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Abstract. We show that every real-valued Lipschitz function on a subset of a metric
space can be extended to the whole space while preserving the slope and, up to a small er-
ror, the global Lipschitz constant. This answers a question posed by Di Marino, Gigli, and
Pratelli, who established the analogous property for the asymptotic Lipschitz constant.
We also prove the same result for the ascending slope and for the descending slope.

1. Introduction

Given a metric space (X, d), a subset C ⊂ X, and a L-Lipschitz function g : C → R, a
classical result due to McShane [11] (see also [13]) establishes that the function

f : X → R, f(y) := inf
x∈C

{g(x) + Ld(x, y)} (1.1)

is a L-Lipschitz function that extends g to the whole X.
Beyond preserving the global Lipschitzianity, a natural question to explore is whether

the extension is possible while also preserving other properties of the function g. We refer
to [6–9, 12], and references therein, for different results in this direction. In particular,
a recent result of Di Marino, Gigli, and Pratelli [8] ensures that this is the case if one is
interested in preserving the asymptotic Lipschitz constant defined as

lipa(f, x) =

0 if x is isolated,

lim sup
y,z→x

|f(y)− f(z)|
d(y, z)

otherwise.

More precisely, they proved that for every ε > 0 a L-Lipschitz function g : C → R can
always be extended to a (L + ε)-Lipschitz function f : X → R such that lipa(g, x) =
lipa(f, x) for every x ∈ C, and they noticed that the ε-dependence of the global Lipschitz
constant cannot in general be removed. In the same article [8, Remark c)], the authors
ask if the result remains true by replacing the asymptotic Lipschitz constant with the slope
(also known as local Lipschitz constant) defined as

lip(f, x) =

0 if x is isolated,

lim sup
y→x

|f(y)− f(x)|
d(y, x)

otherwise.
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The aim of the paper is to answer the question of Di Marino, Gigli, and Pratelli by
proving the following Theorem:

Theorem 1.1. Let (X, d) be a metric space, C ⊂ X a subset, and g : C → R a L-Lipschitz
function. Then, for every ε > 0 there exists a (L+ ε)-Lipschitz function f : X → R whose
restriction to C coincides with g and such that

lip(g, x) = lip(f, x) for every x ∈ C.

Moreover if g is bounded (resp. with bounded support), then f can be chosen to be bounded
(resp. with bounded support).

We remark that the ε-dependence is essential also in our situation, see Example 2.2. The
construction of the desired function f recalls the one performed in [8] and corresponds to
a non-linear version of the McShane’s extension (1.1). That is, we put

f(y) := inf
x∈C

{g(x) + penx(d(x, y))} (1.2)

where penx : [0,∞) → [0,∞) is a suitable penalization function whose derivative close to
0 approximates the value lip(g, x) (see the first part of the proof for the precise definition).
By closely reasoning as in [8], in the first three steps of the proof of our main result we show
that the above function f is indeed a (L+ε)-Lipschitz extension of g, while the fourth step
proves that the infimum in (1.2) can be “localized” in a precise sense. The last two steps
are, instead, entirely new and deviate from the arguments of [8], allowing us to prove that
f preserves the slope. For every x ∈ C, the idea is to bound from below all the functions
y 7→ g(x) + penx(d(x, y)) with some suitable “piecewise-linear” functions, defined in (3.6),
with a controlled slope. In the final step, we then show that this control is sufficient to
provide a valid estimate of the incremental ratio |f(x) − f(y)|/d(x, y), x ∈ C, y ∈ X,
concluding the proof.

In order to have a quite complete picture of the extension theorems preserving the various
concepts of slope, we also obtain the analogous result of Theorem 1.1 for the ascending
slope lip+ and the descending slope lip−. For a function f : X → R and a point x ∈ X,
these quantities are defined as

lip±(f, x) =

0 if x is isolated,

lim sup
y→x

(f(y)− f(x))±
d(x, y)

otherwise,

where by h+ (resp. h−) we denote the positive part (resp. the negative part) of a function
h : X → R.

Theorem 1.2. Let (X, d) be a metric space, C ⊂ X a subset, and g : C → R a L-Lipschitz
function. Then, for every ε > 0 there exists a (L+ ε)-Lipschitz function f : X → R whose
restriction to C coincides with g and such that

lip±(g, x) = lip±(f, x) for every x ∈ C.

Moreover if g is bounded (resp. with bounded support), then f can be chosen to be bounded
(resp. with bounded support).
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Here, the extension function f is constructed similarly to (1.2), with a natural change
in the penalization term. The proof then follows almost straightforwardly, without relying
on the refined estimate required for Theorem 1.1.

The notion of (ascending/descending) slope is involved in the definition of several quan-
tities in the theory of metric spaces and gradient flows [3,5], and Theorems 1.1 and 1.2
serve as a technical tool in various possible situations where one is interested in extending
functions while controlling the local differential behavior. To cite an application in the
context of metric Sobolev spaces, we mention that a possible way (see, e.g., [2]) to char-
acterize H1,2-functions over a metric measure space (X, d,m) is by considering L2(X,m)
functions with finite Cheeger energy, the latter being defined as the L2-relaxation of the
pre-Cheeger energy

pCh(f) :=

∫
X

lip2(f, x)dm, f ∈ Lipbs(X, d),

Lipbs(X, d) being the space of Lipschitz functions f : X → R with bounded support.
Our main result can then be used to show, in a direct and simple way, that the resulting
Sobolev space is invariant under isomorphisms of metric measure spaces, without relying
on its non-trivial equivalence with the definition based on test plans, as discussed in [2,4].
We refer to [8, Theorem 3.1] for all the details (see also [10, Corollary 2.4] for the case
of BV-functions), where the corresponding result is proved for the Sobolev space defined
starting from the integration of the asymptotic Lipschitz constant.

2. Preliminaries and applications

Let (X, d) be a metric space. We will denote by Br(x) the open ball of radius r > 0 and
center x ∈ X. For a nonempty set C ⊂ X, a function g : C → R, a point x ∈ C and a set
A ⊂ C, we denote by

Lip(g, A, x) := inf{ℓ ⩾ 0: |g(z)− g(x)| ⩽ ℓd(x, z) ∀z ∈ A},
Lip±(g, A, x) := inf{ℓ ⩾ 0: (g(z)− g(x))± ⩽ ℓd(x, z) ∀z ∈ A},

and
Lip(g, A) := inf{ℓ ⩾ 0: |g(z1)− g(z2)| ⩽ ℓd(z1, z2) ∀z1, z2 ∈ A}.

We recall the definitions of local Lipschitz constants we are interested in. The quantity

lipa(g, x) := inf
r>0

Lip(g, C ∩Br(x)) = lim
r→0

Lip(g, C ∩Br(x))

will be called asymptotic Lipschitz constant of g at x, while

lip(g, x) := inf
r>0

Lip(g, C ∩Br(x), x),

will be called slope of g at x, and

lip+(g, x) := inf
r>0

Lip+(g, C ∩Br(x), x), lip−(g, x) := inf
r>0

Lip−(g, C ∩Br(x), x)
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are the ascending slope and the descending slope of g at x, respectively. Clearly, all these
quantities depend on the domain of the function g.

Notice that if x ∈ C is not an isolated point, it holds that

lip(g, x) = lim sup
y→x

|f(y)− f(x)|
d(y, x)

, lip±(g, x) = lim sup
y→x

(f(y)− f(x))±
d(x, y)

.

The next example shows that the asymptotic Lipschitz constant and the slope do not
always coincide.

Example 2.1. Let X = {0}∪
⋃

n∈N[
1
n
, 1
n
+ 1

n2 ], d = | · | be the standard Euclidean distance
and g : X → R defined by

g(x) =

{
0 if x = 0,

x− 1
n

if x ∈ [ 1
n
, 1
n
+ 1

n2 ].

We are going to show that lipa(g, 0) > lip(g, 0). Indeed, let x ∈ [ 1
n
, 1
n
+ 1

n2 ], then

|g(x)− g(0)|
|x|

⩽
g( 1

n
+ 1

n2 )− g(0)
1
n
+ 1

n2

=
1

n+ 1
.

Therefore, we have lip(g, 0) = 0. On the other hand, we have

Lip(g, [ 1
n
, 1
n
+ 1

n2 ]) ⩾
g( 1

n
+ 1

n2 )−g( 1
n
)

1
n
+ 1

n2−
1
n

= 1,

which implies lipa(g, 0) ⩾ 1 > 0 = lip(g, 0).

For every Lipschitz function g : X → R and every x ∈ X, it is possible to show that

lipa(g, x) ⩾ lip∗(g, x) ⩾ lip(g, x) ⩾ lip±(g, x)

and the first inequality is an equality on a length metric space (see [1, Proposition 12] for
a proof). Here lip∗(g, x) is the upper semicontinuous envelope of the slope of g.

The next example shows that the dependence on ε in Theorems 1.1 and 1.2 cannot be
dropped.

Example 2.2. Let (X, d) = ([−1, 2], | · |), C = [−1, 0] ∪ [1, 2] and g : C → R defined by

g(x) =

{
0 if x ∈ [−1, 0],

1 if x ∈ [1, 2].

The function g is 1-Lipschitz and lip(g, x) = lip+(g, x) = lip−(g, x) = 0, for every x ∈ C.
Moreover, the unique 1-Lipschitz extension to the whole X does not preserve the slope and
the ascending slope at x = 0, and the descending slope at x = 1.
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3. Proof of the main results

In order to preserve the slope at each point of C, we slightly modify the construction of
Di Marino, Gigli, and Pratelli in [8]. Even though Steps 1-4 of the proof are essentially
the same as those in [8], we have included them for completeness.

Proof of Theorem 1.1. Let ε > 0 and without loss of generality we assume L > 0 and
ε ⩽ L. Let {εk}k∈Z be a sequence such that

• εk > 0 for every k ∈ Z;
• k 7→ εk−1

εk
is increasing and εk−1

εk
→ 0 as k → −∞;

• for every k ∈ Z it holds

εk−1

εk
⩽

ε

3(L+ ε)
.

We consider, for x ∈ C, Sc
k(x) := Lip(g, C ∩ Bεk(x), x) and the penalization function

penx : [0,∞) → [0,∞), defined as the only continuous function such that

penx(0) = 0 pen′
x(t) = Sc

k(x) + 3L
εk−2

εk−1

for εk−2 < t < εk−1.

Notice that the function penx is convex and Lipschitz, for each x ∈ C. We remark that [8]
uses the function Sk(x) := Lip(g, C ∩Bεk(x)) in place of Sc

k(x).
Then we define:

ϕx(y) := g(x) + penx(d(x, y)) ∀x ∈ C, y ∈ X,

f(y) := inf
x∈C

{ϕx(y)} ∀y ∈ X.

Step 1. We claim that

ϕx is (L+ ε)-Lipschitz for every x ∈ C. (3.1)

Indeed, the claim immediately follows by this simple estimate:

pen′
x(t) = Sc

k(x) + 3L
εk−2

εk−1

⩽ L+ 3L
ε

3(L+ ε)
⩽ L+ ε, ∀k ∈ Z and t ∈ (εk−2, εk−1).

Step 2. We claim that

whenever x, y ∈ C and εk−1 ⩽ d(x, y) ⩽ εk, we have ϕx(y) ⩾ g(y) + εk−2L. (3.2)
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In fact, using the definition of Sc
k(x) it holds g(x) ⩾ g(y)−Sc

k(x) d(x, y), while penx(d(x, y)) ⩾∫ d(x,y)

εk−2
pen′

x(t) dt so that:

ϕx(y) = g(x) + penx(d(x, y))

⩾ g(y)− Sc
k(x) d(x, y) +

∫ d(x,y)

εk−2

pen′
x(t) dt

⩾ g(y)− Sc
k(x) d(x, y) + (d(x, y)− εk−2)

(
Sc
k(x) + 3L

εk−2

εk−1

)
⩾ g(y)− εk−2L+ 3L(εk−1 − εk−2)

εk−2

εk−1

= g(y) + εk−2L+ L(εk−1 − 3εk−2)
εk−2

εk−1

⩾ g(y) + εk−2L,

where we have used the properties of the sequence {εk}k∈Z.

Step 3. We claim that

f is an (L+ ε)-Lipschitz extension of g. (3.3)

Indeed, Step 2 implies that ϕx(y) ⩾ g(y) for every x, y ∈ C, and thus f(y) ⩾ g(y). On
the other hand, ϕy(y) = g(y) for any y ∈ C, which implies f(y) ⩽ g(y). Therefore f is
an extension of g. The fact that f is an (L + ε)-Lipschitz function follows directly from
[8, Lemma 2.1] combined with Step 1.

Step 4. We claim that

∀x̄ ∈ C, k ∈ Z we have f(y) = inf
x∈C∩Bεk

(x̄)
ϕx(y) ∀y ∈ Bεk−2

(x̄). (3.4)

To prove it, we will show that for x̄, k, y as above and x ∈ C with d(x, x̄) ⩾ εk it holds

ϕx(y) ⩾ f(y) + εk−1
L

3
. (3.5)

Since f is (L+ ε)-Lipschitz, we have

f(y) ⩽ g(x̄) + εk−2(L+ ε).

On the other hand, by the previous steps we also know that

ϕx(y) ⩾ ϕx(x̄)− εk−2(L+ ε) ⩾ g(x̄) + εk−1L− εk−2(L+ ε),

which allows to conclude.

Step 5. Let j ∈ Z and x̄, z ∈ C be such that εj−1 ⩽ d(x̄, z) < εj. We define

ψx̄,z : X → R, ψx̄,z(y) :=

{
g(z) if d(z, y) ⩽ εj−2,

g(z) + g(x̄)−g(z)

(1−
εj−2
d(x̄,z))d(x̄,z)

(d(y, z)− εj−2) otherwise.

(3.6)



GLOBAL LIPSCHITZ EXTENSION PRESERVING THE SLOPE 7

We claim that,

whenever g(x̄) > g(z), we have ϕz(y) ⩾ ψx̄,z(y) ∀y ∈ X. (3.7)

We first observe that the values ϕz(y) and ψx̄,z(y) depend only on the distance between y
and z. Then, it is enough to show that φz(t) ⩾ ζx̄,z(t) for every t ∈ [0,∞), where

φz(t) := g(z) + penz(t)

and

ζx̄,z(t) :=

{
g(z) if t ⩽ εj−2,

g(z) + g(x̄)−g(z)

(1−
εj−2
d(x̄,z))d(x̄,z)

(t− εj−2) otherwise .

We observe that for any y ∈ X we have ϕz(y) ⩾ g(z), so ϕz(y) ⩾ ζx̄,z(y) for every y with
d(z, y) ⩽ εj−2. Hence φz(t) ⩾ ζx̄,z(t) for t ∈ [0, εj−2].
To conclude the proof we are going to show that φ′

z(t) > ζ ′x̄,z(t) for every t ∈ (εk−2, εk−1)
and any index Z ∋ k ⩾ j. We have

φ′
z(t) = pen′

z(t) ⩾ Sc
k(z) + 3L

εj−2

εj−1

⩾
g(x̄)− g(z)

d(x̄, z)
+ 3L

εj−2

εj−1

while

ζ ′x̄,z(t) =
g(x̄)− g(z)

(1− εj−2

d(x̄,z)
)d(x̄, z)

.

It holds

g(x̄)− g(z)

(1− εj−2

d(x̄,z)
)d(x̄, z)

− g(x̄)− g(z)

d(x̄, z)
=
g(x̄)− g(z)

d(x̄, z)

(
1

(1− εj−2

d(x̄−z)
)
− 1

)

⩽ L

(
εj−2

d(x̄, z)− εj−2

)
⩽ L

(
εj−2

εj−1 − εj−2

)
= L

ej−2

ej−1

1

1− ej−2

ej−1

< 3L
ej−2

ej−1

,

where the last inequality follows from
εj−2

εj−1

⩽
ε

3(L+ ε)
<

2

3
for every j ∈ Z.

So we obtain the desired inequality

ζ ′x̄,z(t) =
g(x̄)− g(z)

(1− εj−2

d(x̄,z)
)d(x̄, z)

<
g(x̄)− g(z)

d(x̄, z)
+ 3L

ej−2

ej−1

⩽ φ′
z(t), ∀t ∈ (εk−2, εk−1), k ⩾ j.

Step 6. We claim that

lip(g, x) = lip(f, x) for every x ∈ C.

Let x̄ ∈ C. If x̄ is isolated in X by definition lip(f, x̄) = lip(g, x̄) = 0. Otherwise, let
{yn}n∈N ⊂ X \ {x̄} be such that yn → x̄ as n→ +∞ and

lim
n→+∞

|f(yn)− f(x̄)|
d(yn, x̄)

= lip(f, x̄) ⩾ lip(g, x̄), (3.8)
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where the inequality is an immediate consequence of the fact that f extends g. Let n ∈ N
and let kn ∈ Z be such that ekn−3 ⩽ d(x̄, yn) < εkn−2. Notice that kn → −∞ as n→ +∞.
We proceed by distinguishing two cases. Suppose that f(x̄) ⩽ f(yn), then, by the definition
of the function f and since penx̄ is a convex function with penx̄(0) = 0, we have

|f(yn)− f(x̄)|
d(x̄, yn)

=
f(yn)− f(x̄)

d(x̄, yn)
⩽
ϕx̄(yn)− f(x̄)

d(x̄, yn)

=
penx̄(d(x̄, yn))

d(x̄, yn)
⩽ Sc

kn−1(x̄) + 3L
εkn−3

εkn−2

.

(3.9)

Let us now suppose f(yn) < f(x̄). By (3.4), there exists zn ∈ C such that d(zn, x̄) < εkn
and

f(yn) ⩾ ϕzn(yn)− ηn · d(yn, x̄),

where ηn > 0 is chosen in such a way that

• ηn < 1
n
;

• f(yn) + ηnd(yn, x̄) < f(x̄) = g(x̄).

Suppose that εjn−1 ⩽ d(x̄, zn) < εjn for some jn ⩽ kn, so that jn → −∞ as n→ +∞. Then
we use (3.7) (with y = yn, z = zn and j = jn), distinguishing two cases: if d(yn, zn) ⩽ εjn−2

we have

|f(yn)− f(x̄)|
d(x̄, yn)

=
f(x̄)− f(yn)

d(x̄, yn)
⩽
f(x̄)− ϕzn(yn)

d(x̄, yn)
+ ηn

⩽
g(x̄)− g(zn)

d(x̄, yn)
+ ηn ⩽

g(x̄)− g(zn)

d(x̄, zn)− d(yn, zn)
+ ηn

=
g(x̄)− g(zn)

d(x̄, zn)

d(x̄, zn)

d(x̄, zn)− d(yn, zn)
+ ηn ⩽ Sc

jn(x̄)
1

1− εjn−2

εjn−1

+ ηn;

(3.10)

otherwise, in the case d(yn, zn) > εjn−2 it holds

|f(yn)− f(x̄)|
d(x̄, yn)

=
f(x̄)− f(yn)

d(x̄, yn)
⩽
f(x̄)− ϕzn(yn)

d(x̄, yn)
+ ηn

⩽
g(x̄)− g(zn)

d(x̄, zn)

[
d(x̄, zn)

d(x̄, yn)
− d(yn, zn)− εjn−2

(1− εjn−2

d(x̄,zn)
)d(x̄, yn)

]
+ ηn

=
g(x̄)− g(zn)

d(x̄, zn)

[
d(x̄, zn)− d(yn, zn)

(1− εjn−2

d(x̄,zn)
)d(x̄, yn)

]
+ ηn

⩽ Sc
jn(x̄)

[
d(x̄, yn)

(1− εjn−2

d(x̄,zn)
)d(x̄, yn)

]
+ ηn ⩽ Sc

jn(x̄)
1

1− εjn−2

εjn−1

+ ηn

(3.11)
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Putting together (3.9), (3.10) and (3.11), we can infer

lip(f, x̄) = lim
n→+∞

|f(yn)− f(x̄)|
d(yn, x̄)

⩽ lim
n→+∞

max{Sc
kn−1(x̄) + 3L

εkn−3

εkn−2

, Sc
jn(x̄)

1

1− εjn−2

εjn−1

+ ηn} = lip(g, x̄),

which combined with (3.8) concludes the proof of the first part.
The part of the statement concerning bounded functions (and functions with bounded

support) follows in the same way as in [8]. ■

Taking advantage of some of the arguments contained in the proof of Theorem 1.1, we
conclude the article proving Theorem 1.2.

Proof of Theorem 1.2. Let us prove the result for the descending slope. Let {εk}k∈Z be a
sequence of positive numbers defined in the same way as at the beginning of the proof of
Theorem 1.1. Let x ∈ C, we define S−

k (x) := Lip−(g, C∩Bεk , x) and penx : [0,∞) → [0,∞),
defined as the only continuous function such that

penx(0) = 0 pen′
x(t) = S−

k (x) + 3L
εk−2

εk−1

for εk−2 < t < εk−1.

The function penx is convex and Lipschitz, for each x ∈ C. We define:

ϕx(y) := g(x)− penx(d(x, y)) ∀x ∈ C, y ∈ X

f(y) := sup
x∈C

{ϕx(y)} ∀y ∈ X.

For each x, the function ϕx is (L+ ε)-Lipschitz. It is enough to proceed as in the proof of
Theorem 1.1 by observing that for each x ∈ C and k ∈ Z

S−
k (x) ⩽ L, and 3L

εk−2

εk−1

⩽ ε.

Hence, by [8, Lemma 2.1] the function f is (L + ε)-Lipschitz. In order to prove that the
function f extends the function g, following the same idea of step 3 of the proof of Theorem
1.1 and since ϕy(y) = g(y) for every y ∈ C, it is enough to show that ϕx(y) ⩽ g(y) for
each x, y ∈ C. To prove it, we fix x, y ∈ C such that d(x, y) ∈ [εk−1, εk] and notice that
g(x) ⩽ g(y) + S−

k (x)d(x, y). With analogous computations as in the proof of step 2 of
Theorem 1.1, we have

ϕx(y) = g(x)− penx(d(x, y)) ⩽ g(y) + S−
k (x) d(x, y)−

∫ d(x,y)

εk−2

pen′
x(t) dt

⩽ g(y)− εk−2L− L(εk−1 − 3εk−2)
εk−2

εk−1

⩽ g(y).

Finally, it remains to show that

lip−(g, x) = lip−(f, x),
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for each x ∈ C. Let x̄ ∈ C which is not isolated in X, otherwise lip−(g, x̄) = lip−(f, x̄) = 0.
Let {yn}n∈N ⊂ X \ {x̄} such that yn → x̄ as n→ +∞ and

lim
n→+∞

(f(yn)− f(x̄))−
d(x̄, yn)

= lip−(f, x̄) ⩾ lip−(g, x̄).

For every n ∈ N, if f(x̄) ⩾ f(yn) and d(x̄, yn) ∈ [εkn−2, εkn−1), we have
(f(yn)− f(x̄))−

d(x̄, yn)
=
f(x̄)− f(yn)

d(x̄, yn)
⩽
f(x̄)− ϕx̄(yn)

d(x̄, yn)
⩽

penx̄(d(x̄, yn))

d(x̄, yn)
⩽ S−

kn
(x̄) + 3L

εkn−2

εkn−1

.

Notice that the same inequality
(f(yn)− f(x̄))−

d(x̄, yn)
⩽ S−

kn
(x̄) + 3L

εkn−2

εkn−1

trivially holds if f(x̄) < f(yn). By taking the limit on both sides, noticing that kn → −∞
as n→ +∞, we obtain the reverse inequality

lim
n→+∞

(f(yn)− f(x̄))−
d(x̄, yn)

⩽ lip−(g, x).

This concludes the proof for the descending slope.
To extend g while preserving the ascending slope, it is sufficient to take f : X → R

defined as f := −f̃ , where f̃ : X → R is an extension of −g that preserves the descending
slope.

The second part of the statement follows in the same way as in [8]. ■
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