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Abstract

These are notes of a short course I gave in SISSA in 2024 and have been written with
the intent to give a straight to the point presentation of some fundamental results about
measure theory on Polish spaces. Among others, they contain full proofs of some key
theorems, such as the disintegration and Kolmogorov’s ones, that in the literature are
often presented from a probabilistic perspective.

Hopefully, they will convince students that, all in all, the proofs of these crucial state-
ments fit in just a handful of pages, at least if one writes them with a sufficiently small
font.

The material collected here is very classical. For more on the topic and references I
shall refer to the beautiful textbooks [Bog18] and [Dud02].
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1 Basic notions

An algebra on a set X is a collection of subsets containing X and stable by complementation
and finite unions and intersections. A σ-algebra A is also stable by countable unions and
intersections. A measure on (X,A) is a map µ : A → [0,+∞] such that µ(∅) = 0 and

µ(∪nAn) =
∑
n

µ(An) for (An) ⊂ A disjoint. (1.1)

Such measure is finite if µ(X) < +∞. A finite signed measure on (X,A) is a map µ : A → R
such that µ(∅) = 0 and (1.1) holds, where now it is part of the requirement the fact that the
right hand side is well defined as limN→∞

∑
n≤N µ(An). Notice that in this case the value of

the limit is independent on a reordering of the sequence, because the union ∪nAn is so.

Theorem 1.1 (Hahn-Jordan). Let µ be a finite signed measure on (X,A). Then we can
uniquely write it as µ = µ+ − µ− where µ± are finite measures concentrated on disjoint
subsets.

Proof. We say that B ∈ A is positive if µ(C) ≥ 0 for any C ⊂ B, C ∈ A. We claim that given A ∈ A with
µ(A) ≥ 0 there is B ⊂ A positive with µ(B) ≥ µ(A). To see this let A0 := A, tn := infC⊂An µ(C) and then
pick Cn ⊂ An so that µ(Cn) ≤ max{−1, tn

2
} and let An+1 := An \Cn. Finally put B := A \ ∪nCn and notice

that µ(B) = µ(A) −
∑
n µ(Cn) ≥ µ(A). Suppose B is not positive. Then there is C ⊂ B ⊂ An for every n

with µ(C) < 0. Thus tn < µ(C) per ogni n and therefore µ(Cn) ≤ max{−1, µ(C)
2

}. Since the Cn’s are disjoint
we would get µ(∪nCn) =

∑
n µ(Cn) = −∞, contradicting the fact that µ takes values in R.

Now define recursively P0 := ∅, pn := supA⊂X\Pn−1
µ(A), pick An ⊂ X \ Pn−1 so that µ(An) ≥ pn

2

and use the above to find Pn ⊂ An positive with µ(Pn) ≥ min{ pn
2
, 1}. Put P := ∪nPn. We claim that if

A ⊂ N := X \ P , then µ(A) ≤ 0. Indeed, from
∑
n µ(Pn) = µ(P ) < ∞ we see that

∑
n pn < ∞, and if

µ(A) > 0 the above argument produces P ′ ⊂ A positive with µ(P ′) ≥ µ(A) > 0 implying, as above, that

pn ≥ min{1, µ(P
′)

2
} for every n ∈ N, giving the contradiction.

It is now clear that the formulas µ+(E) := µ(E ∩ P ) and µ−(E) := −µ(E \ P ) define finite measures
satisfying the claim. For uniqueness, we observe that if µ = ν+ − ν− is another decomposition, then the
above argument show that ν− must be concentrated on N and ν+ on P , giving µ(E) = ν+(E) − ν−(E) =
ν+(E ∩ P )− ν−(E \ P ) for any E ∈ A and the conclusion.

In particular, the above shows that any finite signed measure must be bounded, i.e. takes
value in some compact subinterval of R.

Given a finite signed measure µ we define |µ|(E) := µ+(E) + µ−(E) for any E ∈ A. It
is clear that this is a non-negative measure. The total variation ∥µ∥TV of µ is defined as
|µ|(X). It is clear that ∥·∥TV is a norm on the vector space M(X,A) of finite signed measures.

Proposition 1.2. The total variation is a complete norm on M(X,A) and probability mea-
sures are a closed subset.

Proof. We have |µ(E)| = |µ+(E)− µ−(E)| ≤ µ+(E) + µ−(E) ≤ µ+(X) + µ−(X) = ∥µ∥TV for every E, thus if
(µn) is ∥ · ∥TV-Cauchy we have |µn(E)− µm(E)| ≤ ∥µn − µm∥TV and thus n 7→ µn(E) is also Cauchy for every
E and uniformly so in E, i.e. denoting by L(E) the limit we have that limn supE |L(E) − µn(E)| = 0. We
claim that L is a measure. Clearly L(∅) = 0 and we have finite additivity. For σ-additivity pick (En) disjoint
and pass to the limit first in n then in i in the bound

|L(∪nEn)− L(∪n≤NEn)| = |L(∪n>NEn)| ≤ |µi|(∪n>NEn) + sup
E

|L(E)− µi(E)|

to deduce that limn |L(∪nEn) − L(∪n≤NEn)| = 0, i.e. that L is a measure. To see that it is the TV-limit of
(µn) notice that for suitable Pn we have

∥L− µn∥TV = (L− µn)(Pn)− (L− µn)(P
c
n) ≤ |(L− µn)(Pn)|+ |(L− µn)(P

c
n)| ≤ 2 sup

E
|(L− µn)(E)| → 0.

The fact that probability measures are closed is trivial.
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Let µ, ν be two measures on the same σ-algebra. We say that µ is absolutely continuous
with respect to ν, and write µ ≪ ν, provided ν(E) = 0 implies µ(E) = 0. We say that µ is
singular w.r.t. ν, and write µ ⊥ ν, provided there is E with |µ|(E) = 0 and |ν|(E) = 0. A
measure is σ-finite provided the underlying space can be decomposed in a countable collection
of sets having finite measure.

Theorem 1.3 (Radon–Nikodym). Let µ, ν be two σ-finite measures on (X,A) with µ ≪
ν. Then µ = fν for some non-negative A-measurable function f , called Radon–Nikodym
derivative and denoted dµ

dν .

Proof. Decomposing X in sets where µ, ν are finite we can assume µ(X), ν(X) < ∞. Let F := {g : X →
[0,+∞] : g is A-meas. and gν ≤ µ}, S := supg∈F

´
g dν and (gn) ⊂ F with

´
gn dν → S. It is clear that

fn := max{g1, . . . , gn} ∈ F and, by monotone convergence, that f := supn fn ∈ F with S =
´
f dν. We

claim that f is the required function, i.e. that µ = fν. If not, since we know that fν ≤ µ we must have
µ(X) −

´
X
f dν ≥ c for some c > 0 and thus Theorem 1.1 and its proof gives the existence of a positive set

P ∈ A for µ− fν with (µ− fν)(P ) ≥ c. The positivity of P means that µ(A) ≥
´
A
f + cdν for every A ⊂ P ,

i.e. that f + cχP ∈ F , contradicting the maximality of f (because
´
f + cχP dν >

´
f dν).

Theorem 1.4 (Lebesgue decomposition). Let µ, ν be two measures on (X,A) with µ being
σ-finite. Then there are unique measures µac, µ⊥ with µac ≪ ν, µ⊥ ⊥ ν and µ = µac + µ⊥.

Proof. As before, we easily reduce to the case µ(X) <∞. Let N := {N ∈ A : ν(N) = 0}, m := supN∈N µ(N)
and (Nn) ⊂ N with µ(Nn) → m. Put N := ∪nNn and notice that ν(N) = 0 and µ(N) = m. Also, the
formula µ⊥(E) := µ(E ∩ N) defines a measure singular w.r.t. ν. We claim that µac := µ − µ⊥ is absolutely
continuous w.r.t. ν. If not, there is N ′ ∈ A with ν(N ′) = 0 and 0 < µac(N ′) = µ(N ′)−µ(N ′∩N) = µ(N ′ \N)
contradicting the maximality of N (because µ(N ∪N ′) = µ(N) ∪ µ(N ′ \N) > µ(N)).

This proves existence. For uniqueness observe that if µ = µ̃ac + µ̃⊥, then µac − µ̃ac = µ̃⊥ − µ⊥ and the
two sides of this equality are mutually singular measures, forcing both to be zero.
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2 Identifying and constructing measures

A π-system on a set X is a non-empty collection of subsets stable by finite intersection.
A λ-system (or Dyinkin system) on X is a non-empty collection A of subsets such that:

a) X ∈ A,

b) if A,B ∈ A are so that B ⊂ A, then A \B ∈ A,

c) if An ∈ A with and An ⊂ An+1 for every n ∈ N, then ∪nAn ∈ A.

Theorem 2.1 (π − λ theorem). The smallest λ-system containing a π-system P coincides
with the σ-algebra generated by P .

Proof. One inclusion is obvious. For the other one, let D be the smallest λ-system containing P and let
D1 ⊂ D be the set of those A ∈ D such that A ∩ C ∈ D for every C ∈ P . It is clear that D1 is a λ-system
(using (A \B)∩C = (A∩C) \ (B ∩C) and (∪nAn)∩C = ∪n(An ∩C) and that it contains P (as this is stable
by intersection). Thus D1 = D.

Now let D2 ⊂ D be the set of those A ∈ D such that A ∩C ∈ D for every C ∈ D. Since D1 = D we have
P ⊂ D2 and the same arguments just used show that D2 is a λ-system. Hence D2 = D, i.e. D is stable by
finite intersection. Since it contains X and is stable by relative complement, it is also stable by finite union.
For here the conclusion easily follows using property (c) to improve finite unions to countable ones.

Corollary 2.2. Let µ, ν be two finite measures on the same σ-algebra. Assume that they
coincide on a π-system generating the σ-algebra. Then they coincide on the whole σ-algebra.

Proof. The collection of measurable sets E such that µ(E) = ν(E) contains the given π-system and is, trivially
from the definition of measure, a λ-system. The conclusion follows from the above theorem.

Let A be a collection of subsets of X and µ : A → [0,+∞] be arbitrary. Then we can define
an outer measure µ∗ (i.e. a σ-subadditive function defined on all subsets with µ∗(∅) = 0)
by

µ∗(A) := inf
{∑

n
µ(An) : (An) ⊂ A is an at most countable cover of A.

}
(2.1)

It is clear that this is an outer measure and that if µ(A) ≤
∑

n µ(An) whenever A,An ∈ A,
n ∈ N, are so that A ⊂ ∪nAn, then µ∗(A) = µ(A) for every A ∈ A.

Given an outer measure µ∗, a subset E ⊂ X is called µ∗-measurable provided

µ∗(F ) ≥ µ∗(F ∩ E) + µ∗(F \ E) ∀F ⊂ X.

Lemma 2.3 (Carathéodory’s criterion). The set B of µ∗-measurable sets is a σ-algebra and
the restriction of µ∗ to it a measure.

Proof. B contains the empty set and is stable by complement. Let (En) ⊂ B and E := ∪nEn. Given F we
have µ∗(F ) ≥ µ∗(F \E0) + µ∗(F ∩E0) and also µ∗(F \E0) ≥ µ∗(F \ (E0 ∪E1)) + µ∗((F \E0)∩E1) therefore

µ∗(F ) ≥ µ∗(F \ (E0 ∪ E1)) + µ∗(F ∩ E0) + µ∗((F \ E0) ∩ E1)

and thus by induction

µ∗(F ) ≥ µ∗(F \ (∪ni=0Ei)) +

n∑
i=0

µ∗(F \ (∪i−1
j=0)Ej) ∩ Ei) ≥ µ∗(F \ E) +

n∑
i=0

µ∗(F \ (∪i−1
j=0)Ej) ∩ Ei)

having used that F \ E ⊂ F \ ∪ni=0Ei for every n. Letting n→ ∞ and using subadditivity we get

µ∗(F ) ≥ µ∗(F \ E) +
∑
i∈N

µ∗(F \ (∪i−1
j=0)Ej) ∩ Ei) ≥ µ∗(F \ E) + µ∗(F ∩ E),

4



proving that E ∈ B and thus that B is a σ-algebra. To conclude, assume the En’s are disjoint and pick
F = E = ∪nEn in the first inequality above to deduce that µ∗(E) ≥

∑
i µ

∗(Ei). Since the other inequality
holds by σ-subadditivity, we are done.

Proposition 2.4. Let A be an algebra on X and µ : A → [0, 1] finitely additive. Then
µ extends to a measure on the σ-algebra generated by A if and only if for any (An) ⊂ A
decreasing with ∩nAn = ∅ we have µ(An) ↓ 0.

Proof. Uniqueness follows from Corollary 2.2. For existence define the outer measure µ∗ from µ as in (2.1)
and notice that the assumption ensures that µ(A) ≤

∑
n µ(An) whenever A,An ∈ A with A ⊂ ∪nAn (because

En := A \ ∪i≤nAi is decreasing with ∩nEn = ∅ and thus µ(A) −
∑
i≤n µ(Ai) ≤ µ(En) → 0). As already

noticed, this implies µ∗(A) = µ(A) for A ∈ A. It thus remains to prove that sets in A are µ∗-measurable.
This, however, is a trivial consequence of the additivity of µ. Indeed, for given A ∈ A, F ⊂ X arbitrary and
(An) ⊂ A cover of F we have that (An ∩ A), (An \ A) ⊂ A are cover of F ∩ A and F \ A respectively and∑
n µ(An) =

∑
n µ(An ∩A) + µ(An \A) ≥ µ∗(F ∩A) + µ∗(F \A).

Proposition 2.5. Let µ∗ be an outer measure on a metric space X that is additive on distant
sets (A,B ⊂ X are distant if infx∈A,y∈B d(x, y) > 0). Then Borel sets are µ∗-measurable.

Proof. It suffices to prove that closed sets are measurable. Let thus C ⊂ X be closed and B ⊂ X arbitrary.
We want to prove that

µ∗(B) ≥ µ∗(B ∩ E) + µ∗(B \ E)

thus we can assume µ∗(B) < ∞. Let Bn := {x ∈ B : d(x,C) ∈ [ 1
n+1

, 1
n
]} and notice that Bn and Bn+2 are

distant, thus by additivity we deduce that
∑n
i=0 µ

∗(B2n) ≤ µ∗(B) and
∑n
i=0 µ

∗(B2n+1) ≤ µ∗(B) for every n.
Hence

∑
µ∗(Bn) < ∞ and thus by σ-subadditivity µ∗(∪n≥NBn) → 0 as N → ∞. Since B \ C = ∪nBn (here

we use that C is closed), from σ-subadditivity we see that

µ∗(B ∩ C) + µ∗(B \ C) ≤ µ∗(B ∩ C) + µ∗(∪n<NBn) + µ∗(∪n≥NBn) ≤ µ∗(B) + µ∗(∪n≥NBn),

having used that B and ∪n<NBn are distant in the second inequality. Letting N → ∞ we conclude.

Corollary 2.6. Let X be a metric space and µ be a non-negative map defined on the open
sets. Then µ extends to a Borel measure if and only if:

O1) µ(C) ≤ µ(A) + µ(B) whenever C ⊂ A ∪B,

O2) µ(A ∪B) ≥ µ(A) + µ(B) if A,B are distant,

O3) µ(A) ≤ limn µ(An) if An ↑ A (i.e. the sequence is non-decreasing and A = ∪nAn).

Proof. The ‘only if’ is clear. For the ‘if’ we notice that (O1) and (O3) imply that µ(A) ≤
∑
n µ(An) if A ⊂

∪nAn, thus from the initial discussion we see that the outer measure µ∗ induced by µ coincides with µ on the
open sets. Then, since distant sets are covered by distant open sets (trivially) we see that (O2) and subadditivity
imply that µ∗ is additive on distant sets, hence the conclusion follows by the above proposition.
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3 Polish spaces

A Polish space is a topological space (X, τ) whose topology can be metrized by a complete
and separable distance. Fixing a distance, for which there is in general no canonical choice,
is not necessary for the results we are going to discuss, that are only linked to topology.

Proposition 3.1. Open and closed subsets of Polish spaces are Polish and so is the countable
product of Polish spaces. If X is Polish and An ⊂ X is Polish (with the induced topology) for
every n ∈ N, then so is ∩nAn.

Proof. The claim for closed sets and products are obvious. For the intersection notice that the diagonal
(x, x, . . .) is a closed subset of the product ΠnAn. If U ⊊ X is open and d a complete and separable distance
on X inducing the topology, then dU (x, y) := d(x, y) + |d(x, ∂U)−1 − d(y, ∂U)−1| is a complete and separable
distance on U inducing the subspace topology.

Proposition 3.2. A subset Y of a Polish space X is Polish iff it is a countable intersection
of open sets.

Proof. The ‘if’ follows from the proposition above. For the ‘only if’ let d, dY be complete separable distances
on X,Y respectively and Vn ⊂ X be the union of all the open subsets Wn of X with dX-diameter ≤ 2−n so
that Wn∩Y has dY-diameter ≤ 2−n. We claim that Y = Ȳ∩ (∩nVn) and notice that this gives the conclusion.
The inclusion ⊂ is obvious. For ⊃ let x ∈ Ȳ ∩ (∩nVn) and for every n find Wn as above, containing x and
contained in Vn. Since d-diameters go to 0, we know that there is at most an element of X belonging to all the
X-closures W̄X

n of the Wn’s, and this element is x. Similarly, from the completeness of Y and the fact that the

dY-diameters go to 0 we know that there is an element y ∈ Y belonging to the Y-closures Wn ∩Y
Y ⊂ W̄X

n of
Wn ∩ Y for every n. Thus x = y.

For X Polish we define Cb(X) as the space of real valued, bounded and continuous func-
tions, equipped with the (complete) norm ∥f∥ := sup |f |. The support supp(f) of a function
is the closure of {f ̸= 0} ⊂ X.

Exercise 3.3. Prove that Cb(X) is separable if and only if X is compact. ■

Proposition 3.4. Let X be Polish. Then there is a countable collection D ⊂ Cb(X) such that
for any f ∈ Cb(X) there is (gn) ⊂ D increasing so that f(x) = supn gn(x) for every x ∈ X.

If d is a complete and separable distance inducing the topology on X, we can choose D so
that it only contains d-Lipschitz functions.

Proof. Let (xi) ⊂ X be countable and dense and D′ ⊂ Cb(X) be the countable collection of functions of the
form (a− bd(·, xi))∨ c for a, b, c ∈ Q and i ∈ N. It is easy to see that for any f ∈ Cb(X), x ∈ X and ε > 0 there
is h ∈ D′ so that h ≤ f on X and f(x) ≤ h(x)+ ε. Then D := {h1 ∨ · · · ∨ hn : n ∈ N, gi ∈ D′} does the job, as
for f ∈ Cb(X) we enumerate as (hn) the functions in D′ that are ≤ f and then consider gn := h1∨· · ·∨hn.

For X Polish we denote by M(X) the collection of finite signed Borel measures on X and
by P(X) ⊂ M(X) that of Borel probability measures.

Lemma 3.5. Let X be Polish and µ ∈ P(X). Then for every E ⊂ X Borel we have

µ(E) = sup{µ(C) : C ⊂ E closed} = inf{µ(U) : E ⊂ U open}. (3.1)

Proof. Let A be the collection of Borel sets E for which (3.1) holds. Since open sets in X are countable union
of closed sets, A contains the open sets, so if we prove that it is a σ-algebra we are done. It is clearly stable
by complementation, thus it suffices to prove that if (En) ⊂ A then E := ∪nEn is also in A. Let ε > 0
and then Cn ⊂ En ⊂ Un with µ(En \ Cn), µ(Un \ En) ≤ 2−nε. Then U := ∪nUn is open, contains E and
µ(U \E) ≤

∑
n µ(Un \En) ≤ ε. Also, find N ∈ N so that µ(∪nCn \∪n≤NCn) < ε and put C := ∪n≤NCn ⊂ E.

Then C is closed and µ(E \ C) = µ(E \ ∪nCn) + µ(∪nCn \ C) ≤ 2ε.
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4 The Riesz-Daniell-Stone theorem

Lemma 4.1. Let X be Polish and µ ∈ M(X). Then

|µ|(U) = sup
{ ´

f dµ : f ∈ Cb(X), ∥f∥ ≤ 1 supp(f) ⊂ U
}

∀U ⊂ X open.

and in particular
∥µ∥TV = sup

{ ´
f dµ : f ∈ Cb(X), ∥f∥ ≤ 1

}
. (4.1)

Proof. ≥ is obvious. For ≤ let P ⊂ X be a positive set of µ with P c negative as in the proof of Theorem
1.1, ε > 0 and then find closed sets C,D in U ∩ P,U ∩ P c respectively with µ+((U ∩ P ) \ C) ≤ ε and
µ−((U ∩ P c) \ D) ≤ ε. Let fn := (1 − nd(·, C))+, gn := (1 − nd(·, D))+ and then put hn := fn − gn
so that hn → χC − χD and ∥hn∥C ≤ 1. By dominate convergence we get

´
hn dµ → µ+(C) + µ−(D) ≥

µ+(U) + µ−(U)− 2ε = |µ|(U)− 2ε.

To any µ ∈ M(X) we can associate the linear continuous functional L on Cb(X) given by

Cb(X) ∋ f 7→ L(f) :=
´
f dµ

and the above lemma ensures that the operator norm of L is ∥µ∥TV. The Riesz-Daniell-Stone
theorem tells which functionals arise this way. It can be thought of as a regularity theorem,
and in fact is the initial step in many structural results, as something that initially only acts
on continuous functions turns out to act also on Borel ones1.

Below we write φn ↓ 0 to mean that φn+1 ≤ φn for every n and φn(x) ↓ 0 for every x ∈ X.

Theorem 4.2. For L : Cb(X) → R be linear and continuous the following are equivalent:

i) L is tight, i.e. for every f ∈ Cb(X) and (φn) ⊂ Cb(X) with φn ↓ 0 we have: L(fφn) → 0.

ii) The map m defined on open sets as m(U) := sup{L(f) : ∥f∥ ≤ 1, supp(f) ⊂ U} is the
restriction to open sets of a finite Borel measure

iii) L is induced by a finite signed Borel measure µ.

If these hold then m = |µ| and the operator norm of L is ∥µ∥TV.

Proof. (iii) ⇒ (i) holds by dominated convergence.
(i) ⇒ (ii), We check that m satisfies (O1), (O2), (O3) of Corollary 2.6. For (O1) we take f with ∥f∥ ≤ 1

and support in C and find (see below) φ,ψ ∈ Cb(X) with support in A,B respectively, norm ≤ 1 and with
φ + ψ = 1 on supp(f). Then L(f) = L(fφ) + L(fψ) ≤ m(A) + m(B) and taking the sup in f we are done.
To find φ,ψ notice that there is a continuous function φ′ [0, 1]-valued with support in A and identically 1 on

supp(f) \ B (pick d(·,F1)
d(·,F1)+d(·,F2)

for F1 := A and F2 := supp(f) \ B). Define symmetrically ψ′ and then put

φ := φ′

φ′+ψ′ and ψ := ψ′

φ′+ψ′ , both set to 0 where φ′ + ψ′ = 0.
(O2) is obvious. For (O3) fix f with norm ≤ 1 and support in A, then use the same construction as above

to find η : X → [0, 1] with support in A equal to 1 on supp(f). Then for every n let (φnk ) ⊂ Cb(X) so that
φnk ↑ χAk . Then given an enumeration (ni, ki) of N2 put ψi := maxj≤i φ

nj

kj
and notice that η − ηψi ↓ 0. By

tightness of L we get L(f) = L(fη) = limi L(fηψi) = limi L(fψi) ≤ limlm(Al), hence taking the sup in f we
are done.

(ii) ⇒ (iii) We have m(X) = ∥L∥op < +∞. We claim that

|L(φ)| ≤ m({φ ̸= 0}) provided φ ∈ Cb(X) takes values in [−1, 1]. (4.2)

1This should be taken with a grain of salt: surely we know from Hahn-Banach theorem that any linear
continuous functional on Cb(X) can be extended in many ways to a functional on, say, bounded Borel functions.
Only one of these extensions will come out from the integral w.r.t. a measure, so we might think at Theorem
4.2 as a ‘regular selection’ result.
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Indeed, given ε > 0 arguing as above we can find η ∈ Cb(X) [0, 1]-valued identically 1 on {|φ| > 2ε} with
support in {|φ| ≤ ε}. Then ∥ηφ∥ ≤ 1 and ∥(1 − η)φ∥ ≤ 2ε, hence |L(φ)| ≤ |L((1 − η)φ)| + |L(ηφ)| ≤
2ε∥L∥op +m({φ ̸= 0}) and (4.2) follows.

Now let E ⊂ X Borel, ε > 0 and find (recall Lemma 3.5) C ⊂ E ⊂ U with U open, C closed and
m(U \ C) < ε. If φ1, φ2 are 1 on C and 0 outside U , then by (4.2) we get |L(φ1) − L(φ2)| = |L(φ1 − φ2)| ≤
m({φ1 ̸= φ2}) ≤ 2ε. It follows that for Cn ⊂ E ⊂ Un with m(Un \ Cn) → 0 and corresponding sequence (φn)
the limit µ(E) of n 7→ L(φn) exists and thus in particular is independent on the chosen sequence. We claim
that

|µ(F )− µ(E)| ≤ m(F \ E) ∀E ⊂ F Borel. (4.3)

To see this fix C ⊂ E ⊂ F ⊂ U and notice that we can take sequences (φn), (ψn) as above defining µ(E), µ(F )
respectively so that all the functions are 1 on C and 0 outside U . Hence by (4.2) we get |µ(F ) − µ(E)| =
limn |L(ψn−φn)| ≤ m(U \C) and (4.3) follows. Now observe that µ is, as trivial consequence of the definition,
additive on sets with disjoint closure. For general disjoint sets E1, E2, for ε > 0 we find (by xxx) closed sets
Ci ⊂ Ei with m(Ei \Ci) < ε, i = 1, 2, and use (4.3) and the arbitrariness of ε to conclude that µ(E1)+µ(E2) =
µ(E1∪E2). To conclude that it is a measure it thus suffices to show that if (En) is an increasing sequence then
limn µ(En) = µ(E), where E := ∪nEn: this follows from (4.3) as |µ(E) − µ(∪i≤nEi)| ≤ m(E \ ∪i≤nEi) = 0,
having used that m is a finite measure.

We now show that
´
f dµ = L(f) for any f ∈ Cb(X). The key is that for φ : X → [0, 1] continuous we have

|L(φ)− µ({φ > 0})| ≤ m(φ−1(0, 1)). (4.4)

Indeed, let ε > 0 and then ψ ∈ Cb(X) [0, 1]-valued, identically 1 on {φ ≥ ε} and with support in {φ > 0}.
Notice that L(ψ) → µ({φ > 0}) when ε ↓ 0 (by definition of µ) and that |L(φ)−L(ψ)| = |L(φ−ψ)| ≤ m({φ ̸=
ψ}) ≤ m(φ−1(0, 1)) (by (4.2)), which proves the claim.

Since L(1) = µ(X) =
´
1 dµ, by linearity it suffices to prove the representation formula for f ≥ 0. In

this case we prove that L(f) =
´∞
0
µ({f > t}) dt, which by Cavalieri’s formula is enough to conclude. Let

ft := f ∧ t and F (t) := L(ft). For h > 0 we have
ˆ sup f

0

F (t+ h)− F (t)

h
dt =

1

h

( ˆ sup f+h

sup f

F (t) dt−
ˆ h

0

F (t) dt
)

→ F (sup(f)) = L(f) as h ↓ 0,

having used that |F (t)| ≤ ∥ft∥∥L∥op ≤ t∥L∥op → 0 as t ↓ 0. On the other hand the function
ft+h−ft

h
takes

values in [0, 1], thus (4.4) gives
∣∣∣L( ft+h−ft

h

)
− µ({f > t})

∣∣∣ ≤ m({f ∈ (t, t+ h)}) and thus∣∣∣ ˆ sup f

0

F (t+ h)− F (t)

h
dt−

ˆ sup(f)

0

µ({f > t}) dt
∣∣∣ ≤ ˆ sup(f)

0

m({f ∈ (t, t+ h)}) dt.

The conclusion follows noticing that the last term on the right goes to zero by dominated convergence.
The last claim now follows from Lemma 4.1 above.

Lemma 4.3 (Dini). Let X be compact and (φn) ⊂ C(X) be so that φn ↓ 0. Then ∥φn∥ → 0.

Proof. Say not. Then for some ε > 0 we can find xn ∈ X with φn(xn) ≥ ε for all n ∈ N. By compactness and
possibly passing to a subsequence we can assume that xn → x for some x ∈ X. For everym ∈ N, since φm ≥ φn
for n ≥ m, we have φm(x) = limn φm(xn) ≥ limn φn(xn) ≥ ε contradicting the assumption φm(x) ↓ 0.

Corollary 4.4. Let X be a compact metric space. Then the map M(X) ∋ µ 7→ (f 7→
´
f dµ)

is a bijective isometric isomorphism of (M(X), ∥ · ∥TV) and the Banach dual C(X)∗ of C(X).

Proof. Consequence of Theorem 4.2, as by Dini’s lemma every L ∈ C(X)∗ is tight as in (i) of Theorem 4.2.

Remark 4.5. The Riesz theorem is often stated for positive operators (i.e. sending non-negative functions
to non-negative reals): these are automatically bounded as for f ≥ 0 the monotonicity gives L(f) ≤ L(1∥f∥) ≤
∥f∥L(1), and writing a generic f as sum of its positive and negative parts we easily get |L(f)| ≤ ∥f∥L(1). A
generic linear bounded operator L : Cb(X) → R can be decomposed in its positive and negative parts via the
Riesz-Kantorovich formulas:

L+(f) := sup0≤g≤f L(g) and L−(f) := inf0≤g≤f L(g) ∀f ≥ 0.

It is easy to check that ∥L±∥op ≤ ∥L∥op. It is not clear to me whether tightness of L directly implies that of

L± (after Riesz theorem as stated above this is obvious) ■
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5 Weak topology

Let X be a Polish space. The weak (or narrow, or vague topology) topology on P(X) is the
weakest making µ 7→

´
f dµ continuous for every f ∈ Cb(X).

Notice that for D ⊂ Cb(X) as in Proposition 3.4 we have

The weak topology is the weakest making µ 7→
´
g dµ continuous for every g ∈ D. (5.1)

Indeed, from Proposition 3.4 and monotone convergence we see that
´
f dµ = supg∈D,g≤f

´
g dµ.

This proves that if µ 7→
´
g dµ is continuous for every g ∈ D, then µ 7→

´
f dµ is lower semi-

continuous for every f ∈ D and replacing f with −f we get continuity.
We shall write µn ⇀ µ to intend that (µn) converges to µ in the weak topology.
Fix a complete and separable distance d on X. The Levy-Prokhorov distance is:

DLP(µ, ν) := inf{r > 0 : µ(A) ≤ ν(Ar) + r and ν(A) ≤ µ(Ar) + r for every A ⊂ X Borel},

where Ar := {x : d(x,A) < r} is the r-neighbourhood of A. It is easy to check that DLP is
indeed a distance. It clearly depends on d, but the topology it induces does not:

Theorem 5.1. The distance DLP is separable and induces the weak topology on P(X).

Proof. Let f : X → R+ be 1-Lipschitz (w.r.t. d) and bounded. Put S := sup f and notice that for any c, r > 0
we have {f < c}r ⊂ {f < c+ r}. Thus if DLP(µ, ν) < r we have

ˆ
f dν =

ˆ S

0

ν({f < c}) dc ≤
ˆ S

0

µ({f < c}r) + r dc ≤
ˆ S

0

µ({f < c+ r}) + r dc ≤ r(1 + S) +

ˆ
f dµ,

from which it easily follows that DLP(µn, µ) → 0 implies
´
f dµn →

´
f dµ and thus, easily from (5.1), that

µn ⇀ µ.
Conversely, fix µ ∈ P(X) and r > 0: we will prove that there is a weak neighbourhood U of µ contained

in the DLP-ball B of radius 5r centred in µ.
Notice that for any E ⊂ X Borel the function f := max{0, 1−2r−1d(·, Ē)} ∈ Cb(X) satisfies χE ≤ f ≤ χEr ,

hence there is a neighbourhood U(E) of µ such that µ(Er)+r ≥ ν(E) and ν(Er)+r ≥ µ(E) for every ν ∈ U(E).
Now let (xi) ⊂ X be countable and dense and notice that since 1 = µ(X) = limN µ(∪n≤NBr(xi)) there is N ∈ N
such that for F := ∪i≤NBr(xi) we have µ(X \ F ) < r. For every J ⊂ {1, . . . , N} let EJ := ∪i∈JB2r(xi) and
then define U := U(X \ F r)∩ (∩JU(EJ)). We claim that U ⊂ B. To see this, let A ⊂ X be arbitrary Borel, let
J := {i : Br(xi) ∩A ̸= ∅} and notice that A ⊂ (X \ F r) ∪ EJ and ErJ ⊂ A5r, thus

µ(A) ≤ r + µ(EJ) ≤ 2r + ν(ErJ) ≤ 2r + ν(A5r) ∀ν ∈ U .

Noticing that (X \ F r)r ⊂ X \ F we also have

ν(A) ≤ ν(X \ F r) + ν(EJ) ≤ 2r + µ(X \ F ) + µ(ErJ) ≤ 3r + µ(A5r) ∀ν ∈ U ,

concluding the proof that U ⊂ B.
For separability we claim that the collection of probability measures of the form

∑
i≤N αiδxi with (xi) ⊂ X

fixed dense set and (αi) ⊂ Q is DLP-dense. But this is clear, as given µ ∈ P(X) and ε > 0 we can find, as
above, N ∈ N so that µ(∪i≤NBε(xi)) > 1−ε. Then picking αi ∈ Q sufficiently close to µ(Bε(xi)\∪j<iBε(xj))
and putting ν :=

∑
i≤N αiδxi it is easy to see that DLP(µ, ν) < ε.

We say that K ⊂ P(X) is tight if for every ε > 0 there is K ⊂ X compact such that
µ(X \K) < ε for every µ ∈ K.

Theorem 5.2 (Prokhorov). K ⊂ P(X) is weakly relatively compact if and only if it is tight.

9



Proof. We know from the above that the weak topology is metrizable, hence (relative) compactness is equivalent
to (relative) sequential compactness. For the ‘if’ we can thus assume to have a tight sequence (µn) and aim to
prove that is has a weakly converging subsequence. For every i ∈ N let Ki ⊂ X be compact with µn(X\Ki) <

1
i

for every n ∈ N. For fixed i, the restrictions µn|Ki
of the µn’s to Ki are bounded in total variation and thus

by Corollary 4.4 and Banach-Alaoglu admit a weakly converging subsequence. With a diagonal argument we
can pass to a non-relabeled subsequence and assume that for every i we have µn|Ki

⇀ νi (in duality with

C(Ki), in particular
´
f dνi = limn

´
Ki
f dµn) for some νi ∈ M(Ki) ⊂ M(X). From the trivial identity

χKi − χKj = χX\Kj
− χX\Ki

we see that |
´
f d(νi − νj)| ≤ limn

´
|f ||χX\Kj

− χX\Ki
| dµn ≤ ∥f∥( 1

i
+ 1

j
) that

by (4.1) shows that (νi) is ∥ · ∥TV-Cauchy and thus, by Proposition 1.2, admits a limit ν.
We claim that µn ⇀ ν, that would prove relative weak compactness of the µn’s. Indeed we have

lim
n

∣∣∣ ˆ f d(ν − µn)
∣∣∣ ≤ ∥f∥

(
∥ν − νi∥TV + 1

i

)
+ lim

n

∣∣∣ ˆ f d(νi − µn|Ki
)
∣∣∣ = ∥f∥

(
∥ν − νi∥TV + 1

i

)
∀f ∈ Cb(X)

and letting i→ ∞ we conclude.
Conversely, using again that the weak topology is metrizable it suffices to show that if µn ⇀ µ, then (µn)

is tight. Let (xi) ⊂ X be countable and dense and fix ε > 0. For every m ∈ N put εm := 2−mε and find
Mm ∈ N so that for Cm := ∪i≤MmBεm(xi) we have µ(Cm) ≥ 1 − εm. Recalling that DLP(µn, µ) → 0 we see
that there is Nm ∈ N so that µn(C

εm
m ) ≥ 1 − 2εm for every n ≥ Nm. We now increase Mm to ensure that

µn(Cm) ≥ 1− εm holds also for n ≤ Nn (thus we have µn(C
εm
m ) ≥ 1− 2εm for every n,m). Finally we define

K := ∩mCεmm and notice that this is closed and totally bounded, hence compact. Also, for every n we have
µn(X \K) ≤

∑
m µn(X \ Cεmm ) ≤

∑
m 21−mε ≤ 4ε, proving the desired tightness.

Corollary 5.3 (Ulam’s theorem). Any µ ∈ P(X) is concentrated on a countable union of
compact sets.

Proof. The singleton {µ} is compact (w.r.t. any topology) hence tight by Prokhorov’s theorem.

Corollary 5.4. Let µ ∈ P(X). Then for every Borel set E ⊂ X we have

µ(E) = sup{µ(K) : K ⊂ E compact} = inf{µ(U) : E ⊂ U open}.
Proof. The formula with open sets has been proved in Lemma 3.5. For that about compact sets, let Kn ⊂ X
be compact with µ(X\Kn) → 0 (use Ulam’s theorem) and, given E, let Cn ⊂ E be closed with µ(E \Cn) → 0.
Then Cn ∩Kn ⊂ E is compact for every n and µ(E \ (Cn ∩Kn)) ≤ µ(E \ Cn) + µ(X \Kn) → 0.

Proposition 5.5. The Levy-Prokhorov distance DLP on P(X) is complete. In particular,
P(X) with the weak topology is Polish.

Proof. Let (µn) ⊂ P(X) be DLP-Cauchy. By Theorems 5.2 and 5.1 it suffices to prove that it is tight. Fix
ε > 0 and for every n ∈ N let εn := 2−nε and find Nn ∈ N so that supm≥Nn

DLP(µn, µm) < εn. Also, use the
tightness of the finite set {µ1, . . . , µNn} to find Kn ⊂ X compact so that µm(Kn) ≥ 1− εn for every m ≤ Nn.
By definition of DLP and the choice of Nn we also have µm(Kεn

n ) ≥ 1− 2εn for every m > Nn.
Then, as before, we notice that K := ∩nKεn

n is compact (being closed and totally bounded) and µm(X \
K) ≤

∑
n µm(X \Krn

n ) ≤ 2ε
∑
n 2

−n = 4ε for every m ∈ N and the tightness follows.

Remark 5.6. One could, and often does, define the weak topology on M(X) in the very same manner. It
is clear from (4.1) that on M(X) such topology is still Hausdorff and from (5.1) that it has a countable base
(exercise).

Still, in general the weak topology on M(X) is not metrizable, not even if we restrict the attention to

measures with some given bound on the mass. To see why, consider X := N with the discrete, Polish, topology

and notice that in this case M(X) ∼= ℓ1 and Cb(X) ∼= ℓ∞, so that the weak topology on M(X) is in fact the

weak topology on ℓ1. The key fact to notice is that a sequence in ℓ1 weakly converges if and only if it strongly

converges (this is Schur’s lemma, see also Lemma 10.1). Thus if the weak topology were metrizable on, say,

the close unit ball B1(0) in M(X), then the weak and strong topologies would agree (because on metric spaces

converging sequences characterize the topology). However, the two topologies are not the same, because the

strong topology has open sets contained in B1/2(0), while every weakly open set must intersect the unit sphere

{∥µ∥TV = 1}. ■
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6 Disintegration theorem

Let X,Y be Polish spaces. A map y 7→ µy ∈ P(X) is said to be weakly Borel if it is Borel
whenever we endow the target space with the weak topology, i.e. if it is measurable w.r.t. the
Borel σ-algebra on Y and the σ-algebra generated by the weak topology on P(X).

Lemma 6.1. Let X,Y be Polish and y 7→ µy ∈ P(X) given. Then the following are equivalent:

i) the map is weakly Borel,

ii) For every φ ∈ Cb(X) the map y 7→
´
φdµy ∈ R is Borel,

iii) For every E ⊂ X Borel the map y 7→ µy(E) ∈ [0, 1] is Borel,

iv) For every f : X → [0,+∞] Borel the map y 7→
´
f dµy ∈ [0,+∞] is Borel.

Proof. (iii) ⇔ (iv) is trivial and so are (i) ⇒ (ii) and (iv) ⇒ (ii). For (ii) ⇒ (iii) we notice that for U ⊂ X
open the functions φn := (nd(·, Uc))∧1 ∈ Cb(X) monotonically converge to χU , thus by monotone convergence
it follows that µy(U) = supn

´
φn dµy for every y, showing that y 7→ µy(U) is Borel. The class of Borel sets

E ⊂ X such that y 7→ µy(E) is Borel is easily seen to be a λ-system, and since it contains the π-system of
open sets, by the π − λ theorem it coincides with the Borel σ-algebra.

For (ii) ⇒ (i) we notice that the open sets generated by the maps y 7→
´
φdµy for φ ∈ Cb(X) are a

subbase of the weak topology and since such topology is separable, every weakly open set is the countable
union of finite intersections of open sets in this subbase (alternatively, use a countable collection of φ’s as in
(5.1)). This is enough to conclude.

Theorem 6.2. Let X,Y be Polish, µ ∈ P(X), T : X → Y Borel and let ν := T∗µ (i.e.
ν(E) = µ(T−1(F )) for every F ⊂ Y Borel). Then there is a weakly Borel map y 7→ µy ∈ P(X)
such that:

1) µy is concentrated on T−1(y) for ν-a.e. y,

2) For any φ ∈ Cb(X) we have

ˆ
φdµ =

ˆ (ˆ
φdµy

)
dν(y) (6.1)

If y 7→ µ̃y has the same properties, then µy = µ̃y for ν-a.e. y. Also, for any such (µy) formula
(6.1) also holds for any φ : X → [0,+∞] Borel.

Proof.
Final statement. By monotone convergence we see that the class of φ’s for which (6.1) holds is closed by the
operation of pointwise supremum of an increasing sequence. Thus, by the approximation also used in the above
lemma, such class contains the characteristic functions of open sets. Then, again as above, we notice that the
collection of Borel sets E such that for φ := χE formula (6.1) holds is a λ-system: since it contains the open
sets it coincides with the whole Borel σ-algebra. Then by linearity we see that if φ Borel only attains a finite
number of values, then (6.1) holds. A final monotone approximation yields the claim for general non-negative
Borel functions.
Uniqueness. Let E ⊂ X and F ⊂ Y be Borel. Then by what just proved we can pick φ := χEχT−1(F ) in
(6.1) written with both (µt) and (µ̃t) to deduce, taking into account also property (1), that

´
F
µy(E) dν(y) =´

F
µ̃y(E) dν(y). Being this true for any Borel F ⊂ Y we can deduce that µy(E) = µ̃y(E) for every y ∈ Y\N(E),

with N(E) ⊂ Y Borel and ν-negligible. Let then A be a countable algebra on X generating the Borel σ-algebra
(e.g. the algebra generated by a countable base of open sets) and notice that N := ∪E∈AN(E) is Borel and
ν-negligible and that for every y ∈ Y \ N we have µy(E) = µ̃y(E) for every E ∈ A. By Corollary 2.2 this
suffices to conclude that µy = µ̃y for every y ∈ Y \N .
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Existence As before, let A be a countable algebra on X generating the Borel σ-algebra. For each E ∈ A
choose an increasing sequence of compact sets Kn ⊂ E with µ(Kn) ↑ µ(E) and then let Ã be the algebra,
still countable, generated by A and these compact sets. For each E ∈ Ã we obviously have 0 ≤ χEµ ≤ µ

and thus the Radon-Nikodym derivative d(T∗(χEµ))
dν

admits a Borel representative ρ(E)(·) : Y → [0, 1]. By the

very definition of Borel representative and the fact that Ã is countable we see that there is N ⊂ Y Borel and
ν-negligible such that for every y ∈ Y \N we have:

a) ρ(∅)(y) = 0 and ρ(X)(y) = 1 (because χ∅µ = 0 and χXµ = µ)

b) ρ(E)(y) + ρ(F )(y) = ρ(E + F )(y) if E ∩ F = ∅ (because χEµ+ χFµ = χE∪Fµ if E ∩ F = ∅)
c) For any E ∈ A and the previously chosen sequence (Kn) ⊂ Ã associated to E we have ρ(Kn)(y) ↑

ρ(E)(y) (because χKnµ ≤ χEµ for every n and µ(Kn) ↑ µ(E)).

We claim that for any y ∈ Y \ N the map A ∋7→ ρE(y) ∈ [0, 1] is the restriction to A of a Borel probability
measure. According to Proposition 2.4, given (a), (b) above to prove this it suffices to prove that if (En) ⊂ A
is decreasing with ∩nEn = ∅, then ρEn(y) ↓ 0. Say not. Then using (c) we can find compact sets Kn ⊂ En
with

∑
n ρEn\Kn(y) < ε. It follows that for every n ∈ N we have

ρ(∩i≤nKi)(y) = ρ(En)(y)− ρ(∪i≤nEn \Ki)(y) > ε− ρ(∪i≤nEi \Ki)(y) > 0

and in particular (by (a)) we have ∩i≤nKi ̸= ∅ for any n ∈ N. Being the Kn’s compact, this implies that
∩i∈NKi ̸= ∅, contradicting the fact that Kn ⊂ En and ∩nEn = ∅.

Thus for y ∈ Y \N the map A ∋7→ ρE(y) ∈ [0, 1] is indeed the restriction to A of a Borel probability (by
(a)) measure, that we shall denote µy. For y ∈ N we set µy := δx̄, where x̄ ∈ X is some arbitrarily chosen
point. Since for any E ∈ A Borel the map y 7→ ρ(E)(y) is Borel, it is easy to see that also y 7→ µy(E) is Borel.
Since the class of Borel sets E for which y 7→ µy(E) is Borel is, quite clearly, a λ-system, and A generates the
Borel σ-algebra, we see that y 7→ µy(E) is Borel for any E ⊂ X Borel, which by the above lemma proves that
y 7→ µy is weakly Borel.

For any E ∈ A we have
´
µy(E) dν(y) =

´
ρ(E)(y) dν(y) =

´ dT∗(χEµ)
dν

dν =
´
1 dT∗(χEµ) =

´
χE dµ,

proving that formula (6.1) holds for φ := χE . Then again an approximation argument, based first on the
π − λ-theorem to extend the above to all Borel sets, then linearity and uniform density of simple functions,
shows that (6.1) holds for any bounded and Borel functions, and in particular for φ ∈ Cb(X).

It remains to prove that µy is concentrated on T−1(y) for ν-a.e. y. To see this recall that for E ∈ A the

identity µy(E) = dT∗(χEµ)
dν

(y) holds for ν-a.e. y ∈ Y, and since the collection of sets with this property is
clearly a λ-system, by the π − λ-theorem we see that this holds for general Borel sets E. In particular, this
is true for E := T−1(F ) for F ⊂ Y Borel and recalling the identity T∗(f ◦ Tµ) = fT∗µ (that can be checked
directly from the definition) we see that µy(T

−1(F )) = χF (y) holds for ν-a.e. y for all F ⊂ Y Borel. Let B be
a countable base of the topology of Y. Then there is a ν-negligible Borel set N ⊂ Y such that for any y ∈ Y\N
we have µy(T

−1(F )) = χF (y) for any F ∈ B. Fix y ∈ Y \ N and find a decreasing sequence (Fn) ⊂ B with
∩nFn = {y}: then we have µy(T

−1(y)) = limn µy(T
−1(Fn)) = 1, proving the claim.

Remark 6.3 (Variants).

- The statements holds, with trivial modifications to the proof, even if the measure µ is only σ-finite,
provided ν = T∗µ is σ-finite as well.

- The Polish structure on Y played no role: we only used that its σ-algebra is countably generated and
contains the singletons.

- In probability theory the disintegration theorem is often used to speak about conditional expectations.
In this case, rather than having a map between two spaces one typically has two different σ-algebras
on the same space, one included in the other, with a measure given on the biggest one. The smallest
one, that ‘does not distinguish all the events’ so to say, is the one on which we want to condition our
expectation. In the language of the theorem as we stated it, the biggest σ-algebra would be the Borel
σ-algebra on X and the smallest one that generated by sets of the form T−1(E) for E ⊂ Y Borel.

- In some instances, rather than giving a target set Y and a map, one is only given an equivalence relation
on X (or, which is the same, a partition of X) and takes Y as the quotient space and T as the quotient
map. In this scenario the required regularity properties of Y and T are read through properties of the
equivalence relation, such as, for instance, the existence of a Borel subset of X meeting each equivalence
class precisely once. ■

Exercise 6.4. Let X be Polish and µ ∈ P(X). Prove that {ν ∈ P(X) : ν ≪ µ} is weakly Borel. ■
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7 Kolmogorov’s theorem

Let I be an infinite set of indexes (not necessarily countable) and for each i ∈ I let Xi be a
Polish space. Consider the product space X := Πi∈IXi equipped with the product topology
(always Polish if I is countable, not necessarily so otherwise). For F ⊂ I not empty put
XF := Πi∈FXi and for F1 ⊂ F2 ⊂ I let PrF2

F1
: XF2 → XF1 be the natural projection. Let

µ ∈ P(X) and define µF := (PrIF )∗µ for any ∅ ≠ F ⊂ I. Since PrF2
F1

◦PrIF2
= PrIF1

for F1 ⊂ F2

we see that
(PrF2

F1
)∗µF2 = µF1 ∀∅ ≠ F1 ⊂ F2 ⊂ I. (7.1)

Now assume that for any non-empty finite set F ⊂ I we are given µF ∈ P(XF ) and we
ask whether there is µ ∈ P(X) such that µF = (PrIF )∗µ for any such F . Clearly, the above
relation (7.1) is a necessary condition. Kolmogorov’s theorem ensures it is sufficient as well:

Theorem 7.1. With the above notation and assumption, assume that for every non-empty
∅ ̸= F ⊂ I finite we are given µF ∈ P(XF ) so that the compatibility relation (7.1) holds for
F1, F2 finite.

Then there is a unique µ ∈ P(X) such that µF = (PrIF )∗µ holds for any such F .

Proof. Let A be the collection of subsets of X of the form (PrIF )
−1(B) for some F ⊂ I finite and B ⊂ XF

Borel. Then, clearly, A is an algebra that generates the Borel σ-algebra on X. The requirement µF = (PrF )∗µ
forces µ((PrIF )

−1(B)) to be equal to µF (B), so that uniqueness follows from Proposition 2.4. For existence we
start defining µ on A as above. Then to conclude again by Proposition 2.4 it suffices to prove that if (An) ⊂ A
is a decreasing sequence with ∩nAn = ∅, then µ(An) → 0.

Say not i.e. that µ(An) > ε > 0 for every n and some ε. Then there are finite subsets Fn of I and
Bn ⊂ XFn Borel such that An = (PrIFn

)−1(Bn) for every n. Replacing Fn with ∪i≤nFi we can assume (Fn) to
be increasing. Then by inner regularity we can find compact sets Kn ⊂ Bn such that

∑
n µFn(Bn \Kn) < ε.

Put for brevity Pnm := PrFn
Fm

for every m ≤ n and let Cn := ∩i≤nP−1
ni (Ki). Since Kn is compact and P−1

ni (Ki)

closed, we see that Cn ⊂ XFn is compact. Since Bn ⊂ P−1
ni (Bi) for i ≤ n (because An ⊂ Ai) by (7.1) we get

µFn(Cn) = µFn(Bn)− µFn(Bn \ Cn) > ε− µFn

(⋃
i≤n

Bn \ P−1
ni (Ki)

)
≥ ε−

∑
i≤n

µFi(Bi \Ki) > 0

proving that Cn ̸= ∅. We claim that

Pkn(Ck) ⊂ Pmn(Cm) ∀k ≥ m ≥ n (7.2)

and notice that to prove this it suffices to show that Pkm(Ck) ⊂ Cm. In turn, this follows from P−1
km(Cm) =

∩i≤mP−1
km(P−1

mi(Ki)) = ∩i≤mP−1
ki (Ki)) ⊃ Ck. We then define Dn := ∩k≥nPkn(Ck) ⊂ XFn and notice that

being this the intersection of a decreasing sequence of non empty compact sets it is also non empty. We claim
that

Pmn(Dm) = Dn ∀m ≥ n (7.3)

and notice that since ‘image of the intersection ⊂ intersection of the images’, the inclusion PmnDm ⊂ Dn is
obvious. For the converse, let x ∈ Dn so that in particular x ∈ Pkn(Ck) = PmnPkm(Ck) for every k ≥ m ≥ n.
Then the sets Ek := Pkm(Ck) ∩ P−1

mn(x) are non empty (by what just said), compact (as intersection of a
compact and a closed), and decreasing in k (by (7.2)). Hence ∩kEk ̸= ∅ and any element y of this intersection
belongs to Dm and satisfies Pmn(y) = x, proving our claim (7.3).

Pick x0 ∈ D0 arbitrary, use (7.3) to find x1 ∈ D1 with P10(x1) = x0 and iterate to produce a sequence
n 7→ xn ∈ Dn with Pmn(xm) = xn for every m ≥ n. In other words, for i ∈ Fn ⊂ I and m ≥ n the i-th
coordinates of xn and xm agree. Hence we can define x ∈ X so that for every n ∈ N and i ∈ Fn the i-th
coordinate of x is that of xn (what just proved shows that this is a good definition, meaning it only depends
on i and not on n) and chosen arbitrarily for i /∈ ∪nFn.

Then we have PIFn
(x) = xn ∈ Dn ⊂ Cn ⊂ Kn for every n ∈ N, proving that ∩nCn = ∩n(PrIFn

)−1(Kn) ⊂
∩n(PrIFn

)−1(Bn) = ∩nAn is not empty, giving the desired contradiction.
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8 Borel selection

A multivalued map F : X → Y is a map that assigns to every x ∈ X a subset of Y. Its
graph is the set {(x, y) : y ∈ F (x)} ⊂ X×Y. A selector for F is a (ordinary) map f : X → Y
such that f(x) ∈ F (x) for every x ∈ X. A necessary condition for a selector to exist (also
sufficient, if one believes in the Axiom of Choice) is that F (x) ̸= ∅ for every x ∈ X. In general,
if F has some regularity/structural properties, one would like to build a selector sharing these
properties (and here the Axiom of Choice is of no help). Here we discuss measurability.

Let A be a σ-algebra on X and Y a topological space. We say that F is A-measurable if

for any U ⊂ Y open the set {x ∈ X : F (x) ∩ U ̸= ∅} is in A. (8.1)

Notice that if F is single valued this reduces to ordinary A-measurability.

Theorem 8.1 (Kuratowski–Ryll-Nardzewski). Let (X,A) be a set with a σ-algebra, Y Polish
and F : X → Y multivalued, A-measurable so that F (x) is a non-empty closed set for every
x ∈ X. Then F admits an A-measurable selector.

Proof. Let d < 1 be a complete and separable distance inducing the topology of Y (replace a given d with
1
2
∧d if necessary). We shall define a sequence of A-measurable maps fn : X → Y so that d(fn(x), F (x)) < 2−n

and d(fn(x), fn+1(x)) < 2−(n−1) for every n ∈ N. If these are built, the desired selector f can be found as
pointwise limit of the fn’s.

Let f0 be constant. Given fn and given y ∈ Y and r > 0 consider the sets {x ∈ X : d(fn(x), y) < r}
and {x ∈ X : d(F (x), y) < r} (here d(A, y) := infz∈A d(z, y)). These are A-measurable: the first by the
measurability of fn, the second by that of F . Let now (yi) ⊂ Y be countable and dense and put

Ai := {x ∈ X : d(F (x), yi) < 2−n, d(fn(x), yi) < 2−(n−1)}.

The density of (yi) and the inductive assumption give that ∪iAi = X and by what previously said we know
that the Ai’s are measurable. Let then B0 := A0, Bi := Ai \ ∪j<iAj and define fn+1 so that, for every i, it is
constantly equal to yi on Bi.

14



9 Measurable projection and selection

Let X be Polish. A Souslin subset S ⊂ X is, by definition, a set of the form f(Y) for some
Polish Y and f : Y → X continuous (here we allow Y to be empty, so that ∅ ⊂ X is Souslin).

Exercise 9.1. Prove that any non-empty Polish space is a continuous image of NN. ■

Lemma 9.2. The class of Souslin subsets of X is closed by countable unions and intersec-
tions2.

Proof. Let Sn = fn(Yn), put Y := N × ΠnYn and define f : Y → X as f(n, (yi)) := fn(yn). Then f is
continuous with f(Y) = ∪nSn. Also, the subset Z ⊂ Y of (n, (yi)) so that f1(y1) = f2(y2) = ... is closed, hence
Polish, and f(Z) = ∩nSn.

Proposition 9.3. Borel subsets of X are Souslin.

Proof. Let A be the smallest collection of subsets of X containing the closed sets and stable by countable
unions and intersections and notice that by the above lemma it easily follows that elements of A are Souslin.
Put A′ := {E ∈ A : Ec ∈ A} ⊂ A and observe that A′ is also stable by countable unions and intersections.
Also, since every open subset of X is the countable union of closed sets, we see that closed sets are in A′ and
thus that A′ ⊃ A and therefore A = A′. This shows that A is a σ-algebra, hence the Borel σ-algebra.

Lemma 9.4. Let µ be a finite non-negative measure, µ∗ the outer measure it induces (as in
(2.1)) and An ↑ A. Then µ∗(An) ↑ µ∗(A).

Proof. Given ε > 0 we have µ∗(An)+ ε ≥ µ(Bn) for some measurable set Bn ⊃ An. Put B := ∪n∩i≥nBi ⊃ A
and notice that

µ∗(A) ≤ µ(B) = lim
n
µ(∩i≥nBi) ≤ lim

n
µ(Bn) ≤ lim

n
µ∗(An) + ε.

Theorem 9.5. Let µ be a finite Borel measure on X. Then Souslin sets are µ-measurable.

Proof. Let S ⊂ X be Souslin and ε > 0. It suffices to find K ⊂ S compact with µ(K) ≥ µ∗(S) − ε. Let
S = f(Y) and C1 ⊂ Y the union of a finite number of closed balls of radius ≤ 1 with µ∗(f(C1)) > µ∗(S) − ε
(since Y is the union of a countable number of such balls, the existence of C1 follows by the Lemma above).
Then by induction find Cn ⊂ Cn−1 finite union of closed balls of radius ≤ 1

n
such that µ∗(f(Cn)) > µ∗(S)− ε.

Notice that ∩nCn is compact, as is closed and totally bounded, and then let K := f(∩nCn), that is compact
as the continuous image of a compact set. We claim that K = ∩nf(Cn) and notice that if we prove this we
are done, as then µ(K) = limn µ(f(Cn)) ≥ limn µ

∗(f(Cn)) > µ∗(S)− ε.
The inclusion K ⊂ ∩nf(Cn) is trivial (and irrelevant for our argument). For ⊃ we take x ∈ ∩nf(Cn) and

then yn ∈ Cn such that d(f(yn), x) ≤ 1
n
. The key observation is that (yn) is relatively compact, because is

totally bounded, hence has a subsequence admitting a limit y ∈ ∩nCn. The continuity of f gives f(y) = x.

Theorem 9.6. Let X,Y be Polish, A a σ-algebra on X containing Souslin sets and F : X → Y
a multivalued map with Souslin graph and F (x) ̸= ∅ for all x ∈ X. Then there is a selection
A-measurable.

Proof. Since the graph is Souslin, there are a Polish space Z and a continuous map g : Z → X × Y with
g(Z) = Graph(F ). Let F̃ : X → Z multivalued as “g−1 ◦ F”, i.e. (x, z) is in the graph of F̃ iff x = PrX(g(z)).
The continuity of g grants that F̃ (x) ⊂ Z is closed and the fact that F (x) ̸= ∅ that F̃ (x) ̸= ∅ as well. Given
U ⊂ Z arbitrary we have {x ∈ X : F̃ (x) ∩ U ̸= ∅} = PrX(g(U)). In particular this holds if U is open, which
shows that F̃ is A-measurable (recall that A contains Souslin sets) as in (8.1). Hence F̃ admits a selector
A-measurable f̃ : X → Z. It follows that f(x) := PrY(g(f̃(x))) is an A-measurable selector for F .

Exercise 9.7. Let X,Y be Polish, µ a σ-finite Borel measure on X and f : X → Y so that preimages of

open sets are in the σ-algebra generated by Souslin sets. Prove that there is f̃ : X → Y Borel equal to f

outside a µ-negligible set. ■

2but not complementation!
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10 A tightness criterion

Lemma 10.1. (Steinhaus-Schur) Let an = (. . . , ain, . . .) ∈ ℓ1 for every n ∈ N be so that for
any bounded sequence λ = (. . . , λi, . . .) ∈ ℓ∞ the sequence n 7→

∑
i a

i
nλ

i ∈ R is Cauchy.
Then (an) is is Cauchy w.r.t. the ℓ1-distance.

Proof. It is immediate to verify that it is sufficient to prove that ‘tails are uniformly small’, i.e. that for every
ε > 0 there is N ∈ N such that

∑
i>N |ain| < ε for every n ∈ N. Say not, i.e. assume that

∃ε > 0 such that ∀N,M ∈ N there is n = n(N,M) > M ∈ N such that
∑

i>N
|ain| > ε. (10.1)

Choosing λ = ei := (. . . , 0, 1, 0, . . .) with the 1 in the i-th position, from the fact that n 7→
∑
i a
i
nλ

i ∈ R is
Cauchy we see that for every i ∈ N there exists the limit ai of (ain). Let a := (. . . , ai, . . .), notice that our
assumption and the uniform boundedness principle grant that (an) is a bounded sequence in ℓ1 and then use
Fatou’s lemma to deduce that

∑
i |a

i| ≤ limn

∑
i |a

i
n| <∞. Thus a ∈ ℓ1 and therefore

there exists N̄ such that
∑

i>N̄
|ai| < ε

3
. (10.2)

Let N1 := N̄ and apply our assumption (10.1) to find n1 = n(N1, 0) and N2 such that
∑N2
i=N1

|ain1
| > ε and∑

i>N2
|ain1

| < ε
3
. Then, using the convergence ain → ai and (10.2), find M1 ∈ N such that

∑N2
i=N1

|ain| < ε
3
for

every n > M1. Continue recursively: assume Nj ,Mj−1 are given, then define nj := n(Nj ,Mj−1), let Nj+1 be

such that
∑Nj+1

i=Nj
|ainj

| > ε and
∑
i>Nj+1

|ainj
| < ε

3
and finally let Mj be such that

∑Nj+1

i=N̄
|ain| < ε

3
for every

n > Mj . Define the bounded sequence λ = (. . . , λi, . . .) as

λi :=


0, ∀i < N̄,
sign(ainj

), ∀i ∈ {Nj , . . . , Nj+1 − 1} if j is odd,

−sign(ainj
), ∀i ∈ {Nj , . . . , Nj+1 − 1} if j is even

and notice that for every j ∈ N we have
∑
i a
i
nj
λi =

∑Nj−1

i=N̄
ainj

λi +
∑Nj+1−1

i=Nj
ainj

λi +
∑
i≥Nj+1

ainj
λi. By

construction the first and last term on the right hand side are bounded in modulus by ε
3
, while the middle

one is > ε or < −ε depending on the parity of j. Hence n 7→
∑
i a
i
nλ

i is not Cauchy, giving the desired
contradiction.

Theorem 10.2. (Alexandrov) Let X be Polish, d a complete and separable distance inducing
the topology and (µn) ⊂ P(X) so that for every f : X → R bounded and Lipschitz the sequence
n 7→

´
f dµn is Cauchy.

Then (µn) is tight (and thus by Prokhorov’s theorem and (5.1) has a weak limit).

Proof. It suffices to prove that for every ε, r > 0 there is a compact set K = K(ε, r) ⊂ X such that for the
r-neighborhood Kr := {x ∈ X : d(x,K) < r} of K we have supn µn(X\Kr) ≤ ε. Indeed, if this is the case, for
any ε > 0 and chosen sequence rn ↓ 0, for Kn := K(ε2−n, rn) we have that the set K := ∩nKrn

n is compact
(being closed and totally bounded) and such that µn(X \K) ≤ 2ε for every n ∈ N.

We shall argue by contradiction and assume instead that

∃ε, r > 0 such that ∀K ⊂ X compact there is n = n(K) ∈ N such that µn(X \Kr) > ε.

Let K0 := ∅ and define recursively indexes ni and compact sets Ki, Hi for i > 0 as follows. We put ni :=
n(Ki−1), the by inner regularity we find Hi ⊂ X \ Kr

i−1 such that µni(Hi) > ε and then we put Ki :=
Ki−1 ∪Hi. Also, for every i > 0 let f i ∈ Lipbs(X) be defined as f i := max{0, 1 − (3r)−1d(·, Hi)} and notice
that these functions are uniformly bounded and Lipschitz and with disjoint supports. In particular, for any
λ = (. . . , λi, . . .) ∈ ℓ∞ the function fλ :=

∑
i λ

if i is bounded and Lipschitz and thus putting aij :=
´
f i dµnj

we have that j 7→
∑
i>0 a

i
jλ
i =
´
fλ dµnj is a Cauchy sequence.

By Proposition 10.1 we deduce that the sequence j 7→ aj := (. . . , aij , . . .) ∈ ℓ1 is Cauchy w.r.t. the ℓ1-norm,
thus letting a = (. . . , ai, . . .) ∈ ℓ1 its limit we see that

lim
i→∞

|aini
| ≤ lim

i→∞
|ai|+ lim

i→∞

∑
j

|ajni
− aj | = 0.

This contradicts the fact that, by construction, we have aini
> ε for every i > 0. The conclusion follows.
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