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Abstract. Given the eigenvalue problem for the Laplacian with Robin boundary conditions, (with
β ∈ R \ {0} the Robin parameter), we consider a shape minimization problem for a function of the
first eigenvalues if β > 0 and a shape maximization problem if β < 0. Both problems are settled in
a suitable class of generalized polygons with an upper bound on the number of sides, under either
perimeter or volume constraint.
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1. Introduction

The classical Robin eigenvalue problem is formulated as follows: given a nonzero real parameter
β, we look for which values of λ the boundary value problem

(1)

{
∆u+ λu = 0 in Ω
∂u

∂ν
+ βu = 0 on ∂Ω

admits a nonzero weak solution. Here Ω is a bounded set in Rd with sufficiently smooth boundary
and ν is the outer normal. It is well known (see e.g. [8]) that this problem admits a weak formulation
based on the bilinear form

(2) Eβ(u, v) =
ˆ
Ω
∇u · ∇v dx+ β

ˆ
∂Ω

uv dHd−1, u, v ∈ H1(Ω),

where Hd−1 is the (d− 1)-dimensional Hausdorff measure and u on ∂Ω is the boundary trace. By
the trace inequality in the Sobolev space H1(Ω) the bilinear form Eβ is semibounded in L2(Ω),
i.e., there are constants c1, c2 > 0 such that Eβ(u, u) + c1∥u∥2L2 ≥ ∥u∥2H1 , hence Eβ defines a closed
operator (−∆β) in L2(Ω), which is self-adjoint and has compact resolvent, so that its spectrum
is real and consists of an increasing sequence

(
λk,β

)
k∈N of eigenvalues such that λk,β → +∞ as
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k → +∞, with λ1,β > 0 if β > 0. The corresponding variational formulation for the first eigenvalue
leads to the minimization of the Rayleigh quotient

(3) RΩ,β(u) :=

ˆ
Ω
|∇u|2 dx+ β

ˆ
∂Ω

u2 dHd−1

ˆ
Ω
u2 dx

,

(4) λ1,β(Ω) = min
u∈H1(Ω)\{0}

RΩ,β(u).

As in the more classical Dirichlet and Neumann problems (that can be formally obtained from
(1) by letting β to +∞ and to 0, respectively) one can look for the sets Ω that optimize suitable
functions of the Robin spectrum. Such problems are different in nature according to the sign of the
boundary parameter β. The simplest one is obviously that of finding the set Ω with minimal first
eigenvalue with β > 0 among the sets with prescribed Lebesgue measure: the optimal set turns
out to be the ball, as proved in two dimension by M.-H. Bossel [3] and in higher dimension by D.
Daners [16]. In the negative boundary parameter regime β < 0, by using a constant test function
in (4), it is easily checked that the first eigenvalue verifies

(5) λ1,β(Ω) ≤ βHd−1(∂Ω)/|Ω| < 0,

where |Ω| is the Lebesgue measure of Ω. As a consequence, the first eigenvalue is bounded from
above but not from below neither for the perimeter constraint nor for the measure one. Therefore
it is very natural to study the maximization of the first eigenvalue. Nevertheless, in this case the
optimal set is not yet known. Generalizing the Courant-Fischer formula (4) to higher eigenvalues,
we consider

(6) λk,β(Ω) = min
S∈Sk

max
u∈S\{0}

RΩ,β(u)

where Sk denotes the set of all k-dimensional subspaces of H1(Ω). Notice that the presence of
boundary integrals makes the study of the Robin problem deeply different from the Dirichlet and
Neumann problems.

In this paper we study two shape optimization problems (according to the sign of β) for some
functions of the Robin eigenvalues, in the planar case d = 2, where the class of competitors is
that of polygons. In order to tackle these optimization problems, we fix a suitable topology on the
polygons (the one induced by the Hc convergence, see Definition 2.3), we enlarge the class of simple
polygons in Definition 2.1 to encompass their Hc limits, i.e., the generalized polygons introduced in
Definition 2.4, and we extend the variational characterization of the eigenvalues to such class, see
(8).

Though the formulation of spectral shape optimization problems in some subclasses of polygons
is rather simple, there are several issues in this setting. Let us start with the polygonal Faber-Krahn
inequality stated by Polya and Szëgo, see [25, Pag. 158]: among polygons with at most N sides
and given area, does the regular N -agon minimizes the first Dirichlet eigenvalue? Even if the result
seems natural and expected, a direct proof of it is available only N = 3 and N = 4. Indeed,
in these two cases, the classic symmetrization techniques work and thus it is natural to obtain
the equilateral triangle and the square as minimal polygons, respectively. On the other hand, if
N ≥ 5, the Steiner symmetrization of a polygon could increase the number of sides, in general.
In [19, Section 3.3] it is proved that among polygons with at most N sides, if β > 0 optimizers
exist and have exactly N sides. This result is proved by showing that a small cut near a convex
corner produces a better competitor with more sides. This idea is exploited in Section 3 below.
Anyway, the question of the precise shape of the optimal polygons remains open. Recently, it has
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been pointed out in [1, 2] that for some N ≥ 5 the proof that the optimal set is the regular N -agon
can be reduced to a finite number of certified numerical computations and it has been shown the
local minimality of the regular pentagon and hexagon. Concerning other boundary conditions, the
possibility to handle explicit eigenfunctions or to separate the variables plays an important role.
For what concerns Neumann conditions, it is worth mentioning [26], where the authors address
the problem of maximizing the Neumann eigenvalues on rectangles with a measure or perimeter
constraint. Instead, concerning Robin eigenvalues with positive boundary parameter β > 0, in
[17] the authors have proved that the square minimizes the first eigenvalue among all (unions of)
rectangles of a given area. For the higher eigenvalues, they proved that the square (respectively,
the union of k equal squares) minimizes λ1,β (respectively, λk,β) among rectangles (respectively,
unions of rectangles) of given area if β is below a certain threshold; on the other hand, they showed
that the optimizers are not the square or the union of k equal squares if β is large enough. It is
worth mentioning also [22], where the author showed how the rectangular case supports some well-
known conjectures about spectral shape optimization problems involving the Robin eigenvalues.
For the case β < 0, we mention [21], where the authors proved that the equilateral triangle locally
maximizes the first eigenvalue among all triangles of a given area, again provided that |β| is below
a certain threshold depending only upon the area constraint.

When dealing with the negative boundary parameter case, in some situations it turns out that
the perimeter constraint is rather natural, see for instance [6, 15], where the optimality and the
stability of the ball for the first eigenvalue in the convex case is addressed. Even in our framework,
the (generalized) perimeter constraint is very helpful to obtain some additional properties of the
optimal shapes, see Proposition 4.4.

As highlighted in the previous round-up of references, for the polygonal case we have very little
information about the optimizers even for the first eigenvalue (except for special cases in which
either the eigenfunctions are explicit or the symmetrization techniques work, see [23, 17]), or some
restrictions on the admissible polygons. The main difficulty in tackling this problem is that it is
not possible to transpose the same argument used in [3, 16] to prove an isoperimetric inequality for
the first Robin eigenvalue. Indeed, such results are based on the radiality of the first eigenfunction
of the disk and on a comparison between the (smooth) level sets of such function and the level sets
of an eigenfunction of a generic domain. Anyway, the possible presence of parts of the boundary
with multiplicity 2 is a challenging problem even in more general settings, see [14]. Moreover, in the
Robin case, the optimality of the regular N -agon is ensured only if N ∈ {3, 4} is within some range
of the boundary parameter. For this reason, our intent is to get more general existence results
for both cases β > 0 and β < 0, without any assumption on the magnitude of the parameter,
the number of sides and the order of the eigenvalue. More precisely, we focus on a wider class
of spectral functionals, whose prototype is the sum of the first k eigenvalues, we consider both
the perimeter and volume constraint and we prove the existence of solutions and some qualitative
properties, combining well established techniques holding in more general settings (generalization of
the eigenvalues, existence in a weaker framework, continuity of the traces along moving boundaries,
etc.) and peculiar features of the polygonal case.

The paper is organized as follows: in Section 2 we describe our framework, recall the necessary
preliminary results and state our main results. Sections 3 and 4 are devoted to the proofs of our
main results, namely Theorems 2.15 and 2.16, respectively. In Section 5 we discuss some further
issues.
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2. Preliminaries and Main results

In order to introduce the class of admissible polygons, we start from the definition of simple
polygon. In the whole paper by line segment we always mean a maximal subset of a straight line
in the plane belonging to the boundary of a polygon.

Following [7], we introduce the class of admissible polygonal sets.

Definition 2.1 (Simple polygons). A simple polygon is the open bounded planar region P delimited
by a finite number of not self-intersecting line segments (called sides) which are pairwise joined at
their endpoints (called vertices) to form a simple closed path.

Let us denote by PN the family of simple polygons with at most N sides. Notice that simple
polygons are connected and simply connected.

In the following, we use as a key tool the Hc-convergence, as it preserves many topological
properties of polygonal domains. Let us start from the Hausdorff distance in R2.

Definition 2.2 (Hausdorff distance). Let A,B ⊂ R2 be closed. We define the Hausdorff distance
between A and B by

dH(A,B) := max

ß
sup
x∈A

dist(x,B), sup
x∈B

dist(x,A)

™
.

The Hausdorff convergence of a sequence of open sets is defined using the distance between their
complements.

Definition 2.3 (Hausdorff convergence of open sets). Let D ⊂ R2 be compact and let E,F ⊂ D be
open. We define the Hausdorff complementary distance between A and B by

dHc(E,F ) = dH(D \ E,D \ F )

and we say that the sequence (En) Hc-converges to E if limn dHc(En, E) = 0. We say also that
(En) locally Hc-converges to E if for any ball B the sequence (En ∩B) Hc-converges to E ∩B.

It is easily seen that the definition of Hc-convergence is independent of the choice of the compact
set D.

Notice that in general the Hc-limit of a sequence of simple polygons in PN is not a simple polygon
in PN , as shown in Figure 1.

Figure 1. The sequence (Pn) ⊂ P7 Hc-converges to the “degenerate polygon” P ,
which has a boundary given by line segments, but is not a simple polygon.

To overcome this problem, we follow the approach in [7] and set our shape optimization problems
in a class of sets that contains the Hc-limits of simple polygons.
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Definition 2.4 (Generalized polygons). We say that an open set P ⊂ R2 is a generalized polygon
with at most N sides if there exists a sequence (Pn) of simple polygons in PN such that (Pn) locally
Hc-converges to P . We denote by PN the class of generalized polygons with at most N sides.

Notice that if P is a generalized polygon, any side having double multiplicity has at least one
vertex on the topological boundary of P .

The following compactness result is contained in [4, Proposition 4.6.1]

Proposition 2.5. Let D ⊂ Rd a fixed compact set. Then, the class of the open sets contained in
D is compact in the Hausdorff-complementary topology.

Remark 2.6 (see Remark 2.2.18 in [20]). If Ωn
Hc

−→ Ω into a fixed compact B, then, denoting by
#E the number of connected components of E, #(Ωc ∩B) ≤ lim infn#(Ωc

n ∩B).
In dimension d = 2 this allows us to obtain further topological information: if a bounded open

set in R2 is a disjoint union of simply connected open sets, then its complement (in the compact
B) is a compact connected set. This implies that the Hc-limit of unions of simply connected set is
union of simply connected set. Indeed, let (Ωn) be a sequence of open bounded subsets of R2 such
that each Ωn is a bounded disjoint union of simply connected open sets; if Ωn

Hc

−→ Ω, then

1 ≤ #(Ωc ∩B) ≤ lim inf
n

#(Ωc
n ∩B) = 1

and so Ω is union of simply connected open sets.

Remark 2.7. The following facts hold true for the family PN (see [7] for details).
(i) PN is closed with respect to the local Hc-convergence since the number of connected compo-

nents of the complement of each generalized polygon is uniformly bounded.
(ii) Every P ∈ PN is union of simply connected generalized polygons, since P c is connected.
(iii) P ∈ PN may be disconnected; each connected component of P is delimited by a finite number

of line segments (still called the sides of P ), which are pairwise joined at their endpoints
(still called vertices of P ) to form a closed path, possibly containing self-intersections; in
particular, P has at most N sides, counted with their multiplicity. P has at most ⌊N−1

2 ⌋
connected components. If N is odd, this upper bound is obtained for instance if P is the
union of triangles with consecutive bases lying on the same line (so their union is considered
as one side, according to our definition of line segment). If N is even, the upper bound is
obtained by replacing one of the triangles in the previous construction with a quadrilateral.

Figure 2. The sequence (Pn) ⊂ P5 Hc-converges to P ∈ P5, that has 2 = ⌊5−1
2 ⌋

connected components.
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(iv) Since the topological boundary of the closure of any P ∈ PN is a closed curve, P is bounded
and thus has finite Lebesgue measure. Conversely, since any P ∈ PN has finite Lebesgue
measure, it is bounded (otherwise, in view of the bound on the number of sides, necessarily
P would have two parallel sides with infinite length, contradicting the fact that |P | < +∞.)

Remark 2.8. Let us observe that the number of sides is lower semicontinuous for locally Hc-
converging sequences (Pn) ⊂ PN .

Indeed, let (Pn) be a sequence of generalized polygons Hc converging to P ∈ PN and let M ≤ N
be the biggest integer such that there are infinitely many Pn in PM . Then, by Remark 2.7(i) the
limit P belongs to PM ⊆ PN . Notice that this fact does not hold if the number of sides is not
bounded a priori (the sequence (Rn) of regular n-agons of measure m centered at a point x0 ∈ R2

Hc-converges to the disk of measure m centered at x0).

The definition of the trace of u ∈ H1(P ), where P is a simple polygon, is defined in the usual
way. Following [18, Section 1.1.7], we can define the trace of u also when P is a generalized polygon,
that may lie on both sides of an inner boundary segment. To this aim, we can assume that there is
only one inner boundary segment S (otherwise, divide P in smaller polygons with such a property).
Then adding a further segment S′ starting from the inner endpoint of S, we divide P as the union
of two simple polygons and in each of them the trace of u is well defined. Of course, the traces of u
on both sides of S′ coincide, whereas on S they can be different. Henceforth, we denote by u+ and
u− these traces. In the sequel, it is not important to make explicit a criterion to distinguish the two
sides, which we call right and left only to simplify the presentation. Moreover, to deal with simple
and generalized polygons at the same time, we agree that all functions defined in P are extended
as 0 out of P and denote by u+ the interior trace.

In order to take into account inner boundary segments, we relax the definition of the Rayleigh
quotients (6) and we define the generalized Rayleigh quotient by

(7) RP,β(u) :=

ˆ
P
|∇u|2 dx+ β

ˆ
∂P

[
(u+)2 + (u−)2

]
dH1

ˆ
P
u2 dx

and the generlized eigenvalues on a generalized polygon P by

(8) λk,β(P ) := inf
S∈Sk

max
u∈S\{0}

RP,β(u),

where as above Sk denotes the set of all k-dimensional subspaces of H1(P ). This definition is well
posed, since it does not depend on the orientation of ∂P . Moreover, if P is a simple polygon, then
λk,β(P ) = λk,β(P ), as on the boundary u+ = u and u− = 0.

We recall two useful properties of the classical eigenvalues λk,β (see [8]) that are generalized to
λk,β in a standard way.

Remark 2.9 (Some properties of generalized eigenvalues). Let P ∈ PN . The following
properties hold:

• β 7→ λk,β(P ) is strictly increasing.
• For t > 0 we have

λk,β(tP ) =
1

t2
λk,tβ(P ).

In particular, when β > 0, we have

(9) λk,β(tP ) < λk,β(P )

for every t > 1.
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In particular, inequality (9) entails the monotonicity under dilation of the generalized eigenvalues
with positive boundary parameter.

As we are dealing with convergent sequences of (generalized) polygons, the corresponding Rayleigh
quotients are settled on different function spaces whose convergence in turn must be defined. The
right notion of convergence is the Mosco convergence (see e.g. [4, Chapter 4]), as it combines a geo-
metric notion of convergence of the domains with a functional-analytic convergence of the Sobolev
spaces.

Definition 2.10 (Convergence in the sense of Mosco). Let X be a Banach space and let (Gn) be
a sequence of closed subsets of X. We define weak upper and strong lower limits in the sense of
Kuratowski the spaces

w− lim sup
n→+∞

Gn = {u ∈ X : ∃(nk)k, ∃unk
∈ Gnk

s.t. unk
→ u weakly in X} ,

s− lim inf
n→+∞

Gn = {u ∈ X : ∃un ∈ Gn s.t. un → u strongly in X} .

We say that (Gn) Mosco-converges to G if

G = w− lim sup
n→+∞

Gn = s− lim inf
n→+∞

Gn.

Under suitable topological constraints, Mosco convergence is equivalent to convergence in mea-
sure and Hausdoff convergence. An important result is the following theorem, see [4, Theorem
7.2.1].

Theorem 2.11. Let us denote by #E the number of connected components of the open set E ⊂ R2.
Let ℓ ∈ N and let (Ωn) be a sequence of open domains in R2 such that (Ωn) is Hc-convergent to
some Ω, with #(R2 \ Ωn) ≤ ℓ for every n ∈ N. Then H1(Ωn) converges to H1(Ω) in the sense of
Mosco if and only if |Ωn| converges to |Ω|.

In order to handle the possible fractures of a generalized polygon, we define the generalized
perimeter of a polygon, recalling the approach in [11, 14]. Roughly speaking, we quantify the
boundary length with the natural multiplicity.

Definition 2.12 (Generalized perimeter). Let N ∈ N, P ∈ PN . We set

∂⋆P := ∂P , Γ := ∂P \ ∂⋆P

and we call generalized perimeter of P the quantityfiPer(P ) := H1(∂∗P ) + 2H1(Γ).

Let us recall a condition that entails the compactness of the minimizing sequences. It is a
reformulation of [9, Lemma 4] adapted to our framework.

Lemma 2.13. Let M > 0, P ∈ PN and u ∈ H1(P ) such that ∥u∥L2(P ) = L > 0 and assume thatˆ
P
|∇u|2 dx+

ˆ
∂P

[
(u+)2 + (u−)2

]
dH1 ≤ M.

Then, there exist y ∈ R2 and a positive constant C = C(|P |,M,L) such that

|supp(u) ∩Q1(y)| ≥ C(|P |,M,L),

where Q1(y) is the square with center y and sidelength 1.

The lower semicontinuity of the boundary integral is proved in [5, Lemma 19].
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Lemma 2.14. Let Ω ⊆ R2 be open, k ∈ N, and let (Kn),K ⊂ Ω be compact sets with at most k
connected components, such that lim supnH1(Kn) < +∞ and Kn → K in the Hausdorff metric.
Let un ∈ H1(Ω \Kn) be such that

(10) lim sup
n→+∞

∥un∥H1(Ω\Kn) +

ˆ
Kn

[
(u+n )

2 + (u−n )
2
]
dH1 < +∞.

Then, there exists u ∈ H1(Ω \K) such that, up to subsequences, we have

un → u strongly in L2
loc(Ω),

∇un ⇀ ∇u weakly in L2(Ω;R2),

and

(11)
ˆ
K

[
(u+)2 + (u−)2

]
dH1 ≤ lim inf

n→+∞

ˆ
Kn

[
(u+n )

2 + (u−n )
2
]
dH1.

Main results. Since the kind of optimization depends on the sign of the boundary parameter β,
we split the discussion into two parts. Let N ≥ 3 and m, p > 0.

Let us fix β > 0 and let us study the problems

(12) min
{
F (λ1,β(P ), . . . , λk,β(P )) : P ∈ PN , |P | ≤ m

}
,

and

(13) min
¶
F (λ1,β(P ), . . . , λk,β(P )) : P ∈ PN , fiPer(P ) ≤ p

©
,

where F ∈ C1(Rk) is nondecreasing in each variable with strictly positive derivative with respect
to the first variable and such that

(14) lim
|ξ|→+∞

F (ξ) = +∞.

Our main result for β > 0 is the following.

Theorem 2.15. Problems (12) and (13) admit a solution in the class of generalized polygons. Any
minimizer P of (12) verifies |P | = m and any minimizer P of (13) verifiesfiPer(P ) = p. Moreover,
any solution of both problems has exactly N sides counted with their multiplicity.

Let us consider now the case of negative boundary parameter. For the sake of ease we set
η := −β > 0. As explained in Section 1, is it natural to consider the following maximization
problems

(15) max
{
F (λ1,−η(P ), . . . , λk,−η(P )) : P ∈ PN , |P | ≤ m

}
,

(16) max
¶
F (λ1,−η(P ), . . . , λk,−η(P )) : P ∈ PN , fiPer(P ) ≤ p

©
,

where F : Rk → R is nondecreasing and upper semicontinuous in each variable and such that, for
any variable ξj , it holds

lim
ξj→−∞

F (ξ1, . . . , ξk) = −∞.

Our main result for β < 0 is the following.

Theorem 2.16. Problems (15) and (16) admit a solution in the class of generalized polygons. If
λk,−η(P ) < 0 for an optimal polygon P in (16), then P is union of simple polygons.
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3. Positive boundary parameter

We start this section with an important remark.

Remark 3.1 (Generalized eigenvalues of a cracked set are actually eigenvalues). Following the
approach of [11] (see also [14] for analogous results in any dimension), we get that the λk,β(P ) are
actually eigenvalues of the elliptic operator defined by the bilinear form

Eβ(u, v) :=

ˆ
P
∇u · ∇v dx+ β

ˆ
∂P

[
u+v+ + u−v−

]
dH1, u, v ∈ H1(P ).

Clearly, the latter definition coincides with (2) when P is a simple polygon. The minimum in the
Courant-Fischer formula is thus attained, namely

(17) λk,β(P ) = min
S∈Sk

max
u∈S\{0}

RP,β(u),

where RP,β(u) is defined in (7). This fact allows us to test the Rayleigh quotient with actual
eigenfunctions.

Remark 3.2. If P is a connected generalized polygon and u ∈ H1(P ) is a positive eigenfunction
for λ1,β(P ) for some β > 0, then there exists α > 0 such that u ≥ α, see [10, Theorem 1].

In order to count the sides of the optimal polygons, we adapt a cutting technique used in [13].
There, the author proved that optimal convex shapes for a class of Robin spectral functionals are
C1; the technique exploits an argument by contradiction addressed to remove possible corners. In
the present framework, we cut a generalized polygon near the vertex of a convex corner to show
that increasing the number of sides (within the prescribed constraint) decreases the value of the
functional. Aiming at cutting a convex corner of the polygon P , if there is such a corner with
both sides of multiplicity one, we argue on that corner. If all the convex corners have a side of
multiplicity two, we cut the corner only on one side as follows.

P

x0

α+α−

ℓx0

Figure 3. In the polygon P all convex corners are determined by self-intersected
sides; choosing the vertex x0 as above, without loss of generality, we can argue only
on P ∩ α+ or P ∩ α−.

For definiteness, assume that x0 = 0 is the vertex of a convex corner of the polygon P and that
the segment ℓx0 vertexed at x0 has double multiplicity. Assume also that P lies in the half-plane
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{x2 < 0} and apply the technique only on one side of the segment, say on

P ∩ α+ = P ∩ {x · νℓx0 > 0},

where νℓx0 is one of the normal unit vectors to ℓx0 . Accordingly, we define the following sets:

(18) mε := P ∩ α+ ∩ {x2 > −ε} , Pε := P \mε, σε := P ∩ α+ ∩ {x2 = −ε} , sε := ∂mε \ σε.

Notice that

max
x∈mε

dist(x, σε) = dist(0, σε) = ε.

Pε

mε

σε

sε

Figure 4. The cutting procedure of P

Lemma 3.3. Let P ∈ PN . Then, there exist ε0 > 0 and C = C(P, β) > 0 such that for every
0 < ε < ε0, we have

(19) λ1,β(Pε) ≤ λ1,β(P )− Cε.

Proof. We start observing that both H1(σε) and H1(sε) are infinitesimal of order ε, hence |mε| =
εH1(σε)/2 is infinitesimal of order ε2 as ε → 0. Moreover, since the mε are triangles and the σε
are parallel, there exists a constant C1 > 1, depending only on P , such that

(20) H1(sε) = C1H1(σε).

Let us compare λ1,β(Pε) with λ1,β(P ). Let us consider u ∈ H1(P ) an L2(P )-normalized eigen-
function for λ1,β(P ) positively bounded away from zero (see Remark 3.2) and denote by uε its
restriction to Pε extended by zero outside Pε. We have that uε ∈ H1(Pε) is a test function for
λ1,β(Pε) and it holds

(uε)
+ = u, (uε)

− = 0 on σε

(uε)
+ = u+, (uε)

− = 0 on ∂Pε \ σε.
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mε

(uε)
− = 0

(uε)
+ = u+

(uε)
+ = u

We thus have

λ1,β(Pε) ≤

ˆ
Pε

|∇uε|2 dx+ β

ˆ
∂Pε

(
(u+ε )

2 + (u−ε )
2
)
dH1

ˆ
Pε

u2ε dx

≤

ˆ
P
|∇u|2 dx+ β

ˆ
∂P

(
(u+)2 + (u−)2

)
dH1 + β

ˆ
σε

u2 dH1 − β

ˆ
sε

(u−)2 dH1

1−
ˆ
mε

u2 dx

≤
ï
λ1,β(P ) + β

ˆ
σε

u2 dH1 − β

ˆ
sε

(u−)2 dH1

òÅ
1 + 2

ˆ
mε

u2 dx

ã
≤ λ1,β(P ) + β

Åˆ
σε

u2 dH1 −
ˆ
sε

(u−)2 dH1

ã
+ C2ε

2

(21)

for ε small enough. We can consider the restriction of u on mε continuous on mε, since it solves
the mixed boundary value problem

∆v + λ1,β(P )u = 0 in mε
∂v

∂ν
+ βv = 0 on sε

v = u on σε

(see [24]), so we can argue by continuity as in the Lipschitz case. To ease the readibility, we denote
such solution on mε still by u. Let us fix δ > 0, with (u(0) + δ)2 ≤ C1(u(0) − δ)2. There exists
ε0 > 0 such that

0 < u(0)− δ < u(x) < u(0) + δ

for every x ∈ mε0 , since u(0) > 0. In particular, the trace u−(x) of u for x ∈ sε satisfies the above
estimate as well.

Now, mε is decreasing in ε with respect to inclusions, then we can choose ε0 small enough so
that Pε satisfies (21). Combining the latter with (20) we get

λ1,β(Pε) ≤ λ1,β(P ) + β
(
H1(σε)(u(0) + δ)2 −H1(sε)(u(0)− δ)2

)
+ C2ε

2

≤ λ1,β(P ) + βH1(σε)
(
(u(0) + δ)2 − C1(u(0)− δ)2

)
+ C2ε

2

= λ1,β(P )− βC3ε+ C2ε
2 ≤ λ1,β(P )− Cε,

where the last constant C takes into account all the previous constants and depends only on the
domain Ω and on β. □

Higher order eigenvalues are considered in the following result.
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Lemma 3.4. Let P ∈ PN . Then, for every h ∈ N, h ≥ 2,

(22) λh,β(Pε) ≤ λh,β(P ) + o(ε).

Proof. Let {u1, . . . , uh} ⊂ H1(P ) be a L2-orthonormal basis of h eigenfunctions associated with
λ1,β(P ), . . . , λh,β(P ) respectively and define S := span {u1, . . . , uh}. Then, for ε sufficiently small,
Sε := span {u1|Pε , . . . , uh|Pε} is a test space for the variational characterization (8) of λh,β(Pε). In
particular, we can consider on Pε test functions of the form

∑h
i=1 α

ε
iui with

∑h
i=1 (α

ε
i )

2 = 1. This
in turn implies that, up to subsequences, αε

i → αi ∈ [−1, 1] and

h∑
i=1

αε
iui −→

h∑
i=1

αiui

strongly in H1(P ). Let us denote by (αε
1, . . . , α

ε
h) the h-tuple of coefficients that maximizes RPε,β

in Sε with
∑h

i=1 (α
ε
i )

2 = 1 and by (α1, . . . , αh) the h-tuple of coefficients such that, for every
i = 1, . . . , h, αε

i → αi (up to subsequences). For any ε > 0 sufficiently small, we can estimate
λh,β(Pε) using Sε as a test space:

λh,β(Pε) ≤ max
αε
1,...,α

ε
h
∈R∑

i(α
ε
i )

2=1

ˆ
Pε

∣∣∣∑
i

αε
i∇ui

∣∣∣2 dx+ β

ˆ
∂Pε

[(∑
i

αε
iu

−
i

)2
+
(∑

i

αε
iu

+
i

)2]
dH1

ˆ
Pε

(∑
i

αε
iui

)2
dx

≤

ˆ
P

∣∣∣∑
i

αε
i∇ui

∣∣∣2 dx+ β

ˆ
∂P

[(∑
i

αε
iu

−
i

)2
+
(∑

i

αε
iu

+
i

)2]
dH1

1−
ˆ
mε

(∑
i

αε
iui

)2
dx

(23)

+

β

ˆ
σε

(∑
i

αε
iui

)2
dH1 − β

ˆ
sε

(∑
i

αε
iu

−
i

)2
dH1

1−
ˆ
mε

(∑
i

αε
iui

)2
dx

≤λh,β(P ) + β

ˆ
σε

(∑
i

αε
iui

)2
dH1 − β

ˆ
sε

(∑
i

αε
iu

−
i

)2
dH1 + C|mε|

where we have used that

RP,β

(∑
i

αε
iui

)
≤ max

v∈S
RP,β(v) = λh,β(P ).

Now, as higlighted at the beginning of Lemma 3.3, H1(σε) and H1(sε) are both infinitesimal of
order ε and |mε| is infinitesimal of order ε2 as ε → 0; moreover, αε

i − αi → 0. Then, summing and
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subtracting the contribution of
∑

i αiui in the boundary integrals in (23), we get

λh,β(Pε) ≤λh,β(P ) + β

[ ˆ
σε

(∑
i

(αε
i − αi)ui + αiui

)2
dH1

−
ˆ
sε

(∑
i

(αε
i − αi)u

−
i + αiu

−
i

)2
dH1

]
+ Cε2

≤λh,β(P ) + β

(ˆ
σε

(∑
i

αiui

)2
dH1 −

ˆ
sε

(∑
i

αiu
−
i

)2
dH1

)
+ o(ε).

(24)

To conclude, we now consider two possible situations. If(∑
i

αiui(0)
)2

̸= 0,

(where the pointwise value u(0) is meant in the same sense as in Lemma 3.3) then, for any sufficiently
small ε, we can proceed as in Lemma 3.3 and conclude thatˆ

σε

(∑
i

αiui

)2
dH1 −

ˆ
sε

(∑
i

αiu
−
i

)2
dH1 ≤ 0.

On the other hand, if (∑
i

αiui(0)
)2

= 0,

the uniform continuity of the eigenfunctions ui on mε implies that
∑

i αiui has values close to∑
i αiui(0) = 0 in mε, namely that ∣∣∣∣∣∑

i

αiui

∣∣∣∣∣ ≤ δ(ε)

in mε, where δ(ε) → 0. Then, both boundary integrals are o(ε) as ε → 0. In both the possible
situations, (24) gives

λh,β(Pε) ≤ λh,β(P ) + o(ε).

□

Remark 3.5. Let us compare the results of the previous lemmas. In Lemma 3.3 we proved that,
after a small cut, the first eigenvalue decreases by a term of the same order as the perimeter. In
Lemma 3.4, we proved that a small cut could increase λh,β (h ≥ 2) at most by a term infinitesimal of
higher order than the perimeter. In other words, the possible increase of λh,β (h ≥ 2) is infinitesimal
of higher order than the decrease of λ1,β.

In the following proposition we prove that the number of sides of possible optimal generalized
polygons is maximal.

Proposition 3.6. Let F : Rk → R satisfy hypotheses (12) and (13). For every P ∈ PN , there
exists a generalized polygon P ′ ∈ PN+1 such that |P ′| ≤ |P |, fiPer(P ′) ≤fiPer(P ) and

F (λ1,β(P
′), . . . , λk,β(P

′)) < F (λ1,β(P ), . . . , λk,β(P )).

In particular, no P ∈ PN can be a minimizer for (12) or (13) in PN+1.
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Proof. The proof is based on an argument similar to that in Theorem [13, Theorem 5.3]. Consider
P ∈ PN . For every ε > 0 sufficiently small, the polygon Pε defined in (18) has N + 1 sides;
moreover, Lemma 3.3 and Lemma 3.4 imply that

(25) λ1,β(Pε)− λ1,β(P ) ≤ −Cε and λk,β(Pε)− λk,β(P ) = o(ε).

The hypotheses on F lead to the first assertion, once we set P ′ := Pε ∈ PN+1 for a suitable value
of ε > 0. Indeed, a Taylor expansion gives

F (λ1,β(Pε), . . . , λk,β(Pε)) =F (λ1,β(P ), . . . , λk,β(P ))

+

k∑
h=1

∂F

∂xh
(λ1,β(P ), . . . , λk,β(P )) · (λh,β(Pε)− λh,β(P ))

+ o
(∣∣∣(λh,β(Pε)− λh,β(P )

)
h=1,...,k

∣∣∣) .
(26)

Now, using (25) yields∣∣∣(λh,β(Pε)− λh,β(P )
)
h=1,...,k

∣∣∣ =√(λ1,β(Pε)− λ1,β(P )
)2

+ . . .+
(
λk,β(Pε)− λk,β(P )

)2
=
»
ε2 + o(ε)2 = ε+ o(ε)

Plugging the latter in (26) and using again (25) on each term in the sum at the third line we finally
get

F (λ1,β(Pε), . . . , λk,β(Pε))

≤ F (λ1,β(P ), . . . , λk,β(P ))− ∂F

∂x1
(λ1,β(P ), . . . , λk,β(P )) · (Cε) + o(ε)

= F (λ1,β(P ), . . . , λk,β(P ))− C ′ε+ o(ε) < F (λ1,β(P ), . . . , λk,β(P )).

In particular, if we consider a generalized polygon P ∈ PN ⊂ PN+1, the corresponding generalized
polygon P ′ (built as above) gives us a strictly lower value for Problem (12) in PN+1, then P cannot
be a minimizer in PN+1. □

We are now in a position to prove our Main Theorem 2.15.

Proof. Let us start with the measure-constrained problem and consider a minimizing sequence (Pn)
for (12). Without loss of generality, we assume that

(27) F (λ1,β(Pn), . . . , λk,β(Pn)) ≤ 2 inf
P∈PN ,|P |≤m

F (λ1,β(P ), . . . , λk,β(P )).

Let us suppose that the diameters of the polygons Pn are not uniformly bounded, otherwise the
existence of a limit polygon P ̸= ∅ is trivial. Since R2 \ Pn has a uniformly bounded number of
connected components, we deduce from Remark 2.7(i) that there exists P ∈ PN such that

Pn
Hc

loc−−−→ P

and locally in measure as well. We have two possibilities. If P ̸= ∅ we are done, as 0 < |P | ≤ m
and thus it is a bounded generalized polygon. If P = ∅, in view of the local convergence in measure,
for any x ∈ R2 we have

(28) lim
n→+∞

|Pn ∩Q1(x)| = 0.

This limit gives a contradiction against the minimality of (Pn). Indeed, in view of the assumption
(14) on F and of the bound (27), the modulus of the k-tuple (λ1,β(Pn), . . . , λk,β(Pn)) is uniformly
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bounded from above, so, in particular, the largest component λk,β(Pn) is bounded above by a
uniform constant Λ > 0. Now, taking for every n ∈ N an L2-normalized eigenfunction un of
λk,β(Pn), the uniform estimateˆ

Pn

|∇un|2 dx+ β

ˆ
∂Pn

[
(u−n )

2 + (u+n )
2
]
dH1 ≤ Λ,

induces the followingˆ
Pn

|∇un|2 dx+

ˆ
∂Pn

[
(u−n )

2 + (u+n )
2
]
dH1 ≤ Λ

Å
1 +

1

β

ã
.

So, in view of Lemma 2.13, there exists y ∈ R2 such that

|Pn ∩Q1(y)| ≥ C

for some uniform constant C > 0, in contradiction with (28).
In conclusion, the limit polygon P is nonempty and bounded; then, the Hc

loc-convergence of (Pn)
to P is actually Hc-convergence of (Pn) to P . This in turn implies that H1(Pn) → H1(P ) in the
sense of Mosco, see Theorem 2.11.

To prove that P is a minimizer for (12), let us consider an admissible h-dimensional test space
Vn for λh,β(Pn) such that

max
w∈Vn

RPn,β(w) = λh,β(Pn).

Let us consider an L2(Pn)-orthonormal basis of Vn, say {un1 , . . . , unh}. In view of Mosco convergence,
for every j = 1, . . . , h there exist uj ∈ H1(P ) such that unj → uj strongly in L2(R2) and ∇unj ⇀ ∇uj
weakly in L2(R2;R2) (here we denote with the same symbol the zero extension of the functions
outside their domains). Let V be the h-dimensional vector space spanned by {u1, . . . , uh} (in view
of the L2-convergence we can suppose the uj functions linearly independent) and let us consider
v :=

∑h
j=1 αjuj such that

RP,β(v) = max
w∈V

RP,β(w).

Let us consider vn :=
∑h

j=1 αju
n
j ∈ Vn and observe that vn → v strongly in L2(R2) and ∇vn ⇀ ∇v

weakly in L2(R2;R2). Thanks to the continuity of the volume integrals at the denominator and to
the lower semicontinuity of the gradient integral and of the boundary integral (see [5, Lemma 19]),
we obtain

λk,β(P ) ≤ max
w∈V

RP,β(w) = RP,β(v) ≤ lim inf
n→+∞

RPn,β(vn)

≤ lim inf
n→+∞

max
w∈Vn

RPnβ(w) = lim inf
n→+∞

λh,β(Pn).

Letting n → +∞, we obtain that P is a minimizer for Problem (12).
Moreover, P has exactly N sides and |P | = m. Indeed, if it had less than N sides, say N −K

sides, we could apply K times Lemma 3.6 to obtain a polygon P ′ with exactly N sides, |P ′| ≤ m
and

F (λ1,β(P
′), . . . , λk,β(P

′)) < F (λ1,β(P ), . . . , λk,β(P )),

contradicting the minimality of P ; the saturation of the constraint is assured thanks to the decreas-
ing monotonicity under dilations (9). We also deduce that no minimizer in PN can be a minimizer
in PN+1 and this implies that the sequence of minima (mN ) is strictly decreasing.

Concerning the case of problems (13) and (30) with perimeter constraint, the proof follows the
same pattern. It only differs since the generalized perimeter constraint entails a uniform bound
on the diameters, so we get the existence of an optimal polygon in a standard way and the limit
polygon cannot be empty by Lemma 2.13. □
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As a corollary of the results of the section, the following problems

(29) min {F (λ1,β(P ), . . . , λk,β(P )) : P ∈ PN , |P | ≤ m, P convex} ,

(30) min
{
F (λ1,β(P ), . . . , λk,β(P )) : P ∈ PN ,H1(∂P ) ≤ p, P convex

}
admit a solution. Notice that, in view of the convexity hypotheses, it is not necessary to consider
also degenerate polygons. An existence result is obtainable as a corollary to Theorem 2.15.

Corollary 3.7. Problem (29) (respectively (30)) admits a solution with exactly N sides and with
maximal measure (respectively with maximal boundary length).

Proof. The proof is a combination of Theorem 2.15 and of the preservation of the convexity con-
straint under Hc-convergence. □

We conclude this section with some remarks about the classic problems without any geometric
assumptions

min
{
F (λ1,β(P ), . . . , λk,β(P )) : P union of simple polygons,

P has at most N sides, |P | ≤ m,
}(31)

and

min
{
F (λ1,β(P ), . . . , λk,β(P )) : P union of simple polygons,

P has at most N sides,H1(∂P ) ≤ p,
}
.

(32)

Indeed, in these case we are not allowed to apply the direct methods of the calculus of variation.
That is the reason why we focused our analysis of their generalized versions (12) and (13), respec-
tively. Nevertheless, an easy appoximation argument shows that (12) and (13) can be seen as a
sort of relaxation of (31) and (32).

Proposition 3.8. For any P ∈ PN admissible for Problem (12) (resp. (13)), there exists a sequence
of (Pn) admissible polygons for (31) (resp. (32)) such that

lim
n→+∞

F (λ1,β(Pn), . . . , λk,β(Pn)) = F (λ1,β(P ), . . . , λk,β(P )),

lim
n→+∞

|Pn| = |P | and lim
n→+∞

H1(Pn) =fiPer(P ).

In particular the infima of problems (31) and (32) respectively coincide with the minima of problems
(12) and (13).

Proof. The proof is based on some simple observations. First of all, it is always possible to "detach
the cracks", i.e. to split sides with multiplicity two and obtain two sides of multiplicity one; this
new sides have Hausdorff distance as small as we wish from the original crack. In fact, if the crack
consists of only one segment [A,B] of multiplicity two, two situations can occur. If one vertex, say
B, belongs to the interior of P then it is sufficient to take as a new endpoint a point Aε ∈ ∂P not
lying on the same line as [A,B] and having exactly distance ε from A. The new polygon is obtained
replacing one of the two versions of [A,B] with [Aε, B]. Notice that we increase neither the area
(since we are taking a subset of P ) nor the generalized perimeter (since in the triangle of vertices
A,B,Aε we replace the two sides [A,B] and [Aε, A] with the third side [Aε, B]). If both vertices
A and B do not belong to the interior of P , we can still replace the side where [A,B] lies without
increasing either the volume or the generalized perimeter. In fact, if one of the intersecting sides
is a subset of the other, it is sufficient to replace the shortest one with a segment [Aε, Bε] obtained
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intersecting P with a parallel line to [A,B] at distance ε from the original segment; otherwise, it
is enough to move one vertex, A or B, on another side it belongs and away from the intersection,
giving a rotation around the fixed vertex that provides the required detachment. All the possible
situations are shown in Figure 5.

P P → Pε Pε

Figure 5. Building Pε starting from P

On the other hand, if a subset of ∂P with multiplicity two consists of more consecutive segments,
it is enough to apply the previous argument a finite number of times, starting from the external
vertices and detaching one segment per time. Notice that in all cases, we do not increase the total
number of sides, see Figure 6.

P Pε,1 Pε,2

Figure 6. When a crack of P consists of more consecutive segments, we apply the
procedure several times

Considering now ε = 1/n, we build a sequence of unions of simple polygons with at most N sides
such that

Pn
Hc

−−→ P, lim
n→+∞

|Pn| = |P | and lim
n→+∞

H1(Pn) =fiPer(P );

The claim is thus an immediate consequence of the continuity of the eigenvalues proved in [11,
Theorem 6.1, Theorem 6.2]. □

4. Negative boundary parameter

In this section we consider the case β < 0 and set η := −β > 0. We deal with the problem

(33)

{
∆u+ λu = 0 in Ω

ηu =
∂u

∂ν
on ∂Ω.

The existence result follows the same scheme as in [5], with the main difference that here we also
consider admissible shapes that do not saturate the area (or generalized perimeter) constraint. We
first show that the maximizing sequences do not collapse to the empty set.
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Remark 4.1 (Vanishing is not allowed). A maximizing sequence cannot vanish, either for Problem
(15) or for Problem (16). Indeed, if |Pn| → 0, then by (5) we have

λ1,−η(Pn) ≤ −η
fiPer(Pn)

|Pn|
≤ −η

H1(∂∗Pn)

|Pn|
≤ −η

2
√
π√

|Pn|
n→+∞−−−−−→ −∞,

that gives a contradiction with the maximality of the sequence in view of the assumptions on F .

We now show that if λk,−η(P ) is not too small then the number of the connected components of
P and their diameter are bounded according to the size of λk,β(P ), see [5, Proposition 14].

Proposition 4.2 (A priori bound on diameter and on the number of connected components). Let
N ∈ N, P ∈ PN , |P | = m and let A > 0 be such that λk,β(P ) > −A. Then P is union of M
equibounded connected components

P = P1 ∪ . . . ∪ PM ,

with M < mA2

4πη2
+ k and diam(Pj) ≤ D(m,β, k,A), i.e., the diameters of the connected components

are uniformly bounded.

We are now in a position to prove the main result of the section.

Theorem 4.3 (Existence of a maximal generalized polygon). Problems (15) and (16) admit solu-
tions in PN . Each optimal polygon P is bounded and can be written as the union of at most

min

ßõ
N − 1

2

û
,
mA2

∗
4πη2

+ k

™
equibounded connected components, where A∗ > 0 is such that

F (λ1,−η(EN ), . . . , λk,−η(EN )) > F (−A∗, . . . ,−A∗)

with EN the regular N -agon saturating the constraint of the problem.

Proof. Let (Pn) ⊂ PN be a maximizing sequence for F (λ1,−η(·), . . . , λk,−η(·)). In view of the
hypotheses on F , we observe that any admissible polygon E such that λh,−η(E) ≤ −A∗ for every
h = 1, . . . , k cannot be optimal. Then, it is not restrictive to assume that λh,−η(Pn) > −A∗ for every
h = 1, . . . , k. By Proposition 4.2 we have that diam(Pn) < D for some D independent of n. As a
consequence, since we are in the polygonal framework, we also have supn∈NH1(∂Pn) < +∞. Thanks
again to Proposition 4.2, we can write Pn as union of Mn equibounded connected components
P 1
n , . . . , P

Mn
n as follows:

Pn = P 1
n ∪ . . . ∪ PMn

n , Mn ≤ min

ßõ
N − 1

2

û
,
mA2

∗
4πη2

+ k

™
.

The bound on Mn is given both by Proposition 4.2 and by the fact that we are dealing with polygons
with at most N sides, see Remark 2.7(iii). These facts entail the existence of P ∈ PN such that
Pn

Hc

−−→ P (up to subsequences).
Now, it remains to prove that F (λ1,−η(·), . . . , λk,−η(·)) is upper semicontinuous in PN with

respect to the Hc-convergence. This has already been proved in [5, Proposition 18]; we report the
highlights of the proof for the convenience of the reader.

Let us show that, for any h = 1, . . . , k, we have

(34) λh,−η(P ) ≥ lim sup
n→+∞

λh,−η(Pn);
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the upper semicontinuity of F in each variable will give the thesis. Let us fix ε > 0 and let S be
an admissible vector space in the min-max formula (8) for λh,−η(P ) such that

(35) λh,−η(P ) ≥ max
u∈S\{0}

RP,−η(u)− ε.

Let {uj : j = 1, . . . , h} be an L2(P )-orthonormal basis for S. Then, for every j = 1, . . . , h, there
exists vnj ∈ H1(Pn) such that, denoting by the same symbol the extension by zero of a function
outside its support, vnj → uj strongly in L2(R2) and ∇vnj → ∇uj strongly in L2(R2;R2). Now, since
{u1, . . . , uh} is L2(P )-orthonormal and Pn → P in L1(R2), we deduce that, for n ∈ N sufficiently
large, {vn1 , . . . , vnh} can be chosen linearly independent in L2(P ). Let Sn := span {vn1 , . . . , vnh}; it is
an admissible subspace for the computation of λh,−η(P ). Let

vn =

h∑
j=1

αn
j v

n
j ∈ Sn

realize the maximum for the generalized Rayleigh quotient R on Sn:

max
w∈Sn

R(w) = R(vn).

Without loss of generality, we can assume
h∑

j=1

(αn
j )

2 = 1.

Then, up to subsequences, αn
j → αj in R, with

h∑
j=1

(αj)
2 = 1.

Setting

v =
h∑

j=1

αjuj ,

we have that v ∈ S \ {0}, vn → v strongly in L2(R2) and ∇vn → ∇v in L2(R2;R2). Using (35),
the continuity of the volume integrals and the lower semicontinuity of the boundary integral (see
Lemma 2.14), we have

lim sup
n→+∞

λh,−η(Pn) ≤ lim sup
n→+∞

sup
w∈Sn

RPn,−η(w) ≤ lim sup
n→+∞

RP,−η(v
n) + ε

≤ RP,−η(v) + ε ≤ max
u∈S\{0}

RP,−η(u) ≤ λh,−η(P ) + ε.

Letting ε → 0+ we obtain (34); this concludes the proof. □

When we deal with the negative boundary parameter case, it has been seen in several situations
that the perimeter constraint turns out to be rather natural; see, for instance, [6, 15] where the
optimality and the stability of the ball for the first eigenvalue in the convex case is addressed. Even
in our framework, the (generalized) perimeter constraint gives some additional properties of the
optimal shapes. The following result gives a further property of the solutions of (16), whenever all
the eigenvalues involved in the functional are negative. This happens, for instance, if

F (x1, . . . , xk) = x1
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and the k-th eigenvalue of an optimal polygon P is negative. The condition λk,−η(P ) < 0 is satisfied
if η is sufficiently large, more precisely if η > σk(P ), were σk(P ) is the k-th generalized Steklov
eigenvalue of P , see e.g. [8]. Notice that σ1(P ) = 0 with eigenfunction given by the characteristic
function of P , and so the strict negativity of the first Robin eigenvalue for all η > 0 = σ1(P ) is
coherent with the previous consideration.

Proposition 4.4. Let F : Rk → R satisfy Hypotheses (16). For every polygon P ∈ PN with
λk,−η(P ) < 0, there exists a polygon P • ∈ PN which is a union of simple polygons, such thatfiPer(P •) ≤fiPer(P ) and

F (λ1,β(P
•), . . . , λk,β(P

•)) ≥ F (λ1,β(P ), . . . , λk,β(P )).

In particular, every solution P0 of

max
¶
λ1,−η(P ) : P ∈ PN , fiPer(P ) ≤ p

©
is union of simple polygons and thus λ1,−η(P0) = λ1,−η(P0).

Proof. Let P be as in the statement. Let us denote by U the unbounded connected component of
R2 \ P and consider

P • := R2 \ U.

The set P • is obtained from P by filling the holes and the fractures and this construction makes
P • a finite union of simple polygons; it is clear that P • has at most N sides. Moreover, P • is an
admissible polygon for (16) since fiPer(P •) ≤fiPer(P ).

Let us prove that for any h ∈ {1, . . . , k} it holds

(36) λh,−η(P
•) ≥ λh,−η(P ).

If λh,−η(P
•) ≥ 0, then (36) is immediate since λh,−η(P ) < 0. Let us assume now that λh,−η(P

•) < 0.
Now, we fix ε < |λh,−η(P

•)| and consider an h-dimensional subspace S = span {u1, . . . , uh} of
H1(P •) such that

λh,−η(P
•) + ε ≥ max

α1,...,αh∈R
RP •,−η.

Clearly, the space generated by the restrictions of u1, . . . , uh to P , still denoted by S, is also an
h-dimensional subspace of H1(P ), so it is admissible to compute λh,−η(P ). Let us denote by
α1, . . . , αh ∈ R an h-tuple of coefficients realizing the maximum in S of the Rayleigh quotient
relative to P . Notice that, since P • ⊃ P and ∂P ⊃ ∂P •, for any φ ∈ H1(P •) it holdsˆ

P •
|∇φ|2 dx ≥

ˆ
P
|∇φ|2 dx,

ˆ
P •

φ2 dx ≥
ˆ
P
φ2 dx,

ˆ
∂P •

[
(φ+)2 + (φ−)2

]
dH1 ≤

ˆ
∂P

[
(φ+)2 + (φ−)2

]
dH1.

Moreover, since the involved Rayleigh quotients are negative, they are monotonically increasing
with respect to the volume integrals and monotonically decreasing with respect to the boundary
integral. Taking all these considerations into account we get

λh,−η(P
•) + ε ≥ max

α1,...,αh∈R

ˆ
P •

∣∣∣∑
i

αi∇ui

∣∣∣2 dx− η

ˆ
∂P •

[(∑
i

αiu
−
i

)2
+
(∑

i

αiu
+
i

)2]
dH1

ˆ
P •

(∑
i

αiui

)2
dx
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P P

R2 \ P

U

P •

Figure 7. Construction of P •
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[(∑
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(∑
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αiu
+
i

)2]
dH1

ˆ
P •

(∑
i

αiui

)2
dx

≥

ˆ
P

∣∣∣∑
i

αi∇ui

∣∣∣2 dx− η

ˆ
∂P

[(∑
i

αiu
−
i

)2
+
(∑

i

αiu
+
i

)2]
dH1

ˆ
P

(∑
i

αiui

)2
dx

= max
α1,...,αh∈R

ˆ
P

∣∣∣∑
i

αi∇ui

∣∣∣2 dx− η

ˆ
∂P

[(∑
i

αiu
−
i

)2
+
(∑

i

αiu
+
i

)2]
dH1

ˆ
P

(∑
i

αiui

)2
dx

≥ λh,−η(P ).
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In view of the arbitrariness of ε > 0 we get (36) as required.
We conclude the proof in view of the monotonicity of F in each variable. □

5. Final remarks

It is interesting to see how the qualitative properties proved in Sections 3 and 4 are somehow
dual. Indeed, for β > 0, we are able to count the sides of an optimal generalized polygon, but not
to show that it is actually a polygon. Unfortunately, removing the possible fractures seems hard
in this framework, as we do not have any monotonicity with respect to inclusion, as in the case of
Dirichlet boundary conditions. Even with the perimeter constraint we cannot infer anything about
the convexity of the minimal polygons, differently to the cases in which a monotonicity holds; see
[4] for several examples or [12] for a recent application to a fourth order problem. On the other
hand, the case β < 0 allows to remove fractures or holes but not to count the size of the maximal
polygon.
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