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Abstract

We propose a variational model to describe the optimal distribu-
tions of residents and services in an urban area. The functional to
be minimized involves an overall transportation cost taking into ac-
count congestion effects and two aditional terms which penalize con-
centration of residents and dispersion of services. We study regularity
properties of the minimizers and treat in details some examples.
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1 Introduction

Mathematical models for optimal urban planning may raise challenging ques-
tions both from the theoretical and applied point of view. Such models may
be traced back to the work of Beckmann [2] who, in the early 50’s, introduced
the so-called continuous transportation model in urban economics, leading to
a minimal flow like problem. Roughly speaking, the minimal flow problem
consists in finding a vector-field with prescribed divergence with minimal L1

norm. For such problems, one of course has to properly define generalized
(i.e. vector-valued measures) solutions, and this can be achieved by using
the recent developments in the L1 optimal transportation theory in partic-
ular the notion of transport density (see de Pascale and Pratelli [7]). More
generally, thanks to recent advances in optimal transportation theory, new
variational models in optimal urban planning have emerged: for instance
Buttazzo and Stepanov [6] studied the design of an optimal transportation
network in a city with given densities of populations and workplaces. In [5],
Buttazzo and the second author proposed a model to describe the optimal
distributions of residents and services in a prescribed area by minimizing a
cost functional taking into account the transportation costs (according to a
Monge-Kantorovich type criterion) and two additional terms which penalize
concentration of residents and dispersion of services.

As in [5], given a urban area Ω (a subset of R2 in the applications), we
look for the distribution of residents (or consumption), denoted by µ, and
the distribution of services (or production), denoted by ν, so as to mini-
mize a cost involving three terms: an overall transportation term for moving
customers to services, a term penalizing dispersion of services and a term
penalizing concentration of residents. We mainly depart from the framewok
of Buttazzo and Santambrogio in our choice of the first two terms. In [5],
the transportation cost term is given by a p-Wasserstein distance between
µ and ν, whereas, in the present paper, in order to take into account (in a
special case) congestion effects, we are lead to consider as a transportation
cost the squared norm of µ− ν in the dual space of some subspace of H1(Ω)
(see section 2 for details). In dimension 2, this in particular prevents the
presence of atoms of µ − ν. Hence, contrary to [5], who considered a term
forcing the distribution of services ν to be concentrated in at most countably
many locations, we rather consider an interaction term of the form:

H(ν) :=

∫
Ω×Ω

V d(ν ⊗ ν),

where V (x, y) is, for instance, an increasing function of |x− y|. Such a term,
studied in [9] as well, has already been proposed in [10] as a concentration
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term useful in similar urban planning problems.

The next section is devoted to modelling traffic congestion. In section 3,
we write down the variational problem and establish existence of minimizers.
In section 4, using the strict convexity of the functional with respect to µ, we
characterize the optimal µ for fixed ν. In section 5, after reformulating the
initial problem with respect to ν only, we give necessary optimality condi-
tions. In section 6, we introduce approximated problems, from which we are
able to recover regularity properties of the minimizers. The approximation
strategy consists in adding two terms to the functional : a squared L2 norm
term and a squared 2-Wasserstein distance term. Using elliptic regularity
theory and optimal transportation arguments, we obtain L∞ estimates when
Ω is convex and L2

loc estimates in the general case. In section 7, qualitative
properties of the support of optimal ν’s are established (nonempty interior,
simple-connectedness). Finally, in section 8, we study in details some exam-
ples; we first treat the unidimensional case, in which one can use a special
displacement convexity property to derive a uniqueness result, then we treat
the case when the interaction term is the variance of ν in two dimensions.

2 Traffic congestion

In this section, we formally describe how we model congestion effects in
the transportation cost functional. Our analysis builds upon the continuous
transportation model of Beckmann (see [2], [3]).

We are given an urban area Ω, which is an open bounded connected subset
of R2 satisfying some smoothness assumptions that will be made precise later,
and we denote by µ and ν the respective distributions of residents and services
in the city. As a normalization, we may assume that µ and ν are probability
measures on Ω and that µ (respectively ν) also gives the distribution of
consumption (respectively of production) so that the signed measure µ − ν
represents the local measure of excess demand. Following [2], we assume that
the consumers’ traffic is given by a traffic flow field, i.e. a vector field Y :
Ω → R2 whose direction indicates the consumers’ travel direction and whose
modulus |Y| is the intensity of traffic.

The relationship between the excess demand and the traffic flow is ob-
tained from an equilibrium condition as follows. There is equilibrium in a
subregion K ⊂ Ω if the outflow of consumers equals the excess demand of
K: ∫

∂K

Y · n dHn−1 = (µ− ν)(K).
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Since the previous has to hold for arbitrary K, this formally yields:

−divY = µ− ν. (2.1)

It is also assumed that the urban area is isolated, i.e. no traffic flow should
cross the boundary of the city, hence:

Y · n = 0 on ∂Ω. (2.2)

If the transportation cost per consumer is assumed to be uniform, then one
may define the transportation cost between µ and ν as the value of the
minimal flow problem:

inf

{∫
Ω

|Y(x)|dx : Y satisfies (2.1)-(2.2)

}
.

Of course, one generally has to look for generalized (i.e. vector-valued mea-
sures) solutions of the previous problem. Let us also mention that the pre-
vious problem (or its extension to measures) is tightly connected to the no-
tion of transport density in the Monge-Kantorovich optimal transportation
problem (where cost = euclidean distance), and its value coincides with the
1-Wasserstein distance between µ and ν. We refer to De Pascale and Pratelli
[7], for details and very interesting regularity results for transport density in
the Monge-Kantorovich problem.

Now, in order to take into account congestion effects, it is more realistic
to assume that the transportation cost per consumer at a point x depends on
the intensity of traffic at x itself. Let g : R+ → R+ be a given nondecreasing
function, and assume that if the traffic flow is Y then the transportation
cost per consumer at x is g(|Y(x)|). It is natural, at this point, to define the
transportation cost between µ and ν as:

Cg(µ, ν) := inf

{∫
Ω

g(|Y(x)|)|Y(x)|dx : Y satisfies (2.1)-(2.2)

}
.

For the sake of simplicity, we will assume, from now on, that g(t) = t for all
t ∈ R+, and define the cost:

C(µ, ν) := inf

{∫
Ω

|Y(x)|2dx : Y satisfies (2.1)-(2.2)

}
. (2.3)

where (2.1)-(2.2) are understood in the weak sense, hence read as:∫
Ω

Y · ∇φ =

∫
Ω

φ d(µ− ν), for all φ ∈ C1(Ω).
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Let us define:

X :=

{
φ ∈ H1(Ω) :

∫
Ω

φ = 0

}
.

X is a Hilbert space, when equipped with the following inner product and
norm:

〈φ, ψ〉X :=

∫
Ω

∇φ · ∇ψ, ‖φ‖2
X := 〈φ, φ〉X .

As usual, we shall identify X and its dual X ′ by Riesz’s isomorphism: for
every f ∈ X ′, there exists, unique, φ ∈ X such that:

〈φ, ψ〉X = f(ψ) for all ψ ∈ X. (2.4)

This implies:
‖f‖X′ = ‖φ‖X .

We shall also write (2.4) in the form:{
−∆φ = f in Ω,
∂φ
∂n

= 0 on ∂Ω, φ ∈ X. (2.5)

With those definitions in mind, it is easy to check that our cost functional
given by (2.3) may also be written as:

C(µ, ν) =

{
‖µ− ν‖2

X′ if µ− ν ∈ X ′,
+∞ otherwise.

(2.6)

Equivalently, we have:

C(µ, ν)
1
2 = sup

{∫
Ω

φd(µ− ν) : φ ∈ C1(Ω),

∫
Ω

φ = 0, ‖φ‖X ≤ 1

}
. (2.7)

3 The minimization problem

In what follows, Ω is a bounded and connected open subset of R2, V is a
nonnegative l.s.c. function on R2 and L2 denotes the 2-dimensional Lebesgue
measure on Ω. We consider the variational problem:

inf
{
F (µ, ν) = C(µ, ν) +G(µ) +H(ν): µ, ν probabilities on Ω

}
(3.1)

where:

C(µ, ν) =

{
‖µ− ν‖2

X′ if µ− ν ∈ X ′,
+∞ otherwise;
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G(µ) =

{ ∫
Ω
u2 if µ = u · L2, u ∈ L2(Ω),

+∞ otherwise;

and

H(ν) :=

∫
Ω×Ω

V (x, y)(ν ⊗ ν)(dx, dy).

Theorem 3.1. Assume that V is bounded from below, l.s.c. and there exist
probability measures µ0 and ν0 on Ω such that F (µ0, ν0) < +∞. Then the
minimization problem (3.1) has at least one solution.

Proof. First it is clear that the infimum of (3.1) is finite. Due to the weak-∗
compactness of the space of probability measures on Ω (denoted by P

(
Ω

)
in the sequel), the existence will directly follow from the weak-∗ lower semi-
continuity of F . The weak-∗ lower semicontinuity of G is clear, that of the
interaction functional H is easy to establish and that of C follows from for-
mula (2.7).

4 Minimization with respect to µ

In this paragraph, we consider for a fixed probability ν (with ν ∈ X ′) the
minimization of F with respect to µ:

inf{C(µ, ν) +G(µ) : µ probability measure on Ω } (4.1)

Proposition 4.1. Given ν ∈ P
(
Ω

)
∩X ′, then (4.1) admits a unique solution

µ which is characterized by µ = φ · L2, where φ ∈ H1(Ω) is the solution of:{
−∆φ+ φ = ν in Ω,
∂φ
∂n

= 0 on ∂Ω.
(4.2)

Proof. It is obvious that (4.1) admits a unique solution µ = u · L2 with
u ∈ L2(Ω). Let p be a probability measure on Ω with p = v · L2 and
v ∈ L2(Ω) (which implies at once p ∈ X ′). For ε ∈ (0, 1), one has:

0 ≤ C(µ+ ε(p− µ), ν) +G(µ+ ε(p− µ))− C(µ, ν)−G(µ). (4.3)

Let ψ ∈ X be the solution of:{
∆ψ = µ− ν in Ω,
∂ψ
∂n

= 0 on ∂Ω.
(4.4)
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Similarly, let η ∈ X be the solution of:{
∆η = p− µ in Ω,
∂η
∂n

= 0 on ∂Ω.
(4.5)

We then have:

C(µ+ ε(p− µ), ν) =‖µ− ν + ε(p− µ)‖2
X′ = ‖ψ + εη‖2

X

=C(µ, ν) + 2ε

∫
Ω

∇ψ · ∇η + ε2

∫
Ω

|∇η|2

=C(µ, ν)− 2ε

∫
Ω

ψ(v − u) + ε2‖p− µ‖2
X′

(4.6)

Similarly

G(µ+ ε(p− µ)) = G(µ) + 2ε

∫
Ω

u(v − u) + ε2

∫
Ω

(v − u)2. (4.7)

Replacing (4.6) and (4.7) in (4.3), dividing by ε and letting ε→ 0+, yields:∫
Ω

(v − u)(u− ψ) ≥ 0. (4.8)

Since p = v · L2 is an arbitrary probability measure (with v ∈ L2(Ω)), (4.8)
can also be written as:

there exists m ∈ R such that: u− ψ ≥ m, u− ψ = m µ-a.e.. (4.9)

Since u ≥ 0, this also implies u = (ψ + m)+ (as usual, t+ := max(0, t),
t− := max(0,−t), for all t ∈ R).

Define then φ := (ψ+m). Let us prove that φ ≥ 0 so that we get u = φ.
First notice that φ− = 0 µ-a.e. (using (4.9)), and then get:∫

Ω

∇φ · ∇φ− = −
∫
{φ<0}

|∇φ|2 =

∫
Ω

φ−d(ν − µ) =

∫
Ω

φ−dν ≥ 0.

This proves φ− = 0 and hence u = φ; replacing in (4.4), we get that φ is the
solution of (4.2).

5 Optimality conditions

Thanks to proposition 4.1, we can reformulate the problem (3.1) in terms of
ν only. More precisely, define for every probability measure ν on Ω:

J(ν) := inf
{
F (µ, ν) : µ probability measure on Ω

}
.
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By proposition 4.1, we have:

J(ν) =

{ ∫
Ω
(|∇φ|2 + φ2) +H(ν) with φ the solution of (4.2) if ν ∈ X ′,

+∞ otherwise.

Identifying H1(Ω) and its dual H1(Ω)′ via Riesz’s isomorphism for its usual
Hilbertian structure:

〈φ, ψ〉H1(Ω) :=

∫
Ω

(∇φ · ∇ψ + φψ) ,

‖φ‖2
H1(Ω) := 〈φ, φ〉H1(Ω) ,

we may also rewrite J as:

J(ν) =

{
‖ν‖2

H1(Ω)′ +H(ν) if ν ∈ H1(Ω)′,

+∞ otherwise.

Finally, the reformulation of (3.1) reads as:

inf
{
J(ν) : ν probability measure on Ω

}
. (5.1)

In what follows, for every ν ∈ H1(Ω)′, we will say that φ ∈ H1(Ω) is the
potential of ν if:

〈φ, ψ〉H1(Ω) = ν(ψ), for all ψ ∈ H1(Ω). (5.2)

Put differently, the potential of ν is the weak solution of:{
−∆φ+ φ = ν in Ω,
∂φ
∂n

= 0 on ∂Ω.

Let us also remark that if, in addition, ν is a probability measure on Ω and
φ its potential, then φ · L2 is a probability measure on Ω as well.

Let us denote by C the set of probability measures belonging to the domain
of J :

C = P
(
Ω

)
∩H1(Ω)′ =

{
ν ∈ H1(Ω)′ : ν ≥ 0 in H1(Ω)′, ν(1) = 1

}
. (5.3)

In general, the interaction functional H is not convex. However, in the
small case, i.e. when either V or Ω is small (in a sense quantified below)
then, due to the term ‖.‖2

H1(Ω)′ , the quadratic functional J is in fact strictly
convex.

Assume that V ∈ C2(Ω× Ω,R) and define:

cΩ,V :=

(∫
Ω

(
‖V (x, .)‖2

H1(Ω) + ‖∂x1V (x, .)‖2
H1(Ω) + ‖∂x2V (x, .)‖2

H1(Ω)

)
dx

) 1
2

(5.4)
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Proposition 5.1. Assume that V ∈ C2(Ω × Ω,R) and let cΩ,V be defined
by (5.4). If cΩ,V < 1, then J is a strictly convex functional on C; (5.1) then
admits a unique solution.

Proof. Given ν ∈ C, let us define:

Tν(x) := ν(V (x, .)) =

∫
Ω

V (x, y)ν(dy).

Since Tν ∈ H1(Ω), we have, on the one hand:

|H(ν)| = |ν(Tν)| ≤ ‖ν‖H1(Ω)′‖Tν‖H1(Ω). (5.5)

On the other hand:

Tν(x)
2 + |∇Tν(x)|2 =

(∫
Ω

V (x, y)ν(dy)

)2

+

∣∣∣∣∫
Ω

∇xV (x, y)ν(dy)

∣∣∣∣2
≤ ‖ν‖2

H1(Ω)′

(
‖V (x, .)‖2

H1(Ω) + ‖∂x1V (x, .)‖2
H1(Ω) + ‖∂x2V (x, .)‖2

H1(Ω)

)
Integrating the previous inequality and using (5.5), we then get:

|H(ν)| ≤ cΩ,V ‖ν‖2
H1(Ω)′ ,

so that:
J(ν) ≥ (1− cΩ,V ) ‖ν‖2

H1(Ω)′

and the claim of the proposition easily follows using the fact that J is
quadratic.

Let V s denote the symmetric part of V :

V s(x, y) :=
1

2
(V (x, y) + V (y, x)). (5.6)

The first-order optimality conditions for (5.1) are given by the following
result:

Proposition 5.2. Assume that V ∈ C2(Ω × Ω,R). Given ν ∈ C, let φ be
the potential of ν and let T sν be defined, for all x ∈ Ω , by:

T sν (x) := ν(V s(x, .)) =

∫
Ω

V s(x, y)ν(dy).

If ν is a solution of (5.1), then there exists a constant m such that:

φ+ T sν ≥ m, φ+ T sν = m ν-a.e.. (5.7)
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Proof. Let p ∈ C, and η ∈ H1(Ω) be the potential of p − ν. Let ε ∈ (0, 1);
since ν solves (5.1), we have:

0 ≤ J(ν + ε(p− ν))− J(ν). (5.8)

We also have:

‖ν + ε(p− ν))‖2
H1(Ω)′ = ‖φ+ εη‖2

H1(Ω) = J(ν) + 2ε

∫
Ω

φd(p− ν) + ε2‖η‖2
H1(Ω)′

Similarly:

H(ν + ε(p− ν)) = H(ν) + 2ε

∫
Ω

T sν d(p− ν) + ε2

∫
Ω×Ω

V d((p− ν)⊗ (p− ν)).

Replacing in (5.8), dividing by ε and letting ε→ 0+ yields:∫
Ω

(φ+ T sν ) d(p− ν) ≥ 0.

Since p ∈ C is arbitrary in the previous inequality, setting:

m :=

∫
Ω

(φ+ T sν )dν

and using the fact that φ+ T sν ∈ H1(Ω) we then have (in the H1(Ω) sense):

φ+ T sν ≥ m, φ+ T sν = m ν-a.e..

Remark 5.1. Firstly, let us remark that, thanks to proposition 5.1, if, in
addition, cΩ,V < 1, problem (5.1) being strictly convex, condition (5.7) is in
fact sufficient and fully characterizes the minimizer. This fact will be used
several times in the examples of section 8. Secondly, it should be noticed
that in (5.7) ν appears only indirectly through its potential and T sν .

6 Regularity via approximation

The aim of this section is to get some regularity results on the optimal mea-
sure ν by approximating the minimization problem and then looking for some
properties of minimizers passing to the limit.

Before considering the approximation, we need to recall useful results
regarding: first, the Wasserstein distance from optimal transport theory and,
second, elliptic regularity.
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Definition 6.1. For every p ≥ 1 we call p−Wasserstein distance between
two probability measures µ1 and µ2 on Ω the quantity

Wp(µ1, µ2) = inf

(∫
Ω×Ω

|x− y|p λ(dx, dy)

)1/p

where the infimum is taken on all transport plans λ between µ1 and µ2, that
is on all probability measures λ on Ω × Ω whose marginals π1

#λ and π2
#λ

coincide with µ1 and µ2 respectively.

To recall some properties of Wasserstein distances we need another defi-
nition:

Definition 6.2. We say that a function ψ is c−concave with respect to the
cost |x− y|p if it can be written in the form

ψ(x) = inf
y∈Ω

|x− y|p − χ(y).

With the same notation we will also say that ψ is the c−transform of χ
(and so a function is c−concave if and only if it is the c−transform of some
function), and write ψ = χc.

Proposition 6.1. The space P
(
Ω

)
equipped with any p−Wasserstein dis-

tance turns out to be a compact metric space with the same topology as that
given by the weak* convergence of measures. Moreover, it holds

W p
p (µ1, µ2) = sup

ψ c−concave

∫
Ω

ψ dµ1 +

∫
Ω

ψc dµ2. (6.1)

In our discussion we will make use only of 2−Wasserstein distance and so
we will only deal with c−concave functions with respect to |x − y|2. Notice
that those functions coincide with the functions ψ such that x 7→ ψ(x)− x2

is concave in the usual sense. Moreover, being expressed in terms of an inf,
it is clear that they are all L−Lipschtiz functions, with L = 2 diam Ω. Just
a last notation: the c−concave functions realizing the maximum in (6.1) will
be referred to as Kantorovich potentials in the transport between µ1 and µ2.

As a second tool we need some result on elliptic regularity theory in the
case of Neumann conditions. Precisely, we will use the following.

Proposition 6.2. Consider the elliptic equation (4.2), which is always en-
dowed with an unique solution for every ν ∈ X ′. Then it holds:

• if Ω is an open set with C2 boundary and ν ∈ Lp(Ω) then φ ∈ W 2,p(Ω);
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• if Ω is an open set with C2,α boundary and ν ∈ C0,α(Ω) then φ ∈
C2,α(Ω).

We refer to [1] for both implications. For the Holder theory we can refer
also to [8], whose results in chapter 6, section 7, have to be adapted, while
for the Lp theory in the case p = 2 the ninth chapter in [4] can be seen as
well. From now on, we will call “regular” those open sets whose boundary is
C2,α for at least a positive value of α.

In our approximation, we want to retrieve information on all minimizers
of our problem (in general, when J is not convex they could be more than
one), and so we define some functionals Jε for every choice of ν ∈ argmin J .

We set, for small ε > 0,

Jε(ν) = J(ν) + εW 2
2 (ν, νε) + δε‖ν‖2

L2(Ω),

where (νε)ε is a sequence of measures which are absolutely continuous with
a strictly positive density, approximating ν in the W2 distance, and δε is a
small parameter depending on ε to be properly chosen.

Since it is clear the semicontinuity of the terms we have added with
respect to weak* topology, we get the existence of at least a minimizer νε for
each functional Jε. We have the following result, which is nothing but an ad
hoc modification of general Γ−convergence concepts.

Proposition 6.3. It is possible to choose the parameters δε and the sequence
(νε)ε in such a way that the sequence of minimizers (νε)ε of Jε tends to ν in
the weak* topology (or, equivalently, with respect to the W2 distance).

Proof. We choose νε ∈ L2(Ω) such that J(νε) ≤ J(ν)+ε2/2, and maintaining

the fact that νε
∗
⇀ ν. This is possible thanks to lemma 6.4, choosing an L2

sequence (νε)ε which approximates ν in the strong topology of H1(Ω)′ and
noticing that also the interaction term is in fact continuous with respect to
this convergence. It is not difficult to choose the densities of the measures νε
to be positive as required. Then we set δε = ε2(‖νε‖L2(Ω))

−2/2.
So we have

J(νε) + εW 2
2 (νε, νε) + δε ‖νε‖2

L2(Ω) ≤ J(νε) + δε ‖νε‖2
L2(Ω) ≤ J(ν) + ε2.

Since ν is a minimizer for J we have J(νε) ≥ J(ν), and so we get

J(ν) + εW 2
2 (νε, νε) ≤ J(ν) + ε2,

where we have neglected the positive term δε ‖νε‖2
L2(Ω). By simplifying and

dividing by ε we get
W 2

2 (νε, νε) ≤ ε,
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and so
W2(νε, ν) ≤

√
ε+W2(ν, νε) → 0,

which is the thesis.

Lemma 6.4. The subspace C∞
c (Ω) ⊂ L2(Ω) is dense in the Hilbert space

H1(Ω)′.

Proof. It is sufficient to show the following implication:

ξ ∈ H1(Ω)′, 〈ξ, f〉H1(Ω)′ = 0 for all f ∈ C∞
c (Ω) ⇒ ξ = 0.

After calling ψξ and ψf the potentials of ξ and f , respectively, we have

〈ξ, f〉H1(Ω)′ = 〈ψξ, ψf〉H1(Ω) =

∫
Ω

ψξψf +

∫
Ω

∇ψξ · ∇ψf =

∫
Ω

ψξf.

Consequently, the condition of being ξ orthogonal to every f ∈ C∞
c (Ω) in

H1(Ω)′ implies that the potential of ξ must be orthogonal in L2(Ω) to all C∞
c

functions. So ψξ must be identically 0 and then ξ = 0.

Having established the convergence of the minimizers νε to ν, we look for
uniform estimates of such minimizers. From now on, we will make use of the
following assumption on the function V :

Vdiod (V depends increasingly on distances): V is a function of the form
V (x, y) = v(|x − y|2) for a C2 strictly increasing function v with v′(s) > 0
for s > 0.

Obviously, under this hypothesis, V is a symmetric function and so V =
V s and Tν = T sν for every probability measure ν.

6.1 L∞ estimates in the convex case

Theorem 6.5. Suppose that Ω is a bounded, regular and strictly convex
open subset of R2 and that Vdiod holds. Then, every minimizer νε of Jε
is an absolutely continuous measure with L∞ density, bounded by a uniform
constant depending on Ω and on ‖V ‖C2(Ω). Consequently, ν has a density
bounded by the same constant as well.

Proof. We write down a necessary optimality condition on νε. To obtain
it, we act as in the proof of proposition 5.2. We have only to consider
two additional terms. The L2 term is easy to deal with: if we set νε,t =
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νε + t(p − νε) for small ε, t ∈ [0, 1] and an arbitrary probability p ∈ L2(Ω),
we have

lim
t→0

‖νε,t‖2
L2(Ω) − ‖νε‖2

L2(Ω)

t
= 2

∫
Ω

(p− νε)νε.

For the Wasserstein term, we behave as in [5]. Let us choose for each t a
Kantorovich potential ψε,t for the transport between νε,t and νε, and let ψε be
the only Kantorovich potential (up to additive constants) between νε and νε
(uniqueness comes from the fact that the density of νε is positive everywhere
on the connected open set Ω). We can choose all these Kantorovich poten-
tials to vanish on a same point. Remember that they are all L−Lipschitz
functions. We then have

W 2
2 (νε,t, νε)−W 2

2 (νε, νε) ≤ t

∫
Ω

ψε,t d(p− νε),

and so

lim sup
t→0

W 2
2 (νε,t, νε)−W 2

2 (νε, νε)

t
≤

∫
Ω

ψε d(p− νε).

We have used the fact that, up to subsequences, the sequence (ψε,t)t has a
limit and such a limit must be a Kantorovich potential between νε and νε,
and so it must be ψε.

By this considerations and the same technique as in proposition 5.2, we
get

δενε +
ε

2
ψε + φε + Tνε ≥ cε in Ω; (6.2)

δενε +
ε

2
ψε + φε + Tνε = cε for νε − a.e.x ∈ Ω. (6.3)

Here φε is the potential of νε, and we have identified νε with its density
(obviously νε ∈ L2(Ω)). We may write

νε =
1

δε

(
cε − φε − Tνε −

ε

2
ψε

)
+
. (6.4)

Since νε is L2 we have φε ∈ H2(Ω) ⊂ C0,α(Ω), and this shows that νε is
Holder continuous, since all the functions appearing in the positive part are
at least Holder continuous. Consequently, since νε ∈ C0,α(Ω), the function
φε turns out to be a C2,α function.

We look for a maximum point xε of νε: in it we have a local minimum of
the sum ε

2
ψε+φε+Tνε . Thanks to x 7→ ψε(x)−x2 being concave, we may write

ψε ≤ l+Q, with equality in xε, where l is an affine function and Q(x) = x2.
Consequently xε is a local minimum for the sum ε

2
(l+Q)+φε+Tνε . Lemma
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6.6 shows that xε does not belong to the boundary of Ω, at least for small
ε. So, since xε is an interior point and all the functions involved are at least
twicy differentiable, we may write, taking the laplacians,

0 ≤ 2ε+ ∆φε(xε) + ∆Tνε(xε). (6.5)

In this case we can use νε = φε − ∆φε to estimate νε(xε). In fact in xε we
have νε(xε) > 0 and so

φε(xε)−M ≤ cε, (6.6)

where M = sup |ψε|+|Tνε| can be uniformly estimated, ψε being L−Lipschitz
functions vanishing at a given point in Ω and |Tν | ≤ sup |V | for every prob-
ability ν. So it is sufficient to estimate cε. To do this we can integrate (6.4),
obtaining

δε ≥ cε|Ω| −M |Ω| − 1, (6.7)

where we used the fact that both νε and φε are probability measures. Putting
together (6.6) and (6.7) we get φε ≤ C, being C a constant depending on Ω
and supV , and so, by recalling the equality νε = φε−∆φε and the inequality
(6.5) we get

νε(xε) ≤ C + 2ε+ ‖V ‖C2(Ω) .

Being xε a maximum point we have got an L∞ estimate on νε.

Lemma 6.6. Suppose that Ω is a bounded, regular and strictly convex open
subset of R2 and that Vdiod holds. Then, at least for small ε we have xε ∈ Ω.

Proof. Suppose, on the contrary, to have a sequence (xε)ε contained in the
boundary ∂Ω. Such xε is a local minimum point for ε

2
ψε + φε + Tνε . In a

local minimum point on the boundary the normal exterior derivative should
be non positive. The derivative of ψε may also not exist, but we may use the
fact that ψε is an L−Lipschitz function. Being multiplied by ε, and vanishing
by definition the normal derivative of φε, it is not difficult to check that we
should have

lim sup
ε→0

∂Tνε

∂n
(xε) ≤ 0. (6.8)

On the other hand, we have

∂Tνε

∂n
(xε) =

∫
Ω

v′(|xε − y|2)(xε − y) · n(xε) νε(dy) ≥ aδδνε(Ω \ Sδ(xε)),

where aδ is the minimum value of v′ on [δ2, diam Ω2] and, for every point
x ∈ ∂Ω, we define Sδ(x) = {y ∈ Ω | (x− y) · n(x) ≤ δ}. Condition (6.8)
implies that, for every δ > 0, it holds νε(Ω\Sδ(xε)) → 0. Taking a limit point
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x0 of the sequence (xε)ε, we will show that this implies that the measure which
is the limit of the sequence (νε)ε is concentrated on x0. This is impossible,
since this limit measure is ν, which is optimal for J , and so it belongs to
H1(Ω)′. Yet in two dimensions a measure concentrated on a single point
does not belong to such a space. To conclude, it is then sufficient to show
that, for each ball B(x0, r), it holds Sδ(xε) ⊂ B(x0, r) for sufficiently small
δ and ε, thus getting limε νε(B(x0, r)) = 1 for every r > 0. If not, we would
have a sequence (yδ,ε)δ,ε such that (xε− yδ,ε) ·n(xε) < δ and |x− yδ,ε| > r. At
the limit we get a point y ∈ ∂Ω such that (x0− y) ·n(x0) ≤ 0 (which implies,
in a strictly convex Ω, x0 = y), but |x0 − y| ≥ r, and this is absurd.

Remark 6.1. If we want to consider the one-dimensional case (with Ω an
interval) the proof of lemma 6.6 has to be modified: it is sufficient to say
that a measure concentrated at a single point, which is a terminal point of
the interval, cannot be optimal. The potential of such a measure can be
explicitely computed, being an exponential function, and it can be proven
that the optimality condition of proposition 5.2 cannot hold, at least under
the additional assumption v′(0) = 0 in Vdiod.

We conclude this part of the section by a consideration on the conse-
quences of this result on the regularity of the potential φ.

Corollary 6.7. The potential φ of an optimal measure is a W 2,p function
for any 1 ≤ p < +∞ and then a C1,α function too.

Proof. Just apply proposition 6.2 and consider that ν ∈ L∞(Ω) ⊂ Lp(Ω)
for any finite p. The second part of the statement is just a consequence of
well-known embedding theorems.

6.2 Interior L2 estimates in the general case

In this section, we look for weaker estimates which are valid in the case of a
non convex domain Ω. Let us write ∂Ω = Γ1 ∪ Γ2, where Γ1 = ∂Ω∩ ∂ (co Ω)
and Γ2 = ∂Ω \ ∂ (co Ω).

Theorem 6.8. Suppose that Γ1 is a strictly convex regular boundary and that
Vdiod holds. Then, given a Lipschitz function θ such that d(spt θ,Γ2) > 0,
the sequence of functions (θνε)ε is bounded in L2.

Proof. We start by testing equation (4.2) for νε against the function θ2νε:∫
Ω

ν2
εθ

2 =

∫
Ω

φεθ
2νε +

∫
Ω

∇φε · ∇(θ2νε). (6.9)

16



Since on spt νε we have ∇φε = −δε∇νε −∇( ε
2
ψε + Tνε), we get∫

Ω

ν2
εθ

2 =

∫
Ω

φεθ
2νε − δε

∫
Ω

∇νε · ∇(θ2νε)−
∫

Ω

∇(
ε

2
ψε + Tνε) · ∇(θ2νε)

≤
∫

Ω

φεθ
2νε − δε

∫
Ω

θ2|∇νε|2 − 2δε

∫
Ω

νεθ∇νε · ∇θ

+

∫
Ω

∆(
ε

2
ψε + Tνε)θ

2νε −
∫
∂Ω

θ2νε

(
∂Tνε

∂n
− ε

2
L

)
. (6.10)

Using once more δε∇νε = −∇φε −∇( ε
2
ψε + Tνε) on spt νε in (6.10), we get:∫

Ω

ν2
εθ

2 ≤
∫

Ω

φεθ
2νε − δε

∫
Ω

θ2|∇νε|2 + 2

∫
Ω

νεθ∇φε · ∇θ

+2

∫
Ω

νεθ∇(
ε

2
ψε+Tνε) ·∇θ+

∫
Ω

∆(
ε

2
ψε+Tνε)θ

2νε−
∫
∂Ω

θ2νε

(
∂Tνε

∂n
− ε

2
L

)
.

(6.11)

Notice that the laplacian appearing in the fifth term is composed by two
parts: the laplacian of a C2 function and the laplacian of a concave one,
which is a negative measure. We have six terms that must be estimated:

• the first one is bounded by ‖θνε‖L2(Ω) ‖θφε‖L2(Ω);

• the second is negative;

• the third is bounded by ‖∇φε‖L2(Ω) ‖θνε‖L2(Ω) lip θ;

• the fourth by ‖θνε‖L2(Ω) ( ε
2
L+ lipV ) lip θ;

• the fifth by (2ε+ ‖V ‖C2(Ω)) ‖θ2‖L∞(Ω);

• the last one is negative for small ε and it can be proven exactly as in
the proof of lemma 6.6.

The proof is then achieved, since the sequence (φε)ε is bounded in H1(Ω),
thanks to ‖φε‖2

L2(Ω) + ‖∇φε‖2
L2(Ω) ≤ Jε(νε). Moreover, the left hand side in

(6.11) is quadratic in ‖θνε‖L2(Ω) and the right hand side at most linear, which
gives the estimate we were looking for.

Theorem 6.8 gives a local L2 bound on the densities νε: this enables
us, together with the optimality conditions of section 5, to state a stronger
regularity result.
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Theorem 6.9. Suppose that Γ1 is a strictly convex regular boundary and
that Vdiod holds. Then any optimal measure ν for J can be expressed as
ν = νa + νs, with νa ∈ L∞(Ω) and νs a singular measure supported on Γ2.

Proof. By theorem 6.8 we get that ν is locally L2 in Ω \ Γ2. This means, by
interior elliptic regularity theory, that its potential φ is locally H2 in the same
set, and thus continuous. Hence the equality φ = c− Tν given by optimality
conditions holds true on the whole spt ν. So the following holds

φIspt ν = (c− Tν)Ispt ν ∈ L∞(Ω), (6.12)

Moreover, L2−almost everywhere on spt ν, we also have ∆φ = −∆Tν and so

∆φIspt ν = −∆TνIspt ν ∈ L∞(Ω). (6.13)

(6.12) and (6.13) together, imply

νIA = (φ−∆φ)Ispt ν ∈ L∞(Ω),

where A = Ω \ Γ2. Finally, set νa = νIA and νs = νIΓ2 .

Remark 6.2. In section 8, an example will be given to show that it is in fact
possible that an optimal ν gives a positive mass to Γ2

7 Qualitative properties of the minimizers

In this section, we give some qualitative properties regarding the support of
an optimal measure ν. This turns out to be very important, thanks to the
following result. In all the section Ω will be strictly convex, regular, and
condition Vdiod will hold.

Proposition 7.1. The L∞ density of any optimal measure ν coincides almost
everywhere in spt ν with a continuous function.

Proof. Thanks to the regularity of the potential φ we may say that the equal-
ity φ = c− Tν holds eveywhere in the support and that, for the laplacian of
φ, which is an Lp function, it holds ∆φ = −∆Tν a.e. From ν = φ−∆φ and
V ∈ C2(Ω), which implies Tν ∈ C2(Ω), we get the thesis.

As a consequence of the previous result, we may say that the reason for
possible irregular behaviour of ν must be traced back to the shape of its
support. As far as this shape is concerned, we can only give two general
results, whose statements are quite weak.
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Proposition 7.2. Suppose, other than the general assumptions of the sec-
tion, that V is strictly convex. Then the support of ν has non-empty interior.

Proof. We will show that spt ν contains a small ball around the point x0

defined by x0 = argminTν . The function Tν inherits strict convexity from
V , and so there exist just one minimizer and just one critical point for Tν .
We start by saying that, under the assumption of theorem 6.5, we must have
spt ν ∩ ∂Ω = ∅. Indeed, being φ a C1,α function, it holds ∇φ = −∇Tν on the
whole support and this, by calculating ∇Tν as in lemma 6.6, would otherwise
prevent the normal derivative of φ from vanishing on ∂Ω.

We now want to show that x0 ∈ spt ν: to do this consider a maximum
point x for φ. Such a point must be placed in spt ν, since outside it holds
∆φ = φ and on an interior maximum point we should have a strictly positive
value for φ. The same consideration can be performed on the boundary, since
we already know that the normal derivative vanishes and no maximum point
on the boundary with vanishing normal derivative and positive laplacian
is allowed. Notice that outside spt ν the function φ is an analytic function
because of standard elliptic regularity theory and so it makes sense to consider
its laplacian on ∂Ω too.

Now, it must hold
0 = ∇φ(x) = −∇Tν(x),

and so x = x0. Consequently x0 is a point in spt ν and then in Ω.
Let us now consider for a fixed small value of ε > 0 and for δ in a ball

near 0 ∈ R2 the functions

fε,δ(x) = φ(x)− ε

2
|x− (x0 + δ)|2.

The parameter ε has to be chosen in such a way that in any maximum
point of fε,δ it holds φ > ε (it is in fact sufficient to satisfy the inequality
|Ω|−1 > ε(1 + (diam Ω)2/2)). After choosing ε > 0 in such a way, we will
think of it as a fixed parameter.

Now consider xδ ∈ argmin fε,δ. Such a point cannot lie on the boundary
because of the sign of the normal derivative, and it cannot be outside spt ν,
by computing the laplacian. So xδ ∈ spt ν. The point xδ is characterized by

[εId+∇Tν ](xδ) = ε(x0 + δ),

the application on the left hand side being injective since it is monotone (in
the usual sense for vector-valued maps). If δ = 0 the solution is given by
xδ = x0, and so, by standard local inversion theorems, the set of points xδ
covers a small ball around x0. Such a ball must consequently be contained
in spt ν.
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Our next result deals with the topology of the support

Proposition 7.3. Suppose, other than the general assumptions of the sec-
tion, that V is strictly subharmonic, i.e. ∆V > 0. Then the support of ν
is simply connected, in the sense that, if ω ⊂ Ω is an open set such that
∂ω ⊂ spt ν, then ω ⊂ spt ν.

Proof. We consider a maximum point x0 for φ + Tν in ω. Let us recall that
φ = c − Tν in spt ν and φ ≥ c − Tν everywhere. So, if the maximum point
belongs to spt ν, we have φ = c−Tν on ω. On the other hand, it is impossible
to have x0 ∈ ω \ spt ν because there we have ∆(φ+ Tν) = φ+ ∆Tν > φ ≥ 0,
since Tν inherits strict subharmonicity from V . Consequently, x0 must belong
to ω ∩ spt ν. Then we have φ = c − Tν and so ∆φ = −∆Tν in the whole ω
and so

ν = φ+ ∆Tν > φ ≥ 0 in ω,

which obviously implies ω ⊂ spt ν.

8 Examples

8.1 The unidimensional case

It’s worthwhile to consider the case where Ω = (−R,R) is a bounded interval
in R, instead of a two-dimensional open set. Obviously from the point of
view of applications it sounds less interesting, even if sometimes in urban
economics unidimensional models have been used to deal with the case of very
long and narrow cities (and in fact some towns on the sea shore are not far
from being one dimensional). From a mathematical point of view, the main
interest lies in the fact that we can show the functional J to be displacement
convex (or strictly displacement convex), under convexity assumption on
V . This gives uniqueness of the minimizer, but it is also important since
displacement convexity has never been studied for functionals of the form of
the squared (H1)′ norm. Anyway, the techniques here used to get this term
geodesically convex are very specific to the unidimensional case .

Let us recall the notion of displacement convexity, which has been intro-
duced and developed by McCann in [9].

Definition 8.1. Let µ and ν be two probability measures on Ω and let T :
Ω → Ω be an optimal transport map (unique if µ is absolutely continuous)
between them with respect to the cost function |x−y|2. We consider the curve
γT with values in P

(
Ω

)
endowed with the 2−Wasserstein distance, given by

t 7→ γT (t) = [(1− t)Id+ tT ]#µ.
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A functional F defined on P
(
Ω

)
is said to be displacement convex if all the

maps t 7→ F (γT (t)) are convex on [0, 1] for every choice of µ, ν and T .

Before presenting the displacement convexity result, we need to recall
the concept of Green function and its link to the squared (H1)′ norm. The
following result can be adapted to any dimension.

Proposition 8.1. For every measure ν ∈ H1(Ω)′ it holds

‖ν‖2
H1(Ω)′ =

∫
Ω×Ω

G(x, y) ν(dx)ν(dy),

the function Gx = G(x, ·) being for every x ∈ Ω the solution to{
−∆yGx +Gx = δx in Ω,
∂Gx

∂n
= 0 on ∂Ω,

(8.1)

i.e. G is the Green function for the operator −∆+Id with Neumann boundary
conditions.

Proof. First, we notice that it holds

‖ν‖2
H1(Ω)′ =

∫
Ω

φ2 +

∫
Ω

|∇φ|2 =

∫
Ω

φ dν.

Then the general theory on Green functions allows us to say that it holds
φ(x) =

∫
Ω
G(x, y)ν(dy). Integrating once more with respect to ν gives the

thesis.

Now we will take Ω = (−R,R) ⊂ R and we will divide the square
(−R,R)× (−R,R) into two triangles:

T+ = {(x, y) ∈ (−R,R)× (−R,R) |x < y}
T− = {(x, y) ∈ (−R,R)× (−R,R) |x > y}

Theorem 8.2. If Ω = (−R,R) ⊂ R and if V is a convex function of the pair
(x, y) then the functional J is strictly displacement convex. Consequently, it
admits an unique minimizer.

Proof. An easy computation shows that the Green function in (8.1) is given,
in the case of the interval (−R,R), by

G(x, y) =

{
cosh(x+R) cosh(y−R)

sinh(2R)
if (x, y) ∈ T+,

cosh(x−R) cosh(y+R)
sinh(2R)

if (x, y) ∈ T−
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denoting by cosh and sinh the hyperbolic cosin and sin, respectively. It is
also easy to check that both expressions, the one valid in T+ and the one in
T−, are strictly convex functions.

Let us now consider a displacement interpolation νt = [(1− t)Id+ tT ]#ν
and take

J(νt) =

∫ R

−R

∫ R

−R
(G+ V )(x+ t(T (x)− x), y + t(T (y)− y)) ν(dx)ν(dy).

Since T must be an optimal transport with respect to the cost |x − y|2 it
is well-known that it is a nondecreasing map: consequently (x, y) 7→ ((1 −
t)x + tT (x), (1 − t)y + T (y)) sends each of the triangles T+, T− into itself.
Then, in order to get t 7→ J(νt) strictly convex, it is sufficient to have strict
convexity of G + V in each triangle. Our hypothesis ensures it and we get
the thesis.

Remark 8.1. In the assumptions of theorem 8.2 the convexity in each triangle
T+, T− of G + V is sufficient: in particular, also some concave functions V
are allowed.

8.2 The case of a quadratic kernel in two dimensions

We now develop the particular case where V (x, y) = |x − y|2. For such a
choice for V and particular Ω we are able to give an almost explicit solution.

First, we make some general considerations on the quadratic kernel. No-
tice that, for every probability measure ν, we have:

Tν(x) = |x− bar ν|2 + Var ν, H(ν) = 2 Var ν,

J(ν) = ‖ν‖2
H1(Ω)′ + 2

∫
Ω

|x|2ν(dx)− 2| bar ν|2, (8.2)

denoting by bar and Var the barycenter and the variance of a probability
measure, respectively.

We also compute the variation of our functional J when we pass from ν
to ν + h, being h an admissible perturbation, i.e. h = p− ν with p ∈ P

(
Ω

)
:

J(ν + h) = J(ν) + 2

∫
Ω

(φ+ Tν) dh+ ‖h‖2
H1(Ω)′ +

∫
Ω×Ω

|x− y|2 h(dx)h(dy).

By using that h is a zero-mean signed measure, we may re-write the last term
and get

J(ν + h) = J(ν) + 2

∫
Ω

(φ+ Tν) dh+ ‖h‖2
H1(Ω)′ −

∣∣∣∣∫
Ω

xh(dx)

∣∣∣∣2 . (8.3)
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8.2.1 The case of the whole space

In the case Ω = R2 it is clear that we face a lot of symmetries, with respect
both to rotations and to translations. This second kind of symmetries enables
us to consider just the problem where the barycenter of ν is fixed at 0. Given
the set of minimizers for this sub-problem, we will get all the minimizers for
the original problem by translating them of an arbitrary vector in R2.

The problem

inf{J(ν) : ν probability measure on R2, bar ν = 0 }, (8.4)

thanks to (8.2) or (8.3), turns out to be a strictly convex minimization prob-
lem. We will then find its unique minimizer by finding a measure ν satisfying
the optimality condition, i.e. such that x 7→ φ(x)+ |x|2 is minimal ν−almost
everywhere. Equation (8.3) can be used to convince oneself that such a
condition is in fact sufficient to have a minimum.

We will build a solution to the minimization problem by looking for a
radial measure with radial potential satisfying proper conditions. The fol-
lowing useful result is given without proof because it is only a (nontrivial,
we must admit) second-year exercise.

Lemma 8.3. Consider the Cauchy problem
tu′′a(t) + u′a(t) = ua

4
for t ∈ (a,+∞)

ua(a) = Ca − a

u′a(a) = −1,

(8.5)

depending on a parameter a ∈ (a−, a+), where Ca is a decreasing function of a
in the interval (a−, a+) and the following conditions hold: lima→a+ Ca−a < 0
and lima→a− Ca = +∞. Then there exists a number a ∈ (a−, a+) such that:

• for a < a the solution ua is convex and decreasing up to a point T (a)
where ua(T (a)) > 0 and u′a(T (a)) = 0 and then increasing with non-
zero derivative;

• for a = a the solution ua is convex, decreasing and positive on the whole
(a,+∞) and it is infinitesimal together with its derivative as t→ +∞;

• for a > a the solution becomes negative.

Moreover, the map a 7→ T (a) is increasing and continuous and it holds

lim
a→a

T (a) = +∞.
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Theorem 8.4. The unique solution to problem (8.4), and so to the whole
minimization problem in R2 (up to translations) can be obtained by using
lemma 8.3, with a− = 0, arbitrary large a+ and

Ca =
1 + π

2
a2

πa
− 4.

Then the solution is the measure ν whose density is given in the following,
together with its potential φ:

ν(x) =

{
Ca + 4− |x|2 for |x|2 ≤ a

0 for |x|2 > a
; φ(x) =

{
Ca − |x|2 for |x|2 ≤ a

ua(|x|2) for |x|2 > a
.

Proof. Thanks to the considerations made before, it is sufficient to check
that φ is the potential of ν (by computing the laplacian) and that ν is a
probability, i.e.

∫
ν = 1 (but C has been properly chosen); the optimality

condition being immediately satisfied by construction (φ(x)+ |x|2 is constant
for x ∈ spt ν and outside it is greater than this constant as a consequence
of the convexity of ua). Similar computations are detailed in the proof of
theorem 8.6

8.2.2 The case of a small ball

The case of a bounded ball in R2 may be interesting as well. In this case,
however, we may suffer of a loss of convexity, because we cannot reduce the
problem to the simpler one with fixed barycenter. To avoid this difficulty, we
will consider a small ball, such that cΩ,V < 1. Under this assumption, any
critical point of the functional will be actually the unique minimizer. We will
build the minimizer exactly as in the case of R2, by using lemma 8.3. We
keep the same choice of C, a− and a+. By inverting the map T in lemma 8.3
we define a map R→ a(R) given by T (a(R)) = R2: this map is continuously
increasing as well, and it obviously holds a(R) < R2.

Theorem 8.5. The unique solution to problem (5.1), when V (x, y) = |x−y|2,
Ω = B(0, R) and R is small enough so that we have cΩ,V < 1, is the measure
ν whose density is given in the following, together with its potential φ:

ν(x) =

{
Ca(R) + 4− |x|2 for |x|2 ≤ a(R)

0 for a(R) < |x|2 < R2
,

φ(x) =

{
Ca(R) − |x|2 for |x|2 ≤ a(R)

ua(R)(|x|2) for a(R) < |x|2 < R2
.

Proof. Just act as in the proof of theorem 8.4 or have a look at computations
in theorem 8.6.
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8.2.3 The case of a small crown

Let us now consider a circular crown with radii R1 < R2, that is the open
set Ω = B(0, R2) \ B(0, R1). To give a solution to the problem we will use
once more lemma 8.3, but this time we will slightly change the function C.
Moreover, exactly as in the case of the ball, we will only deal with a small
crown.

Theorem 8.6. The measure ν described in the following, together with its
potential φ, is the unique solution to problem (5.1), when V (x, y) = |x− y|2,
Ω = B(0, R2) \ B(0, R1) and R1 and R2 are small enough so that we have
cΩ,V < 1 and 4πR2

1 < 1:

ν = νa + νs;

νa(x) =

{
Ca(R2) + 4− |x|2 for R2

1 < |x|2 ≤ a(R2)

0 for a(R2) < |x|2 < R2
2

,

νs = 2R1H1 ∂B(0, R1),

φ(x) =

{
Ca(R2) − |x|2 for R2

1 < |x|2 ≤ a(R2)

ua(R2)(|x|2) for a(R2) < |x|2 < R2
2

,

where we have chosen, in lemma 8.3

Ca =
1− 4πR2

1 + π
2
(a2 −R4

1)

π(a−R2
1)

− 4,

putting a− = R2
1, and choosing a(R2) so that it satisfies T (a(R2)) = R2

2.

Proof. This time we give a quite detailed proof. We start by computing the
mass of ν to show that it is a probability on Ω.

ν(Ω) = νs(Ω) + νa(Ω) = 4πR2
1 +

∫ √
a(R2)

R1

(
Ca(R2) + 4− ρ2

)
2πρ dρ

= 4πR2
1 +

(
Ca(R2) + 4

)
π

(
a(R1)−R2

1

)
− π

2

(
a(R1)

2 −R4
1

)
= 1.

To show that φ is the potential of ν we divide Ω into two crowns: Ω1 =
{x ∈ Ω |R2

1 < |x|2 ≤ a(R2)} and Ω2 = {x ∈ Ω | a(R2) < |x|2 < R2
2}. Then we

have, for any ψ ∈ C1(Ω),∫
Ω1∪Ω2

ψφ+∇ψ · ∇φ =

∫
Ω1

ψ (−∆φ+ φ) +

∫
∂Ω1∩∂Ω

ψ
∂φ

∂n
+

∫
∂Ω1∩∂Ω2

ψ
∂φ

∂n
+∫

Ω2

ψ (−∆φ+ φ) +

∫
∂Ω2∩∂Ω

ψ
∂φ

∂n
+

∫
∂Ω2∩∂Ω1

ψ
∂φ

∂n
.

Let us have a look at the six terms in the right hand side:
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• the first one equals
∫

Ω
ψdνa, because in Ω1 we have νa = φ + 4 and

∆φ = −4;

• the second term is zero because φ has, by construction, vanishing nor-
mal derivative at |x| = R2;

• the third and the sixth one are opposite and so they give a vanishing
sum, because φ is C1 by construction;

• the fourth term vanishes because outside B(0,
√
a(R2)) we have ∆φ =

φ as a consequence of (8.5);

• the fifth one equals
∫

Ω
ψdνs by construction of νs.

After checking that φ is the potential of ν it is immediate to notice that, by
construction, the optimality conditions are satisfied.

Remark 8.2. Theorem 8.6 gives an example of an optimal ν composed by
an L∞ part and a singular part on Γ2 = ∂B(0, R1), while giving no mass to
∂B(0, R2), which is the convex part of the boundary.
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