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Abstract. In this work, we study the minimization of nonlinear functionals in di-
mension d ≥ 1 that depend on a degenerate radial weight w. Our goal is to prove the
existence of minimizers in a suitable functional class here introduced and to establish
that the minimizers of such functionals, which exhibit p-growth with 1 < p < +∞, are
radially symmetric. In our analysis, we adopt the approach developed in [9, 13], where
w does not satisfy classical assumptions such as doubling or Muckenhoupt conditions.
The core of our method relies on proving the validity of a weighted Poincaré inequality
involving a suitably constructed auxiliary weight.
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1. Introduction

In this work, we consider the analysis of nonlinear functionals in dimension d ≥ 1,
allowing for a degenerate weight w. Our main result concerns the minimization of a
functional (see formula (1) below) involving the lower semicontinuous envelope of F ,
denoted as F , where F satisfies p-growth for 1 < p < +∞. More precisely, we consider

F (u) :=


ˆ
Ω
|∇u|pwdx if u ∈ ACd

r (Ω),

+∞ if u ∈ X \ACd
r (Ω),
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where Ω is an open bounded set in Rd and rotational invariant, w is a nonnegative, locally
integrable radial function, and X is a topological space comprising measurable functions
which will be introduced later on, and ACd

r (Ω) is the space of radial functions (introduced
in (10) in Sect. 2) contained in the class ACd(Ω) of the d-absolutely continuous functions
in the sense of Malý, see [18, Page 2].

Before giving all the precise details of our main result, let us give some review about the
study of functionals like F and F . Several works have investigated the functional above
by adopting different functional frameworks; see, for instance, [8, 9, 10, 13, 14, 15, 19].
Particular attention has been devoted to the case p = 2, which is considered canonical due
to its connection with probabilistic issues involving the so-called Dirichlet forms [1, 17].
Further recent works have been dedicated in the analysis of a weaker form of F where the
gradient is replaced by the upper gradient [3, 4, 6]. These works have been given a new
field of research where the authors have aimed to extending the theory of regularization
by heat kernel to metric measure spaces. In doing that, some important difficulties taking
place, for instance, what is the natural definition of Sobolev space when Ω is a metric
space of arbitrary dimension supporting a generic measure µ, say, µ(dx) = w(x)dx, see
[16]. The theory of weighted Sobolev spaces in infinite-dimensional spaces is known for
instance when the measure µ is the gaussian measure which allows even to define space
of bounded variation, see for instance [7]. Recently some works have been dedicated
to establish a theory of weighted Sobolev spaces where the reference measure do not
satisfy any doubling or Poincaré inequality [5]. As a matter of fact, they proposed
the definition of weighted Sobolev spaces, defined over a complete and separable metric
space equipped with a boundedly-finite Borel measure using three different approaches:
via approximation with Lipschitz functions; by studying the behaviour along curves;
via integration-by-parts, using Lipschitz derivations with divergence. Furthermore, they
proved (see [5, Theorem 7.1]) the equivalence of all definitions. Let us mention that
the case of approximation with Lipschitz functions is related to the relaxation of F . In
general, the identification of the functional F is a challenging task, and some authors have
been used the density of C1-functions in weighted Sobolev spaces as an important tool,
see for instance, [11, 13]. In such an approach, however, some additional assumptions on
w, as described in [11], were necessary. For example, to prove the density of C1-functions,
it is sometimes assumed that w satisfies the doubling or Muckenhoupt conditions [16, 20].
Alternatively, in [13], have been adopted the case where such requirements on w are not
satisfied, p = 2, and where X is not fixed a priori.

Recently, in [9] an explicit formula for F have been obtained in the onedimensional
case with 1 < p < +∞. We emphasize that, a priori, the choice of X strongly depends on
the weight w. In fact, as observed in [9], X can be defined with respect to an additional
weight, denoted by ŵp. As noted by the authors, this function plays a crucial role in
compensating for the degeneracy of w and allows for a proper characterization of the
domain of F . At this stage, let us highlight a key difference between our approach
to relaxing F and the one developed in [5]. In our relaxation procedure, we establish
a Poincaré inequality that allows us to identify the appropriate topology in which to
relax F . Moreover, our density argument involves two distinct measures, in contrast
to [5, Definition 5.2]. Let us also notice that the approach via density proposed in [5,
Subsection 5.1] comes from [2]. However, let us mention that in [2] the authors were
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involved with metric spaces where a doubling condition is assumed. On the other hand,
we also observe that, since we work in a finite-dimensional setting, there is no need to
define Sobolev spaces via relaxation, as is done in that work.

In the present work, we then aim to analyze the minimizer of

(1) H(u) := F (u) + ∥u− g∥Lp(Ω,(ŵp)p−1),

where g ∈ Lp(Ω, (ŵp)
p−1) is a given radial function. To this end, we address the

multidimensional extension of the results from [9] about the relaxation of F . In the
one-dimensional setting considered in that work, the embedding of Sobolev functions
into absolutely continuous functions played a crucial role in deriving an explicit formula
for F . However, it is worth noting that this property does not hold in higher dimensions,
making the extension of those results to the multivariate case far from straightforward.
In particular, let us recall that the notion of absolute continuity in higher dimensions
differs significantly from the one-dimensional case [18].
We now outline our approach to study the minimizer of H. In our setting, we restrict
ourselves to the case of a radial weight w, which can be written as w(·) = η(| · |), where
η is a measurable function of a single variable. Furthermore, we construct an additional
radial weight, denoted by ŵp, which will be used to define the space X, and the forcing
term in (1) involving a generic function g ∈ Lp(Ω, (ŵp)

p−1). This particular structure of

w enables us to introduce the space ACd
r , consisting of radial functions that are absolutely

continuous on supp(η). This space of functions is new, and it is a subset of the space of
d-absolutely continuous functions of d-bounded variation defined in [18], see Lemma 2.2
below. By following [9], we then need to prove Poincaré inequalities involving w and ŵp.
Specifically, we consider the p-norm of the gradient term of a generic function u weighted
by w, while the p-norm of u itself is weighted by (ŵp)

p−1. Subsequently, assuming that w
is finitely degenerate (see Definition 2.1 below), we proceed to choose X = Lp((ŵp)

p−1),

and we show that ACd
r -functions are dense, in a suitable Sobolev space W ⊆ X (see

formula (35) below). Therefore, we obtain an explicit identification of the domain of F
performing the relaxation in the strong topology of X. The resulting relaxed functional
F still maintains the same form of F as in the onedimensional case considered in [9],
and its ambient space consists of functions that are of Lp((ŵp)

p−1)-integrable type.

Lastly, after providing the explicit expression for F we then aim to prove that the
minimizer of H is a radial function among all possible functions in W 1,1

loc (Ω) whose

gradient belongs to Lp
loc(Ω), see Theorem 5.2. The fact that F is given explicitly allows

us to proceed in proving our minimization result by employing the lines of [12].
This work is structured as follows. In Section 3, we study the validity of Poincaré

inequalities with double weight, see Theorem 3.4 below. In Section 4, we formulate and
prove a relaxation theorem, see Theorem 4.1 below. In Section 5, we prove firstly that
there exists a radial minimizer in the class of radial competitors and then in the class of
general functions, and eventually that the minimizer of H is radial.

2. Setting and preliminaries

2.1. A radial weight. Let d ≥ 1 be a natural number, and consider Ω to be an open
bounded subset of Rd which is invariant by rotation, i.e.

Ω = {x ∈ Rd : |x| < b} or Ω = {x ∈ Rd : 0 ≤ a < |x| < b},
3



with a, b ∈ R. Given 1 < p < ∞, we let 1
p′ = 1− 1

p . In what follows, we consider a radial

weight w : Rd → R satisfying

(2) w(x) := η(|x|), η ≥ 0 a.e. η ∈ L1
loc([0,+∞[) with compact support.

Next, we denote by supp(η) the support of η. It is not restrictive to assume that
supp(η) ⊆ (a, b) is a bounded open interval with 0 ≤ a < b, and we consistently in-
terchange supp(η) and (a, b) throughout the text. We denote by Ip,supp(η) the set

Ip,supp(η) :=
{
r ∈ (supp(η))◦ : ∃ ϵ > 0 such that η

− 1
p−1 ∈ L1 ((r − ϵ, r + ϵ))

}
,(3)

where (supp(η))◦ denotes the interior of supp(η). The set Ip,supp(η) is the largest open set

in (a, b) such that η
− 1

p−1 is locally summable. Without loss of generality, we can express
Ip,supp(η) as the disjoint union

(4) Ip,supp(η) =

Np,η⋃
i=1

(ap,i, bp,i),

with 1 ≤ Np,η ≤ +∞. Subsequently, for the sake of a lean notation, we set ai := ap,i,
bi := bp,i, Nη := Np,η. Let us now provide the following definition.

Definition 2.1. (i) If Isupp(η),η = ∅, we put Nη := 0.
(ii) If 1 ≤ Nη < +∞ we say that η is finitely degenerate in supp(η).
(iii) If Nη = ∞ we say that η is not finitely degenerate in supp(η).

Furthermore, we define the set

IΩ,w := {x ∈ Ω : |x| ∈ Ip,supp(η)},(5)

and also

Iαi,βi
:= {x ∈ IΩ,w : αi < |x| < βi}, ai < αi < βi ≤ bi, i = 1, . . . , Nη.(6)

2.2. The class of the absolutely continuous functions in several variable. By
following [18], given a function u : Ω → R, let us define the d-variation of u on an open
set G ⊂ Ω as

Vd(u,G) := sup

{∑
i

(OscBiu)
d : {Bi} is finite family of disjoint balls in G

}
,(7)

where OscBiu denotes the oscillation of u on Bi, and is defined as

OscBiu := sup
x,y∈Bi

|u(x)− u(y)|.

We say that u has a d-bounded variation in Ω if Vd(u,Ω) < +∞. We denote by BV d(Ω)
the class of all functions with d-bounded variation in Ω. Furthermore, we denote by
ACd(Ω) the space of all d-absolutely continuous functions in BV d(Ω). Recall that a
function u : Ω → R is d-absolutely continuous (see [18, Page 2]) if for each ε > 0 there
is δ = δ(ε) > 0 such that for each disjoint finite family Bi of closed balls in Ω we have∑

i

Ld(Bi) ≤ δ ⇒
∑
i

(OscBiu)
d < ε.
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As proven in [18, Theorem 3.3] every function u with d-bounded variation (and so
every d-absolutely continuous function) is differentiable a.e. and its gradient ∇u ∈
Ld(Ω;Rd). Hence

(8) ACd(Ω) ∩ Ld(Ω;Rd) ⊂ W 1,d(Ω).

Moreover, if p > d, then

(9) W 1,p(Ω) ⊂ ACd(Ω),

(see [18, Theorem 4.1]). Let U ⊂ Ω be an open bounded subset such that IΩ,w ⊂ U . We

denote by ACd
r (U) the following set of functions:

ACd
r (U) :={u : U → Rmeasurable : u ∈ W 1,1

loc (IΩ,w),

u(x) = v(|x|) in IΩ,w for some v ∈ AC(supp(η))}.
(10)

Lemma 2.2. Let ACd
r (IΩ,w) be defined as in (10). Then

ACd
r (IΩ,w) ⊂ ACd(IΩ,w).(11)

Furthermore, if IΩ,w = Ω, then

ACd
r (Ω) ⊂ ACd(Ω).(12)

Proof. Let u ∈ ACd
r (IΩ,w). Then by definition u is radial and so there is v ∈ AC(supp(η))

such that u(·) = v(|·|). Furthermore, v ∈ BV(supp(η)) the space of functions of bounded
variation. Let us take ε > 0, notice that

OscBiu = sup
x,y∈Bi

|u(x)− u(y)| = sup
x,y∈Bi

|v(|x|)− v(|y|)| ≤ sup
x,y∈Bi

essV
|y|
|x| (v),(13)

where

essV
|y|
|x| (v) := sup


m∑
j=1

|v(tj+1)− v(tj)|


and the supremum taken over all finite partitions {|x| < t1 < · · · < tm+1 < |y|} such
that tj is a point of continuity of v. Now consider Ri be the radius of Bi. Notice that

N∑
i=1

Ld(Bi) =

N∑
i=1

π
d
2

Γ
(
d
2 + 1

)Rd
i ≤ δ,

so that

NC max
i=1,...,N

Rd
i ≤ δ, C :=

π
d
2

Γ
(
d
2 + 1

) ,
where N denotes the number of balls. Hence, we have that for each i = 1, . . . , N that

Ri ≤
(

δ

NC

) 1
d

.
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For simplicity, let us choose δ := εd

2dC
. Observe that

m∑
j=1

|tj+1 − tj | ≤ ||x| − |y|| ≤ |x− y| ≤ 2Ri ≤
ε

N
1
d

.

The absolutely continuity property of v implies that there exists δ1 > 0 such that

(14)
m∑
j=1

|tj+1 − tj | ≤ δ1 ⇒
m∑
j=1

|v(tj+1)− v(tj)| <
ε

N
1
d

.

Now, if we choose ε sufficiently small, we get
ε

(NC)
1
d

≤ δ1.

Hence by (14) for all finite partitions {|x| < t1 < · · · < tm+1 < |y|} such that ti is a
point of continuity of v it holds

m∑
j=1

|v(tj+1)− v(tj)| <
ε

N
1
d

and, taking the supremum over these partitions, we obtain

essV
|y|
|x| (v) ≤

ε

N
1
d

.

Thus by (13)

OscBiu = sup
x,y∈Bi

|u(x)− u(y)| ≤ ε

N
1
d

and we obtain that for every i : 1, . . . , N

N∑
i=1

(OscBiu)
d ≤ N

εd

N
≤ ε.

Since ε is arbitrary, we are done. □

Let us consider W1,q
r (Ω) the Sobolev-type space of radial functions with q ∈ [1,∞],

defined as

W1,q
r (Ω) :=

{
u ∈ ACd

r (Ω) : ∇u ∈ Lq(Ω)
}
.

By (9) if p > d, then

W 1,p
r (Ω) ⊂ ACd

r (Ω),

where
W 1,p

r (Ω) := {u ∈ W 1,p(Ω) : u radial}.
Therefore

W 1,p
r (Ω) ⊂ W1,p

r (Ω).

On the other hand, by (8) for p = d

ACd
r (Ω) ∩ Ld(Ω) ⊂ W 1,d

r (Ω),

then
ACd

r (Ω) ⊂ Ld
loc(Ω),
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and we conclude that
W1,d

r (Ω) ⊂ W 1,d
r,loc(Ω).

2.3. The degenerate functional. Let us now define

F (u) =


ˆ
Ω
|∇u|pw dx if u ∈ ACd

r (Ω)

+∞ if u ∈ X \ACd
r (Ω).

Here, X is an appropriate set of integrable functions, that will be chosen in Section 4.
Further, let F : X → [0,+∞] denote the lower semicontinuous envelope of F w.r.t. the
topology of X. As we will see later on, our objective is to characterize the relaxation
of the functional F concerning Lp(Ω, (ŵp)

p−1)-convergence, where ŵp is is defined below
(see (20)). Let us now set

Domη :=

{
v : supp(η) → R : v ∈ W 1,1

loc (Ip,supp(η)),

ˆ
Ip,supp(η)

rd−1|v′(r)|pη(r)dr < +∞

}
.

We now introduce the set

(15) Domr,w :=
{
u : Ω → R : measurable and u(x) = v(|x|) for some v ∈ Domη

}
.

We point out that

Domr,w =
{
u : Ω → R : measurable, u ∈ W 1,1

loc (IΩ,w),

ˆ
IΩ,w

|∇u|pw dx < +∞
}
.

Lemma 2.3 (Fundamental convergence). Suppose that η is finitely degenerate. Let
(uh)h ⊂ W 1,1(Ω) be a sequence of radial functions such that

(a) sup
h∈N

ˆ
IΩ,w

|∇uh|pw dx < +∞ ,

(b) for every i = 1, . . . , Nη there exists ci such that ai < ci < bi and there exist
finite the following limits

lim
h→+∞

uh(x) = di ∈ R for all x ∈ IΩ,w such that |x| = ci.

Then there exists a subsequence (uhk
) and a radial function u : IΩ,w → R such that

(i) lim
k→+∞

uhk
(x) = u(x) for every x ∈ IΩ,w ,

(ii) u ∈ Domr,w,
(iii) ˆ

IΩ,w

|∇u|pwdx ≤ lim inf
hk→+∞

ˆ
IΩ,w

|∇uhk
|pwdx.

Proof. Let us note that, by assumption (b), IΩ,w ̸= ∅. By hypothesis, we have that (uh)h
is a sequence of radial functions. That is,

uh(x) = vh(|x|), for all h ∈ N, x ∈ Ω.

Notice that

∂uh(x)

∂xj
= v′h(|x|)

xj
r
, r = |x|, j = 1, . . . , d,
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and thus

ˆ
IΩ,w

|∇uh|pw dx =

ˆ
IΩ,w




d∑
j=1

|v′h(|x|)|2
|xj |2

|x|2


1
2


p

w dx

=

ˆ
IΩ,w

|v′h(|x|)|pw dx.

Moreover, since w is radial, we have that by the change of variable theoremˆ
IΩ,w

|v′h(|x|)|pw dx =

ˆ
IΩ,w

|v′h(|x|)|pη(|x|) dx

= ωd

ˆ
Ip,supp(η)

|v′h(r)|prd−1η(r) dr,

where

ωd := Hd−1(Sd).(16)

By (a), notice that

sup
h∈N

ˆ
Ip,supp(η)

|v′h(r)|prd−1η(r) dr < +∞.

Then there exist a subsequence (vhk
)k of (vh)h, and a function v ∈ Lp(Ip,supp(η), η) such

that

(17) v′hk
→ v weakly in Lp(Ip,supp(η), η) as k → ∞ ,

∂uhk

∂xj
→ v(|x|) xj

|x|
weakly in Lp(IΩ,w, w) as k → ∞ , j = 1, . . . , d.

Moreover, let us observe that

Lp
loc(IΩ,w, w) ⊂ L1

loc(IΩ,w) , Lp
loc(Ip,supp(η), η) ⊂ L1

loc(Ip,supp(η)).

Indeed, let us notice that by the change of variableˆ
IΩ,w

w
− p′

p dx = ωd

ˆ
Ip,supp(η)

η
− p′

p rd−1dr,

where 1
p +

1
p′ = 1 . Then for i = 1, . . . , Nη, and for each K ⋐ (ai, bi), we get by (3), and

since p′

p = 1
p−1 that

ˆ
K
η
− p′

p rd−1dr ≤ bd−1
i

ˆ
K
η
− p′

p dr < +∞.

Let us take a compact set K ⋐ Iαi,βi
, i = 1, . . . , Nη with Iαi,βi

as defined in (6). Then
by Hölder’s inequality

ˆ
K
|z|dx ≤

(ˆ
K
|z|pwdx

) 1
p
(ˆ

K
w

− p′
p dx

) 1
p′

< +∞(18)
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for any z ∈ Lp(K, w). Notice that from (17) and (18), we get that v ∈ L1
loc(Iα,β;R) and

ˆ
Iα,β

∣∣∣∣∂uhk

∂xj
− v(|x|) xj

|x|

∣∣∣∣ dx → 0 as k → ∞ ,

for each [α, β] ⊂ Ip,supp(η). Let us consider u : Ω → R defined in the following way: let
i = 1, . . . , Nη, and consider an interval (ai, bi) and define Iai,bi as in (6), so that we let

ui(x) :=



0 if x ∈ Ω \ Iai,bi ,

di +

ˆ |x|

ci

v(r)dr if ci ≤ |x| < bi,

di +

ˆ ci

|x|
v(r)dr if ai ≤ |x| < ci.

Then we define

u(x) =

Nη∑
i=1

ui(x)χIai,bi
(x).

In what follows, we aim to prove that

u ∈ W 1,1
loc (IΩ,w).

As before, let us take some K ⋐ Iαi,βi
, i = i, . . . , Nη. First, notice that by the funda-

mental theorem of calculus, one has that

∂u

∂xj
= v(|x|) xj

|x|
,

and then

d∑
j=1

ˆ
K

∣∣∣∣ ∂u∂xj

∣∣∣∣dx ≤
ˆ
K
|v(|x|)|dx ≤ ωd

ˆ bi

ai

rd−1v(r)dr < +∞,

where ωd is defined according (16). Moreover, let us notice that

ˆ
IΩ,w

|∇u|pwdx =

ˆ
IΩ,w

|v′(|x|)|pwdx = ωd

ˆ
Ip,supp(η)

|v′(r)|prd−1η(r)dr(19)

≤ ωd lim inf
hk

ˆ
Ip,supp(η)

|v′hk
(r)|prd−1η(r)dr

= lim inf
hk

ˆ
IΩ,w

|∇uhk
|pwdx < +∞,

where in (19) we have used that η is finitely degenerate, and in the last inequality we
have used the radiality and assumption (a). □
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2.4. An auxiliary weight. In what follows, by following closely [9] we define a suitable
weight ŵp for 1 < p < +∞ for which it is possible to prove a Poincaré inequality
involving w and (ŵp)

p−1. Let w : Ω → [0,∞) be a function satisfying (2) and (4). We
let ŵp : Ω → [0,+∞[ be defined as

(20) ŵp(x) :=



lim
|x|→a+i

ˆ
I
|x|, ai+bi

2

1

[|y|(d−1)pw(y)]
1

p−1

dy

−1

if |x| = aiˆ
I
|x|, ai+bi

2

1

[|y|(d−1)pw(y)]
1

p−1

dy

−1

if ai < |x| ≤ 3ai+bi
4ˆ

I 3ai+bi
4 ,

3ai+bi
4

1

[|y|(d−1)pw(y)]
1

p−1

dy

−1

if 3ai+bi
4 ≤ |x| ≤ ai+3bi

4ˆ
Iai+bi

2 ,|x|

1

[|y|(d−1)pw(y)]
1

p−1

dy

−1

if ai+3bi
4 ≤ |x| < bi

lim
|x|→b−i

ˆ
Iai+bi

2 ,|x|

1

[|y|(d−1)pw(y)]
1

p−1

dy

−1

if |x| = bi

0 if x ∈ Ω \ IΩ,w .

Remark 2.4. Let us point out that the definition of ŵp is the extension of the one
considered in [9] to our multivariate context. Like as in the one-dimensional case, its
definition heavily depends on p, and it is defined as the inverse of an multivariate integral
term along annular regions (or spherical shells) dictated by the decomposition of the
weight η. This allows us to use its nice properties, such as continuity, that is needed to
prove Proposition 2.8. Furthermore, let us also notice that ŵp still is a radial function
as the original weight w. That is,

ŵp(·) = ω−1
d η̂p(| · |),
10



where

η̂p(t) :=



lim
t→a+i

(ˆ ai+bi
2

t

1

(sd−1η(s))
1

p−1

ds

)−1

if t = ai(ˆ ai+bi
2

t

1

(sd−1η(s))
1

p−1

ds

)−1

if ai < t ≤ 3ai+bi
4(ˆ 3ai+bi

4

3ai+bi
4

1

(sd−1η(s))
1

p−1

ds

)−1

if 3ai+bi
4 ≤ t ≤ ai+3bi

4(ˆ t

ai+bi
2

1

(sd−1η(s))
1

p−1

ds

)−1

if ai+3bi
4 ≤ t < bi

lim
t→b−i

(ˆ t

ai+bi
2

1

(sd−1η(s))
1

p−1

ds

)−1

if t = bi

0 if t ∈ supp(η) \ Ip,supp(η) .

Remark 2.5. As in [13, Sect. 4.2] we could introduce a truncated weight

η̃p(r) := min{η(r), η̂p(r), 1} , r ∈ [0,+∞]

if r ∈ Ω is a Lebesgue’s point of η and 0 otherwise, and the corresponding weight

w̃p(x) := η̃p(|x|) = min{w(x), ŵp(x), 1}.

As in [13, Proposition 4.6] w̃ ∈ L∞(Ω) and

(21) L2(Ω, ŵp) ∪ L2(Ω, w) ∪ L2(Ω) ⊂ L2(Ω, w̃p) .

In the next Lemma we prove that (20) is well-defined. We only need to observe that

Ip,supp(rd−1η(·)) = Ip,supp(η).(22)

Lemma 2.6. Let us consider the Ip,supp(η), and Ip,supp(rd−1η(·)) defined according to (3).

Then (22) holds true.

Proof. Let us first prove that Ip,supp(η) ⊂ Ip,supp(rd−1η(·)). Take r ∈ Ip,supp(η). Then there

exists ε > 0 such that η
− 1

p−1 ∈ L1(r − ε, r + ε). Notice that
ˆ r+ε

r−ε

1

[sd−1η(s)]
1

p−1

ds ≤ 1

[r − ε]
d−1
p−1

ˆ r+ε

r−ε

1

[η(s)]
1

p−1

ds < +∞

and thus r ∈ Ip,supp(rd−1η(·)). Let us prove the reverse inclusion. Let us take r ∈
Ip,supp(rd−1η(·)). Notice that

ˆ r+ε

r−ε

1

[η(s)]
1

p−1

ds ≤ (r + ε)
d−1
p−1

ˆ r+ε

r−ε

1

[sd−1η(s)]
1

p−1

ds < +∞,

and we are done. □
11



The previous function ŵp will play an important role in the relaxation of F . In par-
ticular, we will consider its relaxation involving the Lp(Ω, (ŵp)

p−1)-convergence. Before
providing the precise details of how we relax F , let us before reproduce some proper-
ties of the functions ŵp in the following proposition closely to the one obtained in [9,
Proposition 2.5]. To this aim, we need to introduce the following notion of increasing,
and decreasing functions along curves.

Definition 2.7. Let us suppose that we have a curve γ : [0, 1] → Rd.

I. We say that a function u : Rd → R is increasing along γ if the following holds
true.

If 0 ≤ t1 < t2 ≤ 1, and |γ(t1)| ≤ |γ(t2)| implies that u(γ(t1)) ≤ u(γ(t2)).(23)

II. We say that a function u : Rd → R is decreasing along γ if the following holds
true.

If 0 ≤ t1 < t2 ≤ 1, and |γ(t1)| ≤ |γ(t2)| implies that u(γ(t2)) ≤ u(γ(t1)).(24)

Proposition 2.8.

(i) Suppose that w
− 1

p−1 is not locally summable in Ω, that is, IΩ,w = ∅. Then
ŵp ≡ 0.

(ii) For each i = 1, . . . , Nη, let us define Iαi,βi
αi < βi as in (6) for two generic

numbers αi, βi. ŵp is constant in I 3ai+bi
4

,
ai+3bi

4

, increasing along the curve

γ1(t) = (1 − t)x + ty which is contained in I
ai,

3ai+bi
4

, and where |x| = ai,

|y| = 3ai+bi
4 , and t ∈ [0, 1], decreasing along the curve γ2(t) = (1 − t)x + ty,

where |x| = ai+3bi
4 , |y| = bi which is contained in Iai+3bi

4
,bi

and absolutely con-

tinuous along γ1(t) and γ2(t), t ∈ [0, 1]. In particular, the following hold true:

0 < ŵp(x) ≤ sup
y∈Iai,bi

ŵp(y) < ∞ ∀x ∈ Iai,bi ,

inf
x∈Iα,β

w(x) > 0 for each x ∈ Iα,β, ai < α < β < bi,

and ŵp(ai) = 0 (respectively ŵp(bi) = 0) if and only if w
− 1

p−1 /∈ L1
(
I
ai,

ai+bi
2

)
(respectively w

− 1
p−1 /∈ L1

(
Iai+bi

2
,bi

)
).

(iii) We have

∂ŵp

∂xj
=

(ŵp)
2

w
1

p−1

xj
|x|

a.e. in I
ai,

3ai+bi
4

∪ Iai+3bi
4

,bi
.

(iv) Suppose that w
− 1

p−1 ∈ L1(Ω). Then there exists a constant c > 0 such that

0 <
1

c
≤ ŵp(x) ≤ c a.e. x ∈ Ω .

(v) Suppose that w is finitely degenerate in Ω, that is, (4) holds with 1 ≤ Nη < ∞.
Then there exists a constant c > 0 such that

0 ≤ ŵp(x) ≤ c a.e. x ∈ Ω .
12



(vi) Suppose that w is not finitely degenerate in Ω, that is, (4) holds with Nη = ∞.
Then ŵp ∈ L∞

loc(IΩ,w).

Remark 2.9. Let us notice that since ŵp is a radial function, along every increasing
and open curve γ : [0, 1] → Iai,bi , i = 1, . . . , Nη, the statements of Proposition 2.8
hold true. Furthermore, as already pointed out in the onedimensional (see [9, Remark
2.6]), if w is not finitely degenerate in some open set Ω, then it can also happens that
ŵp /∈ L1(Ω). Here, the example given in [9, Remark 2.6] serves as a recipient to the
present multidimensional case. Indeed, suppose that supp(η) ⊂ (0, 1) and let (ai, bi),
i = 1, . . . ,+∞, be a sequence of disjoint open intervals in (0, 1) and mi be a sequence of
positive real numbers which will be fixed later on. Let η : (0, 1) → [0,+∞) defined as
follows:

η(r) :=


mir

1−d(r − ai)
α if ai ≤ r ≤ ai+bi

2 ,

mir
1−d(bi − r)α if ai+bi

2 ≤ r ≤ bi,

0 otherwise.

Let us fix ai ≤ r ≤ 3ai+bi
4 . Then the corresponding auxiliar weight associated to η is

given by

η̂p(r) =
(αp − 1)m

1
p−1

i (r − ai)
αp−1

1−
(
2(r−ai)
bi−ai

)αp−1 ,

where αp := α
p−1 , and thus ŵp(x) = ω−1

d η̂p(|x|), x ∈ B1(0) the d-dimensional ball of

radius 1. By [9, Remark 2.6], one gets that η̂p /∈ L1((0, 1)), and thus ŵp /∈ L1(Ω).

3. Weighted Poincaré inequalities

3.1. A Poincaré inequality with a double weight. In what follows, we derive a
weighted Poincaré inequality that we use later on. We first state some preliminary
lemmas.

Proposition 3.1. Let d ≥ 1 be a natural number and define ωd as in (16). Let us
consider a fixed u ∈ Domr,w, i = 1, . . . , Nη, and let 1

p + 1
p′ = 1. Let us take ζ, x ∈ IΩ,w

such that ai < |ζ| ≤ |x| ≤ ai+bi
2 . The following hold true:

(25) |u(x)− u(ζ)|ωd
p′
√

ŵp(ζ) ≤

(ˆ
I|ζ|,|x|

|∇u(y)|pw(y) dy

) 1
p

;

(26) |u(ζ)|p(ŵp(ζ))
p−1ωp

d ≤ 2p−1

(
|u(x)|p(ŵp(ζ))

p−1ωp
d +

ˆ
Iai,|x|

|∇u(y)|pw(y) dy

)
.

Let us take ζ, x such that ai+bi
2 ≤ |x| ≤ |ζ| < bi. The following hold true:

(27) |u(x)− u(ζ)|ωd
p′
√

ŵp(ζ) ≤

(ˆ
I|x|,|ζ|

|∇u(y)|pw(y) dy

) 1
p

;

13



(28) |u(ζ)|pωp
d(ŵp(ζ))

p−1 ≤ 2p−1

(
|u(x)|pωp

d(ŵp(ζ))
p−1 +

ˆ
I|x|,bi

|∇u(y)|pw(y) dy

)
.

Proof. In what follows, we closely follows the proof of [9, Proposition 2.8]. Let us consider
u ∈ Domr,w. By definition, one has that there exists v ∈ Domη such that

u(x) = v(|x|) for a.e. x ∈ IΩ,w, v ∈ W 1,1(Ip,supp(η)).

By the immersion ofW 1,1(Ip,supp(η)) intoAC(Ip,supp(η)) , we also have that v ∈ ACloc((ai, bi)),

for all i = 1, . . . , Nw. Then for every r1, r2 ∈]ai, ai+bi
2 ] such that ai < r2 ≤ r1 ≤ ai+bi

2 we
have

|v(r1)− v(r2)| =
∣∣∣∣ˆ r1

r2

v′(r) dr

∣∣∣∣ .
Notice that

|v(r1)− v(r2)| =
∣∣∣∣ˆ r1

r2

v′(r) dr

∣∣∣∣ ≤ (ωd

ˆ r1

r2

|v′(r)|prd−1η(r) dr

) 1
p

(
ω
− p′

p

d

ˆ r1

r2

[rd−1η]
− p′

p (r) dr

) 1
p′

≤
(
ωd

ˆ r1

r2

|v′(r)|prd−1η(r) dr

) 1
p

(
ω
− p′

p

d

ˆ ai+bi
2

r2

[rd−1η]
− p′

p (r) dr

) 1
p′

.

Then, by letting |x| = r1, and r2 = |ζ| with x, ζ ∈ I
ai,

ai+bi
2

, one gets

ωd

ˆ |x|

|ζ|
|v′(r)|prd−1η(r)dr = ωd

ˆ |x|

|ζ|

∣∣∣∣∣∣
v′(r)

√∑d
j=1 |xj |2

r

∣∣∣∣∣∣
p

rd−1η(r)dr

= ωd

ˆ |x|

|ζ|

∣∣∣∣∣∣
√∑d

j=1 |v′(r)xj |2

r

∣∣∣∣∣∣
p

rd−1η(r)dr

= ωd

ˆ |x|

|ζ|

∣∣∣∣∣∣
√√√√ d∑

j=1

∣∣∣∣ ∂u∂xj

∣∣∣∣2
∣∣∣∣∣∣
p

rd−1η(r)dr

=

ˆ
I|ζ|,|x|

|∇u|pwdy.

14



Hence, we have obtained that

|u(x)− u(ζ)| ≤

(ˆ
I|ζ|,|x|

|∇u|pwdy

) 1
p
(
ω
− p′

p

d

ˆ ai+bi
2

|ζ|
[rd−1η]

− p′
p (r) dr

) 1
p′

=

(ˆ
I|ζ|,|x|

|∇u|pwdy

) 1
p
(
ω1−p′

d

ˆ ai+bi
2

|ζ|
[rd−1η]

− p′
p (r) dr

) 1
p′

(29)

=

(ˆ
I|ζ|,|x|

|∇u|pwdy

) 1
p
(
ω1−p′

d

ˆ ai+bi
2

|ζ|
r−(d−1)p′rd−1η

− p′
p (r) dr

) 1
p′

=

(ˆ
I|ζ|,|x|

|∇u|pwdy

) 1
p

ω1−p′

d

ˆ
I
|ζ|, ai+bi

2

[|y|(d−1)pw(y)]
− 1

p−1 dy

 1
p′

,

where in equality we have used that p′

p + 1 = p′. Furthermore, notice that if ai <

|ζ| ≤ min{3ai+bi
4 , |x|}, then (25) follows by (29) and the definition of ŵ. Furthermore, if

3ai+bi
4 ≤ |ζ| ≤ ai+bi

2 , since we have that(ˆ
|ζ|,ai+bi

2

[|y|(d−1)pw(y)]
− 1

p−1 dy

) 1
p′

≤ 1
p′
√
ŵp(ζ)

,

(25) still follows by (29) and the definition of ŵp. Then, since

|u(ζ)|p ≤ 2p−1 (|u(x)|p + |u(ζ)− u(x)|p) ,

by (25), we then deduce (26). The remaining formulas (27) and (28) follow by arguing
in a similar way. □

Remark 3.2. Let us observe that the previous proposition is the multidimensional version
of [9, Proposition 2.8]. Here, we have closely followed the argument used in the one-
dimensional case, which relies on the fundamental theorem of calculus. However, the
multivariate version of this theorem is somewhat different and is not directly related
to absolutely continuous functions. Additionally, unlike the one-dimensional case, in
our current setting we have a Poincaré inequality, which differs from its onedimensional
counterpart by a factor of ωp

d.

Let us now give some consequences of Proposition 3.1 in the following Corollary.

Corollary 3.3. Let us fix u ∈ Domr,w, and i = 1, . . . , Nη. Then the following hold true:

(i) |u(ζ)|pωp
d(ŵp(ζ))

p−1 ≤ 2p−1

(
|u (x)|p ωp

d(ŵp(ζ))
p−1 +

ˆ
Iai,bi

|∇u(y)|pw(y) dy

)
,

for each ζ ∈ IΩ,w with |ζ| ∈ (ai, bi), and for each x ∈ IΩ,w, such that |x| = ai+bi
2 .

Furthermore, u ∈ Lp(Iai,bi , (ŵp)
p−1), and if Nη < +∞ then u ∈ Lp(Ω, (ŵp)

p−1).
15



(ii) Let us suppose that

ˆ ai+bi
2

ai

1

[rd−1η(r)]
1

p−1

dr = +∞

(respectively, suppose that

ˆ bi

ai+bi
2

1

[rd−1η(r)]
1

p−1

dr = +∞). Then there exists

lim
|x|→a+i

(up (ŵp)
p−1)(x) = 0 (respectively, lim

|x|→b−i

(up (ŵp)
p−1)(x) = 0) .

(iii) Suppose that

ˆ ai+bi
2

ai

1

[rd−1η(r)]
1

p−1

dr < ∞

(respectively, suppose that

ˆ bi

ai+bi
2

1

[rd−1η(r)]
1

p−1

dx < ∞). Then

u ∈ ACd
r

(
I
ai,

ai+bi
2

)
(respectively, u ∈ ACd

r

(
Iai+bi

2
,bi

)
.

Proof. (i) Note that by (25) and (26) with x such that |x| = ai+bi
2 , we can obtain the

desired inequality. Let us now justify (ii). Consider ζ, x ∈ IΩ,w such that ai < |ζ| ≤ |x| ≤

ai+bi
2 . Further, suppose that

ˆ ai+bi
2

ai

1

[rd−1η(r)]
1

p−1

dr = +∞. By the definition of ŵp and

its radiality, we obtain that lim|ζ|→a+i
ŵp(ζ) = 0. Furthermore, for each x ∈ I

ai,
ai+bi

2

, we

have that by (26) the following inequality holds true:

lim sup
|ζ|→a+i

|u(η)|pωp
d(ŵp(η))

p−1 ≤ 2p−1

ˆ
Iai,|x|

|∇u(y)|pw dy.

Hence, by letting lim as |x| → a+i in the previous inequality, then

lim
|ζ|→a+i

|u(ζ)|p(ŵp(ζ))
p−1 = 0 .

The same reasoning works for

ˆ bi

ai+bi
2

1

[rd−1η(r)]
1

p−1

dx = +∞ because the radiality of ŵp.

Then, we immediately obtain that

lim
|ζ|→b−i

|u(ζ)|p(ŵp(ζ))
p−1 = 0 .

(iii) To conclude, let us now suppose that

ˆ ai+bi
2

ai

1

[rd−1η(r)]
1

p−1

dr < ∞. We now prove

that u ∈ ACd
r

(
I
ai,

ai+bi
2

)
. Since u ∈ ACd

r

(
I
ai+δ,

ai+bi
2

)
, for each δ > 0, it is sufficient to

prove that there exists the following limit

(30) lim
|ζ|→a+i

u(ζ) ∈ R.
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Indeed, since u can be written in terms of a radial function v, one gets the following:
consider ζ ∈ I

ai,
ai+bi

2

. Since u(·) = v(| · |)

(31) v(|ζ|) = v
(ai + bi

2

)
−
ˆ ai+bi

2

|ζ|
v′(r)dr,

for some x ∈ IΩ,w such that |x| = ai+bi
2 . Furthermore, let us notice that

ˆ ai+bi
2

|ζ|
|v′(r)|dr ≤

(
ωd

ˆ ai+bi
2

|ζ|
|v′(r)|prd−1η(r)dr

) 1
p
(
ω
− 1

p−1

d

ˆ ai+bi
2

|ζ|
(rd−1η(r))

− 1
p−1dr

) 1
p′

≤

((
ai + bi

2

)d−1

ωd

ˆ ai+bi
2

|ζ|
|v′(r)|pη(r)dr

) 1
p

×(32)

×

(
ω
− 1

p−1

d

ˆ ai+bi
2

|ζ|
(rd−1η(r))

− 1
p−1dr

) 1
p′

< +∞.

Therefore, by (31) and (32) ,we then deduce the existence of the desired limit (30).
Lastly, let us notice that the remaining case follows by using the previous reasoning.

□In what follows, we state our Poincaré type inequality in higher dimension with
respect to the weight function (ŵp)

p−1.

Theorem 3.4 (Poincaré type inequality on Domr,w). Let 1 ≤ Nη ≤ +∞. For every u ∈
Domr,w, there exists a family of points xi ∈ Iai,bi such that |xi| = ai+bi

2 , for i = 1, . . . , Nη

such that

(33)

Nη∑
i=1

ωp−1
d

bi − ai

ˆ
Iai,bi

|u(ζ)− u (xi)|p (ŵp(ζ))
p−1 dζ ≤

ˆ
IΩ,w

|∇u(y)|pw(y) dy .

Remark 3.5. As in [13, Theorem 4.11], since w̃p ≤ ŵp on Ω, inequality (33) holds with
the weight w̃p in the left hand side, instead of ŵp. Since the results of this paper from
this point on will be based on this Poincaré inequality, we can assume that ŵp is bounded
(up to change it by w̃p) and so by (21) we can assume that

(34) Lp(Ω) ⊂ Lp(Ω, (ŵp)
p−1).

Proof. The proof of this Proposition can be done by using the radiality of u, and the
same reasoning used in the onedimensional case in [9, Theorem 2.10]. For the sake of
completeness, we give the proof of (33). Take 1 ≤ i ≤ Nη, and consider xi on the sphere

of radius ai+bi
2 . By in (25), one gets∣∣∣∣u(η)− u

(
ai + bi

2

)∣∣∣∣p (ŵp(η))
p−1 ≤

ˆ ai+bi
2

ai

|u′(y)|pw(y) dy.

|u(xi)− u(ζ)|pωp
d (ŵp(ζ))

p−1 ≤
ˆ
I
|ζ|, ai+bi

2

|∇u(y)|pw(y) dy ;

17



Hence, by integrating with respect to ζ gives thatˆ
I
ai,

ai+bi
2

|u(ζ)− u (xi)|p ωp
d(ŵp(ζ))

p−1 dζ ≤ ωd(bi − ai)

2

ˆ
I
ai,

ai+bi
2

|∇u(y)|pw(y) dy.

Further, by letting the same reasoning, we getˆ
Iai+bi

2 ,bi

|u(ζ)− u (xi)|p ωp
d(ŵp(ζ))

p−1 dζ ≤ ωd(bi − ai)

2

ˆ
Iai+bi

2 ,bi

|∇u(y)|pw(y) dy.

Therefore, we deduce thatˆ
Iai,bi

|u(ζ)− u (xi)|p ωp
d(ŵp(ζ))

p−1 dζ ≤ ωd(bi − ai)

2

ˆ
Iai,bi

|∇u(y)|pw(y) dy

and our conclusion follows. Now, since u ∈ Domr,w, then

Nη∑
i=1

ˆ
Iai,bi

|∇u(y)|pw(y) dy =

ˆ
IΩ,w

|∇u(y)|pw(y) dy < +∞,

and we are done. □
By following the same reasoning used in [9], we define

W = W (Ω, w) := Domr,w ∩ Lp(Ω, (ŵp)
p−1).(35)

In the next, we prove that W endowed with a suitable norm is a Banach space.

Proposition 3.6. Let us consider W be defined as in (35), and endow it with the norm

∥u∥W := p

√
∥u∥p

Lp(IΩ,w,(ŵp)p−1)
+ ∥∇u∥pLp(IΩ,w,w) if u ∈ W .(36)

Then (W, ∥u∥W ) is a Banach space. Further, if w is a finitely degenerate weight, then

(37) ACd
r (Ω) is dense in (W, ∥ · ∥W )

in the following sense. For every u ∈ W there exists a sequence (uh)h ⊂ ACd
r (Ω) such

that

lim
h→∞

uh = u in (W, ∥ · ∥W ) ,

that is,

(38) lim
h→∞

uh = u in Lp(Ω, (ŵp)
p−1), and lim

h→+∞
∇uh = ∇u in Lp(IΩ,w, w;Rd) .

Proof. Its proof is a direct consequence of the radial condition and [9, Proposition 2.11].
Indeed, let us first observe that W is a Banach space. Suppose that (uh)h ⊂ (W, ∥ · ∥W )
is a Cauchy sequence. Hence by definition uh(x) = vh(|x|), where vh ∈ W 1,1(supp(η)) ∩
Lp(supp(η), (η̂)p−1). Then by [9, Proposition 2.11], the space

W̃ := Domη ∩ Lp(supp(η), (η̂p)
p−1)

is a Banach space with norm

∥v∥W̃ := p

√
∥u∥p

Lp(Ip,supp(η),(η̂p)
p−1)

+ ∥v′∥pLp(Ip,supp(η),η)
if v ∈ W̃ .
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Hence, it follows that there exist v ∈ Lp(Ip,supp(η), (η̂p)
p−1), and ṽ ∈ Lp(Ip,supp(η), η) such

that,

(39) vh → v in Lp(Ip,supp(η), (η̂p)
p−1), and v′h → ṽ in Lp(Ip,supp(η), η) ,

as h → +∞. Furthermore, for each i = 1, . . . , Nη,

(40) v ∈ AC((ai, bi)) and v′ = ṽ a.e. in (ai, bi).

Therefore, by the radiality of (uh) we can write (39) in terms of uh, and by (40) we are
done. □

4. Relaxation for finitely degenerate weights

In this section (and in the following one) we will suppose that w is a finitely degenerate
weight. We consider X = Lp(Ω, (ŵp)

p−1) where ŵp is the weight as defined in (20). Let
us set

F (u) :=


ˆ
Ω
|∇u|pw dx if u ∈ ACd

r (Ω),

+∞ if u ∈ X \ACd
r (Ω)

and thus we study the lower semicontinuous envelopes w.r.t. Lp((ŵp)
p−1)-convergence,

that is

F (u) = sc−(Lp((ŵp)
p−1))− F (u).

In what follows, we let

D := {u ∈ Lp(Ω, (ŵp)
p−1) : F (u) < +∞} .

We notice that, if IΩ,w = ∅, then ŵp ≡ 0 (see Proposition 2.8 (i)). Therefore, one

gets that Lp((a, b), (ŵp)
p−1) = {0}, D = {0} and F (u) = 0. In the next theorem, we

then state an explicit formula for the relaxed functional F with respect to an opportune
convergence.

Theorem 4.1. We have

D = Domr,w

where Domr,w is defined by (15) and the following representation holds for the relaxed
functional

F (u) =


ˆ
IΩ,w

|∇u|pw dx if u ∈ Domr,w ∩ Lp(Ω, (ŵp)
p−1)

+∞ if u ∈ Lp(Ω, (ŵp)
p−1) \Domr,w.

Proof. Note that by Lemma 2.3 and Proposition 3.1, we deduce that D ⊆ Domr,w.
Furthermore, for every u ∈ D one gets

u ∈ W 1,1
loc (IΩ,w) ∩ Lp(IΩ,w, (ŵp)

p−1), up(ŵp)
p−1 ∈ L∞(IΩ,w) .

In the next, we show that for every u ∈ Lp(Ω, (ŵp)
p−1)ˆ

IΩ,w

|∇u|pw dx ≤ F (u).
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By the definition of F , we directly suppose that F (u) < +∞. Therefore there exists a
sequence (uh) ⊂ Domr,w such that uh → u in Lp(Ω, (ŵp)

p−1) and

F (u) = lim
h→+∞

F (uh) = lim
h→+∞

ˆ
Ω
|∇uh|pw dx.

Then, thanks to Lemma 2.3 we get up to extracting a subsequence thatˆ
Ω
|∇u|pw dx ≤ lim inf

h→+∞

ˆ
Ω
|∇uh|pw dx = lim

h→+∞

ˆ
Ω
|∇uh|pw dx = F (u)

and we are done. To conclude, it remains to prove that

(41) F (u) ≤
ˆ
IΩ,w

|∇u|pw dx, ∀u ∈ Domr,w

and thus Domr,w ⊆ D. In fact, this is a consequence of (37). Indeed, by property
(i) in Corollary 3.3 we have that that Domr,w ⊂ Lp(Ω, (ŵp)

p−1). Thus, if u ∈ W =

Domr,w ∩ Lp(Ω, (ŵp)
p−1) = Domr,w, by (37), there exists a sequence (uh)h ⊂ ACd

r (Ω)
such that (38) holds true. Hence, from (38), one has that

F (u) ≤ lim inf
h→∞

F (uh) ≤ lim
h→∞

ˆ
IΩ,w

|∇uh|pw dx =

ˆ
IΩ,w

|∇u|pw dx ,

and thus (41) holds true. □

Let us define the following spaces:

C1
r (Ω) :=

{
u ∈ C1(Ω) : u is radial in Ω

}
,

Lipr(Ω) :=
{
u ∈ Lip(Ω) : u is radial in Ω

}
,

W1,p
r (Ω) : :=

{
u ∈ ACd

r (Ω) : ∇u ∈ Lp(Ω)
}
.

Notice that

W1,p
r (Ω) ⊂ Lp

loc(Ω, (ŵp)
p−1).

We consider the following functionals defined on the space Lp(Ω, (ŵp)
p−1)

F 1(u) :=


ˆ
Ω
|∇u|pw dx if u ∈ C1

r (Ω),

+∞ if u ∈ Lp(Ω, (ŵp)
p−1) \ C1

r (Ω),

F 2(u) :=


ˆ
Ω
|∇u|pw dx if u ∈ Lipr(Ω),

+∞ if u ∈ Lp(Ω, (ŵp)
p−1) \ Lipr(Ω),

F 3(u) :=


ˆ
Ω
|∇u|pw dx if u ∈ W1,p

r (Ω)

+∞ if u ∈ Lp(Ω, (ŵp)
p−1) \W1,p

r (Ω).

Since
C1
r (Ω) ⊂ Lipr(Ω) ⊂ W1,p

r (Ω) ⊂ ACd
r (Ω),

we have
F 1(u) ≤ F 2(u) ≤ F 3(u) ≤ F (u).
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Note also that, when q = ∞, F 2 and F 3 agree. Moreover, let us consider the corre-
sponding lower semicontinuous envelopes w.r.t. the Lp(Ω, (ŵp)

p−1)-convergence

(42) F j(u) = sc−(Lp(Ω, (ŵp)
p−1))− Fj(u) j = 1, 2, 3,

we have
F 1(u) ≤ F 2(u) ≤ F 3(u) ≤ F (u).

Corollary 4.2. For every u ∈ Lp(Ω, (ŵp)
p−1) we have

F 1(u) = F 2(u) = F 3(u) = F (u),

where F j(u), j = 1, 2, 3 are the functionals in (42).

Proof. This is direct consequence of [9, Corollary 3.2] and the radiality of the involved
functions. □

Remark 4.3. Let us point out that, as a consequence of Corollary 4.2, the closure of
Lipr(Ω) with respect to the norm (36) is given by

Lipr(Ω)
W

= Domr,w ∩ Lp(Ω, (ŵp)
p−1).(43)

On the other hand, observe that for p = 2, our Corollary 4.2 recovers the one stated
in [13, Corollary 4.23] in the one-dimensional case, now extended to higher dimensions
under radial symmetry assumptions. Furthermore, it is important to note that, according
to [13, Remark 3.4], when d ≥ 2, and p = 2, there exists a non-radial weight for which
the equivalences stated in Corollary 4.2 no longer hold. In particular, the identity (43)
may fail in the absence of radial symmetry. An explicit counterexample illustrating this
phenomenon can be found in [11, Example 2.2].

Remark 4.4. Let us observe that, when w = 1, or more generally w ≥ C > 0, then
IΩ,w = Ω and, since by Remark 3.5

Lp(Ω) ⊂ Lp(Ω, (ŵp)
p−1),

we have

F (u) :=


ˆ
Ω
|∇u|pw dx if u ∈ ACd

r (Ω),

+∞ if u ∈ Lp(Ω, (ŵp)
p−1) \ACd

r (Ω),

=


ˆ
Ω
|∇u|pw dx if u ∈ ACd

r (Ω),

+∞ if u ∈ Lp(Ω) \ACd
r (Ω).

By Theorem 4.1 we have

F (u) =


ˆ
Ω
|∇u|pw dx if u ∈ Domr,w ∩ Lp(Ω),

+∞ if u ∈ Lp(Ω) \Domr,w.

By observing that Domr,w ∩ Lp(Ω) = W 1,p
r (Ω) defined in (2.2), we recover the classical

results, i.e.

F 1(u) = F 2(u) = F 3(u) = F (u) =


ˆ
Ω
|∇u|pw dx if u ∈ W 1,p

r (Ω),

+∞ if u ∈ Lp(Ω) \W 1,p
r (Ω).
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5. Existence of minimizers for radial degenerate variational problems

Let us consider the following integral functional

H(u) := F (u) + ∥u− g∥Lp(Ω,(ŵp)p−1)

where g is a radial function, g ∈ Lp(Ω, (ŵp)
p−1), defined in the Banach space W (see

(35)) equipped with the norm ∥u∥W as defined in (36).

Theorem 5.1. There exists an unique minimizer u0 for the minimum problem

min
W

H(u),

i.e. for every “competitor” z ∈ W we have

H(u0) ≤ H(z).

Proof. It is a consequence of the classical direct methods of the Calculus of Variations,
since the functional H(u) is coercive and lower semicontinuous with respect to the norm
in Lp(IΩ,w, w). The uniqueness is due to the strict convexity of H(u). □

Now, let us consider the larger space

Domw :=

{
u : Ω → R : u ∈ W 1,1

loc (IΩ,w),

ˆ
IΩ,w

|∇u|pwdx < +∞

}
=

Nw⋂
i=1

Dom
i
w,

where IΩ,w is defined according to (5). We have

Domw :=

Nw⋂
i=1

Dom
i
w,

with

Dom
i
w :=

{
u : Ω → R : u ∈ W 1,1

loc (Iai,bi),

ˆ
Iai,bi

|∇u|pwdx < +∞

}
.

Theorem 5.2. Let u0 as in Theorem 5.1. Then function u0 is the minimizer for the
following minimum problem

min
Domw

H(u),

i.e. for every ”competitor” z ∈ Domw ∩ Lp(Ω, (ŵp)
p−1) we have

H(u0) ≤ H(z).

Proof. By assumption, for every i = 1, . . . , Nw

H(ui0) ≤ H(zirad),

for every “competitor”

zirad ∈ Domi
w ∩ Lp(Iai,bi , (ŵp)

p−1),

where ui0 is the restriction of u0 to Iai,bi . It is sufficient to prove that, for every i =
1, . . . , Nw we have

H(ui0) ≤ H(zi),
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for every “competitor”

zi ∈ Dom
i
w ∩ Lp(Iai,bi , (ŵp)

p−1).

On the other hand, fixed i = 1, . . . , Nw, we can repeat the argument of the proofs of
[12][Theorem 3.2 and Corollary 3.3] with (0, R) = (ai, bi) and f(r, s) = η(r)|s|p. As

proven in [12][Corollary 3.3] the minimization problem for H(u) on Dom
i
w is equivalent

to the minimization problem for the one–dimensional functional

F i
rad(u) :=

ˆ bi

ai

rd−1|u′(r)|pη(r) dr,

in the functional space

W i
rad :=

{
u ∈ ACloc((ai, bi)) : u(ci) = di, rd−1|u′(r)|p ∈ L1((ai, bi), η)

}
,

which plays the role of W1
rad of [12]. By [12][Theorem 3.2] for every competitor zi ∈

Dom
i
w∩Lp(Iai,bi , (ŵp)

p−1) (this space plays the role of W 1,1
loc (Iai,bi)), there exists a radial

function zirad ∈ Domi
rad,w ∩ Lp(Iai,bi , (ŵp)

p−1) such that

H(zirad) ≤ H(zi).

Then
H(ui0) ≤ H(zirad) ≤ H(zi).

□

Remark 5.3. As noticed before in (9), if p > d, then W 1,p
r (Ω) ⊂ ACd

r(Ω). In this case,

the space ACd
r(Ω) is larger than the space of W 1,p

r (Ω)-functions. However, our minimum

problem is set in the class of W 1,1
loc (Ω)-functions whose gradient belongs to Lp

loc(Ω, w).
Therefore, we cannot assume apriori that u ∈ Lp

loc(Ω, w), and therefore the minimiza-

tion cannot be directly carried out within W 1,p
r (Ω). Formulating the minimization in

W 1,p(Ω) without the radiality constraint, would require an additional assumption on
the integrability of u, namely u ∈ Lp

loc(Ω, w), which does not hold in general in our set-
ting. Accordingly, it is appropriate at this stage to set the minimization problem in the
weighted Sobolev space W 1,p(Ω, µ), although a rigorous treatment of this formulation is
beyond of the present work and is left for future investigation.

Remark 5.4. Let us give a comment about the weighted Sobolev space W 1,p(Ω, w) in
order to point out that our approach is essentially different. As shown in [5], this space
can be constructed for general metric measure spaces. That is, we may replace (Rd, ∥·∥)
by a generic metric space (X,d). The authors showed that at least three different
approaches can be used: The H-approach based on the density of Lipschitz functions,
the W-approach based on the integration by part formula, and the BL-approach based
on the property of functions to be absolutely continuous along curves. In our approach,
we have used the W-approach since we have considered as metric space X = Rd, and
the metric d induced by the usual norm. Let us notice that in the H-approach the
construction is as follows. Let (X,d) be a metric mesure space where µ is a boundedly-
finite measure. In what follows, let us denote by Lip(f,X)

Lip(f,X) := sup

{
|f(x)− f(y)|

d(x, y)
: x, y ∈ X, x ̸= y

}
,(44)
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We denote by Lip(X) the set of such functions for which (44) is finite. Given f ∈ Lip(X)
its upper gradient (or slope) is defined as

|∇f |(x) := lim sup
y→x

|f(y)− f(x)|
d(x, y)

.

A non-negative function g ∈ Lp(X,d, µ) is said to be a relaxed p-upper slope of f if
there exist (fn)n ⊆ Lip(X) of boundedly supported functions, and 0 ≤ g′ ≤ g such that

fn → f in Lp(X,d, µ), Lipa(fn) → g′, weakly in Lp(X,d, µ)

where

Lipa(fn)(x) :=

{
infr>0 Lip(fn, Br(x)) if x is an accumulation point,

0 if x is an isolated point.

Here Br(x) denotes a ball of radius r centered at x ∈ X. By following [5], we denote by
RS(f) the set of all possible p-upper slope, and

|Df | :=
∧{

g′ ∈ Lp(X,d, µ) : g′ ∈ RS(f)
}

the minimal relaxed p-upper slope. Then the weighted Sobolev space W 1,p(X) is defined
as

W 1,p(X) := {f ∈ Lp(X,d, µ) : RS(f) ̸= ∅} .

Then the norm in W 1,p(X) is given by

∥f∥p
W 1,p(X)

:= ∥f∥pLp(X,d,µ) + ∥|Df |∥pLp(X,d,µ).

We point out that in this approach, |Df | is not longer a vector but a non-negative
function. Moreover, by definition, the convergence of Lipa(fn) is considered with respect
to the measure µ. In contrast, our framework allows for convergence with respect to a
different measure (say, µ̂(dx) := ŵp(x)dx).
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