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Università degli Studi di Parma

Viale G. Usberti 181/A, I43100 Parma, Italy

July 27, 2011

Abstract

A variational model is presented able to interpret the onset of plastic deformations,
here modeled as displacement jumps occurring along slip surfaces at constant yielding
stress. The corresponding strain energy functional, leading to a free-discontinuity prob-
lem set in the space of SBV functions, is then approximated by a sequence of regularized
elliptic functionals following the seminal work in Ambrosio-Tortorelli (1990) within the
framework of Γ−convergence. Comparisons between the results obtainable with the
free-discontinuity model and its regularized approximation, in terms of stability of the
pure elastic phase, irreversibility of plastic slip and response under unloading, are pre-
sented, in general, for the 2-D case of antiplane shear and exemplified, in particular, for
the 1-D case.
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1 Introduction

The term “plasticity” usually refers to the behavior of materials which undergo irreversible
deformations without fracture or damage, and the transition from elastic to plastic behavior
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is usually referred to as yield. There are several mathematical description of plasticity [42]
that are essentially bulk theories, because they assume that the plastic part of the deforma-
tion can be described by sufficiently regular mappings from the reference configuration of
the body. These obey to non-linear, non-integrable equations, to describe the set of changes
on strain and stress with respect to a previous state and a small increase of deformation,
presented in the form of yield criterion, flow rule, hardening law and stress-strain relation.
A case of particular interest because of its simplicity is that of an ideal plastic material, for
which the rate of hardening is assumed to be zero so that the body may undergo unlimited
irreversible deformations at constant yielding stress.

However, experimental observations have provided evidence that when ductile solids
are deformed sufficiently into the plastic range, the surface of a locally yielded zone must
run along a surface of slip, where the deformation highly localizes in the form of coarse
bands, usually following the directions of maximum shear. Such shear bands, once formed,
persist and the subsequent deformation correspondingly presents high gradients similar
to displacement jumps. Localization in the form of shear bands usually represents the
preferential pre-failure deformation mode not only of ductile metals [45], but also of natural
rocks [41], granular materials [53] and other substances [46].

The aim of this paper is to present a model to characterize and interpret the strain
localization in the form of coarse shear bands. The mathematical characterization of this
phenomenon may follow two different rationales. The process may be considered an in-
stability that can be predicted in terms of the pre-localization constitutive relations of the
material [8]: critical conditions are sought at which a bifurcation occurs from homoge-
neous or smoothly varying deformation into a highly concentrated shear band mode. The
alternative hypothesis consists in assuming that, at a certain stage of the load history, an al-
ternative competing physical mechanism of deformation comes into play that rapidly affects
the material strength: in this case, the pre-localization constitutive relationships cannot be
continued analytically at the critical point and they provide no basis for prediction of lo-
calization. This transition is usually triggered by an irreversible event, such as the rupture
of an anchoring ligament.

Here, this second approach is followed. In particular, plastic strain localization is as-
sumed to be consequent to the breaking free of the potential sliding surfaces from a pinning
obstacle, after which sliding at constant yielding stress can occur. The necessity of overcom-
ing an energetic barrier to unpin a slip surface is of basilar importance for the model. From
the point of view of mathematical description, if this barrier goes to zero no pre-localization
(elastic) stage would be possible in the body, which would thus present no resistance against
a structured deformation composed of micro-slips. Moreover, the energetic barrier implies
a strain-softening macroscopic response, associated with the drop of the shear resistance
from the peak to the residual value. The experimental evidence also gives reasons for the
presence of the unpinning energy. In the case of mild steel, its contribution is crucial for the
orderly formation of shear bands and explains the transition from an upper to a lower yield
point [31]; for rocks and geomaterials, one may mention the famous paper by Palmer and
Rice [43] where, in order to model the growth of localized shear bands in the progressive
failure of over-consolidated clay or sand as seen in the experiments, the authors had to as-
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sume an energetic competition analogous to that of fracture mechanics to derive conditions
for the propagation of the tip of a concentrated shear band into the sound material.

If one associates the plastic part of the deformation with the discontinuities in the dis-
placement field due to plastic slips, either at the microscopic or macroscopic level, and
assumes the presence of an unpinning energy, the mathematical description of the phe-
nomenon of plastic yielding presents strict similarities with fracture mechanics. Indeed, the
unpinning energy plays the same role of fracture energy, but there is a substantial differ-
ence. In brittle fracture, once that a certain amount of energy has been paid to create
new fracture surface, the crack lips can depart from one another with no further energy
consumption; on the other hand, the plastic slip occurs at certain non-zero stress level
(defined by the yielding stress), which approximately remains constant during the yielding
phase and, consequently, some work has to expended to increase the amount of slip. A
link between the two theories is provided by the approach by Dugdale [26], that accounts
for plasticity at the crack tips or, more in general, by Barenblatt’s cohesive crack model
[7]. The possibility of embracing the phenomena of fracture and yielding within a unified
approach has also been explored by Del Piero [23], who was able to reproduce the peculiar
features of these apparently different-in-type material responses by simply varying the form
the constitutive law that regulates the intensity of the cohesive surface forces as a function
of the crack opening displacement. However, the difference between cohesive fracture and
plastic gliding is that in the former the cohesive forces bridging the crack lips are usually
decreasing functions of the crack opening displacement tending to the null value, whereas in
the latter the yield stress is assumed to remain practically constant during localized gliding.
Consequently, infinite energy would be necessary to produce a complete separation of the
body, but this is because this interpretation of plasticity fits only to the first pre-failure
stages of plastic flow and neglects the final stage eventually leading to fracture.

The purpose here is to present a variational formulation of the phenomenon of plastic
slip, which extends to the case of plasticity the approach first introduced by Francfort and
Marigo for the case of brittle fracture. In [28], the authors proposed a variational model of
quasistatic crack evolution through the minimization of an energy functional composed of a
bulk term, i.e., the strain of the sound material, and a surface energy term à la Griffith, and
by adding proper irreversibility conditions for crack opening. The model now presented is
similar but substantially different because of the addition of a further surface energy term,
interpreting the work to be consumed to increase plastic gliding at constant yielding stress.
This model is also a particular two-dimensional extension of the general theory proposed
for example in [25] for the one-dimensional case.

From a mathematical point of view, our main result consists in the regularization of the
proposed variational formulation of plastic yielding, leading to a free-discontinuity problem,
with an elliptic two-field functional, where one field is representative of the macroscopic
displacement in the body, while the other one is an order parameter, of the type commonly
employed to describe phenomena of phase transition, which is 0 in the sound state of the
body and 1 in the yielded state. Therefore, this regularized theory lays in the class of phase-
field models, where the regularization is obtained through the introduction of gradient terms,
that induce a smooth transition between the values of the order parameter on both sides of
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the interface [38]. A particularly interesting phase-field model of fracture has been recently
proposed in [34], which also contains laws of crack-tip motion, stability analysis, generalized
Eshelby-Rice integrals and an exhaustive list of relevant references.

When compared with the case of brittle fracture, the proposed regularized functional
represents the natural extension to the case of plasticity of the regularized variational ap-
proximation of brittle fracture proposed in [11] for the functional of [28]. In that case, the
approximation was corroborated by a Γ−convergence result. In fact, in [11] the regular-
ized functional was characterized by a parameter indicated by ε and a direct use of the
Ambrosio-Tortorelli [3] weak formulation of the Mumford-Shah functional in problems of
image-segmentation, allowed to verify for the case of antiplane shear1 that, as ε → 0, the
elliptic functional Γ−converges to the parent Griffith-like functional of [28]. Here, we ex-
tend this result by proving the Γ−convergence of the proposed regularized elliptic two-field
functional towards the free-discontinuity variational problem for plastic yielding. Other ap-
proaches to plasticity loosely related to the one here considered were proposed in [12] for a
model of Hencky’s plasticity and in [1], but for approximating regularized energy-functionals
with linear growth in the displacement gradient, that thus Γ−converge to functionals settled
in the space BV of functions of bounded variation. Here, on the other hand, the leading
term in the energy of the displacement gradient is quadratic and the resulting Γ−limit is
defined in the class SBV of special functions of bounded variation.

This paper can be read at two levels, one more physical, the other one more math-
ematical. Section 2 recalls experimental results that evidence the localization of plastic
flow in coarse bands and the importance of the energetic barrier to unpin glide surfaces.
Section 3 illustrates the model and its variational characterization. The main result of Γ−
convergence is contained in Section 4, which is the most substantial from a mathematical
point of view but self-contained. Comparisons between the results obtainable with the free-
discontinuity model and its regularized approximation are developed for the 1-D case in
Section 5.

2 The localization of plastic flow

The purpose of this Section is twofold: to illustrate the experimental evidence of the forma-
tion of shear bands in ductile solids and to give reasons why the onset of such mechanism
from a preceding state of strain, sufficiently smooth and regular, should arise from the
breaking free of potential glide surfaces from pinning obstacles at the price of energy con-
sumption.

As a matter of fact, any irreversible plastic plastic flow in metals is the consequence of
structured deformations in the form of microslips. To illustrate, fig. 1 shows a uniaxially
stretched copper-aluminum bar, from which it is evident that the plastic part of the elon-
gation is due to slips concentrated in bands, a few microns wide, spaced throughout the

1Later on, the Γ−convergence result was demonstrated also in the vectorial case for the elastic energy by
Chambolle [14] and for a certain class of general integrands by Focardi [27]. An exhaustive list of references
for this kind of problems can be found in [4].
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specimen [39]. Since a representative volume element is likely to contain a great number
of bands, the gross response of the material can be described by regular functions taking
a smeared view of the phenomenon, as in the traditional mathematical theory of plastic-
ity. This method is perfectly adequate to describe the macroscopic consequences of plastic
deformation.

Figure 1: Extended copper-aluminum single crystal (experiment by Elam [39]).

These bands are usually referred to as Lüders’ or flow lines. Lüders’ bands represent
the microscopic mechanism of plasticity that can be explained, at the atomic level, in terms
of the theory of dislocation (see, e.g., [17, Sec. 13]) as realized, roughly simultaneously,
by Orowan, Polanyi and Taylor already in 1934 [39]. Gliding along such bands needs
to be activated by overcoming an energetic barrier and this is why metallic alloys show
a pure elastic phase when the strain is relatively small, while a sharp yield point marks
the onset of the plastic phase. There is a classical explanation for this phenomenon. In
ferrous alloys solute atoms, which are able to migrate through the crystal under the action
of thermal fluctuations, will, in the presence of a inhomogeneous field such as the stress
field of a dislocation, drift towards those places where their energy state is lowest. Thus,
the starting scenario of an unyielded portion of an alloy is the segregation of solute atoms
around stationary dislocations. Since the migration of solute atoms takes much longer than
the movement of a dislocation, in the presence of an external stress field, dislocations will
initially remain anchored (pinned) to the surrounding atmosphere produced by the solute
atoms. If a long enough time is allowed during the tests for the migration of solute atoms to
occur, creep effects may become important. However, if the loading speed is high enough to
allow discounting such an effect, the material could exist in either of two conditions: in the
first, the unyielded or strain-aged condition, the dislocations are anchored and deformation
is purely elastic; in the second, the overstrained condition, dislocations are free to move
under applied stress to produce plastic deformations. In order break the anchoring link of
a dislocation, a certain amount of energy has to be consumed. It is this energetic balance
that is responsible of the transition from an upper to a lower yield point that is evident
in the experiments, interpreted in [31] through a simple but effective mechanical model,
consisting in a particular arrangement of spring-dashpot units [31].

However, when the plastic deformation progresses, ductile metals often present an abrupt
flow, concentrated within certain single layers or surfaces. The appearance of such layers
represents the macroscopic manifestation of strain localization, a phenomenon that needs
ad hoc modeling. Such mechanism is certainly associated with dislocation movements,
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but other phenomena create preferential paths along thin glide layers. For example, the
formation of macro-bands, as showed in many images by Nadai [39], is certainly favored by
initial stress concentrations in the elastic regime, such as those produced by notches and
holes. Such bands, sometimes referred to as coarse bands or superbands, usually progress in
a crack-like propagation, rather than being the consequence of a sudden bifurcation from a
uniform deformation field.

It should be mentioned that coarse bands appear both in metallic single crystal and
polycrystal, but the mechanism of formation is slightly different for the two cases. In
single crystals the macro-glide can be activated by necking [5] or by “cross slip” of Lüders’
bands [44]. Pre-straining the crystal may also produce the formation of coarse bands to
near zero initial rates of hardening [52], and, in general, the slip in the coarse slip zone
is constant and without apparent weakening. On the other hand, the coarse localization
occurring in ductile polycrystals and structural alloys is usually triggered by nucleation of
micro-holes from brittle microcracking or decohesion of inclusions. In early experiments on
AISI 4340 alloy recorded in [18], large inclusions nucleated voids that initially appeared as
a collection of small voids (fig. 2a), similar to a ”void sheet”. As the strain is increased,
the small void coalescence through a band of localized shearing (fig. 2b), whose progression
presents strict similarities with a crack opening because it is associated with an energy
consumption. Indeed, the localization mechanism also influences the response of sharply
pre-cracked metals [33], because the advancement of the crack tip is due to its coalescence
with a neighboring voids, when the stress concentration reaches a critical threshold.

a) b)

Figure 2: a) Void sheet nucleated from inclusion decohesion in an AISI 4340 steeel strained
plastically; b) coalescence of voids by a band of localized shearing.

The phenomenon of plastic localization in pure shear has also been evidenced in cylin-
drical bars of high-strength AISI 4340 steel under large torsional strains [49]. More recent
experiments on mild steel bars [9] have given similar results. The onset of plastic deforma-
tion in the twisted bar is associated with the formation of thin Lüders-like bands following
the transversal direction of the highest shearing stress but, as the twist angle is augmented,
single coarse slip bands form in longitudinal direction where shear deformation is concen-
trated. Figs. 3a and 3b represent, at two different scale of magnification, a surface portion
of the bar, where the Lüders-like bands are slightly inclined on the horizontal and the coarse
slip bands follow a helix wrapping around the cylindrical bar because of the permanent plas-
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tic twist. The mismatch of the transversal bands, evident in fig. 3b, indicates that once
the longitudinal coarse slip has been nucleated, plastic deformation continues to concentrate
there as the twisting angle is augmented. The eventual stage is the progressive failure of the
bar along the coarse plastic band (ductile fracture). This is evidenced in fig. 3c that shows
a SEM photograph of the transversally cut bar, where the incipient fracture appears like
a groove that certainly induces a stress concentration. Also for this case the formation of
coarse bands can be explained if one assumes that an unpinning energy has to be overcome
to allow the transition from the transversal to the longitudinal shear deformation [9].

a) b) c)

Figure 3: a) Lüders-like bands (pesudo-horizontal) and coarse slip bands (inclined) on the
lateral surface of a highly rotated bar of mild steel. b) Magnification of the coarse slip band,
with evidence of longitudinal slip mode. c) Scanning Electron Microscope photograph of
a cross section of the bar with evidence of the longitudinal coarse slip band and incipient
ductile fracture [9].

It should also be mentioned that localization instabilities may also be facilitated by
geometric effects. For example, wide flat bars obtained from thin metal sheets when tested
in tension do not break in a surface which is perpendicular to the direction of tension, but
along an oblique plane where shear deformations localize. Fig. 4a shows an image from
a classical experiments by Körber and Siebel [36]. This mechanism of plastic deformation
is essentially due to the width of the specimens, that facilitates the mechanics evidenced
in fig. 4b. Judged as three-dimensional problems, these are distinctly different from the
aforementioned cases because they involve “geometric” as opposed to ”material” instability,
but when modeled as two-dimensional continua, the problem of localization may be treated
by considering that the 3-D instability is associated with the surmounting of an energetic
barrier that in the 2-D case is equivalent to the assumption of an unpinning energy barrier
to nucleate and propagate the coarse band [45].

Another important class of materials whose stability response is characterized by marked
strain localization is represented by geomaterials. It is common evidence that sliding of great
mass of overconsolidated clay occurs along very narrow slip surfaces [32] and, indeed, an
engineering way of assessing the stability of slopes consists in assuming a constitute equa-
tion for sliding along the slip surface, and in verifying that the internal work for downslope
mass movement is greater than the work of the applied loads. Localization occurs as well
in sand specimens [47]. Also natural rock especially when under compressive stresses shows
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a) b)

Figure 4: a) Necking and plastic strain localization along transversal coarse band in a flat
bar [36]. b) Geometric effect in the mechanism of plastic deformation.

examples of strain localization, usually referred to as faulting. Here the inelastic deforma-
tion is due to frictional sliding on closed microcracks and progressive enlargement of the
microcrack network through local fissuring; the final macroscopic fault links a large number
of such microcracks, although their individual directions of growth do not coincide with that
of the final fault. This mechanism is always associated with energy consumption of the same
form of classical fracture mechanics. At the much larger length-scale of geological masses,
sharp faults with associated slip of a few millimeters or centimeters width are abundant in
sandstones, preceding the development of large faults with displacements of several meters
or tens of meters. The small faults usually contain no-surfaces of discontinuity, rather they
occur as deformation bands about one millimeter thick and tens or hundreds of meters long,
across which the slip is distributed [6].

The examples just illustrated show that plastic gliding along coarse bands is an abrupt
phenomenon characterized by the breaking free of the potential sliding surfaces from a
pinning obstacle. One of the first models where a mechanism of this type has been taken into
account is that by Palmer and Rice [43], who considered stress intensity factors, J -integral
and energy balance to follow the propagation of the tip of a concentrated shear band. Their
approach assumed a gradual decay of shear resistance within the end zone of the shear band,
from peak to residual values, with increasing relative sliding displacement. This implies that
the progression of a shear bands eventually leads to the neat separation (fracture) of the
material. Further applications of the linear elastic fracture mechanics concepts of energy
balance and process zone approaches have been considered in [48] for more general types of
soil than that considered in [43], by assuming that once local deformations reach conditions
for localization, the constitutive relations for continuum-like deformation are suspended in
favor of a relation between tractions and relative displacements of the surfaces of the zone
of localization (presumed thin).

More recently, Bigoni and Dal Corso [8] have addressed new questions for the mecha-
nisms of coarse slip-band propagation, here considered as an instability phenomenon, that
can be summarized as follows. A shear band tip involves a strong stress concentration
that drives its growth, but this occurs quasi-statically in mode II along a straight line,
whereas this is not observed in the akin problem of crack growth. The authors were able
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to demonstrate that shear bands are the preferential failure mode for quasi-statically de-
formed ductile materials by proposing analytical solutions to investigate the state of stress
and growth conditions for a shear band of finite-length in a prestressed ductile material.
The corresponding deformation becomes aligned coaxial with the shear band, thus con-
firming the strong tendency towards rectilinear propagation. However, the energy release
rate blows up to infinity when reaching the elliptic boundary concluding that the propa-
gation becomes “unrestrainable”, a result confirming that shear bands are the preferential
near-failure deformation modes.

In the model that will be considered here, plasticity is represented by inelastic gliding
along slip shear bands. The shear stress bridging the two contact surfaces is supposed, in
the simplest case, to remain constant and equal to the yielding limit. A key point is that, in
order to break free any potential glide surface, an “unpinning” energy per unit area has to
be consumed, so that an elastic release from the other parts of the body remaining elastic
is associated to the onset of plasticity. This unpinning energy has to be paid only once, so
that relative movements of the gliding surfaces after unpinning can occur, either forward or
backward (unloading), with no other energy consumption than that corresponding to the
work to overcome the yielding stress.

Equilibrium configurations are sought as minimizers of an energy functional, establishing
an energetic competition among three terms: the elastic bulk energy, stored in the sound
material portions; the surface unpinning energy, interpreting the work to be paid to break
free the slip surface; the surface plastic energy, corresponding to the shear resistance of
contiguous sliding lips. Proper conditions are added to account for the irreversibility of
unpinning energy release and plastic work.

3 The variational formulation of plasticity

The elastic-plastic body that will be considered here is amenable of undergoing extremely
high strains concentrated on layers of infinitesimal thickness that can be modeled as dis-
continuities in the component of displacement tangential to the surfaces of slip. Since the
variational problem requires that the space of functions for the deformation field allows
for this kind of discontinuities, the most appropriate choice for this task is the space of
functions of Special Bounded Variation, briefly referred to as SBV. For the sake of com-
pleteness, before presenting the energy functional, we recall first some classical definitions
and properties of the space SBV as introduced in [21] (see also [2] for a survey on the
theory).

3.1 Short review on SBV functions

In the sequel N will denote the dimension of the ambient space. For any open set Ω ⊂ RN ,
the space BV (Ω) is the class of all functions u ∈ L1

loc(Ω,R) such that Du (the derivative of
u in the distributional sense) is a finite measure. A real z ∈ R is an approximate limit for
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u at point x if

lim
ρ→0

1

|B(x, ρ)|

∫
B(x,ρ)

|u(y)− z|dy = 0.

The set Su of points where this property does not hold is called the approximate discontinuity
set of u. For any x ∈ Ω\Su the approximate limit of u at x will be denoted ũ(x).

A remarkable result of Federer and Vol’pert (see [2, Th. 3.78.]) says that when u ∈
BV (Ω), then Su is countably HN−1-rectifiable and Dsu (the singular part of Du with
respect to L N in the Radon-Nikodym decomposition Du = Dau+Dsu) restricted to Su is
absolutely continuous with respect to HN−1. We will say that u ∈ SBV (Ω) when Dsu is
actually concentrated on Su.

The density of regular part Dau of Du with respect to L N , denoted by ∇u, coincides
L N -a.e. with the approximate differential of u (see [2, Th. 3.83.]). Recall that u is
approximately differentiable at x if there exists a vector ∇u(x) such that

lim
ρ→0

1

|B(x, ρ)|

∫
B(x,ρ)

|u(y)− ũ(x)−∇u(x).(y − x)|
ρ

dy = 0.

In the sequel we will also use the notion of trace of u on the singular set Su. Since
Su is rectifiable, one can fix an orientation νu : Su → SN−1 in such a way that for HN−1-
a.e. x ∈ Su the approximate tangent space to Su at x is orthogonal to the vector νu(x).
Then for any x ∈ Su and ρ > 0 we define B(x, ρ)+ := B(x, ρ) ∩ {y; 〈y, νu(x)〉 ≥ 0} and
B(x, ρ)− := B(x, ρ) ∩ {y; 〈y, νu(x)〉 ≤ 0}. For HN−1-a.e. x ∈ Su, Theorem 3.77. of [2]
provides the existence of traces u+(x) and u−(x) satisfying

lim
ρ→0

1

|B(x, ρ)±|

∫
B(x,ρ)±

|u(y)− u±(x)|dy = 0.

The set of points x ∈ Su where u±(x) exist is called the jump set and is denoted by Ju. It
can be shown that HN−1(Su \Ju) = 0 and for x ∈ Ju the quantity (u+(x)−u−(x)) is called
the jump of u at point x, which sign depends on the orientation of Su. Moreover for any
u ∈ SBV (Ω) the representation

Dsu = (u+ − u−)νuHN−1|Su,

holds.

3.2 The variational model in antiplane shear

Let now Ω denote a bounded connected open set of RN . Although the mathematical
formulation fits any finite value of N , the main situation that will be considered here is that
of an elastic body under antiplane shear for which we set N = 2. Given an orthonormal
Cartesian frame (O; e1, e2, e3), the body is a right cylinder with generator parallel to e3,
cross section Ω and bases at x3 = ±h/2, so that it identifies with the Cartesian product
B = Ω × (−h/2, h/2) and a typical point is z = x + x3e3, with (x, x3) ∈ Ω × (−h/2, h/2).
In antiplane shear, the displacement field is assumed to be of the form u(z) = u(x)e3, so
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that u : Ω→ R is the displacement component in the direction perpendicular to the plane
of interest, while the in-plane components equal to zero. Let ∇u = ∂1u e1 + ∂2u e2 and, for
any A ∈ R3×R3, let (A)s = (A+AT )/2. In homogeneous isotropic linear elasticity theory,
the infinitesimal strain is E = (e3 ⊗ ∇u)s and the stress reads T = 2µ(e3 ⊗ ∇u)s, having
denoted by µ the shear elastic modulus. For this case, the elastic strain energy density
takes the form w = 1

2µ|∇u|
2.

For what the boundary conditions is concerned, we assume the partition ∂Ω = ∂ΩN ∪
∂ΩD, ∂ΩN∩∂ΩD = ∅. Then, we assume that ∂ΩN×(−h/2, h/2) is traction free, whereas on
the remaining part of the lateral surface ∂ΩD × (−h/2, h/2) the displacement u = ū ≡ ūe3

is prescribed, with ū : ∂ΩD → R. On the bases x3 = ±h/2, in the most general case we
imagine a constraint similar to an elastic foundation à la Winkler, i.e., the body is connected
by a layer of springs to a support that can rigidly deform. In particular, we assume that
the displacement of the support is u(x,±h/2) = û ≡ g(x)e3, with g ∈ L∞(Ω,R), so that
κ[g(x) − u(x)]e3 represents the resultant of the force per unit area acting at (x, h/2) and
(x,−h/2), being κ associated with the corresponding Winkler’s constants. Of course, the
case κ = 0 coincides with that of traction-free bases.

Assume that u ∈ SBV (Ω) and let Su ⊂ Ω denote the singular set of u. Then Ku :=
Su× (−h/2, h/2) is the surface of possible location of plastic slips. Because of the assumed
independence of the displacement field and boundary conditions upon the coordinate x3

integration on B can be reduced to an integration on Ω and the total energy of the body is
Π(u)h, where

Π(u) := 1
2µ

∫
Ω\Su

|∇u|2dx + 1
2 κ̄

∫
Ω\Su

(g − u)2dx + γH1(Su) + σ0

∫
Su

|u+ − u−|dH1, (3.1)

where κ̄ = κ/h while γ and σ0 are material constants whose significance will be explained
soon.

Then we would like to consider the variational problem minu∈AΠ(u) where the class A
of admissible functions is defined as

A =
{
u ∈ SBV (Ω,R);u = ū on ∂ΩD

}
, (3.2)

where with u = ū on ∂ΩD we intend that the trace of u on ∂ΩD is equal to ū. Unfortunately
this problem is not well posed since it may happen for a minimizing sequence that the
limit does not belong to the class A, in the sense that the Dirichlet boundary datum may
possibly not be preserved at the limit because of the properties of SBV functions. In other
words, no energy would be paid for a displacement-discontinuity occurring right at the
Dirichlet boundary. In order to by-pass this difficulty there can be two strategies. One
of these, pursued e.g. in [28], is to artificially enlarge the domain Ω to, say, ΩD, with
ΩD ∩ ∂Ω = ∂ΩD and impose, as a boundary datum, that u = ū on ΩD \ Ω̄. The second
possibility, here preferred, is to relax the problem into the following weaker formulation

min
u∈SBV (Ω,R)

(
Π(u) + γH1

(
{x ∈ ∂ΩD : u(x) 6= ū}

)
+ σ0

∫
∂ΩD
|u− ū|dH1

)
, (3.3)
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which, in physical terms, corresponds to explicitly consider the energy consumption nec-
essary to have a displacement discontinuity at the Dirichlet boundary. The corresponding
problem is now well-posed and, by standard semi-continuity and compactness results, it
admits a minimizer u ∈ SBV (Ω,R) which fulfills the requirements of the model. However,
for the sake of simplicity, here we will not make this distinction explicit but we will declare,
unless the distinction is specifically needed, that minimizers are to be sought in the class A
of (3.2), assuming that such a notation implies the introduction of the relaxed minimization
problem (3.3).

As anticipated in Sec. 2, each term of the functional (3.1) has a precise physical mean-
ing. The first integral represents the elastic strain energy stored in the sound, elastically
bent, material portions. The second integral is not essential, but has been introduced
to accentuate the analogies with the the Mumford-Shah functional in problems of image-
segmentation, considered in [3]; here, such term denotes the energy of the elastic spring
layers à la Winkler, connecting the bases of the body to the rigidly-deformed support.

The third and fourth integrals are associated, respectively, with the surface unpinning
energy to break free the glide surfaces and with the surface plastic energy, i.e. the work
per unit area that must be expended in order to produce plastic slip, supposed to occur
at constant yielding shear stress σ0 (perfect plasticity). In other words, in order break the
anchoring link of a potential slip surface, a certain amount of energy has to be consumed:
this effect is interpreted by the parameter γ of (3.1), having the dimensions of an energy
per unit area. On the other hand, the quantity σ0 of (3.1) is the force per unit area that is
necessary to produce gliding of the contact surfaces in the overstrained condition.

Of course, the functional of (3.1) differs from that proposed in [28] essentially because
of the presence of the last integral term. These analogies confirm the strict correlation
between the models of fracture and yielding [23]. Finally, it should be mentioned that the
model here proposed neglects the important phenomenon of strain-hardening.

3.3 The regularized approximating functional

The solution of the problem (3.3) is difficult because, in general, the location of the set Su
is unknown, hence the term “free-discontinuity problems” with which problems of this kind
are usually referred to. Following the same strategy pursued for the weak formulation of the
Mumford-Shah functional in problems of image-segmentation [3], we propose to approximate
the functional Π(u) of (3.1) with the elliptic two-field functional Πε(u, s) defined as

Πε(u, s) := 1
2µ

∫
Ω

(s2 + oε)|∇u|2dx + 1
2 κ̄

∫
Ω

(g − u)2dx

+ γ

∫
Ω

(
ε|∇s|2 +

(1− s)2

4ε

)
dx + σ0

∫
Ω

(1− s)2|∇u|dx , (3.4)

where here oε is an infinitesimal faster than ε. The approximating variational problem then
becomes

min
(u,s)∈Â

Πε(u, s) , (3.5)
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where the class Â of admissible functions now becomes

Â =
{

(u, s) ∈W 1,2(Ω,R)×W 1,2(Ω,R);u = ū on ∂ΩD and s = 1 on ∂ΩD
}
. (3.6)

The compactness result in [3] guarantees the existence of a minimizing pair inW 1,2(Ω,R)×
W 1,2(Ω,R). In particular, by the Sobolev imbedding, those solutions are automatically
C0,1/2 in dimension 1, but the discussion of the regularity in higher dimension is more
complicated and goes beyond the scope of this paper.

The aforementioned approximation is in the sense of a type of variational convergence
referred to as Γ− convergence which, roughly speaking, describes in mathematical terms
how a sequence of functionals depending upon a parameter converges to a desired functional
as that parameter tends to zero. Remarkably, Γ−convergence implies convergence of both
minima and minimizers. Here the aforementioned parameter is ε and we will prove in the
next Section that as ε→ 0 the functional of (3.4) Γ−converges to the functional of (3.1).

The proposed approximation is almost identical to that of [11]. The main difference
consists in the last integral on the r.h.s. of (3.1), whose counterpart is the last integral in
(3.4) and, indeed, our main result here consists in proving the convergence of the latter
to the former one. Another difference with the treatment presented in [11] consists in the
boundary conditions for s in (3.6). Instead of introducing, as in [11], an enlarged logical
domain to recover a correct value for the surface energy of fractures developing at the
boundary, for the reasons already discussed at length in [37] and confirmed in [4], here we
assume the condition s = 1 at the constrained borders that bypasses this problem because
it forbids the development of fractures exactly at the boundary, although they are free to
appear at a small distance (of the order of ε). This effect may well interpret the confining
effects offered in a real experimental set-up by fractional contact or gluing of the supports,
and indeed is in agreement with the formulation of (3.3).

Last but not least, it should be mentioned that although the regularized reformulation
is viewed by many as a numerical method only akin to bypass a difficult free-discontinuity
problem2, others insist that the formulation carries additional physical information. This
means that the regularized problem (3.5) is not just a useful approximation of (3.3), but an
independent model per se. As discussed in very keen but perhaps forgotten contributions3,
the phenomenon of plastic slip is not atomically sharp but distributed on layers of small but
not negligible thickness [39]. This is due to the fact that yielding is not a local phenomenon
but instead it is influenced by the stress distribution in the neighboring parts. We will show
later on that regularized functional (3.4) views this kinematics as a physical representation
of a smeared slip surface, occurring in a band whose thickness is of the same order of
the parameter ε. In more precise terms, the functional (3.1) considers a surface source of
dissipation, whereas the formulation (3.4) prescribes a bulk source of dissipation in layers
approximately ε-thick.

2The interest is not limited to fracture mechanics, but similar regularizations can be found in front
capturing methods in gas dynamics (level set method) or phase field methods in the theory of defects.

3To this respect, we should mention the almost unknown work by Nakanishi and [40] in particular.
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Indeed, the regularized functional embraces the material parameter ε that is lost in the
limit free-discontinuity functional corresponding to ε→ 0. Thus, ε disappears in the func-
tional (3.1) but this represents an information about the material microstructure because
it plays the physical role of the material intrinsic length-scale, that characterizes the width
of the slip bands. In conclusion, according to this interpretation, the regularized functional
is the model, while its parent Γ−limit (the free-discontinuity problem) is the approxima-
tion. However, in this paper we do not pursue this quite subtle distinction and we limit
ourselves to discuss the main characteristics of the two models and their relationship via
Γ−convergence.

3.4 Irreversibility of plastic slip

As stated, the variational problems presented in the previous sections would presuppose
that all deformations are perfectly reversible. On the other hand it is well-known that this
is not the case in plasticity, where the issue of unloading, in particular, represents one of the
major difficulties. At the moment, it is not so clear how to represent all loading scenarios,
but the formulations of Section 3.2 and 3.3 are certainly able to represent a loading history
where the plastic slip is a monotone increasing function.

More precisely, following [10], we assume a loading history where, in the classes of admis-
sible functions A of4 (3.2) and Â of (3.6), ū is a function of the parameter t, representative
of the time, i.e., ū = ū(t). We will emphasize this dependence indicating with A(t) and Â(t)
the classes A and Â where such substitution has been made. In general, in the evolution
problem we assume that the time interval [0, T ] of the loading history is discretized into
steps 0 ≤ ti ≤ tp ≡ T , 1 ≤ i ≤ p, with p� 1 so that each time-step is sufficiently small.

Referring first to problem (3.1), (3.3) and (3.2), let ūi = ū(ti), Ai = A(ti) and let
ui represent the displacement field solution of the evolution problem at the time t = ti.
Denoting with Sui the set of jump points of ui, we define

Υi =
⋃

0≤j≤i
Suj . (3.7)

Then, the displacement field ui+1 at time t = ti+1 is the solution of the variational problem

min
u∈Ki+1

Πi(u) , (3.8)

where

Ki+1 = {u ∈ Ai+1 : Ju ⊇ Υi} , (3.9)

and

4Here, to be rigorous, we should refer to the relaxed minimization problem (3.3), but for the sake of
simplicity we will drop this distinction that does not produce substantial differences.
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Πi(u) := 1
2µ

∫
Ω\Su

|∇u|2dx + γH1(Su) + 1
2 κ̄

∫
Ω\Ju

(g − u)2dx

+ σ0

∫
Su

{|(u+ − u−)− (ui
+ − ui−)|+ |(ui+ − ui−)|}dH1 . (3.10)

In this expression, the significance of the last integral is to represent that any variation of
the plastic slip during the loading history must be associated with energy consumption,
even when the slip goes backwards. This is because, whatever the direction of the slip,
the shear stress always opposes to the motion, thus representing some sort of frictional-like
constraint for the slip movement. It is worth mentioning that the last term |(ui+ − ui−)|
in (3.10) is constant for each step i, thus does not affect the minimization problem, but we
keep it in the expression of Πi(u) in order to preserve the physical value of the energy.

Of course, if during the loading history the plastic slip is a monotone function, i.e., if
|u+
i+1−u

−
i+1| ≥ |ui+−ui−| for any 1 ≤ i ≤ p, then the functional Πi(u) of (3.10) is identical

to Π(u) of (3.1), the set Υi+1 ⊇ Υi, and the evolution problem reduces to the minimization
problem of Section 3.2.

Passing now to the regularized problem (3.4), (3.5) and (3.6) let, as before, ūi = ū(ti),
Âi = Â(ti) and assume that (ui, si) is the field corresponding to the evolution problem at
t = ti. Then the field (ui+1, si+1) at t = ti+1 corresponds to the solution of the minimization
problem

min
(u,s)∈K̂i+1

Πi
ε(u, s) , (3.11)

with

K̂i+1 =
{

(u, s) ∈W 1,2(Ω)2 ; s ≤ si
}
, (3.12)

and

Πi
ε(u, s) := 1

2µ

∫
Ω

(s2 + oε)|∇u|2dx + 1
2 κ̄

∫
Ω

(g − u)2dx

+ γ

∫
Ω

[
ε|∇s|2 +

(1− s)2

4ε

]
dx (3.13)

+ σy

∫
Ω

(1− s)2 (|∇u−∇ui|+ |∇ui|) dx .

The last integral in this expression represents the counterpart of the last integral in
(3.10), and again represents, in a smeared view, that a certain amount of work must always
be spent to produce plastic deformation.

Of course, as the reference time step tends to zero, the solution of the series of mini-
mization problems define a more and more accurate description of the evolution process.
However, a precise mathematical characterization of such a limit is not available at the
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moment and we refer to the pioneering works [10, 11, 20, 13, 28] for a similar evolution
problem for the case of brittle fracture.

4 Regularized formulation and the approximation result

4.1 Review on Gamma-convergence

Gamma-convergence of energy functionals is commonly understood as the natural notion of
convergence, in a variational context, ensuring that limit points of minimizers are minimiz-
ers. For an introductive (but complete) survey on Gamma-convergence theory one could
see the book by Dal Maso [19]. The definition that will be used here is the following.

Definition 1 (Γ-convergence). Given a Hilbert space H and a sequence of functionals
Fn : H → R∪{+∞}, we say that Fn Γ-converges to F if for every u ∈ H the two following
properties hold :
i) for every sequence un → u one has F (u) ≤ lim inf

n→+∞
Fn(un);

ii) there exists un → u such that F (u) ≥ lim sup
n→+∞

Fn(un).

Remark 1. The convergence un → u means for the topology of H.

The interesting fact about Gamma-convergence is that if Fn Gamma-converge to F and
if un are asymptotically minimizing, i.e.,

lim
n→+∞

(
Fn(un)− inf

H
Fn

)
= 0,

then any limit point u of un is a minimizer of F .

4.2 The approximation result

For simplicity we will assume in this paragraph that all the physical constants are equal to
1 which, certainly, is not a loss of generality for what the Γ-convergence result is concerned.
As a consequence for Ω ⊂ RN , g ∈ L∞(Ω), u, s ∈ H1(Ω) and ε > 0 the functional Πε(u, s)
introduced in (3.4) becomes

Πε(u, s) :=

∫
Ω

(u−g)2+

∫
Ω

(s2+oε)|∇u|2dt+
(∫

Ω
ε|∇s|2 +

(1− s)2

4ε
dt

)
+

(∫
Ω

(1− s)2|∇u|
)
,

where oε is still an infinitesimal faster than ε. Next, for u ∈ SBV (Ω) we also consider, as
before,

Π(u) :=

∫
Ω

(u− g)2 +

∫
Ω
|∇u|2 +

∫
Su

(1 + |u+ − u−|)dHN−1.

Now we define a family of functionals on H := [L2(Ω)]2.
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Fε(u, s) :=

{
Πε(u, s) if u, s ∈ H1(Ω) and 0 ≤ s ≤ 1

+∞ otherwise

and also the limiting functional

F(u, s) :=

{
Π(u) if u ∈ SBV (Ω) and s = 1
+∞ otherwise.

As in [3] we will assume Ω to be a domain satisfying the following reflection property
called (R) : there exist a neighborhood U of ∂Ω and a bi-Lipschitz mapping $ : U ∩ Ω →
U \ Ω such that

lim
y→x

$(y) = x ∀x ∈ ∂Ω.

Any sufficiently smooth domain (e.g. Lipschitz) has the property (R). Our main result
is the following.

Theorem 4.1. Under the above notations and assumptions, Fε Γ-converge to F for the L2

topology.

As usual in Gamma-convergence results, we will separate the proof in two parts.

4.3 Proof of the lower inequality

Proposition 1. For every pair of functions (u, s) ∈ SBV (Ω)2 and for every (uε, sε) ∈
H1(Ω)×H1(Ω) converging to (u, s) in L2(Ω) we have that

F(u, s) ≤ lim inf
ε→0

Fε(uε, sε). (4.1)

Proof. Just for notational simplicity we will keep the continuous parameter ε also when,
during the proof, some subsequences from (uε, sε) have to be extracted. It is enough to
prove (4.1) for a sequence (uε, sε) that achieves the Γ-liminf, i.e.

lim
ε→0
Fε(uε, sε) = inf

{
lim inf
ε→0

Fε(vε, sε); (vε, sε)→ (u, s) in L2
}
.

In particular for this sequence (uε, sε), since Fε(uε, sε) is uniformly bounded, we deduce
that sε converges to 1 in L2 which implies s = 1 a.e. and F(u, s) = Π(u). Let us split in
two parts the functional and write Πε = ATε +G where, for U ⊂ Ω,

ATε(u, s, U) :=

∫
U

(u− g)2 +

∫
U

(s2 + oε)|∇u|2dx+

∫
U
ε|∇s|2 +

(1− s)2

4ε
dx,

and

G(u, s, U) :=

∫
U

(1− s)2|∇u|dx.



18 L. Ambrosio, A. Lemenant & G. Royer-Carfagni

Without loss of generality we may assume that |sε∇uε| weakly converge in L2(Ω) to some
function f and that the sequence of measures

σε :=

(
(uε − g)2 + (s2

ε + oε)|∇uε|2 + ε|∇sε|2 +
(1− sε)2

4ε
+ (1− sε)2|∇uε|

)
L N

weakly converges to a measure σ, whose total mass in Ω is less than limε→0 Πε(uε, sε).
Therefore, to prove the Proposition it is enough to show that

σ(Ω) ≥ Π(u).

By the Γ-convergence result of [3], and more precisely by the lower inequality in [3], we
infer that for any open set U ⊂ Ω,

lim inf
ε→0

Πε(uε, sε, U) ≥MS(u, U),

where MS is the classical Mumford-Shah functional

MS(u, U) :=

∫
U

(u− g)2 +

∫
Ω\Su

|∇u|2dx+HN−1(Su ∩ U).

In particular this yields

σ(U) ≥MS(u, U)

and, by inner approximation of A open with U b A, we then get σ(A) ≥ MS(u,A) for all
A open. Eventually, by outer approximation with open sets, we get

σ(B) ≥MS(u,B) for all Borel sets B. (4.2)

On the other hand, if we add and subtract |∇uε|, for any open set U ⊂ Ω we get

Πε(uε, sε, U) = ATε(uε, sε, U) +

∫
U
|∇uε|dx+

∫
U

(s2
ε − 2sε)|∇uε|dx

≥ ATε(uε, sε, U) +

∫
U
|∇uε|dx− 2

∫
U
|sε∇uε|dx (4.3)

thus passing to the lim inf, since
∫
U |sε∇uε|dx converges to

∫
U fdx and by the lower semi-

continuity property of the total variation with respect to the L2 topology it comes

σ(U) ≥MS(u, U) + |Du|(U)− 2

∫
U
fdx.

Again, by the same approximations leading to (4.2), we get

σ(B) ≥MS(u,B) + |Du|(B)− 2

∫
B
fdx. (4.4)
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for all Borel sets B. Gathering together (4.2) with B = Ω \ Su and (4.4) with B = Su we
obtain that

σ(Ω) = σ(Ω \ Su) + σ(Su)

≥
∫

Ω
(u− g)2 +

∫
Ω\Su

|∇u|2 +

∫
Su

1 + |u+ − u−|dHN−1

= Π(u)

which ends the proof.

4.4 Proof of the upper inequality

To prove the upper inequality we will need some standard convolution techniques. Let
ϕ be a smooth function taking values in [0, 1] satisfying supp(ϕ) ⊂ B(0, 1) and

∫
ϕ = 1.

Then for any t > 0 we define the family of mollifiers ϕt(x) := t−Nϕ(x/t). If µ is any
probability measure on RN with compact support we define the convolution with ϕt by
µ ∗ϕt(x) :=

∫
RN ϕt(x− y)dµ(y). The following Lemma is very classical and a proof can be

found for instance in [2, Th. 2.2.].

Lemma 1. Let µ be a probability measure on RN with compact support. Then µ ∗ ϕt ∈
L1(RN ) and the measures (µ ∗ ϕt)L N locally weakly-? converge in RN to µ as t → 0.
Moreover the estimate ∫

RN
|µ ∗ ϕt|(x)dx ≤ |µ|(RN )

holds.

Remark 2. It follows from an easy computation (see [2, 3.2.(c)]) that when u ∈ BV (RN )
then ∇(u ∗ ϕε) = (Du) ∗ ϕε, where Du is the distributional derivative of u.

We are now ready to prove the second half of our Γ-convergence result.

Proposition 2. For every (u, s) ∈ SBV (Ω)× L∞(Ω) there exist (uε, sε) ∈ C1(Ω)×C1(Ω)
converging to (u, s) in L2(Ω) such that

lim sup
ε→0

Fε(uε, sε) ≤ F(u, s). (4.5)

Proof. We may assume without loss of generality that s = 1 (otherwise the right-hand
side of (4.5) is +∞ and there is nothing to prove). Since the functionals Πε are strongly
continuous in the H1(Ω) space and since C1(Ω) is dense, it will be enough to find uε and
sε in H1(Ω). We may also assume that Su is closed and u is bounded. The reduction to
this case will be explained at the end of the proof.

The beginning of the proof has no difference with the argument of [3]. Let Su be the
singular set of u and for any t we will denote

(Su)t := {x ∈ RN ; dist(x, Su) ≤ t} ⊂ RN .



20 L. Ambrosio, A. Lemenant & G. Royer-Carfagni

As in [3] we first assume that

lim
ρ→0

L N (Ω ∩ (Su)ρ)

2ρ
= HN−1(Su). (4.6)

Then, for some suitable infinitesimals aε, bε and ηε we take the same function sε as in the
proof of Theorem 3.1. in [3], namely

sε =


0 on (Su)bε

1− ηε on Ω \ (Su)aε+bε

1− exp
(
bε−dist(x,Su)

2ε

)
on (Su)aε+bε \ (Su)bε

From [3] page 116-117, we know that (and the proof is omitted here) by choosing bε between
oε and ε (for instance bε =

√
oεε), taking ηε = ε, aε = −2ε ln(ηε), that we know to be

infinitesimal, and under the assumption (4.6), then

lim sup
ε→0

(∫
Ω
ε|∇sε|2 +

(1− sε)2

4ε

)
≤ HN−1(Su).

Now comes the differences with [3]. In order to construct uε we first need to define a
SBV extension for u outside Ω in the neighborhood U , i.e. the one given by the regularity
assumption (R). We denote ũ this extension that we define by

ũ(x) =

{
u($−1(x)) for x ∈ U \ Ω

u(x) for x ∈ Ω

By this way ũ ∈ SBV (Ω ∪ U) (see for instance [3, 51, 50]) and

HN−1(Sũ ∩ ∂Ω) = 0.

In the sequel the distinction between Su, that we always consider as a subset of Ω, and
Sũ ⊂ Ω ∪ U will be important. Next we take a smooth cutoff function ψε equal to 1 on
(Su)bε/2, equal to 0 on RN \ (Su) 3

4
bε

, and such that

|∇ψε| ≤
C

bε
and |∇2ψε| ≤

C

b2ε
. (4.7)

Such a function ψε can be constructed for instance by convolution of the characteristic func-
tion 1(Su)3bε/8

with the standard mollifier obtained by a suitable rescaling of 1|x|<1 exp(− 1
1−|x|2 ).

Then we define
uε = (1− ψε)ũ+ (ψεũ) ∗ ϕtε

where ϕtε is a mollifier and where we choose tε = b4ε. In particular we assume bε and tε to
be small enough with respect to the size of U so that uε is well defined. Notice that uε ∈
SBV (Ω∪U)∩H1(Ω). Notice also that from Lemma 1 we have that (ψεDũ)∗ϕtε ∈ L1(RN )
and since supp((ψεDũ) ∗ ϕtε) ⊂ (Su)bε+tε , we also get from Lemma 1 that∫

RN
|(ψεDũ) ∗ ϕtε |dx ≤ |Dũ|((Su)bε+tε). (4.8)
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We may also assume tε small enough in such a way that supp((ψεDũ) ∗ ϕtε) ⊂ (Su)bε thus
uε = u in Ω \ (Su)bε because by definition, ψε is compactly supported in (Su)bε .

By our choice of sε and uε we easily get

lim
ε→0

∫
Ω
|uε − g|2 =

∫
Ω
|u− g|2.

Therefore, it remains to prove the following two assertions:

i) lim sup
ε→0

∫
Ω

(s2
ε + oε)|∇uε|2 ≤

∫
Ω\Su

|∇u|2, (4.9)

ii) lim sup
ε→0

∫
Ω

(1− sε)2|∇uε| ≤
∫
Su

|u+ − u−|dHN−1. (4.10)

We begin with (4.9). Since

1Ωs
2
ε|∇uε|2 ≤ 1Ω\(Su)bε

|∇u|2,

we obtain that lim sup
∫

Ω s
2
ε|∇uε|2dx ≤

∫
Ω\Su |∇u|

2. Now owing to Remark 2, a direct
computation shows that

∇uε = (1− ψε)∇ũ+ ((ũ∇ψε) ∗ ϕtε − ũ∇ψε) + (ψεDũ) ∗ ϕtε , (4.11)

and we claim that each term multiplied by
√
oε tends to 0 in L2, which is enough to conclude

the proof of (4.9). The control of the first term is immediate, namely

oε

∫
Ω

(1− ψε)|∇ũ|2 −→
ε→0

0.

Subsequently since ϕtε is a mollifier we have
∫
ϕtε = 1 thus by young’s inequality we can

estimate the last term as

oε

∫
Ω
|(ψεDũ) ∗ ϕtε |2 ≤ oε

(∫
Ω\Su

|∇ũ|2
)(∫

RN
|ϕtε |

)2

≤ oε

(∫
Ω\Su

|∇ũ|2
)
−→
ε→0

0.

Now for the intermediate term, we claim that by our choice of tε it converges itself to zero
in L2 (without need of multiplying it by oε). Indeed, a standard Lemma on BV functions
(see e.g. Lemma 3.24 page 133 of [2]) says that∫

Ω∩(Su)bε

|(ũ∇ψε) ∗ ϕtε − ũ∇ψε|dx ≤ tε|Dfε|(Ωδ) (4.12)

where fε := ũ∇ψε and δ > 0 is very small, but fixed. In particular by assumption (4.7) on
ψε we have that |Dfε|(Ωδ) ≤ C

b2ε
, where C depends in particular on L∞ norm of u, that we

assumed for a moment to be bounded, and (4.12) becomes (since ũ is u inside Ω)∫
Ω∩(Su)bε

|(u∇ψε) ∗ ϕtε − u∇ψε|dx ≤
Ctε
b2ε

. (4.13)
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Therefore,

‖(u∇ψε) ∗ ϕtε − u∇ψε‖22 ≤ ‖(u∇ψε) ∗ ϕtε − u∇ψε‖∞‖(u∇ψε) ∗ ϕtε − u∇ψε‖1

≤ C

bε
× Ctε

b2ε
−→
ε→0

0

because tε = b4ε, and now (4.9) is proved.

It remains now to prove (4.10). We split
∫

Ω(1− sε)2|∇uε| in three parts, corresponding
to the integration on (Su)aε+bε \ (Su)bε , (Su)bε and Ω \ (Su)aε+bε (all intersected with Ω).
Since sε = 1− ηε and uε = u on Ω \ (Su)aε+bε we have that∫

Ω\(Su)aε+bε

(1− sε)2|∇uε| = η2
ε

∫
Ω\(Su)aε+bε

|∇u| −→ 0 when ε→ 0. (4.14)

Next we treat the integral over Aε := ((Su)aε+bε \ (Su)bε)∩Ω. We first use the definition of
sε and uε on Aε and then Cauchy-Schwartz inequality to get∫

Aε

(1− sε)2|∇uε| =

∫
Aε

exp 2

(
bε − d(x, Su)

2ε

)
|∇u| (4.15)

≤ |Aε|
1
2

(∫
Ω\Su

|∇u|2
) 1

2

which tends to zero because |Aε| → 0 (the exponential in (4.15) is less than 1 because
bε ≤ d(x, Su) on Aε).

Therefore, it remains to consider the integral over Ω∩ (Su)bε , where in particular sε = 0
thus ∫

Ω∩(Su)bε

(1− sε)2|∇uε| =
∫

Ω∩(Su)bε

|∇uε|. (4.16)

Recall that by (4.11),

∇uε = (1− ψε)∇ũ+ ((ũ∇ψε) ∗ ϕtε − ũ∇ψε) + (ψεDũ) ∗ ϕtε ,

and we already have proved in (4.13) that∫
Ω∩(Su)bε

|(u∇ψε) ∗ ϕtε − u∇ψε|dx→ 0 when ε→ 0. (4.17)

In addition since |1− ψε| ≤ 1 and with support compactly contained outside Su, we easily
have that ∫

Ω∩(Su)bε

(1− ψε)|∇ũ| ≤
∫

Ω∩(Su)bε\Su
|∇u| → 0 when ε→ 0. (4.18)
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Subsequently, putting together (4.17), (4.18), and then using inequality (4.8) we obtain∫
Ω∩(Su)bε

|∇uε| ≤ o(1) +

∫
Ω∩(Su)bε

|(ψεDũ) ∗ ϕtε | ≤ o(1) + |Dũ|((Su)bε+tε).

Finally passing to the limsup and using that HN−1(Sũ ∩ Ω \ Su) = 0 we get

lim sup
ε→0

∫
Ω∩(Su)bε

|∇uε| ≤ |Dũ|(Sũ∩Ω) =

∫
Su

|u+ − u−|dHN−1

which ends the proof of the proposition when the assumption (4.6) holds.

Now to get rid of (4.6) and prove the proposition in full generality, since the argument
is quite standard (see [3, 27]) we will only sketch the ideas of proof. Firstly, up to use a
troncature and a diagonal argument we can assume that u is bounded. Then we observe
that if u ∈ SBV (Ω) ∩ L∞(Ω) is such that Su is essentially closed (i.e. HN−1(S̄u \ Su) = 0)
and is a polyhedral set (i.e is the intersection of Ω with a finite union of N − 1 dimensional
simplexes) then (4.6) holds and thus by our preceding proof, the upper inequality holds.
Next we invoque the density Theorem of Cortesani and Toader [16], that says that any
function u ∈ SBV ∩L∞ can be approximated by a sequence of functions uk with polyhedral
singular sets, in such a way that for any U compactly supported in Ω it holds

lim sup
k→+∞

∫
Ū∩Suk

(1 + |u+
k − u

−
k |)dH

N−1 ≤
∫
Ū∩Su

(1 + |u+ − u−|)dHN−1.

This is enough to conclude the proof, using a further diagonal argument.

5 The one-dimensional case

In order to discuss the main characteristics of the approach, we now consider the one-
dimensional version of the model described in Section 3. In this case, Ω is the rectangle
Ω ≡ {(x1, x2) : −a/2 < x1 < a/2, −b/2 < x2 < b/2}, with Dirichlet boundary ∂ΩD =
{−a/2 < x1 < a/2, x2 = ±b/2} and Neumann boundary ∂ΩN = {x1 = ±a/2, −b/2 < x2 <
b/2}.

Because of the symmetry of the problem, we assume that ∂2u ≡ 0 and ∂2s ≡ 0, i.e., u
and s are functions of x1 only. Consequently, the slip surfaces are planes orthogonal to the
x1 axis. For convenience of notation, we define u′ := ∂1u, s′ := ∂1s so that, calling x := x1,
the problem is set in the interval I ≡ {x : −a/2 < x < a/2}. Moreover, for the jump points
we fix the natural orientation that implies for any x ∈ Ju, u+ = u(x+) and u− = u(x−), so
that (u+ − u−)(x) = u(x+) − u(x−) =: [u](x). For simplicity we assume that there is no
constraint à la Winkler, i.e., κ̄ ≡ 0 and, without loosing generality, we set b = 1.

Therefore, in the 1-D case the functional (3.1) becomes

1dΠ(u) := 1
2µ

∫
I\Ju
|u′|2dx+

∑
x∈Ju

(γ + σ0|[u](x)|) , (5.1)
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whose minimizers have to be sought in the proper counterpart of the class of admissible
functions (3.2) defined5 as

A1d = {u ∈ SBV (I,R) ; u(−a/2) = −βa/2, u(a/2) = βa/2} , (5.2)

where β represents the average elongation.

On the other hand the regularized functional (3.4) takes the form

1dΠε(u, s) = 1
2µ

∫
I

(s2 + oε)|u′|2dx+γ

∫
I

[
ε|s′|2 +

(1− s)2

4ε

]
dx+σ0

∫
I

(1− s)2|u′|dx , (5.3)

and the class of admissible functions (3.6) becomes

Â1d =
{

(u, s) ∈W 1,2(I,R)×W 1,2(I,R) ; u(±a/2) = ±βa/2, s(±a/2) = 1
}
. (5.4)

In the following, we will consider the response obtainable with the free-discontinuity
functional and its regularized approximation and we will make comparisons between the
two approaches.

5.1 The free-discontinuity problem

The minimization of functionals of the type of (5.1) in the class (5.2) has been considered
by a number of authors, but now we are interested in the evolution problem as stated in
Section 3.4. Therefore, we think of a loading history where β = β(t), t ∈ [0, T ] for which
we introduce the partition 0, ..., ti, ..., tp ≡ T , 1 ≤ i ≤ p. By setting βi = β(ti) we define

A1d
i = {u ∈ SBV (I,R) ; u(±a/2) = ±βia/2} . (5.5)

Let then ui represent the solution of the evolution problem at the ith step. The solution
ui+1 at step i+ 1 is associated with the minimization problem

min
u∈Ki+1

1dΠi(u) , 1dΠi(u) = 1
2µ

∫
I\Ju
|u′|2dx+

∑
x∈Ju

{γ + σ0 (|[u]− [ui]|+ |[ui]|)} . (5.6)

where Ki+1 has been defined in (3.9). In the considerations which follow we will make
extensive use of arguments similar to those of [25, Sect.3.].

We first prove the following

Proposition 3. For any i ∈ [1, p] the field ui has at most one jump point, which for
i ∈ [2, p], coincides with the jump point of ui−1, if any.

5To be precise, one should define also for the 1-D case the counterpart of the relaxed problem (3.3), but
for simplicity of analysis we will assume that the distinction is understood.
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Proof. We first show that u1 has at most one jump point. In fact let {xk}, k = 1, .., n be
the set of points x where [u1](x) 6= 0. Consider, as an admissible variation, the function η
such that Jη ≡ Ju1 , η′ ≡ 0 and

[η](xk) = −[u1](xk) for k = 2, .., n and [η](x1) = −
n∑
k=2

[η](xk) . (5.7)

We then obtain, since by construction [u1 + η](xk) = 0 for all k ∈ [2, n],

1dΠ(u1 + η)−1d Π(u1) = γ + σ0 |[u1 + η](x1)| − nγ − σ0

(
n∑
k=1

|[u1](xk)|

)

= (1− n)γ + σ0

∣∣∣∣∣[u1](x1)−
n∑
k=2

[u1](xk)

∣∣∣∣∣− σ0

(
n∑
k=1

|[u1](xk)|

)
≤ (1− n)γ ,

which proves that u1 cannot be a minimizer if n > 1. The same argument proves that if
Jui = ∅ then Jui+1 has at most one jump point.

Now, if ui has exactly one jump point at, say x = x1, because of the definition of Ki+1

(3.9) then ui+1 has at least a jump at x = x1. Consider, as before, the variation η such
that Jη ≡ Jui+1 , η′ ≡ 0 and satisfies (5.7). We then have

1dΠ(ui+1 + η)−1d Π(ui+1) =
∑

x∈Jui+1+η

(γ + σ0|[ui+1 − ui]|)−
∑

x∈Jui+1

(γ + σ0|[ui+1 − ui]|)

= γ(1− n) + σ0|[ui+1](x1)− [ui](x1)−
n∑
k=2

[ui](xk)|

− σ0|[ui+1](x1)− ui(x1)]| −
n∑
k=2

|[ui+1]|

≤ γ(1− n)

which again proves that n = 1, and therefore at each step the number of jumps cannot
exceed the unit.

Observe that the field ui+1 must satisfy the first variation condition

lim
λ→0+

1

λ

(
1dΠi[ui+1 + λη]− 1dΠi[ui+1]

)
≥ 0 , (5.8)

for any variation ui+1 + λη ∈ A1d
i+1, in particular satisfying∫

I\Jη
η′dx+

∑
x∈Jη

[η] = 0 . (5.9)

By taking different-in-type perturbations, one can prove the following
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Proposition 4. At each step i, we have that µu′i+1 is a constant, denoted σ ∈ [−σ0, σ0].
Moreover, if ui has a jump at x = x1 and if ∆ := [ui+1](x1)− [ui](x1) 6= 0 then

σ = sign(∆)σ0. (5.10)

Proof. In (5.8) take a perturbation such that Jη = ∅. Then, one finds that u′′i+1 = 0 outside
its jump, thus µu′i+1 =: σ is a constant.

From Proposition 3, ui+1 can have at most one jump point, say x1, coinciding with the
jump point of ui. Now take a perturbation with constant η′ and with a single jump [η]
so that (5.9) implies aη′ + [η] = 0. Now as in [25, Proposition 3.1], using the inequality
|a+ b| − |b| ≤ |a| one finds that

0 ≤ 1dΠi[ui+i + λη]−1d Πi[ui+i]

= σ0 (|[ui+1]− [ui] + λ[η]| − |[ui+1]− [ui]|)− µu′i+1λ[η] + o(λ) (5.11)

≤ σ0|λ[η]| − µu′i+1λ[η] + o(λ).

Dividing first by |λ[η]| and passing to the limit we obtain σ ≤ σ0, and then dividing by
−|λ[η]| we obtain the reverse inequality so that σ ∈ [−σ0, σ0].

Now we assume that [ui+1] − [ui] 6= 0. Since |t|′ = sign(t) for all t 6= 0, returning to
(5.11) we obtain that

0 ≤ σ0 sign
(
[ui+1]− [ui]

)
λ[η]− µu′i+1λ[η] + o(λ),

Dividing by λ[η] and −λ[η] and passing to the limit, one obtains

σ0 sign
(
[ui+1]− [ui]

)
− µu′i+1 = 0

which ends the proof of the Proposition.

The quantity σ represents the shear stress in the body. In other words, the significance
of Proposition 4 is that an increase (decrease) in the plastic slip can only occur where the
shear stress σ equals σ0 (−σ0), whereas no plastic slip occurs when |σ| < σ0. These are the
usual assumptions of perfect plasticity.

In conclusion, there are only two possible states for the body: either the unyielded
(elastic) state, where the displacement field is continuous, or the yielded (overstrained)
state, where the plastic part of the deformation localizes in one shear band, associated with
the point of discontinuity of the corresponding displacement field.

Suppose that the load history is such that β = β(t) is monotonically increasing from
β = 0. There will be a certain threshold β = β0> 0 that marks a transition from the
unyielded to the yielded state. In the unyielded state, from Proposition 4 we have that u′

is a constant, and u′ = σ/µ = β. Consequently the strain energy (5.1) reads

1dΠe =
1

2
µaβ2 . (5.12)

On the other hand, from proposition 3 in the yielded state the displacement field has at
most one jump at, say, x = x1 and, from Proposition 4, σ = σ0. In the elastic part, one
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still has that u′ is constant, equal now to σ0/µ so that aβ = aσ0/µ + [u](x1). Using this
expression, the strain energy (5.1) takes the form

1dΠy =
1

2

σ2
0

µ
a+ γ + σ0[u] = γ + aβσ0−

1

2

σ2
0

µ
a. (5.13)

At the critical value β = β0 the two expressions (5.12) and (5.13) must be equal. We then
obtain the following 2nd order equation in β

β2 − β 2σ0β

µ
+ (

σ2
0

µ2
− 2γ

µa
) = 0.

This equation has always two solutions of which only one is nonnegative, namely

β0 =
σ0

µ
+ 2

√
2γ

aµ
. (5.14)

It is interesting for us to follow a strain driven test in which β undergoes the following
time history:

Step 1: β is gradually augmented from the null value up to β1 > β0;

Step 2: β is successively diminished from β1 to β2 < (β1 − 2σ0/µ);

Step 3: β is further increased from β2 to β3 > (β2 + 2σ0/µ).

Step 4: The body is released so that σ = 0.

The response can be summarized in the graph of figure 5 representing the shear stress
σ ≡ µu′ as a function of the shear strain β. At first the response is linear elastic in the
branch O → A in fig. 5. At β = β0 of (5.14) there is the transition from the unyielded
to the yielded state, and the stress σ drops from the value σ = µβ0 at point A to the
value σ0 at point A′. This is a very well-known phenomenon in the yielding of mild steel:
after C. von Bach ([39, Section 19.1]), point A is traditionally called the upper-yield point
(Oberestreckgrenze) and A′ the lower-yield point (Unterestreckgrenze). The physical reasons
of this stress drop consists in the phenomenon of the unpinning of the dislocations, already
discussed in Section (3.2). When β > β0 the body is in the yielded state, and this condition
is such that ∆ > 0 in (5.10) of Proposition 4, so that σ is a constant and equal to σ0.

At β = β1 the specimen is released. Now we have that the parameter ∆ of proposition
4 is such that ∆ = 0, that is, no plastic deformation occurs and the response is completely
elastic. The representative point in the graph of fig. 5 follows the linear path B → C. It
is worth mentioning that if at some point, say B′, of the branch B − C the specimen is
reloaded, the representative point would follow the path B′ → B → B′′, i.e., there is no
distinction between the upper and lower-yield points when the specimen is released and
successively reloaded. In the model, this is because the energy γ has already been paid
to open the possibility of plastic slip. This finding is corroborated by the experimental
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Figure 5: Shear stress σ vs. shear strain β in a strain-driven test where β follows the path
0→ β1 → β2 → β3 → β4.

evidence [31] because once the dislocation has been unpinned, plastic flow can occur at
constant stress in the representative slip plane.

At point C, where β = β1 − 2σ0/µ, the model is a condition where, if β is further
diminished, ∆ < 0 in (5.10) of Proposition 4, so that σ = −σ0. At point D where β = β2

the strain is further augmented and the condition is again such that ∆ = 0 in Proposition 4,
so that the representative point in the graph follows the linear elastic path D → E. At E,
where β = β2 + 2σ0/µ the condition is again such that ∆ > 0 in (5.10) of Proposition 4 and
σ = σ0. Finally at point F the specimen is further released: the representative point follows
the linear path F → G where, at G, σ = 0. It is worth emphasizing that the permanent
plastic strain β4 = β3 − σ0/µ remains stored in the body.

5.2 The regularized problem

A complete analysis of the regularized model goes beyond the scope of this paper because
it necessitates of an ad hoc numerical code that will be the subject of further work. Here
we limit just to discuss some qualitative aspects of the model, focusing the attention on the
first onset of plastic deformations, that is on the counterpart, for the case of the regularized
problem, of the branch O → A → A′ → B of Fig. 5. In other words, the problem can be
associated with the very first step 0 ≤ t ≤ t1 of the evolution problem outlined in (3.11)-
(3.12)-(3.13): consequently, we will consider directly the minimization of the functional
1dΠε(u, s) of (5.3) in the class of admissible functions Â1d of (5.4).

Any equilibrium solution of the this problem needs to satisfy the Euler equations, that
for the case at hand, follow from condition
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lim
λ→0+

1

λ

(
1dΠε(u+ λη, s+ λϕ)−1d Πε(u, s)

)
≥ 0 , (5.15)

Taking a variation u+ tη of u with s fixed (ϕ = 0) and η supported in a small enough
neighborhood of a point x and, successively, taking a variation s + tϕ of s with u fixed
(η = 0), one finds the conditions 

σ′ = 0 ,

S′ − T = 0 ,
(5.16)

where

σ := µ(s2 + oε)u
′ + σ0(1− s)2 u′

|u′| ,

T := µs(u′)2 − (1− s)( γ4ε + σ0 |u′|) ,

S = 2γεs′ .

(5.17)

Observe that the first equation of (5.16) is valid only at points x such that u′(x) 6= 0, while
the second one of (5.16) is valid everywhere.

According to a procedure already established by many authors (see e.g. [4, Sect. 4.4]),
we first consider a stability analysis where a solution of the Euler equation is searched in
the class

Ã1d =
{

(u, s) ∈ C2(I,R)× C2(I,R) ; u(±a) = ±βa, s′(±a) = 0
}
. (5.18)

Clearly, the only difference with the class Â1d of (5.4) consists in the boundary conditions
for s at the extremities and in the regularity assumption. The convenience of this choice is
that now the homogeneous field (u, s) with u′ identically constant and s identically constant
are solutions of the Euler equations with

u(x) = βx , s(x) =
γ
4ε + σ0|β|

µβ2 + γ
4ε + σ0|β|

. (5.19)

Figure 6 shows the solution for a paradigmatic case for which µ = 100 GPa, σ0 = 10−3µ,
γ = 0.25a σ2

0/µ, so that in (5.14), 4(γ/aµ) = 0.25 (σ0/µ)2. In particular, fig. 6(a) shows the
stress σ of (5.17)1 as a function of the average shear strain β and the regularized parameter
ε in representative intervals. There are various curves on the plotted surface. The curves
referred to as “β = σ0/µ”, “σ = σ0” and “σ = µβ0” represent, respectively, the intersection
of the σ− surface with the planes β = σ0/µ, σ = σ0 and σ = µβ0, where β0 is given in
(5.14). On the same figure we have represented, with dashed lines, the intersection of the
surfaces with planes ε = const., each plane spaced at an interval ∆ε = 0.25× 10−3a.

The analysis of the second variation for the problem at hand gives the necessary condi-
tion
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(a) (b)

Figure 6: a) Shear stress σ as a function of average shear strain β and regularization
parameter ε; b) Field s as a function of β and ε.

H := ∂u′σ ∂sS − (∂sσ)2 > 0 . (5.20)

This condition gives restrictions of the values of β and ε that correspond to “locally” stable
solutions. In particular on the σ− surface of fig. 6(a) we have plotted the curve labeled
“H = 0”, corresponding to condition H = 0 that represents the threshold of transition from
a stable to an unstable solution.

In figure fig. 6(b) we have drawn the surface associated with field s, again as a function
of β and ε, with the sections ε = const., spaced an interval ∆ε = 0.25 × 10−3a, and
corresponding counterparts of the curves “β = σ0/µ”, “σ = σ0”, “σ = µβ0” and “H = 0”.

Various peculiarities can be distinguished.

i) There is not a purely elastic phase with s = 1 because, from (5.19), s < 1 whatever
small the parameter β is (a purely elastic phase can only be attained as ε→ 0). The
material is softer than a purely elastic phase because in fig. 6(a) the curve “β = σ0/µ”
is always lower than the curve “σ = σ0”, but the two curves tend to coincide when
ε→ 0.

ii) Considering the stress-strain relationships of fig. 6(a) at constant ε, one can notice that
for small ε the corresponding response presents a strain-softening phase, whereas the
relationship is monotone increasing for sufficiently large ε. It is also evident from fig.
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6(b) that the corresponding s is always monotone decreasing. Moreover, σ → σ0 for
β sufficiently large.

iii) The curve “H = 0” marks the beginning of the instability of the homogeneous solution
(5.19). The corresponding critical value of σ, say σc, increases with decreasing ε and
σc → +∞ as ε→ 0.

iv) There are values of ε, say ε1 and ε2 > ε1, such that σc < σ0 for ε2 < ε, σ0 < σc < µβ0

for ε1 < ε < ε2 and µβ0 < σc for 0 < ε < ε1.

The property i) is in agreement with what already observed in [4, Section 4.4.], for a
fracture model à la Griffith, with no plastic phase. Moreover, the fact that σc, increases
as ε decreases, as stated in iii), has been commented in [10] for the simplest 1D fracture
model à la Griffith. The reason for this is that solutions of the Euler equations (5.16), which
also satisfy the second variation conditions (5.20), are equilibrium configurations that not
necessarily correspond to global minima. The Γ− convergence result of Section 4 is thus not
in contrast with the analysis of Section 5.1 because the mathematical theory only assures
convergence of global minimizers and the corresponding minima. In Section 5.1 we had
observed an upper bound for the shear stress equal to σ = µβ0, with β0 given by (5.14),
and the analysis which has led to the result summarized in Figure 5 was based upon global
minimization of the free discontinuity functional (5.6). Indeed, as discussed at length by
Del Piero and Truskinovsky, if one considers, as in [25, Section 3.2], the natural metric of
SBV to attribute a finite distance to configurations with different jump sets, one finds that
all equilibrium configuration without jumps are locally stable ([25, Corollary 3.4]). In other
words, as already noticed by Marigo et al. [15], the free-discontinuity formulation presents
the drawback that if local minima are looked for, the load required to open a crack is
infinite. The counterpart of this finding in the regularized model at hand is that σc → +∞
as ε→ 0.

We then pass to consider more in detail the regularized problem. Of particular impor-
tance is the following

Proposition 5. Assume that u, s ∈ C2(I).

(i) If β > 0, then u′ ≥ 0 in I and there exists a constant σ̄, with σ̄ > 0, such that

u′(x) =
max(0, σ̄ − σ0(1− s(x))2)

µ(s2(x) + oε)
, for all x ∈ I (5.21)

(ii) If β < 0, then u′ ≤ 0 in I and there exists a constant σ̄, with now σ̄ < 0, such that

u′(x) =
min(0, σ̄ + σ0(1− s(x))2)

µ(s2(x) + oε)
, ∀x ∈ I (5.22)

Proof. Since we assume u′ to be continuous, the sets Ω+ := I ∩ {x;u′(x) > 0} and Ω− :=
I ∩ {x;u′(x) < 0} are open, while the set Ω0 := I ∩ {x;u′(x) = 0} is closed. By (5.16) we
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know that µ(s2 + oε)u
′ + σ0(1− s)2 is locally constant on Ω+ and µ(s2 + oε)u

′ − σ0(1− s)2

is locally constant on Ω−. We claim that those constants actually do not depend on the
connected components of Ω+ or Ω−. To see this, let us take a smooth nonnegative function ζ
with compact support satisfying

∫
R ζ(τ)dτ = 1 and define ϕh(x) as being a primitive of x 7→

h−1ζ(x/h). In this way ϕ′h(x) is a mollifier and in particular we have that
∫
R ϕ

′
h(x)dx = 1

for all h > 0 whereas the size of the support of ϕ′h becomes very small around the origin when
h → 0. Now, let x1 and x2 be two points situated in two different connected components
of Ω+, and take as a variation for u the competitor

uh := u(x) + t(ϕh(x− x1)− ϕh(x− x2)). (5.23)

This is an admissible variation for h small enough because by construction∫
I
(ϕh(x− x1)− ϕh(x− x2))′dx = 0.

Now using that (u, s) is a minimizer and denoting σ1 = µ(s2(x1)+oε)u
′(x1)+σ0(1−s(x1))2

and σ2 = µ(s2(x2) + oε)u
′(x2) + σ0(1− s(x2))2 the constants associated with x1 and x2 we

find that

σ1

∫
I
ϕ′h(x− x1)− σ2

∫
I
ϕ′h(x− x2) = σ1 − σ2 = 0

hence µ(s2 + oε)u
′ + σ0(1− s)2 is identically constant on Ω+, and we denote this constant

by σ+. The same argument shows that µ(s2 + oε)u
′ − σ0(1− s)2 is identically constant on

Ω−, and we denote this constant by σ−. We claim now that σ+ = σ−. Indeed, this can be
seen as before using the variation (5.23) with now x1 ∈ Ω+ and x2 ∈ Ω−. As a result there
exists a constant σ̄ such that

u′ =
σ̄ − σ0(1− s)2

µ(s2 + oε)
, ∀x ∈ Ω+ and u′ =

σ̄ + σ0(1− s)2

µ(s2 + oε)
, ∀x ∈ Ω−. (5.24)

Now, if σ̄ > 0 then Ω− = ∅ because, if this is not the case, u′ cannot be negative in
(5.24); vice versa, if σ̄ < 0 then Ω+ = ∅ otherwise u′ cannot be positive in (5.24). But if
β > 0 one necessarily has Ω+ 6= ∅ and consequently σ̄ > 0. On the other hand if β < 0 then
Ω− 6= ∅ thus σ̄ < 0.

It remains to see what is happening on Ω0 := {x ;u′(x) = 0}. Without loss of generality
we may assume now that σ̄ is positive, so that Ω− = ∅. The proof works by the same way
with σ̄ < 0. To finish the proof of the proposition we have to show that σ0(1− s)2 ≥ σ̄ on
Ω0. First notice that by continuity of s on I the equation (5.24) remains true on Ω+, and
in particular σ0(1− s)2 = σ̄ on ∂Ω0. Now we take again the variation uε defined on (5.23)
this last time with x1 lying in the interior of Ω0 and x2 ∈ I \ Ω0 = Ω+. The first order
condition gives that∫

I
σ0(1− s)2|ϕ′h(x− x1)|dx−

∫
I
σ̄ϕ′h(x− x2)dx ≥ 0 , (5.25)

Since ϕ′h is a nonnegative mollifier, taking the limit h → 0 one gets σ0(1 − s(x))2 ≥ σ̄
for any x ∈ Ω0, which ends the proof of the Proposition.
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Remark 3. In practice, the counterpart for the regularized problem of proposition 4, valid
for the free-discontinuity problem, is this proposition 5. Here σ̄ represents the shear stress
in the body and the significance of the proposition is that, in order to produce plastic strain,
this stress has to reach, in absolute value, a certain threshold associated with the value of the
stress σ0. In fact when |σ̄|/σ0 � 1 we find that at points where s → 0 (yielded material)
we would have u′ = 0. This conclusion should be associated with that of proposition 4
according to which the plastic slip, represented by the jump of the displacement field, is
null whenever the shear stress is, in absolute value, less than σ0.

To discuss further the qualitative features of the regularized model, we consider a par-
ticular field

s = 1− e−
1
2
x/ε . (5.26)

This choice as discussed, e.g., in [11] and [37], has the advantage that it provides a lower
bound for the second integral on the r.h.s. of (5.3) when the interval I is infinite. For the
case at hand, we easily find∫

I
ε(s′)2 +

(1− s)2

4ε
dx = 1− e−a/ε , (5.27)

which clearly tends to 1 as a → ∞. This choice wants to simulate the occurrence of one
slip plane at x = 0. Substituting s into (5.21), one finds the corresponding shear strain u′

as a function of the shear stress σ and, once these fields are given, corresponding energy
1dΠε(u, s) of (5.3) can be evaluated.

An energetic competition is thus engaged between this solution, which now represents the
counterpart of the solution with one slip point of section 5.1, and the energy corresponding
to the homogeneous solution (5.19). The two graphs corresponding to the aforementioned
solutions, labeled “homogeneous” and “1-slip”, are juxtaposed in Figure 7.

The plots correspond to the same material parameters of the graphs of figure 6 but, here,
they are represented as a function of the shear stress σ and the order parameter ε. The
intersection between the two graphs mark the transition to a case in which the “1-slip”
solution becomes energetically favorable with respect to the “homogeneous” solution.

Examining first the “homogeneous” surface, it should be noticed that this is anticlastic
bent so that, for any fixed ε there is in general a maximal stress that can be supported
by the body. Such stress practically coincides, in the assumed interval of ε with the stress
σc identified in figure 6 by the curve “H=0”. On the other hand the “1-slip” surface is
monotonically increasing with σ and exhibits only a slight dependence upon ε. Such energy
surface asymptotically tends to an inclined plane as σ → ∞ due to the linear dependence
of 1dΠε(u, s) of (5.3) upon |u′|.

Observe that for any fixed ε the intersection between the two curves corresponds to a
stress threshold far lower that the critical stress σc of figure 6 (curve “H=0”). This confirms
that global minimizers correspond to energetic levels far below those associated with local
minimizers. Of course, the “1-slip” surface has been obtained through the assumption that
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Figure 7: Strain energy for the regularized model as a function of shear stress σ and of the
order parameter ε. Cases of “homogeneous” and “1-slip” solutions.

s is of the form (5.26), but the surface corresponding to the true solution is certainly below
this one. Consequently, the stress corresponding to the onset of one slip is certainly lower
than the one that can be inferred from the intersection of the two surfaces plotted in figure
7. Last but not least, we notice that such critical value of the stress diminishes as ε decreases
and, as evidenced in the figure, it is of the order of 150Mpa, which represents, for the case
at hand, the value of µβ0, with β0 given by (5.14), associated with the upper yield point in
figure 5.

6 Concluding remarks

Although this model is minimal and can be considered just a first attempt at describing the
complex phenomenon of plastic flow, it highlights that the proposed variational approach
seems to be quite promising. The mathematical setting in the space of SBV functions allows
to account for the fact that the deformation of an elastic-plastic body is indeed structured,
in the sense stated by Del Piero and Owen [24]. In fact, the plastic part of the deformation
is due to slips that can be modeled as jumps in the component of displacement tangential to
the glide surface. The location of the slip surfaces does not need to be known a priori, but
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can be found from the boundary data (free-discontinuity problem). Irreversibility of plastic
flow can be considered by following the loading history though a sequence of minimization
sub-problems associated with the incremental energy consumption.

The regularized approximation of the aforementioned free-discontinuity problem through
a sequence of elliptic problems, labeled by the order parameter ε for ε → 0, has various
deep implications. First of all, the essence of the relationship between the regularized and
the parent free-discontinuity models is mathematically made precise by the Γ−convergence
result. On the one hand, the deformation field predicted by the regularized approach would
represent a somehow smeared view of the phenomenon of plastic slips, showing strain local-
izations tending to sharp discontinuities as ε → 0. But, indeed, the experimental evidence
shows that the localization of plastic deformation occurs not along sharp interfaces, but
in layers (bands) of very small but finite thickness [39]. Therefore, the regularized setting
could be considered not just a mere approximation, but an autonomous model per se [37],
lying in the class of the pseudo non-local gradient-damage models [30]. In particular, it
physically interprets the phenomenon of localization of plastic flow due to coalescence of
microvoids or microcracks, triggered by material inhomogenieties like notches of inclusions,
that concentrate in slip layers whose thickness is identified by the parameter ε. Conse-
quently, as discussed at length in [37], ε represents an important material parameter that
is usually referred to as the material intrinsic length scale. According to this rationale, it is
the free-discontinuity Γ−limit that represents an approximation of a more comprehensive
model, obtained by letting the material intrinsic length scale go to zero. Since the setting of
the free-discontinuity problem presents strict analogies with the propagation in mode II of
cohesive fractures [43], the Γ−limit result establishes strict analogies between the theories
of plasticity, cohesive fracture and damage, as inferred in [23] and somehow already stated
in the famous approach by Hillerborg [35].

One of the main characteristic of the proposed model is that, in general, it may predict
the extreme localization of the inelastic part of the deformation in one slip surface for the
free-discontinuity problem or, equivalently, in one thin band for the regularized approxi-
mating problem. However, when plastic flow is somehow confined by neighboring parts of
the body that remain elastic, the model may predict the diffusion of the plastic region in a
bulk part of the body, as shown for a paradigmatic example in the numerical experiments
presented in [29]. In this case, the model at hand could well reproduce the results of the
classical theory of plasticity, where plastic deformation is a bulk phenomenon and plastic
strains are represented by sufficiently regular fields. However, the tendency towards local-
ization could also be a consequence of the minimality of the model, that certainly does
not take into account at least two effects that appear fundamental [31] for the diffusion of
plastic deformation: the phenomenon of strain hardening and the interaction between slip
surfaces. By insight, a desirable improvement could be the consideration of more general
forms of the energy functional associated with plastic flow through the introduction of a
non-local spatial dependence for the strain variable as pursued, for example, in [22].

Last but not least, we have to mention that Γ− convergence deals with global minima
and minimizers, whereas we have underlined in the 1-D example here presented that there
are representative equilibrium solutions that are locally, though not globally, stable that can
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be attained in a quasi-static loading history. For the case of brittle fracture, only recently
the substantial difference between local and global minima, which has major consequences
on the stage of crack initiation, has been recognized in [15] and specified [25] for a 1-D
free-discontinuity model, while the local minimization of the regularized energies and its
relationship with the parent problem has been explored, still for the 1-D case, in [10]. For
the model at hand, we have tentatively shown in a particular example that there is some
sort of relationship between local minimizers of free-discontinuity functional and of the
regularized functional, although the approximating properties of the latter with respect to
the former cannot be assured through Γ−convergence, which proves convergence of global
minima only. This issue, as well as the extension of the Γ− convergence theory from the
2-D antiplane shear to more general cases of generalized plane stress or plane strain, needs
to be clarified in further work.
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