ∈ M+(Ω̃). By convexity and (42), we have that ν̃ ≥ (∂1w̃)
2L2 = r̃′2L ⊗ L

since β < 2. For every φ ∈ C∞
c (Ω̃), by the above convergence it follows that∫

Ω̃
∂2φdν̃ = lim

ε↓0

∫
Ω̃
(
∂1w̃ε

εβ/2
)2∂2φdx = −2 lim

ε↓0

∫
Ω̃

∂1w̃ε

εβ/2
∂12w̃ε

ε

ε

εβ/2
φdx = 0,

by (41) and (42). By Corollary A.2, there exists ρ̃ ∈ M+(Ĩ) such that ν̃ = ρ̃ ⊗ L ≥ r̃′2L ⊗ L.
Hence, the measure 2λ̃ := ρ̃− r̃′2L ∈ M+(Ĩ) and

1

2
(
∂1w̃ε

εβ/2
)2

∗
⇀ (

1

2
r̃′2L+ λ̃)⊗ L in M(Ω̃). (48)

Let S̃ε as defined in (38). By (23) and (40) we have that (S̃ε)11 ⇀ S̃11 in L2(Ω̃). From (43) and
(48) it follows

S̃11 = (ξ̃′1 +
1

2
r̃′2L+ λ̃)⊗ L− ξ̃′′2 ⊗ x2L.

Note that Lemma 4.2 holds if we replace Ω with Ω̃, Sε with S̃ε, and (uε, wε) with (ũε, w̃ε). By

(the counterpart of) (33), we find that det∇2 w̃ε

εβ/2
→ 0 in L1(Ω̃). By passing to the limit in (the

counterpart of) (31) we also deduce that∫
Ω̃
S̃11∂22φdx = 0

for all φ ∈ H2
0 (Ω̃). Hence, there exist two functions f̃ , g̃ ∈ L2(Ĩ) such that S̃11(x1, x2) = f̃(x1) −

x2g̃(x1). By uniqueness of the weak limits, it follows that ξ̃′1+
1
2 r̃

′2L+ λ̃ = f̃L and ξ̃′′2 = g̃L. Thus,
ξ̃′′2 ∈ L2(Ĩ) and ξ̃′1 +

1
2 r̃

′2L+ λ̃ ∈ L2(Ĩ).

Claims (iv) and (v). The claims follow from (45) the fact that ξ̃2 ∈ H2(Ĩ).

4.2. Finer compactness for β = 2. We now focus on the case β = 2. We break the proof into
several lemmas. Unlike the case β < 2, it is not convenient to restore immediately to the extension
introduced in Remark 4.3.

Lemma 4.5. Let β = 2. Let (uε, wε) ⊂ X as in Lemma 4.1. Then, wε
ε → w in L∞(Ω).

Proof. Let ŵε
ε denote the extension to R2 of wε

ε for every ε > 0, as in Lemma A.4. Let Ω̂ ⊃⊃ Ω

be the common (compact) support for all the terms in ( ŵε
ε ). For every ε > 0, and for every
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x = (x1, x2), y = (y1, y2) ∈ Ω, we have on one hand

|wε

ε
(y)− wε

ε
(x)| = | ŵε

ε
(y)− ŵε

ε
(x)|

= |
∫ y1

−∞

∫ y2

x2

∂12
ŵε

ε
(s, t) dt ds+

∫ x2

−∞

∫ y1

x1

∂12
ŵε

ε
(s, t) ds dt|

= |
∫ y1

−∞

∫ y2

x2

1Ω̂∂12
ŵε

ε
(s, t) dt ds+

∫ x2

−∞

∫ y1

x1

1Ω̂∂12
ŵε

ε
(s, t) ds dt|

≤ C(
√

|y2 − x2|+
√
|y1 − x1|)

∥∥∥∥∂12 ŵε

ε

∥∥∥∥
L2(R2)

≤ C(
√

|y2 − x2|+
√
|y1 − x1|)(

∥∥∥∂12wε

ε

∥∥∥
L2(Ω)

+
∥∥∥wε

ε

∥∥∥
H1(Ω)

)

≤ C(
√

|y2 − x2|+
√
|y1 − x1|)

where we used Hölder’s inequality, the boundedness of Ω̂, Lemma A.4, and (21), (22). Thus, (wε
ε )

is equicontinuous on Ω̄, the closure of Ω.
On the other hand, for every ε > 0 and every x = (x1, x2) ∈ Ω̄, we have

|wε

ε
(x)| = | ŵε

ε
(x)| = |

∫ x1

−∞

∫ x2

−∞
∂12

ŵε

ε
(s, t) dt ds|

≤
∥∥∥∥∂12 ŵε

ε

∥∥∥∥
L1(R2)

=

∥∥∥∥∂12 ŵε

ε

∥∥∥∥
L1(Ω̂)

≤ C(
∥∥∥∂12wε

ε

∥∥∥
L2(Ω)

+
∥∥∥wε

ε

∥∥∥
H1(Ω)

) ≤ C.

By Ascoli-Arzelà’s theorem, recalling that wε
ε ⇀ w in H1(Ω) by Lemma 4.1, we deduce that up to

a subsequence wε
ε → w uniformly. By Urysohn’s lemma, the full sequence (wε

ε ) converges.

Lemma 4.6. Let β = 2. Let (uε, wε) ⊂ X as in Lemma 4.1. Then, there exists µ ∈ M+(Ω) such
that

(∂1
wε

εβ/2
)2L2 ∗

⇀ (∂1w)
2L2 + 2µ in M(Ω). (49)

Proof. By the uniform bounds (26) and (29) we deduce that (∂1
wε

εβ/2
)2 is uniformly bounded in

L1(Ω). Thus, up to subsequences, (∂1
wε

εβ/2
)2 converges weakly* in the sense of measures to some

ν ∈ M(Ω). By convexity, we have that ν ≥ (∂1w)
2L2. We set 2µ := ν − (∂1w)

2L2 which clearly
belongs to M+(Ω).

The next result will call upon the finite set Y defined in (7).

Lemma 4.7. Let β = 2. Let µ as in Lemma 4.6. Then, the support of µ is contained in I ×Y . In
particular, for every y ∈ Y there is λy ∈ M+(I × {y}) such that

µ =
∑
y∈Y

λy ⊗ δy.

Proof. Let w = r + x2ϑ+ ẘ be as in (22). As r, ϑ ∈ H1(I), by Lemma A.5 there are sequences
(rε), (ϑε) ⊂ C∞(I) such that (rε, ϑε) → (r, ϑ) in H1(I)×H1(I) and (εr′′ε , εϑ

′′
ε) → (0, 0) in L2(I)×

L2(I). The convergence (rε, ϑε) → (r, ϑ) is actually uniform by the compact embedding H1(I) ↪→
C0(I). Thus, the sequence w̃ε := rε + x2ϑε + ẘ converges uniformly to w in Ω. Combining this
with Lemma 4.5, we have that zε :=

wε
ε − w̃ε converges uniformly to 0 in Ω. By using (22) and (20)
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we deduce that

ε∥∂1zε∥L2(Ω) = ε∥∂1
wε

ε
− r′ε − x2ϑ

′
ε∥L2(Ω) → 0,

∥∂2zε∥L2(Ω) = ∥∂2
wε

ε
− ϑε − ẘ′∥L2(Ω) → 0

(50)

as ε goes to zero. Also, by using (21) we find that

ε2∥∂11zε∥L2(Ω) = ε∥∂11wε − εr′ε − x2εϑ
′
ε∥L2(Ω) → 0,

ε∥∂12zε∥L2(Ω) = ε∥∂12
wε

ε
− ϑ′ε∥L2(Ω) → 0,

∥∂22zε∥L2(Ω) = ∥∂22
wε

ε
− ẘ′′∥L2(Ω) → 0.

(51)

Let ψ ∈ C∞
c (Ω). By taking φε = ψzε in place of φ in (32) we have∣∣∣ ∫

Ω
φε det∇2wε

ε
dx

∣∣∣ ≤ C
(
∥∂22φε∥L2(Ω) + ε∥∂12φε∥L2(Ω) + ε2∥∂11φε∥L2(Ω)

)
. (52)

From (50) and (51) it immediately follows that the left side of (52) goes to zero as ε→ 0.
We now study the right side of (52). By (33) we have

0 = lim
ε→0

∫
Ω
φε det∇2wε

ε
dx = lim

ε→0

∫
Ω
ψzε

(
dε + ẘ′′∂11

wε

ε

)
dx

= lim
ε→0

∫
Ω
ψzεẘ

′′∂11
wε

ε
dx,

where the last equality follows since dε is bounded in L1(Ω) and zε converges uniformly to zero.
But by (22) we deduce that

0 = − lim
ε→0

∫
Ω
ψzεẘ

′′∂11
wε

ε
dx = lim

ε→0

∫
Ω

(
zε∂1ψ + ψ∂1zε

)
ẘ′′∂1

wε

ε
dx

= lim
ε→0

∫
Ω
ψẘ′′∂1zε∂1

wε

ε
dx, (53)

that is equivalent to

lim
ε→0

∫
Ω
ψẘ′′(∂1

wε

ε
)2 dx = lim

ε→0

∫
Ω
ψẘ′′∂1w̃ε∂1

wε

ε
dx =

∫
Ω
ψẘ′′(∂1w)

2 dx,

as w̃ε → w in H1(Ω) and wε/ε ⇀ w in H1(Ω). So ẘ′′(∂1
wε
ε )2 → ẘ′′(∂1w)

2 in D′(Ω). Since the

sequence (ẘ′′(∂1
wε
ε )2) is bounded in L1(Ω), we have that

ẘ′′(∂1
wε

ε
)2L2 ∗

⇀ ẘ′′(∂1w)
2L2 in M(Ω).

On the other hand, by (49), we also have that

ẘ′′(∂1
wε

ε
)2L2 ∗

⇀ ẘ′′(∂1w)
2L2 + 2ẘ′′µ in M(Ω).

Hence, by uniqueness of the weak limits, we deduce that ẘ′′µ = 0. This implies that also the total
variation of the measure ẘ′′µ is null, that is |ẘ′′µ| = |ẘ′′|µ = 0. We now show that µ concentrates
on I × Y . Let A ⊂ Ω \ (I × Y ) be a Borel set, and let

An = {x ∈ A : |ẘ′′|(x) ≥ 1

n
}.

For n large enough, An is nonempty and (An) ⊂ A monotonically converges to A. Then 0 =
(|ẘ′′|µ)(An) ≥ 1

nµ(An) ≥ 0, that implies µ(An) = 0. In turn, we deduce µ(A) = 0. Thus
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µ = µ (I × Y ) =
∑

y∈Y µ (I × {y}), since Y is finite. For fixed y ∈ Y , let λy be the Radon

measure defined on the Borel sets of I × {y} by

λy(By) = µ (I × {y})(By) = µ(By),

for all Borel sets By ⊂ I × {y}. For a Borel set B ⊂ Ω, we have that

λy ⊗ δy(B) = λy(B ∩ {x2 = y}) = λy(B ∩ (I × {y})) = µ(B ∩ (I × {y})) = µ (I × {y})(B)

and hence µ (I × {y}) = λy ⊗ δy.
The characterization of the support of µ for β = 2 is enough to assess an enhanced regularity for

r and ϑ.

Lemma 4.8. Let β = 2. Let r and ϑ as in Lemma 4.1 and µ as in Lemma 4.6. Then, r, ϑ ∈ H2(I).
Moreover, for every y ∈ Y the measures λy ∈ M+(I × {y}) defined in Lemma 4.7 are equal to
λy = hyL for some hy ∈ L2(I) and hy ≥ 0 almost everywhere in I. In particular,

µ =
∑
y∈Y

hyL ⊗ δy. (54)

Proof. Let (uε, wε) ⊂ X as in Lemma 4.1. We start by observing that (20), (22), and (49) imply
that

∇wε

ε
⊗∇wε

ε
=

(
(∂1wε

ε )2 ∂1wε
ε

∂2wε
ε

∂1wε
ε

∂2wε
ε (∂2wε

ε )2

)
∗
⇀

(
(∂1w)

2L2 + 2µ ∂1w∂2w
∂1w∂2w (∂2w)

2

)
in M(Ω,R2×2

sym). Hence, from the identity∫
Ω
det∇2wε

ε
φ dx = −1

2

∫
Ω
∇wε

ε
⊗∇wε

ε
· cof ∇2φdx ∀ φ ∈ C∞

c (Ω)

we find that

lim
ε→0

∫
Ω
det∇2wε

ε
φ dx = −1

2

∫
Ω
(∂1w)

2∂22φ− 2∂1w∂2w∂12φ+ (∂2w)
2∂11φdx

−
∫
Ω
∂22φdµ,

for every φ ∈ C∞
c (Ω). By means of (22) we obtain that

lim
ε→0

∫
Ω
det∇2wε

ε
φ dx = −1

2

∫
Ω
(r′ + x2ϑ

′)2∂22φ− 2(r′ + x2ϑ
′)(ϑ+ ẘ′)∂12φ

+ (ϑ+ ẘ′)2∂11φdx−
∫
Ω
∂22φdµ

= −1

2

∫
Ω
2ϑ′2φ+ 2

(
ϑ′(ϑ+ ẘ′) + (r′ + x2ϑ

′)ẘ′′)∂1φ
− 2ϑ′(ϑ+ ẘ′)∂1φdx−

∫
Ω
∂22φdµ,

= −
∫
Ω
ϑ′2φ+ (r′ + x2ϑ

′)ẘ′′∂1φdx−
∫
Ω
∂22φdµ

for every φ ∈ C∞
c (Ω). By using this convergence result, (23), and (31), we deduce that∫

Ω
S11∂22φdx =

∫
Ω
ϑ′2φ+ (r′ + x2ϑ

′)ẘ′′∂1φdx+

∫
Ω
∂22φdµ

for every φ ∈ C∞
c (Ω). From this equality it follows, also using Lemma 4.7, that∫

Ω
S11φ1φ

′′
2 dx =

∫
Ω
ϑ′2φ1φ2 + (r′ + x2ϑ

′)ẘ′′φ′
1φ2 dx+

∑
y∈Y

φ′′
2(y)

∫
I×{y}

φ1 dλy (55)
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for every φ1 ∈ C∞
c (I) and φ2 ∈ C∞

c (W ).
By choosing φ2 odd and φ′′

2 = 0 on Y , recalling that ẘ is even, from (55) we find that∫
Ω
S11φ1φ

′′
2 dx =

∫
Ω
x2ϑ

′ẘ′′φ′
1φ2 dx =

∫
W
x2ẘ

′′φ2 dx2

∫
I
ϑ′φ′

1 dx1

from which we deduce that |
∫
I ϑ

′φ′
1 dx1| ≤ C ∥φ1φ

′′
2∥L2(Ω) ≤ C ∥φ1∥L2(I), for every φ1 ∈ C∞

c (I).

By Riesz’s representation theorem (see also [6, Proposition 8.3]), we deduce ϑ ∈ H2(I).
Instead, by choosing φ2 even and φ′′

2 = 0 on Y from (55) we find∫
Ω
S11φ1φ

′′
2 dx =

∫
Ω
ϑ′2φ1φ2 + r′φ′

1φ2 dx,

that leads to |
∫
I r

′φ′
1 dx1| ≤ C(1 + ∥ϑ′∥2L4(I)) ∥φ1∥L2(I) for all φ1 ∈ C∞

c (I). Thus, r ∈ H2(I).

Finally, let us fix y ∈ Y and let us also fix φ2 ∈ C∞
c (W ) such that φ′′

2(y) ̸= 0 and φ′′
2 = 0 on

Y \ {y}. From (55) we deduce that

φ′′
2(y)

∫
I×{y}

φ1 dλy =

∫
Ω
S11φ1φ

′′
2 dx−

∫
Ω

(
ϑ′2 − (r′′ + x2ϑ

′′)ẘ′′)φ1φ2 dx

which implies that ∣∣∣ ∫
I
φ1 dλy

∣∣∣ ≤ C∥φ1∥L2(I) (56)

for all φ1 ∈ C∞
c (I). By density, the linear functional λy : C∞

c (I) → R defined by λy(φ1) =
∫
I φ1 dλy

can be extended to a linear functional, that we do not rename, λy : L2(I) → R that satisfies
(56) for all φ1 ∈ L2(I). By Riesz’s representation theorem there exists hy ∈ L2(I) such that∫
I φ1 dλy =

∫
I φ1hy dx1 for all φ1 ∈ C∞

c (I). Thus, λy = hyL. Since λy is a positive measure it
follows that hy ≥ 0 almost everywhere in I.

Finally, we can prove the following characterization for β = 2.

Lemma 4.9. Let β = 2. Let (ξ1, ξ2) ∈ BV (I) × BH(I) as in Lemma 4.1 and µ ∈ M+(Ω) as in
Lemma 4.6. Then:

(i) (ξ1, ξ2) ∈ H1(I)×H2(I);
(ii) µ = 0;

(iii) the component 11 of S, defined in (23), is S11 = ∂1u1 +
1
2(∂1w)

2.

Proof. From (49), (23), and (24), we have that

S11 = ∂1u1 +
1

2
(∂1w)

2 + µ, (57)

where S11 ∈ L2(Ω), ∂1u1 ∈ M(Ω), µ ∈ M+(Ω), and w ∈ H1(Ω). By (25) we know that

u1 = ξ1 − x2(ξ
′
2 + r′ϑ+ c1ϑ

′)− ẘr′ − ˚̊w⟨0⟩ϑ
′ − x2α+ t1,

and since Lemma 4.8 states that r, ϑ ∈ H2(I), we can write ∂1u1 as

∂1u1 = ξ′1 − x2ξ
′′
2 + f,

where ξ′1, ξ
′′
2 ∈ M(I) and f ∈ L2(Ω). Also, from (22) we have that ∂1w = r′ + x2ϑ

′, and from
Lemma 4.8 we deduce that (∂1w)

2 ∈ L2(Ω). With these considerations, we can rewrite (57) as

ξ′1 − x2ξ
′′
2 +

∑
y∈Y

hyL ⊗ δy = S11 − f − 1

2
(∂1w)

2, (58)

where we have used (54). We observe that the right side of (58) is in L2(Ω). From this equality,
for every φ1 ∈ C∞

c (I) and φ2 ∈ C∞
c (W ), we infer that∣∣∣ ∫

W
φ2 dx2

∫
I
φ1 dξ

′
1 −

∫
W
x2φ2 dx2

∫
I
φ1 dξ

′′
2

∣∣∣ ≤ C∥φ1∥L2(I),
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where the constant C depends on ∥φ2∥L∞(W ) and ∥hy∥L2(I). Taking φ2 even and arguing as at the

end of the proof of Lemma 4.8 we deduce that ξ1 ∈ H1(I). Similarly, with φ2 odd we conclude
that ξ2 ∈ H2(I).

With these discoveries and (58), we deduce that
∑

y∈Y hyL ⊗ δy ∈ L2(Ω), which implies hy = 0

for every y ∈ Y . Indeed, it suffices to multiply (58) by 1I×{z} with z ∈ Y and integrate over Ω, to
deduce that hz = 0 almost everywhere in I.

Under the convergences established in Lemma 4.1 the trace operators are not continuous - apart
for ( wε

εβ/2
(± ℓ

2 , x2)) - and we cannot readily deduce the boundary values of r′, ϑ′, ξ1, ξ2, ξ
′
2. However,

exploiting the extension introduced in Remark 4.3 and the enhanced regularity of the limit functions,
we can prove the following result.

Lemma 4.10. Let β = 2. Let r, ϑ ∈ H2(I) and (ξ1, ξ2) ∈ H1(I) ×H2(I) as in Lemma 4.1, 4.8,
4.9. Then

(i) r(− ℓ
2) = 0, r( ℓ2) = Λ3, ϑ(− ℓ

2) = 0, ϑ( ℓ2) = Φ1;

(ii) r′(− ℓ
2) = 0, r′( ℓ2) = Φ2;

(iii) ϑ′(− ℓ
2) = ϑ′( ℓ2) = 0;

(iv) ξ1(− ℓ
2) = 0, ξ1(

ℓ
2) = Λ1;

(v) ξ2(− ℓ
2) = 0, ξ2(

ℓ
2) = Λ2; ξ′2(− ℓ

2) = 0, ξ′2(
ℓ
2) = Φ3.

Proof. Claim (i). It is proved directly by using the continuity of the trace under weak convergence
in H1.

Claims (ii) - (v). Consider the extensions (ũε, w̃ε) as defined in Section 4. We can thus applying

the results of Lemmas 4.1, 4.8, 4.9, to deduce the existence of limit functions (ξ̃1, ξ̃2, r̃, ϑ̃) ∈ H1(Ĩ)×
H2(Ĩ)×H2(Ĩ)×H2(Ĩ) whose expressions are given in (44)–(47). Henceforth, by the aforementioned

regularity of (ξ̃1, ξ̃2, r̃, ϑ̃) and the embeddings H1(Ĩ) ↪→ C0(Ĩ), H2(Ĩ) ↪→ C1(Ĩ), we deduce the
stated boundary trace values on ∂I.

5. The Γ-limit for β = 2

We begin with the case β = 2, which is simpler.
Recall that X = L1(Ω;R2) × L2(Ω). Given (Λ1,Λ2,Λ3,Φ1,Φ2,Φ3) ∈ R6, define the set of

admissible displacements by

A2 := {(u,w) ∈ X :∃(ξ1, ξ2, r, ϑ) ∈ H1(I)×H2(I)×H2(I)×H2(I),

w = r + x2ϑ+ ẘ,

u1 = ξ1 − x2(ξ
′
2 + r′ϑ+ c1ϑ

′)− ẘr′ − ˚̊w⟨0⟩ϑ
′

u2 = ξ2 −
1

2
x2ϑ

2 − ẘϑ

r(− ℓ
2
) = r′(− ℓ

2
) = 0, r(

ℓ

2
) = Λ3, r

′(
ℓ

2
) = Φ2

ϑ(− ℓ
2
) = ϑ′(− ℓ

2
) = 0, ϑ(

ℓ

2
) = Φ1, ϑ

′(
ℓ

2
) = 0,

ξ1(−
ℓ

2
) = 0, ξ1(

ℓ

2
) = Λ1,

ξ2(−
ℓ

2
) = ξ′2(−

ℓ

2
) = 0, ξ2(

ℓ

2
) = Λ2, ξ

′
2(
ℓ

2
) = Φ3}.
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We observe that a pair (u,w) ∈ A2 uniquely determines the functions (ξ1, ξ2, r, ϑ) appearing in the
definition of A2. Hence, the following definition of a functional, with domain X , is well-defined:

F 2(u,w) :=



∫
I
|ϑ′|2 + 1

2
|ξ′1 +

1

2
r′2 +

1

24
ϑ′2|2

+
J1
2
|ξ′′2 + r′′ϑ+ c1ϑ

′′|2 + J2
2
|c2r′′ − ϑ′2|2

+
J3
2
|r′′|2 + J4

2
|ϑ′′|2 dx1

if (u,w) ∈ A2

+∞ otherwise.

We now state and prove the Γ-convergence result for β = 2. To keep the statement compact, we
express the convergence using strong convergence in X , even though, as shown in Section 4, this
can be significantly improved.

Theorem 5.1. As ε ↓ 0, the sequence of functionals (F 2
ε ) Γ-converges to F 2 in X . Precisely

(a) (Liminf inequality) for every (u,w) ∈ X and for every sequence (uε, wε) ⊂ X such that

(
uε
ε2
,
wε

ε
) → (u,w) in X

we have

lim inf
ε↓0

F 2
ε (uε, wε) ≥ F 2(u,w);

(b) (Recovery sequence) for every (u,w) ∈ X there exists a sequence (uε, wε) ⊂ X such that

(
uε
ε2
,
wε

ε
) → (u,w) in X

and

lim
ε↓0

F 2
ε (uε, wε) = F 2(u,w).

Proof. (a) (Liminf inequality) Without loss of generality, let us assume lim infε↓0 F
2
ε (uε, wε) <∞,

otherwise there is nothing to prove. Hence, up to a subsequence, supε F
2
ε (uε, wε) <∞. Therefore,

we can rely on the results stated in Section 4 and in particular deduce that (u,w) ∈ A2.
With the definition (19) and by weak sequential lower semicontinuity we have that

lim inf
ε↓0

F 2
ε (uε, wε) ≥ lim inf

ε↓0

1

2

∫
Ω
|∇2

εwε − ẘ′′e2 ⊗ e2|2 + |Sε|2 dx

≥ 1

2

∫
Ω
|
(
γ11 ϑ′

ϑ′ γ22

)
|2 dx+

1

2

∫
Ω
|
(
∂1u1 +

1
2(∂1w)

2 S12
S12 S22

)
|2 dx,
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where we used (21), (23), and Lemma 4.9. Hence, since (u,w) ∈ A2 we have

lim inf
ε↓0

F 2
ε (uε, wε) ≥

∫
I
|ϑ′|2dx1 +

1

2

∫
Ω
|∂1u1 +

1

2
(∂1w)

2|2 dx

=

∫
I
|ϑ′|2dx1 +

1

2

∫
Ω
|ξ′1 − x2(ξ

′′
2 + r′′ϑ+ r′ϑ′ + c1ϑ

′′)− ẘr′′

− ˚̊w⟨0⟩ϑ
′′ +

1

2
r′2 + x2r

′ϑ′ +
1

2
x22ϑ

′2|2 dx

=

∫
I
|ϑ′|2dx1 +

1

2

∫
Ω
|(ξ′1 +

1

2
r′2 +

1

24
ϑ′2)− x2(ξ

′′
2 + r′′ϑ+ c1ϑ

′′)

− (ẘ − c2(
x22
2

− 1

24
))r′′ − ˚̊w⟨0⟩ϑ

′′ + (
x22
2

− 1

24
)(ϑ′2 − c2r

′′)|2 dx

=

∫
I
|ϑ′|2 + 1

2
|ξ′1 +

1

2
r′2 +

1

24
ϑ′2|2 + J1

2
|ξ′′2 + r′′ϑ+ c1ϑ

′′|2

+
J3
2
|r′′|2 + J4

2
|ϑ′′|2 + J2

2
|c2r′′ − ϑ′2|2 dx1,

where to obtain the last equality we used Lemma 3.1.
(b) (Recovery sequence) It suffices to consider pairs (u,w) ∈ X such that F 2(u,w) < ∞. In

this case, we have (u,w) ∈ A2, and the pair can be uniquely represented in terms of functions
(ξ1, ξ2, r, ϑ) as introduced in the definition of A2. We therefore define, simply,

wε := εw, uε := ε2u.

Thus

lim
ε↓0

F 2
ε (uε, wε) = lim

ε↓0

1

2

∫
Ω
|
(
εr′′ ϑ′

ϑ′ 0

)
|2 dx+

1

2

∫
Ω
|
(
∂1u1 +

1
2(∂1w)

2 0
0 0

)
|2 dx

=

∫
I
|ϑ′|2 dx1 +

1

2

∫
Ω
|∂1u1 +

1

2
(∂1w)

2|2 dx

as requested.

5.1. The Euler-Lagrange equations and some examples. The presence of nontrivial trans-
verse curvature (ẘ′′ ̸≡ 0) forces the Euler-Lagrange equations to be of the fourth-order in r and of
the fourth-order in ϑ.
Supposing ξ1 = ξ2 = r = 0 (and Λ1 = Λ2 = Λ3 = Φ2 = Φ3 = 0) the limit energy F 2 reduces to,
after substituting (14),

ϑ 7→
∫
I
|ϑ′|2dx1 +

1

640

∫
I
|ϑ′|4 dx1 +

c21 + 12J4
24

∫
I
|ϑ′′|2 dx1

with ϑ ∈ {ϑ ∈ H2(I) : ϑ(− ℓ
2) = ϑ′(− ℓ

2) = 0, ϑ( ℓ2) = Φ1, ϑ
′( ℓ2) = 0}. The Euler-Lagrange equation

reads

−(2 +
3

160
ϑ′2)ϑ′′ +

c21 + 12J4
12

ϑ′′′′ = 0 in I.

We can interpret this equation as a nonlinear Vlasov torsion model, where the warping stiffness is
c21+12J4

12 and the torsion stiffness, depending itself by ϑ, is (2 + 3
160ϑ

′2). As expected, the warping
stiffness depends ẘ. Note that Vlasov’s linear torsion theory has been already deduced by Γ-
convergence from the 3D linear elasticity in [19]. Here, we have deduced a nonlinear version of that
theory.

Similarly, supposing ξ1 = ξ2 = ϑ = 0 (and Λ1 = Λ2 = Φ1 = Φ3 = 0) for the purely flexural
model, the limit energy reduces to

r 7→ 1

8

∫
I
|r′2|2 dx1 +

720J3 + c22
1440

∫
I
|r′′|2 dx1
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with r ∈ {r ∈ H2(I) : r(− ℓ
2) = r′(− ℓ

2) = 0, r( ℓ2) = Λ3, r
′( ℓ2) = Φ2}. The Euler-Lagrange equation

reads

−3

2
r′2r′′ +

720J3 + c22
720

r′′′′ = 0 in I.

Note that in this case the bending stiffness (
720J3+c22

1440 ) is of purely geometrical nature, while the
constitutive contribution vanishes at the limit.

We provide an explicit solution for two cases of interest. For ẘ =
x2
2
2 − 1

24 we have

˚̊w =
x32
6

+
x2
24
, ˚̊w⟨0⟩ =

x32
6

− x2
40
,

c1 =
1

15
, c2 = 1, J3 = 0, J4 =

1

100800
.

While, for ẘ = (x22 − 1
16)

2 − 23
3840 we have

˚̊w =
x2
480

(288x42 − 20x22 + 1), ˚̊w⟨0⟩ =
x2
480

(288x42 − 20x22 + 1)− x2
84
,

c1 =
1

84
, c2 =

5

28
, J3 =

1

44100
, J4 =

757

124185600
.

6. The Γ-limit for 0 < β < 2

We begin by establishing an auxiliary result that will be used in the proof of the liminf inequality.

Lemma 6.1. Let (ξ1, r) ∈ B, the set defined in Lemma 4.4. Then, with the notation of Remark
4.3,

inf{
∫
Ĩ
|ξ̃′1 + λ̃+

1

2
r̃′2|2 dx1 : λ̃ ∈ M+(Ĩ), ξ̃′1 + λ̃+

1

2
r̃′2 ∈ L2(Ĩ)}

=

∫
I
|(dξ

′
1

dL
+

1

2
r′2)+|2 dx1, (59)

where
dξ′1
dL denotes the Radon-Nikodym derivative of ξ′1 with respect to the one dimensional Lebesgue

measure L.

Proof. Any λ̃ ∈ M+(Ĩ) can be decomposed uniquely as λ̃ = λ̃aL + λ̃s where λ̃a = dλ̃
dL ∈ L1(Ĩ),

and λ̃s and L are mutually singular. Similarly, we have ξ̃′1 = (ξ̃′1)aL+ (ξ̃′1)s.

The requirement ξ̃′1 + λ̃ + 1
2 r̃

′2 ∈ L2(Ĩ) implies, since r̃ ∈ H1(Ĩ), that (ξ̃′1)s = −λ̃s and (ξ̃′1)a +

λ̃a +
1
2 r̃

′2 ∈ L2(Ĩ). For brevity, we set f̃ = (ξ̃′1)a +
1
2 r̃

′2 ∈ L1(Ĩ). Let Ĩ+ := {f̃ ≥ 0}, Ĩ− := {f̃ < 0},
and f̃± := ±f̃1

Ĩ± . We have accordingly

inf{
∫
Ĩ
|f̃ + λ̃a|2 dx1 : λ̃a ≥ 0, f̃ + λ̃a ∈ L2(Ĩ)}

= inf{
∫
Ĩ
|f̃+ − f̃− + λ̃a|2 dx1 : λ̃a ≥ 0, f̃ + λ̃a ∈ L2(Ĩ)}

= inf{
∫
Ĩ+

|f̃+ + λ̃a|2 dx1 +
∫
Ĩ−

| − f̃− + λ̃a|2 dx1 : λ̃a ≥ 0, f̃ + λ̃a ∈ L2(Ĩ)}

≥ inf{
∫
Ĩ+

|f̃+ + λ̃a|2 dx1 : λ̃a ≥ 0, f̃+ + λ̃a ∈ L2(Ĩ+)}

+ inf{
∫
Ĩ−

| − f̃− + λ̃a|2 dx1 : λ̃a ≥ 0, −f̃− + λ̃a ∈ L2(Ĩ−)}

= inf{
∫
Ĩ+

|f̃+ + λ̃a|2 dx1 : λ̃a ≥ 0, f̃+ + λ̃a ∈ L2(Ĩ+)} (60)
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where the last equality has been obtained by taking λ̃a = f̃− on Ĩ−. Since f̃ ∈ L1(Ĩ), it follows

that f̃+ ∈ L1(Ĩ+). Similarly, λ̃a ∈ L1(Ĩ+). However, the requirements f̃+ + λ̃a ∈ L2(Ĩ+) and

f̃+, λ̃a ≥ 0, imply that f̃+, λ̃a ∈ L2(Ĩ+). Hence, it is allowed to take λ̃a1Ĩ+ = 0 in (60) and deduce
that

inf{
∫
Ĩ
|ξ̃′1 + λ̃+

1

2
r̃′2|2 dx1 : λ̃ ∈ M+(Ĩ), ξ̃′1 + λ̃+

1

2
r̃′2 ∈ L2(Ĩ)}

≥
∫
Ĩ+

|f̃+|2 dx1 =
∫
Ĩ
|f̃+|2 dx1. (61)

To show the converse inequality, it suffices to take the admissible choice λ̃a = f̃−1
Ĩ− , to obtain

inf{
∫
Ĩ
|f̃ + λ̃a|2 dx1 : λ̃a ≥ 0, f̃ + λ̃a ∈ L2(Ĩ)} ≤

∫
Ĩ
|f̃+|2 dx1. (62)

Henceforth, (62) holds with the equality sign. To conclude the proof, it suffices to notice that by

(44) and (46), f̃ = ξ̃′1 +
1
2 r̃

′2 = 0 on Ĩ \ I.
Let

A(0,2) = {(u,w) ∈ X :∃ (ξ2, ϑ) ∈ H2(I)×H1(I), ∃ (ξ1, r) ∈ B,

r(− ℓ
2
) = 0, r(

ℓ

2
) = Λ3,

ϑ(− ℓ
2
) = 0, ϑ(

ℓ

2
) = Φ1,

ξ2(−
ℓ

2
) = ξ′2(−

ℓ

2
) = 0, ξ2(

ℓ

2
) = Λ2, ξ

′
2(
ℓ

2
) = Φ3

w = r, u1 = ξ1 − x2ξ
′
2, u2 = ξ2}.

We note that given (u,w) ∈ A(0,2), we uniquely determine r and ξ2, while ξ1 is found up to a
constant. The following functional on X is well-defined:

F (0,2)(u,w) =


1

2

∫
I
2|ϑ′|2 + J1|ξ′′2 |2 + |(dξ

′
1

dL
+

1

2
r′2)+|2 dx1 if (u,w) ∈ A(0,2)

+∞ otherwise.

We now state and prove the Γ-convergence result for 0 < β < 2. Again, we express the conver-
gence using strong convergence in X , even though this can be significantly improved.

Theorem 6.2. As ε ↓ 0, the sequence of functionals (F
(0,2)
ε ) Γ-converges to F (0,2) in X , in the

following sense:

(a) (Liminf inequality) for every (u,w) ∈ X and for every sequence (uε, wε) ⊂ X such that

(
uε
εβ
,
wε

εβ/2
) → (u,w) in X

we have

lim inf
ε↓0

F (0,2)
ε (uε, wε) ≥ F (0,2)(u,w);

(b) (Recovery sequence) for every (u,w) ∈ X there exists a sequence (uε, wε) ⊂ X such that

(
uε
εβ
,
wε

εβ/2
) → (u,w) in X

and

lim
ε↓0

F (0,2)
ε (uε, wε) = F (0,2)(u,w).
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Proof. (a) (Liminf inequality) Without loss of generality, we assume lim infε↓0 F
(0,2)
ε (uε, wε) <∞.

Up to a subsequence, supε F
(0,2)
ε (uε, wε) <∞ and Lemma 4.1 holds. With Sε as defined in (19) we

have

lim inf
ε↓0

F (0,2)
ε (uε, wε) ≥ lim inf

ε↓0

1

2

∫
Ω

∣∣∇2
εwε −

ẘ′′

ε
e2 ⊗ e2

∣∣2 + |Sε|2 dx

≥ lim inf
ε↓0

∫
Ω
(∇2

εwε)
2
12 +

1

2
(Sε

11)
2 dx

= lim inf
ε↓0

(

∫
Ω
(∇2

εwε)
2
12 dx+

∫
Ω̃

1

2
(S̃ε

11)
2 dx)

≥
∫
Ω
|ϑ′|2 dx1 +

1

2

∫
Ω̃
|ξ̃′1 + λ̃+

1

2
r̃′2 − x2ξ̃

′′
2 |2 dx

where the last inequality follows from (21) and Lemma 4.4 with λ̃ ∈ M+(Ĩ). Integrating we find

lim inf
ε↓0

F (0,2)
ε (uε, wε) ≥

∫
I
|ϑ′|2 dx1 +

1

2

∫
Ĩ
|ξ̃′1 + λ̃+

1

2
r̃′2|2 dx1 +

J1
2

∫
Ĩ
|ξ̃′′2 |2 dx1

≥
∫
I
|ϑ′|2 dx1 +

J1
2

∫
Ĩ
|ξ̃′′2 |2 dx1

+
1

2
inf{

∫
Ĩ
|ξ̃′1 + λ̃+

1

2
r̃′2|2 dx1 : λ̃ ∈ M+(Ĩ),

ξ̃′1 + λ̃+
1

2
r̃′2 ∈ L2(Ĩ)}

=

∫
I
|ϑ′|2 dx1 +

J1
2

∫
I
|ξ′′2 |2 dx1 +

1

2

∫
I
|(dξ

′
1

dL
+

1

2
r′2)+|2 dx1,

where the last equality follows from Lemma 6.1 and (45).
(b) (Recovery sequence) We adapt some arguments presented in [10].

Without loss of generality, let us assume F (0,2) <∞. Accordingly, (u,w) ∈ A(0,2). Hence, there
exists (ξ2, ϑ) ∈ H2(I)×H1(I), (ξ1, r) ∈ B such that w = r, u1 = ξ′1 − x2ξ

′′
2 , and u2 = ξ2.

Step 1. Let ηδ be the standard mollifier and (ξ1δ, ξ2δ, rδ, ϑδ) = ηδ ∗ (ξ1, ξ2, r, ϑ). Let uδ =
(ξ′1δ − x2ξ

′′
2δ, ξ2δ) and wδ = rδ. Assume for the time being that, for every fixed δ, we can find a

recovery sequence, i.e., a sequence (uδ,ε, wδ,ε) ⊂ X such that

(
uδ,ε,

εβ
,
wδ,ε,

εβ/2
) → (uδ, wδ) in X

as ε ↓ 0, and

lim sup
ε↓0

F (0,2)
ε (uδ,ε, wδ,ε) ≤ F (0,2)(uδ, wδ).

Note that ϑδ → ϑ in H1(I) and also ξ2δ → ξ2 in H2(I). Then

lim sup
δ↓0

lim sup
ε↓0

F (0,2)
ε (uδ,ε, wδ,ε) ≤ lim sup

δ↓0
F (0,2)(uδ, wδ)

= lim sup
δ↓0

∫
I
|ϑ′δ|2 dx1 +

J1
2

∫
I
|ξ′′2,δ|2 dx1 +

1

2

∫
I
|(ξ′1δ +

1

2
(r′δ)

2)+|2 dx1

=

∫
I
|ϑ′|2 dx1 +

J1
2

∫
I
|ξ′′2 |2 dx1 +

1

2
lim sup

δ↓0

∫
I
|(ξ′1δ +

1

2
(r′δ)

2)+|2 dx1. (63)

Let λ̃ ∈ M+(Ĩ) such that ξ̃′1 + λ̃ + 1
2 r̃

′2 ∈ L2(Ĩ). Let λ̃δ = ηδ ∗ λ̃ and note that λ̃δ ≥ 0 almost

everywhere on Ĩ. Using the nondecreasing property of the map a 7→ (a + 1
2b

2)+, for every b, we
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deduce that

(ξ′1δ +
1

2
(r′δ)

2)+ ≤ (ξ′1δ + λ̃δ +
1

2
(r′δ)

2)+ on I. (64)

By Jensen’s inequality, for every function z and every convex function g we have that g(ηδ ∗ z) ≤
ηδ ∗

(
g(z)

)
. By means of this inequality and observing that the map (a, b) 7→ (a+ 1

2b
2)+ is convex,

we have that

(ξ′1δ + λ̃δ +
1

2
(r′δ)

2)+ ≤ ηδ ∗
(
(ξ′1 + λ̃+

1

2
(r′)2)+

)
on I. (65)

Since ξ̃′1 + λ̃+ 1
2 r̃

′2 ∈ L2(Ĩ) also (ξ′1 + λ̃+ 1
2(r

′)2)+ ∈ L2(I). Therefore ηδ ∗
(
(ξ′1 + λ̃+ 1

2(r
′)2)+

)
→

(ξ′1 + λ̃+ 1
2(r

′)2)+ in L2(I). Thus, by using (63), (64), (65), (44), and (46) we obtain

lim sup
δ↓0

lim sup
ε↓0

F (0,2)
ε (uδ,ε, wδ,ε)

≤
∫
I
|ϑ′|2 dx1 +

J1
2

∫
I
|ξ′′2 |2 dx1 +

1

2
lim sup

δ↓0

∫
I
|ηδ ∗

(
(ξ′1 + λ̃+

1

2
(r′)2)+

)
|2 dx1

=

∫
I
|ϑ′|2 dx1 +

J1
2

∫
I
|ξ′′2 |2 dx1 +

1

2

∫
I
|(ξ′1 + λ̃+

1

2
(r′)2)+|2 dx1

≤
∫
I
|ϑ′|2 dx1 +

J1
2

∫
I
|ξ′′2 |2 dx1 +

1

2

∫
Ĩ
|ξ̃′1 + λ̃+

1

2
r̃′2|2 dx1.

Now, by invoking Lemma 6.1, we deduce that

lim sup
δ↓0

lim sup
ε↓0

F (0,2)
ε (uδ,ε, wδ,ε)

≤
∫
I
|ϑ′|2 dx1 +

J1
2

∫
I
|ξ′′2 |2 dx1 +

1

2

∫
I
|(dξ

′
1

dL
+

1

2
(r′)2)+|2 dx1.

By a diagonalization argument (see for instance [3, Corollary 1.16]), we can find a map ε 7→ δ(ε),
with δ(ε) ↓ 0 as ε ↓ 0, such that

(
uδ(ε),ε

εβ
,
wδ(ε),ε

εβ/2
) → (u,w) in X

and

lim sup
ε↓0

F (0,2)
ε (uδ(ε),ε, wδ(ε),ε)

≤
∫
I
|ϑ′|2 dx1 +

J1
2

∫
I
|ξ′′2 |2 dx1 +

1

2

∫
I
|(dξ

′
1

dL
+

1

2
(r′)2)+|2 dx1. (66)

Hence, (uδ(ε),ε, wδ(ε),ε) is the requested recovery sequence. It remains to verify that a recovery
sequence exists for u and w smooth.

Step 2. Assume (u,w) ∈ A(0,2) ∩ (C∞(Ω,R2) × C∞(Ω)). Accordingly, there are (r, ϑ, ξ1, ξ2) ∈
(C∞(I))4 as in the definition of A(0,2) (apart from regularity).

Consider now the extension ξ̃1 as in (44). Despite ξ1 ∈ C∞(I), ξ̃1 ∈ BV (Ĩ) with (possible)

jump discontinuities at x1 = ±ℓ/2. We recall that (ξ1, r) ∈ B: there exists λ̃ ∈ M+(Ĩ) such

that ξ̃′1 + λ̃ + 1
2 r̃

′2 ∈ L2(Ĩ). This and (44) imply that Λ1 − ξ1(ℓ/2) ≤ 0 and ξ1(−ℓ/2) ≤ 0. As
previously noticed, ξ1 is defined up to a constant: we may therefore consider (up to a translation)
that ξ1(−ℓ/2) = 0. Set p2 := ξ1(ℓ/2)− Λ1. Fix n > 0 and define

ξ1n(x1) := ξ1(x1)− np2(x1 −
ℓ

2
+

1

n
)1( ℓ

2
− 1

n
, ℓ
2
)(x1).

One can check that ξ1n
∗
⇀ ξ1 in BV (I) as n ↑ 0. Let mn ∈ L∞(I, [0,∞)) be a simple function that

takes constant value on the disjoint segments Ij = (− ℓ
2 + (j − 1) ℓn ,−

ℓ
2 + j ℓ

n ] covering I and such
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that ∫
I
|ξ′1 +mn +

1

2
r′2|2 dx1 ≤

∫
I
|(ξ′1 +

1

2
r′2)+|2 dx1 +

C

n
. (67)

Let ζε ⊂ H2
0 (I) be a sequence such that ζε ⇀ 0 in H1(I), εmin{β/2,1−β/2}ζ ′′ε → 0 in L2(I), 1

2(ζ
′
ε)

2 →
mn + np21( ℓ

2
− 1

n
, ℓ
2
) in L2(I). Such a sequence exists by Lemma A.6, since mn + np21( ℓ

2
− 1

n
, ℓ
2
) is a

positive simple function by its own.
From Lemma A.7, there exist functions gε, hε ∈ H2(I) such that

gε(−ℓ/2) = gε(ℓ/2) = 0, g′ε(−ℓ/2) = −r′(−ℓ/2), g′ε(ℓ/2) = Φ2 − r′(ℓ/2) ∀ε > 0,

hε(−ℓ/2) = hε(ℓ/2) = 0, h′ε(−ℓ/2) = −ϑ′(−ℓ/2), h′ε(ℓ/2) = −ϑ′(ℓ/2) ∀ε > 0,

and
gε, hε → 0 in W 1,4(I), εmin{β/2,1−β/2}g′′ε , ε

min{β/2,1−β/2}h′′ε → 0 in L2(I).

Define the recovery sequence as

u1ε(x) := εβ(ξ1n − x2ξ
′
2)− ε1+β/2(r′ + g′ε + ζ ′ε)(ẘ + x2(ϑ+ hε))− ε2˚̊w(ϑ′ + h′ε)

− εβ
∫ x1

−ℓ/2
ζ ′ε(t)(r

′(t) + g′ε(t)) dt+ εβ(x1 + ℓ/2)

∫ ℓ/2

−ℓ/2
ζ ′ε(t)(r

′(t) + g′ε) dt

u2ε(x) := εβξ2 − ε2x2
(ϑ+ hε)

2

2
− ε2ẘ(ϑ+ hε)

wε(x) := εβ/2(r + gε + ζε) + εx2(ϑ+ hε) + εẘ.

where ˚̊w has been defined in (15). Note that
∫ x1

−ℓ/2 ζ
′
ε(t)r

′(t) dt ⇀ 0 in W 1,1(I). In fact ζ ′εr
′ ⇀ 0 in

L1(I), and ∫
I
|
∫ x1

−ℓ/2
ζ ′ε(t)r

′(t) dt| dx1 =
∫
I
|
∫
I
1(−ℓ/2,x1)ζ

′
ε(t)r

′(t) dt| dx1

= (

∫
I
1(−ℓ/2,x1)dx1)|

∫
I
ζ ′ε(t)r

′(t) dt| → 0.

Accordingly, we have Sε
12 = Sε

22 = 0,

Sε
11 = ξ′1n − x2ξ

′′
2 − ε1−β/2(r′′ + g′′ε + ζ ′′ε )(ẘ + x2(ϑ+ hε))

− ε2−β˚̊w(ϑ′′ + h′′ε) +

∫
I
ζ ′ε(r

′ + g′ε) dx1 +
1

2
(r′ + g′ε)

2

+
1

2
(ζ ′ε)

2 +
1

2
ε1−β/2x2(ϑ

′ + h′ε)
2,

and

Sε
11 → ξ′1 +mn +

1

2
r′2 − x2ξ

′′
2 in L2(Ω).

Passing to the limit we deduce

lim
ε↓0

F (0,2)
ε (uε, wε) = lim

ε↓0

1

2

∫
Ω
|
(
εβ/2(r′′ + g′′ε + ζ ′′ε ) + εx2(ϑ

′′ + h′′ε) ϑ′ + h′ε
sym 0

)
|2 dx

+
1

2

∫
Ω
|Sε

11|2 dx

=

∫
I
|ϑ′|2 dx1 +

1

2

∫
I
|ξ′1 +mn +

1

2
r′2|2 dx1 +

J1
2

∫
I
|ξ′′2 |2 dx1

≤
∫
I
|ϑ′|2 dx1 +

J1
2

∫
I
|ξ′′2 |2 dx1 +

1

2

∫
I
|(ξ′1 +

1

2
r′2)+|2 dx1 +

C

n

where we used (67) to deduce the last inequality. Since n is arbitrary, the recovery sequence
condition is proved.
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Remark 6.3. In the regime 0 < β < 2, the limit model does not see the transverse curvature
ẘ′′. The limit model is essentially an elastic string, since it cannot sustain contractions by the
well-known effect of relaxation (see [1, 10, 25]). However, the string can sustain (uniform) torsion
and in-plane bending.

Remark 6.4. By changing variable, ζ := w
εβ/2

and η := u
εβ

, after little manipulation, (11) rewrites
as

η(− ℓ
2
, x2) = (0, 0), ζ(− ℓ

2
, x2) = ε1−β/2ẘ, ∂1ζ(−

ℓ

2
, ·) = 0,

η(
ℓ

2
, x2) = (Λ1 − ε1−β/2Φ2ẘ − ε1−β/2Φ2Φ1x2 − Φ3x2, Λ2 − ε2−βΦ1ẘ − ε2−βΦ

2
1x2
2

),

ζ(
ℓ

2
, x2) = ε1−β/2ẘ + Λ3 + ε1−β/2x2Φ1, ∂1ζ(

ℓ

2
, x2) = Φ2,

(68)

and we have actually found out the Γ-limit for the family of functionals on X

(η, ζ) 7→



εβ
1

2

∫
Ω
|∇2

εζ −
ẘ′′

ε1+β/2
e2 ⊗ e2|2 dx

+
1

2

∫
Ω
|Eεη +

1

2
∇εζ ⊗∇εζ −

1

2

1

εβ
ẘ′2e2 ⊗ e2|2 dx

if (η, ζ) ∈ A,

+∞ otherwise

for 0 < β ≤ 2, where A := {(η, ζ) ∈ H1(Ω,R2)×H2(Ω), : (68) holds}.

Appendix A. Technical results

We provide here some technical results. For some of them, we claim no originality. Nevertheless,
we provide a proof for the sake of completeness. If not specified, I1, I2 ⊂ R are generic bounded
intervals.

The following lemma is a well-known version for distributions of the Du Bois-Reymond lemma.

Lemma A.1. Let Ω = I1×I2, I2 = (a, b), and u ∈ D′(Ω) with ∂2u = 0 in the sense of distributions.
Then, there exists g ∈ D′(I1) such that u = g ⊗ 1.

Proof. Let φ ∈ D(Ω) and ψ ∈ D(I2) with
∫
I2
ψ dx2 = 1. Define

η(x1, x2) :=

∫ x2

a
φ(x1, s)− (

∫
I2

φ(x1, t) dt)ψ(s) ds

which clearly belongs to D(Ω). Hence, denoting with ⟨·, ·⟩X the pairing ⟨·, ·⟩D′(X)×D(X)

⟨u, φ⟩I1×I2 = ⟨u, ∂2η + (

∫
I2

φ(x1, t) dt)ψ(x2)⟩I1×I2

= ⟨u, (
∫
I2

φ(x1, t) dt)ψ(x2)⟩I1×I2

since ⟨u, ∂2η⟩ = 0. For fixed ψ, the map ζ(x1) 7→ ⟨u, ζ(x1)ψ(x2)⟩ defines a distribution g ∈ D′(I1),
i.e.

⟨g, ζ⟩I1 := ⟨u, ζψ⟩I1×I2 ∀ζ ∈ D(I1).

Hence (see also [29, Ch. 2.7])

⟨u, φ⟩I1×I2 = ⟨g,
∫
I2

φ(x1, t) dt⟩I1 = ⟨g, ⟨1, φ⟩I2⟩I1 = ⟨g ⊗ 1, φ⟩I1×I2 .

Next we specialize Lemma A.1 for Lp functions and finite Radon measures.
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Corollary A.2. (i) If u ∈ M(Ω) with ∂2u = 0, there exists g ∈ M(I1) such that u = g ⊗ L on
Ω.

(ii) If u ∈ Lp(Ω) (1 < p <∞) with ∂2u = 0, there exists g ∈ Lp(I1) such that u = g a.e on Ω.

Proof. Claim (i). By Lemma A.1 exists g ∈ D′(I1) such that and for any φi ∈ D(Ii) with∫
I2
φ2 = 1 it holds that ∫

Ω
φ1φ2 du = ⟨g, φ1⟩I1 .

We have
|⟨g, φ1⟩|I1 = |⟨u, φ1φ2⟩| ≤ C|u|(Ω) ∥φ1∥L∞ <∞.

By density, g is a continuous linear functional on C0(I1) and by Riesz’s representation theorem
there exists a unique element of M(I1), still denoted by g, such that

⟨g, φ1⟩ =
∫
I1

φ1 dg ∀φ1 ∈ C0(I1).

Moreover, for every φ ∈ C0(Ω),∫
Ω
φdu =

∫
I1

∫
I2

φdx2dg =

∫
Ω
φd(g ⊗ L)

and we conclude u = g ⊗ L.
Claim (ii). It follows from claim (i) when considering measures of the form uL2 with u ∈ Lp(Ω)

and the Lp version of Riesz’s representation theorem.

Lemma A.3. Let Ω = I1× I2 and u ∈ BD(Ω,R2) with ∂2u2 = 0 and ∂1u2+∂2u1 = 0. Then, there
exist (ξ1, ξ2) ∈ BV (I1)×BH(I1), such that

u1 = ξ1 − x2ξ
′
2, u2 = ξ2.

Proof. By Corollary A.2 and by the embedding BD(Ω,R2) ↪→ L2(Ω,R2), there exists ξ2 ∈ L2(I1)
such that u2 = ξ2. Take now φ ∈ C∞

c (Ω).

0 =

∫
Ω
φd(∂1u2 + ∂2u1) = −

∫
Ω
∂1φu2 + ∂2φu1 dx

= −
∫
Ω
∂1φξ2 + ∂2φu1 dx = −

∫
Ω
∂1φ∂2(x2ξ2) + ∂2φu1 dx

=

∫
Ω
∂12φ(x2ξ2)− ∂2φu1 dx = −⟨∂1(ξ2 ⊗ x2) + u1, ∂2φ⟩.

By Lemma A.1, there exists ξ1 ∈ D′(I1) such that ξ1 ⊗ 1 = ξ′2 ⊗ x2 + u1 from which

u1 = ξ1 ⊗ 1− ξ′2 ⊗ x2.

We now show that (ξ1, ξ2) ∈ BV (I1) × BH(I1). For every φα ∈ C∞
c (Iα) with φ2 even and such

that
∫
I2
φ2 dx2 = 1 it holds∫

Ω
u1φ1φ2 dx = ⟨ξ1, φ1⟩,

∫
Ω
φ1φ2 d(∂1u1) = ⟨ξ′1, φ1⟩.

By the continuous embedding BD(Ω,R2) ↪→ L2(Ω,R2) we obtain

|⟨ξ1, φ1⟩| ≤ C ∥u1∥L2(Ω) ∥φ1∥L2(I1)
, |⟨ξ′1, φ1⟩| ≤ C|∂1u1|(Ω) ∥φ1∥C0(I1)

,

and by the Riesz’s representation theorem we conclude ξ1 ∈ BV (I1). With similar arguments, but
working with φ2 odd, we deduce ξ2 ∈ BH(I1).

Lemma A.4. Let Ω = I1×I2 and f ∈ H2(Ω). There exist a function f̂ ∈ H2(R2) such that f̂ |Ω = f

and a positive constant C, independent of f , such that ∥∂12f̂∥L2(R2) ≤ C(∥∂12f∥L2(Ω) + ∥f∥H1(Ω)).
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Proof. Let f ∈ H2(Ω). Up to a change of reference frame, we may suppose I1 = (0, a),
I2 = (0, b) for some a, b > 0. We start by extending f on the domain obtained by the union of Ω
and its reflection along x2 = 0. Let us call this domain Ω1. Define (see [30, Ch. 2, Theorem 3.9])

f1(x1, x2) :=

{
f(x1, x2) x ∈ Ω

−3f(x1,−x2) + 4f(x1,−1
2x2) x ∈ Ω1 \ Ω.

It is clear that f1 ∈ H2(Ω1). Moreover

∥f1∥L2(Ω1)
≤ C ∥f∥L2(Ω) , ∥∇f1∥L2(Ω1)

≤ C ∥∇f∥L2(Ω) ,

∥∂12f1∥L2(Ω1)
≤ C ∥∂12f∥L2(Ω) .

Iterating properly three times more, mirroring along axes parallel to the coordinates axes, we end
up with a function f4 defined on a rectangle Ω4 that compactly contains Ω (see Fig. A).

Figure 2. A series of domain reflections. Ω in blue.

Moreover,
∥f4∥L2(Ω4)

≤ C ∥f∥L2(Ω) , ∥∇f4∥L2(Ω4)
≤ C ∥∇f∥L2(Ω) ,

∥∂12f4∥L2(Ω4)
≤ C ∥∂12f∥L2(Ω) .

We now take a cutoff function φ ∈ C∞
c (Ω4, [0, 1]) such that φ = 1 on Ω and pose f̂ := φf4

extended by zero to the whole R2. Thus∥∥∥∂12f̂∥∥∥
L2(R2)

=
∥∥∥∂12f̂∥∥∥

L2(Ω4)

≤ C(∥∂12f4φ∥L2(Ω4)
+ ∥f4∂12φ∥L2(Ω4)

+ ∥∂2f4∂1φ∥L2(Ω4)

+ ∥∂1f4∂2φ∥L2(Ω4)
)

≤ C(∥∂12f4∥L2(Ω4)
+ ∥f4∥L2(Ω4)

+ ∥∂2f4∥L2(Ω4)
+ ∥∂1f4∥L2(Ω4)

)

≤ C(∥∂12f∥L2(Ω) + ∥f∥L2(Ω) + ∥∂2f∥L2(Ω) + ∥∂1f∥L2(Ω)).

Lemma A.5. Let f ∈ H1(I). There exists a sequence (fn) ⊂ C∞(I) such that fn → f in H1(I) as
n ↑ ∞. Moreover, if (εn) ⊂ R is such that εn ↓ 0 as n ↑ ∞, (fn) can be chosen such that εnf

′′
n → 0

in L2(I).

Proof. The proof is a refinement of [31, Lemma 11]. Set Ĩ := (−3
2ℓ,

3
2ℓ) and let f̃ ∈ H1(Ĩ) be an

extension of f . Take φ ∈ C∞
c (Ĩ , [0, 1]), φ = 1 on I, and consider the function (f̃φ)(x), extended

by zero to the whole real line. Let η : R → [0,∞) be a smooth function with compact support in
(−1, 1) such that

∫
R η(t) dt = 1. Let (ρn) ⊂ R a sequence, to be chosen later on, such that ρn ↓ 0

as n ↑ ∞. Let f̃n := ηρn ∗ (f̃φ) where ηρn(x) :=
1
ρn
η( x

ρn
). Let us put also η′ρn(t) :=

1
ρn
η′( t

ρn
), and

notice that it belongs to L1(R): ∫
R
|η′ρn(t)| dt =

∫
R
|η′(t)| dt <∞.
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It is well-known by standard properties of mollification that f̃n → f̃φ in H1(R), which implies that

fn := f̃n|I → f in H1(I). Observe now that

|f̃ ′′n(x)|2 =
1

ρ2n
|
∫
R

1

ρn
η′(
x− z

ρn
)(f̃φ)′(z) dz|2 = 1

ρ2n
|(η′ρn ∗ (f̃φ)′)(x)|2,

from which, by Young’s theorem for convolutions [2, Corollary 2.25], we get

∥f ′′n∥L2(I) ≤ ∥f̃ ′′n∥L2(R)

=
1

ρn

∥∥∥η′ρn ∗ (f̃φ)′
∥∥∥
L2(R)

≤ C

ρn

∥∥η′ρn∥∥L1(R)

∥∥∥(f̃φ)′∥∥∥
L2(R)

≤ C

ρn
.

The proof is concluded by choosing ρn such that εn/ρn → 0 as n ↑ ∞.

Lemma A.6. Let I ⊂ R be an interval and m ∈ L∞(I, [0,∞)) be a function that is constant on
finitely many segments covering I. Let γ be a positive number. There exists a sequence (ζε) ⊂ H2

0 (I)

such that ζε
∗
⇀ 0 in W 1,∞(I), 1

2(ζ
′
ε)

2 → m in L2(I), and εγζ ′′ε → 0 in L2(I).

Proof. We can assume I = (a, b) and m to be a positive constant on I, otherwise we can perform
the construction on each set on which m is constant.
Let g : R → [0, 12 ] be a 1-periodic function defined, on one period, by

g(t) :=

{
t 0 ≤ t < 1

2 ,

1− t 1
2 < t < 1.

For every n ∈ N let δn =
√
2m(b − a) 1n and gn(t) := δng(

√
2m(t−a)

δn
). Note that ∥gn∥L∞(R) = δn/2

and g′n ∈ {−
√
2m,+

√
2m} almost everywhere in R. Let (ρε) be a sequence of positive numbers that

converges to zero as ε goes to zero, and let ηρε be the standard mollifier whose support is contained
in (−ρε, ρε). Define ζρε,n := ηρε ∗ gn. It is clear that ζρε,n ∈ C∞(R), also ∥ζρε,n∥L∞(R) ≤ δn/2 and

∥ζ ′ρε,n∥L∞(R) ≤
√
2m for every ρε and δn. Moreover, by Young’s inequality for convolutions,

∥εγζ ′′ρε,n∥L2(I) = εγ∥η′ρε ∗ g
′
n∥L2(I) ≤ εγ∥η′ρε∥L1(I)∥g′n∥L2(I) ≤

Cεγ

ρε

and ∫
I
|1
2
(ζ ′ρε,n)

2 −m|2 dx =

∫
I
|1
2
(ζ ′ρε,n)

2 − 1

2
(g′n)

2|2 dx

=
1

4

∫
I
|ζ ′ρε,n − g′n|2|ζ ′ρε,n + g′n|2 dx

≤ C

∫
I
|ζ ′ρε,n − g′n|2 dx.

Hence, setting ρε = εγ/2 we deduce that

lim
ε→0

∥εγζ ′′ρε,n∥L2(I) = 0 and lim
ε→0

∥1
2
(ζ ′ρε,n)

2 −m∥L2(I) = 0,

for every n. Given that limn→∞ limε→0 ∥ζρε,n∥L∞(R) = 0, by a standard diagonalization process,
we can find a map ε 7→ n(ε) such that n(ε) ↑ ∞ and ζρε,n(ε) → 0 in L∞(I). The proof is concluded

by posing ζε := ζρε,n(ε) − ζρε,n(ε)(a) and by recalling the bound ∥ζ ′ρε,n∥L∞(R) ≤
√
2m.

Lemma A.7. Let I = (a, b) be a bounded interval. Let γ > 0 and αa, αb ∈ R. Then, there exists a
sequence (gε) ⊂ H2(I) such that

gε(a) = gε(b) = 0, g′ε(a) = αa, g′ε(b) = αb ∀ε > 0 (69)
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and
gε → 0 in W 1,4(I), εγg′′ε → 0 in  L2(I).

Proof. For simplicity, we prove the lemma for the case I = (0, 1) and αb = 0. Let ηε := εγ .
Consider the sequence

gε(x) =

{
x3

η2ε
(αa − 2)− x2

ηε
(2αa − 3) + αax 0 < x ≤ ηε

ηε
(1−ηε)3

(x− 1)2(2x− 3η + 1) ηε < x < 1.

The sequence satisfies (69) and

|g′ε(x)| ≤

{
C1 0 < x ≤ ηε

C2ηε ηε < x < 1
|g′′ε (x)| ≤

{
C3
ηε

0 < x ≤ ηε

C4ηε ηε < x < 1

where C1, C2, C3, C4 are positive constants that may depend on αa. From these two inequalities,
the lemma follows.
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