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The main aim of this three-part work is to provide a unified consistent framework

for the phase-field modeling of cohesive fracture. In this first paper we establish the

mathematical foundation of a cohesive phase-field model by proving a Γ-convergence

result in a one-dimensional setting. Specifically, we consider a broad class of phase-

field energies, encompassing different models present in the literature, thereby both

extending the results in [CFI16] and providing an analytical validation of all the

other approaches. Additionally, by modifying the functional scaling, we demon-

strate that our formulation also generalizes the Ambrosio-Tortorelli approximation

for brittle fracture, therefore laying the groundwork for a unified framework for vari-

ational fracture problems. The Part II paper presents a systematic procedure for

constructing phase-field models that reproduce prescribed cohesive laws, whereas

the Part III paper validates the theoretical results with applied examples.
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1 Introduction

1.1 Background and Motivation

Understanding and predicting fracture initiation and propagation is essential for designing safer and

more resilient mechanical systems while preventing structural failures. Over the past century, Griffith’s

brittle fracture theory [Gri21] has become one of the most fundamental and widely used models in

fracture mechanics. In Griffith’s framework, fracture energy is assumed to be dissipated entirely upon

the formation of a crack, with no residual forces acting between the crack surfaces, regardless of the

displacement jump across them (Fig. 1).

Despite its simplicity and historical significance, Griffith’s model presents two key limitations: (i) it

cannot predict crack initiation in an initially pristine elastic body, requiring a pre-existing defect [Mar10,

TLB+18, KBFLP20], and (ii) it leads to unrealistic scale effects in fracture predictions [Mar23]. Cohesive

fracture models overcome these issues by admitting nonzero forces, the cohesive forces, between crack

surfaces. These models, originally proposed by Dugdale and Barenblatt [Dug60, Bar62], define a surface

energy density that depends on the displacement jump, providing a more realistic representation of

fracture processes (Fig. 1). Characterized by a critical stress and a characteristic length, cohesive laws

effectively address the deficiencies of Griffith’s model [Mar23].

Building on the variational reformulation of Griffith’s fracture as a free-discontinuity energy minimiza-

tion problem [FM98, AB95], cohesive fracture models have also been recast within a similar variational

framework [BFM08]. The free-discontinuity brittle fracture energy minimization problem admits a reg-
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Figure 1: Paradigmatic fracture problem: qualitative trends of the surface energy density g and associated
cohesive stress σ with respect to the crack opening (displacement jump) [u] for brittle and cohesive
fracture models.

ularization that has been explored by the first time in [BFM00, Foc01], drawing inspiration from the

work of [AT92] (see also [AT90]). Within the context of Γ-convergence, the crack path emerges from the

localization of a smooth phase-field as the regularization length approaches zero [Bra98]. The regulariza-

tion of brittle fracture via phase-field models has enabled the numerical simulation of complex fracture
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processes that were impractical with classical methods [BMMS14, MBK15]. Today, the phase-field ap-

proach is a leading strategy in fracture mechanics, allowing for the capture of crack nucleation, both

with and without pre-existing notches, and the modeling of intricate crack patterns. Its simple numerical

implementation, often done by alternate minimization schemes, has also contributed to its widespread

diffusion. The work of [BFM00] provides a key link between the mathematical results and engineering

application within the fracture mechanics field.

However, phase-field models for brittle fracture inherit a critical limitation from Griffith’s model: the

inability to independently control the critical strength, the fracture toughness (or critical energy release

rate), and the regularization length. As a result, the nucleation stress threshold cannot be directly

linked to the sharp interface of Griffith’s model. This limitation hinders the development of a flexible

and general model capable of accurately describing crack nucleation in smooth or notched domains

[BFM08, TLB+18, LPDFL24].

As noted in [Mar23], cohesive fracture models are a natural way to address the shortcomings of

Griffith’s brittle fracture theory. Inspired by [PM10b, PM10a], [LCK11] developed a standalone gradient-

damage (phase-field) model, which is not derived from a free-discontinuity fracture problem. This model

was first used to study cohesive fracture in a one-dimensional setup, providing closed-form solutions.

A higher-dimensional extension of this model applied to large-scale simulations of failure processes has

been accomplished in [LG11]. Despite its potential, this cohesive phase-field model initially received

little attention from the fracture mechanics community.

A successful attempt to create a mathematically consistent variational phase-field model regularizing

the free-discontinuity cohesive fracture problem in [BFM08] was made by [CFI16] (see also [CFI24,

CFI25] for the vector valued analogues). This work, like [BFM00], represents a valuable intersection

between the mathematical and engineering communities. The subsequent numerical implementation by

[FI17] faced several challenges, such as developing a backtracking algorithm and further regularizing

the degradation function with respect to the internal length. Additionally, the difficulty in tuning the

elastic degradation function to match a specific cohesive law, combined with the use of a fixed quadratic

phase-field dissipation function, likely limited the model’s flexibility and hindered its broader use within

the fracture mechanics community.

Significant advancements were made by [Wu17, WN18], who, building on [LCK11], introduced a new

generation of phase-field cohesive fracture models. Also these models are grounded in the well-established

variational framework of gradient-damage models [PM10b, PM10a]. By incorporating polynomial crack

geometric functions and rational energetic degradation functions, they allow for the independent tuning

of critical stress, fracture toughness, and regularization length to match specific softening laws. A key

aspect in these models, adopted by [CFI16, Wu17, WN18], is the inclusion of the regularization length

within the elastic degradation function, enabling a more precise description of cohesive fracture failures.

Despite their flexibility and soundness, the process of setting the material functions to achieve a

target softening law remained unclear. A major contribution in this regard came from [FFL21], who

introduced an integral relation that links a single unknown function, defining both the degradation and

phase-field dissipation functions, to the desired traction-separation law.

It is worth emphasising that despite claims of Γ-convergence in [Wu17, Sec. 5.1] and in [FFL21,

Sec. 6], these efforts primarily demonstrated numerical convergence rather than a rigorous mathematical

proof. It is then clear that an analytical proof of the Γ-convergence of [Wu17, WN18] and [FFL21]

phase-field models towards the free-discontinuity variational cohesive fracture model set up by [BFM08]
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is still missing, in the same spirit of what has been done by [CFI16] (cf. also [CFI24, CFI25, Col25]).

A timeline, visually summarizing the state of the art discussed above, is presented in the introduction

of the third part paper, [ACF25b], where the the key milestone works with their logical connections are

highlighted, including the present study, within the variational approach to fracture.

The main aim of this three-part work is to provide a unified consistent framework for the phase-

field modeling of cohesive fracture, similar to what has been done in [BFM08] for the the phase-field

modeling of brittle fracture, that bridges the mathematical results of the first two parts with the more

applied and engineering oriented third part. One of the main goals of this first part work is exactly to

fill the gap discussed above by extending the Γ-convergence results in [CFI16], thus proposing a unified

mathematically foundation for cohesive phase field fracture models. More precisely, in this first paper

we prove a Γ-convergence result in the one-dimensional setting for a very general family of phase-field

energies which encompass at the same time the models introduced in [CFI16], [Wu17, WN18], [FFL21]

and in [LCM23, LCM25] (see Section 1.2 below). In addition, changing the scaling in the functionals, we

show that our model also include and provide a generalization of the classical Ambrosio-Tortorelli model

for the approximation of brittle energies. In the second paper [ACF25a], we take advantage of the general

model introduced in this first part work to set-up an analytical procedure to construct the phase-field

model in order to obtain assigned cohesive laws, either by fixing the degradation function and choosing

the damage potential or viceversa. This validates rigorously and generalizes the numerical results of

[FFL21] allowing, for instance, to derive different phase-field models sharing the same target cohesive

law, and hence exhibiting the same overall cohesive fracture behaviour, but different localized phase-field

profiles evolutions. In the third paper [ACF25b], the mechanical responses of different phase-field models

associated to canonical traction-separation laws in a one-dimensional setting are investigated in depth

under a more engineering oriented perspective providing a link with and supporting the conclusions of

the theoretical results of the first two parts.

1.2 A general phase-field model

To introduce the mentioned new phase-field functionals we recall both the model introduced in [CFI16]

(actually a slight generalization of it), and its regularization proposed in [Wu17, WN18] and later specified

in [FFL21]. To this aim we fix some notation and state some assumptions that will be used throughout

the paper. For every t ∈ [0, 1) let

f(t) :=

(
l(t)

Q(1− t)

)1/2

, (1.1)

where

(Hp 1) l, Q ∈ C0([0, 1], [0,∞)) with l(1) = 1, l−1({0}) = Q−1({0}) = {0}, Q non-decreasing in a right

neighbourhood of the origin, and such that [0, 1) ∋ t 7→ f(t) is non-decreasing in a right neighbour-

hood of the origin.

Clearly, assuming l(1) = 1 is not restrictive up to a change of Q by a multiplicative factor. Then, for

every ε > 0, set f̃ε(1) := 1, for t ∈ [0, 1)

f̃ε(t) := 1 ∧ ε1/2f(t) , (1.2)
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and

fε(t) :=

(
εl(t)

εl(t) +Q(1− t)

)1/2

. (1.3)

Note that [0, 1] ∋ t 7→ fε(t) is non-decreasing in a right neighbourhood of the origin, as well. Consider

next

(Hp 2) ω ∈ C0([0, 1], [0,∞)) such that ω−1({0}) = {0}, and the following limit exists

lim
t→0+

(
ω(t)

Q(t)

)1/2

=: ς ∈ [0,∞] . (1.4)

Let Ω ⊂ R be a bounded and open interval, and A(Ω) the family of its open subsets. Then define

F (1)
ε ,F (2)

ε : L1(Ω,R2)×A(Ω) → [0,∞] respectively by

F (1)
ε (u, v,A) :=

∫
A

(
f̃2ε (v)|u′|2 +

ω(1− v)

4ε
+ ε|v′|2

)
dx (1.5)

and

F (2)
ε (u, v,A) :=

∫
A

(
f2ε (v)|u′|2 +

ω(1− v)

4ε
+ ε|v′|2

)
dx (1.6)

if (u, v) ∈ H1(Ω,R× [0, 1]) and ∞ otherwise.

Some remarks are in order: the original model in [CFI16] corresponds to f̃ε defined with l(t) as above,

Q(t) = λ−2(1− t)2q, q ≥ 1, λ ∈ (0,∞), and ω(t) = (1− t)2 in (1.2) (see also [CFI24, CFI25]). Therefore,

ς = λ if q = 1, and ς = ∞ otherwise. Instead, the model proposed in [Wu17, WN18] corresponds to

l(t) := tp with p ∈ (0,∞) in (1.3).

Under the above quoted choices of Q and ω, the Γ(L1)-convergence of {F (1)
ε }ε>0 to a cohesive type

functional has been addressed in [CFI16, Theorem 2.1] (cf. below for the explicit expression of the

limiting functional, and see [CFI24, CFI25] for the vector-valued geometrically nonlinear setting). We

prove here an analogous result for the families {F (1)
ε }ε>0 and {F (2)

ε }ε>0, and actually for a broader family

of functionals including both those defined above and those used in [LCM23, LCM25] as particular

cases. Indeed, let φ : [0,∞) → [0,∞) be a non-decreasing function, and consider the functionals

Fε : L
1(Ω,R2)×A(Ω) → [0,∞] defined by

Fε(u, v,A) :=

∫
A

(
φ(εf2(v))|u′|2 + ω(1− v)

4ε
+ ε|v′|2

)
dx (1.7)

if (u, v) ∈ H1(Ω,R × [0, 1]) and ∞ otherwise. In particular, in formula (1.7) above, the functions

[0, 1) 7→ φ(εf2(t)) are extended by continuity to t = 1 with value φ(∞) for every ε > 0. In the main

result below we will assume that φ satisfies

(Hp 3) φ ∈ C0([0,∞)), φ is non-decreasing and φ(∞) := lim
t→∞

φ(t) ∈ (0,∞);

(Hp 4) φ−1(0) = {0}, and φ is (right-)differentiable in 0 with φ′(0+) ∈ (0,∞).
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Now let Fς : L
1(Ω)×A(Ω) → [0,∞] be given by

Fς(u,A) :=



∫
A

h∗∗ς (|u′|)dx+ (φ′(0+))
1/2ς|Dcu|(A) +

∫
Ju∩A

g(|[u]|)dH0

if u ∈ GBV (Ω)

∞ otherwise

(1.8)

where for ς ∈ [0,∞] we define hς : [0,∞) → [0,∞) by

hς(t) := inf
τ∈(0,∞)

{
φ

(
1

τ

)
t2 +

ς2

4
τ

}
, (1.9)

(in particular, h0(t) = 0 and h∞(t) = φ(∞)t2 for every t ∈ [0,∞), cf. Proposition 2.1 below), h∗∗ς

denotes the convex envelope of hς , and g : [0,∞) → R is defined by

g(s) := inf
(γ,β)∈Us

∫ 1

0

(
ω(1− β)

(
(φ′(0+)f2(β)|γ′|2 + |β′|2

))1/2

dx︸ ︷︷ ︸
G(γ,β):=

, (1.10)

where Us is defined in (2.18). Throughout the paper we adopt the convention 0 · ∞ = 0. Therefore, if

F∞(u) <∞ then |Dcu|(Ω) = 0 (cf. (1.8)), and thus we conclude that u ∈ GSBV (Ω) with u′ ∈ L2(Ω).

We will prove the following result.

Theorem 1.1. Assume (Hp 1)-(Hp 4), and (1.4) hold with ς ∈ (0,∞]. Let Fε be the functional defined

in (1.7). Then, for all (u, v) ∈ L1(Ω,R2)

Γ(L1)- lim
ε→0

Fε(u, v) = F ς(u, v) ,

where, F ς : L
1(Ω,R2)×A(Ω) → [0,∞] is defined by

F ς(u, v) :=

F ς(u) if v = 1 L1-a.e. on Ω

∞ otherwise.
(1.11)

The proof of Theorem 1.1 follows some of the ideas introduced in [CFI24, CFI25] for the Γ-convergence

analysis of the geometrically nonlinear counterpart of the model studied in [CFI16] in the scalar case.

Despite this, several nontrivial difficulties have to be overcome due to the generality of the model.

In passing, note that F (1)
ε , F (2)

ε correspond, respectively, to the choices φ1(t) = 1∧ t and φ2(t) =
t

1+t

for every t ∈ [0,∞), and l(t) = tp in the second setting. Therefore, φi, i ∈ {1, 2}, satisfies (Hp 3) and

(Hp 4), with φi(∞) = φ′
i(0) = 1. Moreover, if h

(i)
ς denotes the corresponding function defined in (1.9),

we have for every ς ∈ (0,∞]

(h(1)ς )∗∗(t) = h(2)ς (t) = (h(2)ς )∗∗(t) =

t2 if t ≤ ς
2

ςt− ς2

4 if t ≥ ς
2 .

Note that the same bulk energy density is obtained in both cases, without the need of taking the

convexification with the choice φ2. We then expect the bulk energy density of the corresponding Γ-limit

to be convex also in the vector valued setting, contrary to the case when φ1 is chosen (cf. [CFI24,
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Section 2.2] and [Col25]).

In addition, we remark that the dependence of g on φ is elementary and explicit. This claim can be

highlighted letting, for instance, g1 be the function corresponding to the choice φ1 = 1∧ t as in [CFI16],

so that (1.10) itself yields for every s ≥ 0

g(s) = g1
(
(φ′(0+))

1/2s
)
. (1.12)

Note that any other function φ with slope equal to 1 in t = 0 would work the same.

We point out that the surface energy densities g we obtain can have either a linear or a superlin-

ear behaviour for small jump amplitudes, the difference between the two cases being encoded by the

finiteness or otherwise of the value of the limit ς (cf. (1.4)). The approximation of superlinear surface

energy densities slightly departs from the analysis in [CFI16, Section 7.2], there the numerator l of the

degradation function is ε dependent in contrast to our approach, and is closer to the approach in [CFI25].

We underline that another advantage of the introduction in the model of the function φ is that a

simple change of the scaling in the functionals Fε provide a family of energies including those originally

defined by Ambrosio and Tortorelli in [AT92] to approximate the Mumford-Shah energy. Therefore, we

provide a unifying phase-field model for the approximation of Griffith energy in brittle fracture ([BFM08])

and cohesive zone models. Indeed, let γε > 0 with γε/ε → ∞ as ε → 0+, and consider the functionals

F̃ε : L
1(Ω,R2)×A(Ω) → [0,∞] defined by

F̃ε(u, v,A) :=

∫
A

(
φ(γεf

2(v))|u′|2 + ω(1− v)

4ε
+ ε|v′|2

)
dx (1.13)

if (u, v) ∈ H1(Ω,R× [0, 1]) and ∞ otherwise. As a consequence of Theorem 1.1 we obtain the following

result.

Theorem 1.2. Assume (Hp 1)-(Hp 4), (1.4) hold with ς ∈ (0,∞], and that γε/ε → ∞ as ε → 0+. Let

F̃ε be the functional defined in (1.13). Then, for all (u, v) ∈ L1(Ω,R2)

Γ(L1)- lim
ε→0

F̃ε(u, v) = F̃ (u, v) ,

where, F̃ : L1(Ω,R2)×A(Ω) → [0,∞] is defined by

F̃ (u, v,A) :=


φ(∞)

∫
A

|u′|2dx+ 2Ψ(1)H0(Ju ∩A)

if u ∈ SBV (Ω), v = 1 L1-a.e. on Ω

∞ otherwise

. (1.14)

Finally, the role of the assumptions {φ(∞), φ′(0+)} ⊂ (0,∞) are analysed in Section 3.4 by discussing

the complementary cases.

Let us conclude the comments to Theorem 1.1 by remarking that the one-dimensional setting is not

mandatory for the Γ-convergence analysis. Indeed, results similar to those contained in [CFI24] can be

obtained in the vector-valued setting (see [Col25]). In this respect, [CFI24, Corollary 3.5] establishes that

the surface energy density of the Γ-limit depends only on the modulus of the jump via the one-dimensional

surface energy density obtained in [CFI16] in the so called isotropic setting, roughly speaking if the (linear

recession function of the) bulk energy density in the phase-field model is the modulus squared of the
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deformation gradient. We expect the same to be true in this generalized setting, so that the problem of

assigning a specific cohesive law studied in the second part paper [ACF25a] can be also addressed for

some vector-valued models, as well.

1.3 Contents of this Paper

In Section 1.2 we have introduced the phase-field model under study and the main Γ-convergence result

has been stated (cf. Theorem 1.1). The proof of Theorem 1.1 is given in Section 3 where the compactness

properties of the phase-field functionals and the Γ-convergence with the addition of Dirichlet boundary

conditions are also studied (cf. Theorems 3.1 and 3.6, Theorem 3.11, respectively). All the needed

technical results to prove the above mentioned statements are collected in Section 2. The approximation

of brittle type energies is discussed in Section 3.4, together with other consequences of Theorem 1.1.

2 Technical results

2.1 Preliminaries

We adopt standard notation for Sobolev, BV , GBV spaces for which we refer to [AFP00]. Let us only

recall that if u ∈ L1 ∩G(S)BV (Ω), setting

uM := (u ∨M) ∧ (−M) , (2.1)

forM ∈ N and u ∈ L1(Ω), then uM ∈ (S)BV (Ω), uM → u in L1(Ω) asM → ∞, Ju = ∪M∈NJuM , [u](x) =

[uM ](x) for M sufficiently large, u′ = (uM )′ L1-a.e. on {|u| ≤ M}, and |Dcu|(A) := supM |DcuM |(A)
for all A ∈ A(Ω) [AFP00, Section 4.5].

For the standard theory and results on Γ-convergence we refer to [DM93, Bra98].

In what follows when taking the right-(left-)limit of a monotone function ψ : (a, b) → R, where

a ∈ [−∞,∞) and b ∈ (−∞,∞], in a point t0 ∈ [a, b] we will simply write ψ(t+0 ) (ψ(t−0 )) if t0 is finite,

and ψ(±∞) otherwise.

2.2 Technical results for the diffuse part

We establish in the next statement several useful properties of the functions hς for functions φ satisfying

slightly more general assumptions than (Hp 3) and (Hp 4). In particular, in what follows with φ′(0+) = ∞
we mean that the limit of the difference quotient of φ in t = 0 exists and it is not finite.

Proposition 2.1. Let φ ∈ C0([0,∞)), be positive, non-decreasing with φ−1({0}) = 0. Let hς be the

function defined in (1.9), then

(i) hς(0) = 0, hς ∈ C0([0,∞)), hς is strictly increasing for every ς > 0, h0(t) < hς′(t) ≤ hς(t) ≤ h∞(t)

if 0 ≤ ς ′ < ς < ∞ for every t > 0. Moreover, for every t ≥ 0 and for every ς ∈ (0,∞) we have

lim
ς′→ς

hς′(t) = hς(t), and

lim
ς′→ς

h∗∗ς′ (t) = h∗∗ς (t) . (2.2)
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(ii) Let ς ∈ (0,∞). If φ has right derivative φ′(0+) ∈ [0,∞] then

lim
t→∞

h∗∗ς (t)

t
= lim

t→∞

hς(t)

t
= (φ′(0+))

1/2ς . (2.3)

If in addition φ′(0+) ∈ [0,∞), then there is ξς > 0 such that for every t ∈ [0,∞)

((φ′(0+))
1/2ςt− ξς) ∨ 0 ≤ h∗∗ς (t) ≤ (φ′(0+))

1/2ςt . (2.4)

Moreover,

lim
t→0

h∗∗ς (t)

t2
= lim

t→0

hς(t)

t2
= φ(∞) ∈ [0,∞] . (2.5)

(iii) Let ς = ∞. If φ(∞) ∈ (0,∞) then h∞(t) = φ(∞)t2 for every t ∈ [0,∞). If, moreover, φ′(0+) ∈
(0,∞] then for every t ∈ [0,∞)

lim
ς→∞

h∗∗ς (t) = lim
ς→∞

hς(t) = h∞(t) . (2.6)

(iv) Let ς = 0, h0(t) = 0 for every t ∈ [0,∞) and

lim
ς→0+

h∗∗ς (t) = lim
ς→0+

hς(t) = h0(t) . (2.7)

Proof. Step 1: Proof of item (i).

It is clear that hς(0) = 0 for every ς ∈ [0,∞], and moreover that h0(t) = 0 for every t ≥ 0 as

φ(0) = 0. Note that the infimum in the definition of hς(t), t > 0, is actually a minimum by the

continuity and monotonicity of φ, and thus hς(t) > 0 = h0(t). Denote by τς,t ≥ 0 a minimizer, then

τς,t ∈ [0, 4
ς2φ(

1/t)t2 + t] by choosing τ = t in the very definition of hσ(t). Using τς,t as a test in the

definition of hς(s) for s < t yields hς(s) < hς(t).

To establish the equality lim
ς′→ς

hς′(t) = hς(t) for ς > 0 (the cases ς ∈ {0,∞} will be discussed after-

wards) it is sufficient to note that for every ς, ς ′ ∈ (0,∞) with ς ′ < ς and t ≥ 0 we have by the very

definition of hς

hς′(t) ≤ hς(t) ≤
(
ς

ς ′

)2

hς′(t) . (2.8)

The latter formula also implies the validity of (2.2) (the fact that h∗∗ς (t) < ∞ is a consequence of (2.4)

that will be proved below).

By definition hς is upper semicontinuous, thus its continuity in 0 follows from its non negativity and

hς(0) = 0. To establish the continuity of hς in t > 0, it is then sufficient to show its left continuity, and

actually that lim
s→t−

hς(s) ≥ hς(t) by monotonicity. Since by the very definition of hς for every s ∈ (0, t)

we have

hς(t) ≤
(
t

s

)2

hς(s) ,

the conclusion then follows. Actually, the latter estimate implies that hς ∈ Liploc((0,∞)), with Lipschitz

constant on any interval [a, b] ⊂ (0,∞) estimated by 2b
a2hς(b).

Step 2: Proof of item (ii).

Assume first that φ′(0+) ∈ [0,∞). Let ς > 0 and t > 0 be fixed, and let ης,t > 0 be such that
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φ( 1
ης,t

)t2 = ς2

4 ης,t, its existence follows from the continuity and monotonicity of φ, then

hς(t) ≤ (φ(1/ης,t)ης,t)
1/2 ςt .

In particular, it easy to check that ης,t → ∞ as t→ ∞, so that

lim sup
t→∞

h∗∗ς (t)

t
≤ lim sup

t→∞

hς(t)

t
≤ (φ′(0+))

1/2ς .

If φ′(0+) = 0 we are done, otherwise to prove the opposite inequality we assume first φ to be bounded.

Then hς(t)/t is upper bounded on (0,∞), as by testing the definition of hς(t) with τ = t itself yields

hς(t)

t
≤ φ(1/t)t+

ς2

4
,

and the claim follows being φ continuous, bounded and differentiable in t = 0. Thus, τς,t → ∞ as t→ ∞,

in turn implying
hς(t)

t
= φ(1/τς,t)t+

ς2

4

τς,t
t

≥ (φ(1/τς,t)τς,t)
1/2ς ,

and we may conclude

lim inf
t→∞

hς(t)

t
≥ (φ′(0+))

1/2ς .

Hence, for every ε ∈ (0, (φ′(0+))
1/2ς) there is ξε ≥ 0 such that ζ(t) := 0∨(((φ′(0+))

1/2ς−ε)t−ξε) ≤ hς(t)

for all t ≥ 0. In particular, h∗∗ς ≥ ζ, and thus

lim inf
t→∞

h∗∗ς (t)

t
≥ (φ′(0+))

1/2ς − ε ,

and (2.3) for h∗∗ς follows at once by letting ε → 0. If φ is not bounded, consider φ ∧ j and hς,j the

corresponding function in (1.9). Then using (2.3) for hς,j yields lim inf
t→0

h∗∗
ς (t)

t ≥ lim
t→0

h∗∗
ς,j(t)

t = (φ′(0+))
1/2ς,

and thus the conclusion.

If φ′(0+) = ∞, there is a diverging sequence of integers kj ∈ N such that the connected component

of {t ∈ (0,∞) : φ(t) > kjt} whose closure contains the origin is bounded. Then consider the function φj

equal to kjt on such a set and to φ otherwise, and let hς,j be the corresponding function in (1.9). Using

(2.3) for hς,j gives lim inf
t→∞

h∗∗
ς (t)

t ≥ (kj)
1/2ς, and thus (2.3) for hς follows by letting j → ∞.

The growth conditions in (2.4) are then a conseguence of the convexity of h∗∗ς , and of the equality

h∗∗ς (0) = hς(0) = 0.

We prove next (2.5). Assume first φ(∞) ∈ (0,∞), and note that being hς ≤ h∞ we have

lim sup
t→0

h∗∗ς (t)

t2
≤ lim sup

t→0

hς(t)

t2
≤ φ(∞) .

In addition, taking τ = t3 in the definition of hς(t), the monotonicity of φ in (Hp 3) yields

hς(t)

t2
= φ(1/τς,t) +

ς2

4

τς,t
t2

≤ φ(∞) +
ς2

4
t ,

from which we infer τς,t ≤ 4φ(∞)
ς2 t2 + t3. As, for every ε ∈ (0, φ(∞)) there is δε > 0 such that φ(1/τ) ≥
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φ(∞)− ε if τ ∈ (0, δε), there is tς,ε > 0, such that for t ∈ (0, tς,ε]

hς(t) ≥ φ(1/τς,t)t
2 ≥ (φ(∞)− ε)t2 .

In particular, from this it is easy to infer the equality for the limit of hς in (2.5). Next, set ης,ε :=

inf(tς,ε,∞)
hς(t)−hς(tς,ε)

t−tς,ε
. Thanks to (2.3), to the strict monotonicity and to the local Lipschitz continuity

of hς , we may assume ης,ε > 0, up to substituting tς,ε with a slightly smaller value t′ς,ε such that hς is

differentiable on t′ς,ε and h′ς(t
′
ς,ε) > 0. Therefore, hς ≥ ψς,ε, where

ψς,ε(t) :=

(φ(∞)− ε)t2 if t ∈ [0, tς,ε]

(φ(∞)− ε)t2ς,ε + ης,ε(t− tς,ε) if t > tς,ε
,

in turn implying h∗∗ς ≥ ψ∗∗
ς,ε, where

ψ∗∗
ς,ε(t) =

(φ(∞)− ε)t2 if t ∈ [0,
ης,ε

2(φ(∞)−ε) ]

ης,εt−
η2
ς,ε

4(φ(∞)−ε) if t ∈ (
ης,ε

2(φ(∞)−ε) ,∞)

if ης,ε < 2(φ(∞)− ε)tς,ε, and ψ
∗∗
ς,ε = ψς,ε otherwise. In any case, from this it is easy to infer the equality

for the limit of h∗∗ς in (2.5). Finally, if φ(∞) = ∞, consider φ∧ j and hς,j the corresponding function in

(1.9). Then using (2.5) for hς,j yields lim inf
t→0

h∗∗
ς (t)

t2 ≥ j, and the conclusion follows by letting j → ∞.

Step 3: Proof of item (iii).

Let t > 0, recalling that τς,t ≥ 0 is a minimum point in the definition of hς(t), from hς(t) ≤ h∞(t)

we conclude that τς,t → 0+ as ς → ∞, and thus hς(t) → h∞(t) as ς → ∞.

To establish (2.6) for h∗∗ς , let t > 0 (as h∗∗ς (0) = h∞(0) = 0) and note that by definition h∗ς (t) =

− inf{hς(s) − ts : s ∈ [0,∞)}. Since (hς(·) − t·)ς≥0 is equicoercive for ς ≥ ςt > t(φ′(0+))−
1/2 thanks to

(2.4), the pointwise convergence of hς to h∞ and the fundamental theorem of Γ-convergence imply that

h∗ς (t) → h∗∞(t) as ς → ∞. Moreover, the family (h∗ς )ς≥0 is non-increasing with h∗ς (t) ≥ h∗∞(t) = t2

4 ,

and thus (h∗ς (·) − s·)ς≥0 is equicoercive, and again the pointwise convergence of (h∗ς )ς≥0 to h∗∞ implies

h∗∗ς (s) → h∗∗∞(s) = h∞(s) for every s ≥ 0.

Step 4: Proof of item (iv).

The proof of (2.7) is immediate by choosing τ = 1/ς. Indeed, we have hς(t) ≤ φ(ς)t2 + ς
2 , so that

(2.7) follows at once by letting ς → 0+ by (Hp 2).

Remark 2.2. We point out that in case φ′(0+) = ∞ and ς ∈ (0,∞), h∗∗ς does not necessarily coincide

with φ(∞)t2. Indeed, taking φ(t) = tα ∧ 1, α ∈ (0, 1), an explicit calculation yields for every t ≥ 0 the

identity h∗∗ς (t) = (t2 ∧ (1 + α)( ς2

4α )
α

1+α t
2

1+α )∗∗, which is sub-quadratic for large values of t.

Next, we prove a truncation result following [CFI24, Lemma 4.4]. It is then convenient to introduce

the function Ψ : [0, 1] → [0,∞) given by

Ψ(t) :=

∫ t

0

ω
1/2(1− τ)dτ . (2.9)

Lemma 2.3. Let φ : [0,∞) → [0,∞) be non-decreasing and satisfying assumptions (Hp 1) and (Hp 2).
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Then, there exist two functions ζ1, ζ2 : (0, 1) → (0,∞) with

lim
δ→0

ζ1(δ) = 1 and lim
δ→0

ζ2(δ) = 0 (2.10)

satisfying the following property. For every γ ∈ (0, 1 ∧ ς) there exists δγ ∈ (0, 1) such that for every δ ∈
(0, δγ), (u, v) ∈ H1(Ω,R× [0, 1]), and A ∈ A(Ω), there is sδ ∈ (1− δ, 1− δ2) such that χ{v>sδ} ∈ BV (A),

ũδ := uχ{v>sδ} ∈ SBV (A) (the previous quantities actually depend also on γ and A) and

Hδ(ũδ, A) ≤ Fε(u, v,A) (2.11)

where Hδ : L1(Ω)×A(Ω) → [0,∞] is defined for ς ∈ (0,∞) by

Hδ(w,A) = ζ1(δ)

∫
A

hςγ (|w′|)dx+ ζ2(δ)H0(A ∩ Jw) (2.12)

if w ∈ SBV (A), and ∞ otherwise with ςγ := (ς − γ)(1− γ); and for ς = ∞ by

Hδ(w,A) = ζ1(δ)

∫
A

h1/γ−1(|w′|)dx+ ζ2(δ)H0(A ∩ Jw) (2.13)

if w ∈ SBV (A), and ∞ otherwise.

Moreover, if uε → u in L1(Ω) and vε → 1 in measure on Ω, then (ũε)δ → u in L1(A) as ε → 0 for

every A ⊆ A(Ω) and δ ∈ (0, 1).

Proof. With fixed γ, δ ∈ (0, 1) and (u, v) ∈ H1(Ω,R × [0, 1]) setting Aδ := {x ∈ A : v(x) > 1 − δ}, we
argue as follows:

Fε(u, v,A)

≥
∫
Aδ

(
φ(εf(v))|u′|2 + (1− δ)

ω(1− v)

4ε

)
dx+

∫
A

(
δ
ω(1− v)

4ε
+ ε|v′|2

)
dx

≥
∫
Aδ

(
φ(εf(v))|u′|2 + (1− δ)

ω(1− v)

4ε

)
dx+ δ

1/2

∫
A

|Ψ(v)′|dx , (2.14)

where Ψ is the function defined in (2.9).

We distinguish the two cases ς ∈ (0,∞) and ς = ∞. We start with the former. Then, as l(1) = 1 and

(1.4) holds, for every γ ∈ (0, ς ∧ 1) there is δγ ∈ (0, 1) such that if t ∈ (0, δγ)

l(1− t) ≥ (1− γ)2 ,
ω(t)

Q(t)
≥ (ς − γ)2 .

Therefore, the first summand in (2.14) can be estimated as follows for δ ∈ (0, δγ) by monotonicity of φ∫
Aδ

(
φ(εf(v))|u′|2 + (1− δ)(ς − γ)2

Q(1− v)

4ε

)
dx

≥ (1− δ)

∫
Aδ

(
φ

(
ε
(1− γ)2

Q(1− v)

)
|u′|2 + (ς − γ)2

Q(1− v)

4ε

)
dx

≥ (1− δ)

∫
Aδ

hςγ (|u′|)dx ,
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where ςγ = (ς − γ)(1− γ). Hence, (2.14) yields that for δ ∈ (0, δγ)

Fε(u, v,A) ≥ (1− δ)

∫
Aδ

hςγ (|u′|)dx+ δ
1/2

∫
A

|Ψ′(v)|dx . (2.15)

If ς = ∞, by (1.4) for every γ ∈ (0, 1) there is δγ ∈ (0, 1) such that if t ∈ (0, δγ)

Q(t)

ω(t)
≤ γ2 , and l(1− t) ≥ (1− γ)2 , (2.16)

from which it follows that for δ ∈ (0, δγ) we have by monotonicity of φ∫
Aδ

(
φ(εf(v))|u′|2 + (1− δ)

ω(1− v)

4ε

)
dx

≥
∫
Aδ

(
φ

(
ε(1− γ)2

Q(1− v)

)
|u′|2 + (1− δ)

ω(1− v)

4ε

)
dx

≥
∫
Aδ

(
φ

(
ε

ω(1− v)

(1− γ)2

γ2

)
|u′|2 + (1− δ)

ω(1− v)

4ε

)
dx

≥ (1− δ)

∫
Aδ

h1/γ−1(|u′|)dx .

Therefore, we deduce that for δ ∈ (0, δγ)

Fε(u, v,A) ≥ (1− δ)

∫
Aδ

h1/γ−1(|u′|)dx+ δ
1/2

∫
A

|Ψ′(v)|dx . (2.17)

To conclude we follow closely the argument in [CFI24, Lemma 4.4]. We observe that Ψ is strictly

increasing, and in particular Ψ is bijective. By the coarea formula,

∫
A

|Ψ′(v)|dx =

∫ Ψ(1)

0

H0(A ∩ ∂∗{Ψ(v) > t})dt.

Therefore there is tδ ∈ (Ψ(1− δ),Ψ(1− δ2)) such that

(Ψ(1− δ2)−Ψ(1− δ))H0(A ∩ ∂∗{Ψ(v) > tδ}) ≤
∫
A

|Ψ′(v)|dx.

We define ũ := uχ{Ψ(v)>tδ}∩A (dropping the dependence on both δ and A from ũ). As u ∈ L∞(Ω), then

u ∈ SBV (A). Being hς(0) = 0 for all ς we obtain either by (2.15) or by (2.17)

Fε(u, v,A) ≥ (1− δ)

∫
A

h(|ũ′|)dx+ δ
1/2(Ψ(1− δ2)−Ψ(1− δ))H0(A ∩ Jũ)

where h = hςγ in the first case and h = h1/γ−1 in the second case. Defining ζ1(δ) := 1 − δ, and

ζ2(δ) := δ
1/2(Ψ(1− δ2)−Ψ(1− δ)) we deduce (2.11) and (2.10).

We also remark that ∥ũ − u∥L1(A) ≤ ∥u∥L1({v≤Ψ−1(tδ)}), hence, if the sequence uε is equi-integrable

and vε → 1 in measure on A, we obtain that uε − ũε → 0 in L1(A) for every δ ∈ (0, 1).

Next, we resume a partial relaxation result established along the proof of [CFI24, Proposition 4.2] in

the form needed in this paper.
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Proposition 2.4. Let ζ ∈ (0,∞), and ϕ : R → [0,∞) be convex such that

0 ≤ ϕ(t) ≤ c(1 + |t|) for all t ∈ R .

Define Φ : L1(Ω)×A(Ω) → [0,∞) by

Φ(w,A) :=

∫
A

ϕ(|w′|)dx+ ζH0(A ∩ Jw)

if w ∈ SBV (Ω), and ∞ otherwise.

Then, for any wj , w ∈ BV (Ω), with wj → w in L1(A), we have

lim inf
j

Φ(wj , A) ≥
∫
A

ϕ(|w′|)dx+ ϕ∞|Dcw|(A) ,

where

ϕ∞ := lim
t→∞

ϕ(t)

t
∈ [0, c] .

2.3 Properties of the surface energy densities

We collect here some useful properties of the function g. With this aim, for every p ∈ [1,∞] we introduce

the notation

Us(0, T ) = {γ, β ∈ H1((0, T )) : γ(0) = 0 , γ(T ) = s ,

0 ≤ β ≤ 1 , β(0) = β(T ) = 1} , (2.18)

for every T > 0, with the following convention Us := Us(0, 1).

2.3.1 Case ς ∈ (0,∞)

In case ς ∈ (0,∞), we state without proof some results on g whose proofs can be obtained following

word-by-word the arguments used in the case ω(t) = Q(t) = t2 in [CFI16, BCI21, BI24] (in the notation

of the last two papers l(t) = f21 (1− t)). We recall that Ψ is the function defined in (2.9).

Proposition 2.5. Under the assumptions of Theorem 1.1 with ς ∈ (0,∞), the function g defined in

(1.10) enjoys the following properties:

(i) g(0) = 0 and g is subadditive;

(ii) g is non-decreasing, g(s) ≤ (φ′(0+))
1/2 ςs∧2Ψ(1), g is Lipschitz continuous with Lipschitz constant

equal to (φ′(0+))
1/2 ς;

(iii) the ensuing limit exists and

lim
s→∞

g(s) = 2Ψ(1); (2.19)

(iv) the ensuing limit exists and

lim
s→0

g(s)

s
= (φ′(0+))

1/2 ς. (2.20)
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(v) the following alternative representation for g holds

g(s) = inf
T>0

inf
(γ,β)∈Us(0,T )

∫ T

0

(
φ′(0+)f2(β)|γ′|2 + ω(1− β)

4
+ |β′|2

)
dx (2.21)

(vi) For all η ∈ [0, 1] and s ∈ [0,∞)

0 ≤ g(s)− gη(s) ≤ 2λ0(η)η (2.22)

where λ0(s) = maxt∈[0,s] ω
1/2(t), and gη : [0,∞) → [0,∞) is defined by

gη(s) := inf
(γ,β)∈Uη

s

∫ 1

0

(
ω(1− β)

(
(φ′(0+)f2(β)|γ′|2 + |β′|2

))1/2

dx (2.23)

where

Uη
s := {γ, β ∈ H1((0, 1)) : γ(0) = 0 , γ(1) = s , 0 ≤ β ≤ 1 , β(0), β(1) ≥ 1− η} (2.24)

2.3.2 Case ς = ∞

We turn next to establish the structural properties of the surface energy density g in case ς = ∞. The

proof somewhat follows that of [CFI16, Propositions 4.1 and 7.3] to which we refer in case they are an

immediate adaptation of the latter. We highlight only the main changes.

Proposition 2.6. Under the assumptions of Theorem 1.1 with ς = ∞, the function g defined in (1.10)

enjoys the following properties:

(i) g(0) = 0, g is non-decreasing, and subadditive;

(ii) g ∈ C0([0,∞)), 0 ≤ g(s) ≤ ĝ(s) for every s ≥ 0, where

ĝ(s) := inf
x∈(0,1]

{
2(Ψ(1)−Ψ(1− x)) +

(
φ′(0+)l(1− x)

ω(x)

Q(x)

)1/2

s

}
, (2.25)

ĝ ∈ C0([0,∞)) is concave, non-decreasing, ĝ(s) ≤ 2Ψ(1), and

lim
s→0+

ĝ(s)

s
= ∞. (2.26)

(iii)

2−
1/2 ≤ lim inf

s→0+

g(s)

ĝ(s)
≤ lim sup

s→0+

g(s)

ĝ(s)
≤ 1 , (2.27)

(iv)

lim
s→∞

g(s) = 2Ψ(1);

(v) the alternative representation for g in (2.21) holds.

Proof. For the proofs of items (i), (iv) and (v) we refer to [CFI16, Proposition 4.1]. To prove (ii), let

s ∈ (0, 1) and consider γ = 0 on [0, 1/3], γ = s on [2/3, 1] and the linear interpolation between 0 and s
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on [1/3, 2/3], while β = 1− δ on [1/3, 2/3] and the linear interpolation between δ and 1 on [0, 1/3] ∪ [2/3, 1],

where δ ∈ (0, 1] is arbitrary. In particular, (γ, β) ∈ Us and a simple calculation gives

g(s) ≤ 2(Ψ(1)−Ψ(1− δ)) +

(
φ′(0+)l(1− δ)

ω(δ)

Q(δ)

)1/2

s .

Therefore, by (2.25) it holds that for every s ≥ 0

g(s) ≤ ĝ(s) . (2.28)

Note that by its very definition ĝ is concave, non-decreasing, ĝ(s) > ĝ(0) = 0, and ĝ(s) ≤ 2Ψ(1) for every

s > 0. Therefore, ĝ is continuous. Moreover, by assumptions (Hp 1)-(Hp 4) and as ς = ∞, it is easy to

infer that for s > 0 at least a minimizer exists for the problem defining ĝ(s). Clearly, all minimizers are

strictly positive if s > 0. Denote by ζ(s) the smallest minimizers, which exists by continuity of l, ω, Q,

and Ψ. Then ζ(s) > 0 if s > 0, and as ĝ(s) ≥ 2(Ψ(1) − Ψ(1 − ζ(s))), we have ζ(s) → 0+ as s → 0+.

Thus, to establish (2.26) it is sufficient to take into account that ς = ∞ and to note that

ĝ(s)

s
≥

(
φ′(0+)l(1− ζ(s))

ω(ζ(s))

Q(ζ(s))

)1/2

.

Having fixed s1 , s2 ∈ [0, 1], by the monotonicity and subadditivity of g, (2.28) yields that |g(s2)−g(s1)| ≤
g(|s2 − s1|) ≤ ĝ(|s2 − s1|). The continuity of g then follows.

We establish next item (iii). First, note that by (2.28) it immediately follows the inequality on the

right hand side of (2.27). On the other hand, if {sj}j∈N is an infinitesimal sequence realizing the inferior

limit in (2.27), let λj = o(ĝ(sj)) ≥ 0 as j → ∞, and (γj , βj) ∈ Usj (cf. (2.18)) be competitors such that

∫ 1

0

(
ω(1− βj)

(
φ′(0+)f2(βj)|γ′j |2 + |β′

j |2
))1/2

dx ≤ g(sj) + λj ,

then defining ξj(x) :=
(
φ′(0+)l(βj(x))

ω(1−βj(x))
Q(1−βj(x))

)1/2
, and using the concavity of the square root we have

g(sj) + λj ≥ 2−
1/2

∫ 1

0

(
ξj |γ′j |+ |(Ψ(βj))

′|
)
dx

≥ 2−
1/2

(
ξj(xj) sj + 2(Ψ(1)−min

[0,1]
Ψ(βj))

)
≥ 2−

1/2 (ξj(xj) sj + 2(Ψ(1)−Ψ(βj(xj))) ≥ 2−
1/2ĝ(sj) ,

where xj ∈ (0, 1) denotes an absolute minimum point of ξj ∈ C0((0, 1)) (note that ξj → ∞ both as

x → 0+ and as x → 1− being βj ∈ Usj ). Then the first inequality in (2.27) follows at once being

λj = o(ĝ(sj)) as j → ∞.

3 Γ-convergence and compactness

In this section we address the Γ-convergence and compactness properties of the family {Fε}ε>0. We

distinguish the cases ς ∈ (0,∞), ς = ∞.
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3.1 Case ς ∈ (0,∞)

We begin with establishing compactness and identifying the domain of the eventual Γ-limit.

Theorem 3.1 (Compactness). Under the assumptions of Theorem 1.1 with ς ∈ (0,∞), let {(uε, vε)}ε>0 ∈
L1(Ω,R2) be such that

sup
ε>0

(Fε(uε, vε) + ∥uε∥L1(Ω)) <∞ . (3.1)

Then there are {εk}k∈N and u ∈ L1 ∩GBV (Ω) such that (uεk , vεk) → (u, 1) L1-a.e. on Ω. If, moreover,

(uε)ε is equi-integrable then uεk → u in L1(Ω).

Proof. Let C > 0 be the supremum on the left hand side of (3.1), then∫
Ω

ω(1− vε)dx ≤ Cε ,

so that vε → 1 in measure on Ω, and moreover (uε, vε) ∈ H1(Ω,R× [0, 1]).

We show next that there is a subsequence of (uε)ε converging in measure on Ω. With this aim,

fix γ ∈ (0, ς ∧ 1), then Lemma 2.3 provides δγ > 0 and functions ũε,δ := (ũε)δ ∈ SBV (Ω) such that

Hδ(ũε,δ) ≤ Fε(uε, vε) for every δ ∈ (0, δγ), with bulk density hςγ where ςγ = (ς − γ)(1− γ) (cf. (2.12)).

Therefore, by (2.4) we deduce that for some constant C0 depending on ς, γ and δ we have

sup
ε

∫
Ω

|ũ′ε,δ|dx+H0(Jũε,δ
) ≤ C0 .

Considering the truncated functions ũMε,δ ∈ SBV (Ω) for M ∈ N (cf. (2.1)), (3.1) and the previous

estimate yield that supε>0 ∥ũMε,δ∥BV (Ω) ≤ CM < ∞. The BV compactness Theorem and an elementry

diagonal argument imply the existence of a subsequence εk (independent from M , but depending on δ)

and of uM ∈ BV (Ω) such that ũMεk,δ → uM in L1(Ω) for every M ∈ N.
We recall that in the proof of Lemma 2.3 we have set ũε,δ = uεχ{Ψ(vε)>tε,δ} for some tε,δ ∈ (Ψ(1 −

δ),Ψ(1− δ2)), and thus L1({Ψ(vε) ≤ tε,δ}) → 0 as ε→ 0 as vε to1 in measure on Ω. Thus, we infer the

(uMεk )k convergence in measure on Ω to uM , i.e.

lim sup
k

L1({|ũMεk,δ − uMεk | ≥ η}) ≤ lim sup
k

L1({Ψ(vε) < tε,δ}) = 0 . (3.2)

It is easy to check that uM+1 = uM if |uM+1| ≤M , therefore defining u := supM∈N u
M we conclude

that u ∈ GBV (Ω). In addition, we have u ∈ L1(Ω) as

∥u∥L1(Ω) ≤ lim inf
M

∥uM∥L1(Ω)

≤ lim inf
M

(lim inf
k

∥uMεk∥L1(Ω)) ≤ lim inf
k

∥uεk∥L1(Ω) ≤ C . (3.3)

Finally, for every η > 0 we have that

L1(|u− uεk | ≥ η) ≤ L1(|u| > M) + L1(|uM − uMεk | ≥ η/3)

+ L1(|uMεk − uεk | ≥ η/3) ≤ L1(|uM − uMεk | ≥ η/3) + 2
C

M
,

where in the last inequality we have used (3.1) and (3.3). From this we conclude that (uεk)k converges
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in measure on Ω to u by letting first k → ∞ and then M → ∞.

The claimed L1-a.e. convergence on Ω holds up to extracting a further subsequence. Finally, if (uε)ε

is equi-integrable, by taking into account (3.2) we estimate as follows

∥u− uεk∥L1(Ω) ≤
∫
{|u|>M}

|u|dx+ ∥uM − uMεk∥L1(Ω) + ∥uMεk − uεk∥L1(Ω)

≤
∫
{|u|>M}

|u|dx+ ∥uM − ũMεk,δ∥L1(Ω)

+

∫
{Ψ(vεk )≤tεk,δ}

|uεk |dx+

∫
{|uεk

|>M}
|uεk |dx .

The conclusion then follows by letting first k → ∞ and then M → ∞.

Next, we show the lower bound inequality for the diffuse part, for which we follow [CFI24, Proposi-

tion 4.2].

Proposition 3.2. Under the assumptions of Theorem 1.1 with ς ∈ (0,∞), for every (uε, vε), (u, v) ∈
L1(Ω,R2) with (uε, vε) → (u, v) in L1(Ω,R2), we have∫

A

h∗∗ς (|u′|)dx+ (φ′(0+))
1/2ς|Dcu|(A) ≤ lim inf

ε→0
Fε(uε, vε, A) , (3.4)

for every A ∈ A(Ω).

Proof. By superadditivity of the inferior limit it suffices to assume that A ∈ A(Ω) is an interval. More-

over, we can suppose the inferior limit on the right hand side of (3.4) to be finite, otherwise the claim is

obvious. Therefore, (uε, vε) ∈ H1(A,R×[0, 1]) for ε > 0 sufficiently small, u ∈ GBV (A) and v = 1 L1-a.e.

on A by Theorem 3.1 applied on A in place of Ω. Let M ∈ N and γ ∈ (0, 1), using the notation and the

results in Lemma 2.3 we find δγ,M ∈ (0, 1) such that for every δ ∈ (0, δγ,M ) if ũMε,δ := (ũMε )δ ∈ SBV (A)

(for every ε small enough) such that

Hδ(ũ
M
ε,δ, A) ≤ Fε(u

M
ε , vε, A) ≤ Fε(uε, vε, A) .

Thus, by taking the inferior limit as ε → 0, in view of Proposition 2.4 we conclude that for ςγ =

(ς − γ)(1− γ)

ζ1(δ)

∫
A

h∗∗ςγ (|(u
M )′|)dx+ ζ1(δ)(φ

′(0+))
1/2ςγ |DcuM |(A) ≤ lim inf

ε→0
Fε(uε, vε, A) . (3.5)

By letting first δ → 0, γ → 0 and then M → ∞, we conclude (3.4) in view of (2.10), (2.2) and Beppo

Levi’s theorem.

We establish next the lower estimate for the surface part.

Proposition 3.3. Under the assumptions of Theorem 1.1 with ς ∈ (0,∞), for every (uε, vε), (u, v) ∈
L1(Ω,R2) with (uε, vε) → (u, v) in L1(Ω,R2), we have∫

Ju∩A

g(|[u]|)dH0 ≤ lim inf
ε→0

Fε(uε, vε, A) , (3.6)

for every A ∈ A(Ω), where g is the function defined in (1.10).
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Proof. By superadditivity of the inferior limit it suffices to assume that A ∈ A(Ω) is an interval. More-

over, we can suppose the inferior limit on the right hand side of (3.6) to be finite, otherwise the claim

is obvious. Therefore, (uε, vε) ∈ H1(A,R × [0, 1]) for ε > 0 sufficiently small, u ∈ GBV (A) and v = 1

L1-a.e. on A by Theorem 3.1.

We claim that it is sufficient to show that if u ∈ BV (A) we have for every x0 ∈ Ju ∩A

g(|[u](x0)|) ≤ lim inf
r→0

lim inf
ε→0

Fε(uε, vε, Ir(x)), (3.7)

where Ir(x) = (x − r/2, x + r/2). Indeed, given (3.7) for granted, if u ∈ BV (A) we can find a nested

sequence of finite sets {Km}m∈N such that ∪m∈NKm = Ju ∩ A. Then, for every m ∈ N, there is

rm > 0 such that {Ir(x)}x∈Km are disjoint and contained in A for all r ∈ (0, rm). In particular, by the

superadditivity of the inferior limit operator and by (3.7), for every m ∈ N we get∫
Km

g(|[u](x)|)dH0(x) ≤
∑

x∈Km

lim inf
r→0

lim inf
ε→0

Fε(uε, vε, Ir(x))

≤ lim inf
r→0

∑
x∈Km

lim inf
ε→0

Fε(uε, vε, Ir(x)) ≤ lim inf
ε→0

Fε(uε, vε, A) .

Taking the limit for m→ ∞ we conclude (3.6) for u ∈ BV (A).

Moreover, if u ∈ GBV \ BV (A) then Ju = ∪M∈NJuM and [uM ](x0) = [u](x0) for M ∈ N sufficiently

large. Noting that Fε(u
M
ε , vε, A) ≤ Fε(uε, vε, A), we conclude (3.6) for u thanks to (3.6) for uM and

Beppo Levi’s theorem.

To establish (3.7) for u ∈ BV (A) we argue by blow up. We can restrict to a subsequence Fεk(uεk , vεk)

such that lim inf
ε→0

Fε(uε, vε, A) = lim
k→∞

Fεk(uk, vk) <∞, where we have set (uk, vk) := (uεk , vεk). Next,

consider an infinitesimal sequence of radii {rj}j∈N such that

lim inf
r→0

lim inf
k→∞

Fεk(uk, vk, Ir(x0)) = lim
j→∞

lim inf
k→∞

Fεk(uk, vk, Irj (x0)) ,

and select a subsequence {kj}j∈N such that ηj := εkj/rj < 1/j,

|Fεkj
(ukj , vkj , Irj (x0))− lim inf

k→∞
Fεk(uk, vk, Irj (x0))| < 1/j

and

∥vkj − 1∥L1(Ω) + ∥ukj − u∥L1(Ω) < rj/j (3.8)

for all j ∈ N. Therefore, we have

lim inf
r→0

lim inf
k→∞

Fεk(uk, vk, Ir(x0)) = lim
j→∞

Fεkj
(ukj

, vkj
, Irj (x0)). (3.9)

For every j ∈ N define the pair (ũj , ṽj) ∈ H1(I1,R × [0, 1]) by ũj(x) := ukj
(x0 + rjx) and ṽj(x) :=

vkj
(x0 + rjx) for all x ∈ I1. A change of variable yields that

Fεkj
(ukj

, vkj
, Irj (x0)) = Gj(ũj , ṽj , I1) (3.10)

19 ACF-Part-I-final.tex [July 16, 2025]



where Gj : L
1(I1,R2 → [0,∞] is defined for every (u, v) ∈ H1(I1,R× [0, 1]) by

Gj(u, v) =

∫
I1

(
ηj
εkj

φ(εkj
f2(v))|u′|2 + ω(1− v)

4ηj
+ ηj |v′|2

)
dx , (3.11)

and ∞ otherwise. In addition, changing variables it is straightforward to check that inequality (3.8)

implies that

lim sup
j→∞

(∥ũj − u0∥L1(I1) + ∥ṽj − 1∥L1(I1))

≤ lim sup
j→∞

r−1
j (∥ukj − u∥L1(Ω) + ∥vkj − 1∥L1(Ω)) = 0 , (3.12)

where u0 ∈ BV (I1) is given by u0(x) := u(x−0 )χ(− 1
2 ,0)

+u(x+0 )χ[0, 12 )
, and we have used that lim

r→0
∥u(x0 +

rx)− u0(x)∥L1(I1) = 0.

With fixed δ ∈ (0, 1), for all ε > 0 set δε := sup
{
t ∈ [0, 1) : εf2(t) ≤ δ

}
. Recalling that f(0) = 0 and

f(t) → ∞ as t → 1−, δε ∈ (0, 1) is actually a maximum by the continuity of f on [0, 1). Moreover, we

have for all t ∈ (δε, 1)

δ < εf2(t) (3.13)

and actually

εf2(δε) = δ . (3.14)

In particular, the latter equation implies δε → 1 as ε→ 0.

Moreover, f is non-creasing in [γ, 1) for some γ ∈ (0, 1) by (Hp 1). Define M := max[0,γ] f . Having

fixed δ, for all ε sufficiently small we have δ/ε > M2, thus δε ∈ (γ, 1) for ε small enough, and for all

t ∈ [0, δε] we conclude that

εf2(t) ≤ δ . (3.15)

Then, for every j ∈ N define v̂j = ṽj ∧ δj , where δj := δεkj
. We have

Gj(ũj , v̂j , I1) = Gj(ũj , ṽj , {ṽj < δj})

+

∫
{ṽj≥δj}

ηj
εkj

φ(δ)|ũ′j |2dx+
ω(1− δj)

ηj
L1({ṽj ≥ δj}) . (3.16)

We analyze the first term in the last line of (3.16): we employ (3.13) to infer∫
{ṽj≥δj}

ηj
εkj

φ(δ)|ũ′j |2dx ≤
∫
{ṽj≥δj}

ηj
εkj

φ(εkj
f2(ṽj))|ũ′j |2dx ≤ Gj(ũj , ṽj , {ṽj ≥ δj}). (3.17)

Instead, for what the second term in the last line of (3.16) is concerned, being ς finite, the definition of

ηj and the identity in (3.14) imply that

lim sup
j→∞

ω(1− δj)

ηj
L1({ṽj ≥ δj}) ≤ ς2 · lim

j→∞

Q(1− δj)

εkj

rj = ς2 · lim
j→∞

l(δj)

δ
rj = 0 . (3.18)

By taking into account (3.13) and that v̂j ≤ δj L1-a.e. on I1, we have by (3.15)

1

εkj

φ(εkjf
2(v̂j)) ≥ (1− θ(δ))φ′(0+)f2(v̂j) , (3.19)
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where θ(δ) → 0+ as δ → 0+. In particular, by (3.16)-(3.19) we conclude that

lim inf
j→∞

Gj(ũj , ṽj) ≥ lim inf
j→∞

Gj(ũj , v̂j) ≥ (1− θ(δ)) lim inf
j→∞

F̂ηj
(ũj , v̂j , I1) , (3.20)

where F̂ηj : L1(I1,R2) → [0,∞] is the functional defined for every (u, v) ∈ H1(I1,R× [0, 1]) by

F̂ηj (u, v) =

∫
I1

(
ηjφ

′(0+)f2(v)|u′|2 + ω(1− v)

4ηj
+ ηj |v′|2

)
dx , (3.21)

and ∞ otherwise.

Up to extracting a subsequence not relabeled, we may use (3.12) to find points − 1
2 < x1 < 0 < x2 <

1
2

such that ṽj(xi) → 1 (so that v̂j(xi) → 1), ũj(xi) → u0(xi), i ∈ {1, 2}, and moreover that

lim inf
j→∞

F̂ηj
(ũj , v̂j , I1) = lim

j→∞
F̂ηj

(ũj , v̂j , I1) .

In particular, with fixed any η > 0, for all j sufficiently large by Cauchy-Schwartz inequality we get for

gη defined in (2.23)

F̂ηj
(ũj , v̂j , I1) ≥

∫ x2

x1

(
ω(1− v̂j)

(
φ′(0+)f2(v̂j)|ũ′j |2 + |v̂j |2

))1/2

dx

≥ gη(|ũj(x2)− ũj(x1)|) . (3.22)

In deriving the last inequality, we have used that the functional to be minimized in the definition of gη

is invariant under reparametrization.

The conclusion in (3.7) then follows by (3.10), (3.20), (3.22) and item (vi) in Proposition 2.5.

We gather the lower estimates on the diffuse and surface parts obtained in Propositions 3.2 and 3.3,

respectively, via a standard measure theoretic argument.

Proposition 3.4 (Lower Bound inequality). Under the assumptions of Theorem 1.1 with ς ∈ (0,∞),

for every (uε, vε), (u, v) ∈ L1(Ω,R2) with (uε, vε) → (u, v) in L1(Ω,R2) we have

F ς(u, v) ≤ lim inf
ε→0

Fε(uε, vε), (3.23)

where Fε and F ς are defined in (1.7) and (1.11), respectively.

Proof. Without loss of generality, we assume that the inferior limit in (3.23) to be finite. Thus, (uε, vε) ∈
H1(Ω,R× [0, 1]) for every ε > 0 sufficiently small, and moreover u ∈ GBV (Ω) and v = 1 L1-a.e. on Ω in

view of Theorem 3.1. It is sufficient to establish (3.23) if u ∈ BV (Ω) by employing a standard trucation

argument and the fact that the functionals Fε are decreasing by truncation.

Thus, for u ∈ BV (Ω), we may consider the superadditive set function defined on A(Ω) by

µ(A) := lim inf
ε→0

Fε(uε, vε, A),

if A ∈ A(Ω), and the Radon measure

ν := L1 Ω+H0 Ju + |Dcu| .
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In particular, ν is the sum of three Radon measures concentrated on mutually disjoint Borel sets

U1, U2, U3 partitioning Ω. Then, we may define two Borel functions ψ1, ψ2 : Ω → [0,∞] by

ψ1(x) =

g(|[u](x)|) on U2

0 otherwise
and ψ2(x) =


hς(|u′(x)|) on U1

ς on U3

0 otherwise

Propositions 3.2 and 3.3 then imply for i = 1, 2 and A ∈ A(Ω)

µ(A) ≥
∫
A

ψidν ,

thus [Bra98, Proposition 1.16] yields that

µ(Ω) ≥
∫
Ω

(ψ1 ∨ ψ2)dν = F ς(u, 1) .

To show the upper bound inequality we follow in part the strategy in [CFI16, CFI24, Proposition 5.2]

and take advantage of the one-dimensional setting. More generally, we establish it for the perturbed

family of functionals Fκ
ε : L1(Ω,R2)×A(Ω) → [0,∞]

Fκ
ε (u, v,A) := Fε(u, v,A) + κε

∫
A

|u′|2dx , (3.24)

if (u, v) ∈ H1(Ω,R × [0, 1]) and ∞ otherwise, where κε = o(ε) as ε → 0 and κε ≥ 0, in order to

gain coercivity for applications to Dirichlet boundary value problems (see Section 3.3). We denote by

F ′′ := Γ(L1)- lim sup
ε→0

Fκ
ε .

We divide the argument into several steps, by providing first a rough bound for the diffuse part in

the case of Sobolev functions and then obtaining the sharp bound optimizing upon the former rough

one through a relaxation argument. The extension of the upper bound to piecewise Sobolev functions is

done thanks to an explicit construction matching the surface energy density at jump points, finally the

sharp bound for any BV function is obtained again through relaxation.

In what follows it is convenient to consider the functional H : L1(Ω)×A(Ω) → [0,∞] defined by

H(u,A) :=

∫
A

hς(|u′|)dx , (3.25)

if u ∈W 1,1(Ω), and ∞ otherwise. Given the continuity of hς (cf. item (i) in Lemma 2.1) and the growth

conditions in (2.4), the functional H in (3.25) is continuous with respect to the strong convergence in

W 1,1(Ω). The same remark applies to the functional Fς . We will take advantage of this fact by proving

in several instances the upper bound inequality (cf. (3.26) below) on classes of functions which are dense

in L1(Ω) or in a stronger topology, and along which H and Fς are continuous, respectively. The L1

lower semicontinuity of F ′′ will allow to extend the validity of (3.26) to functions in the L1 closure of

such dense classes.

Proposition 3.5 (Upper Bound inequality). Under the assumptions of Theorem 1.1 with ς ∈ (0,∞),

for every (u, v) ∈ L1(Ω;R2)

F ′′(u, v) ≤ F ς(u, v) . (3.26)
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Proof. Step 1. If u(x) = ξx+ η is affine on Ω then for every interval I ⊆ Ω

F ′′(u, 1, I) ≤ H(u, I) = hς(|ξ|)L1(I) . (3.27)

Let τξ ∈ [0,∞) be such that hς(|ξ|) = φ(1/τξ)ξ2 + ς2

4 τξ (with the convention that φ(1/τ) is extended by

continuity as φ(∞) ∈ (0,∞) in τ = 0). Then set uε = u and vε = λε where εf2(λε) = ε l(λε)
Q(1−λε)

= 1/τξ

(note that λε = 1 if τξ = 0). By the very definition λε → 1 as ε→ 0. Therefore

Fκ
ε (uε, vε, I) =

(
φ(1/τξ)ξ

2 + κεξ
2 +

ω(1− λε)

4ε

)
L1(I)

=
(
φ(1/τξ)ξ

2 + κεξ
2 +

ω(1− λε)

4Q(1− λε)
l(λε)τξ

)
L1(I) ,

the conclusion then follows by taking into account (1.4), and the fact that l(λε) → l(1) = 1.

Step 2. The inequality in (3.27) holds if u is piecewise affine on Ω = (a, b), that is u ∈ C0(Ω) and there

are {ai}Ni=1 where a1 = a, aN = b and ai < ai+1 for i ∈ {1, . . . N − 1} such that

u(x) =

N∑
i=1

(ξix+ ηi)χ[ai,ai+1)(x) .

First, we show explicitly the claim for the (dense) subclass of piecewise affine functions u such that u′ = 0

on (ai, ai+1) for i ∈ {2, . . . , N −1} even. Let δ ∈ (0,mini(ai+1−ai)), set Ωi,δ := (ai− δ/2, ai+1+ δ/2), and

let {ϕi}Ni=1 be a partition of unity subordinated to the covering {Ωi,δ}Ni=1 of Ω, i.e. ϕi ∈ C∞
c (Ωi,δ, [0, 1]),

ϕi|(ai+δ/2,ai+1−δ/2) = 1, max1≤i≤N ∥ϕ′i∥C0(R) ≤ C/δ, for some C > 0, and
∑N

i=1 ϕi(x) = 1 for every x ∈ Ω.

Set uε := u and vε :=
∑N

i=1 λε,iϕi, where εf(λε,i) =
1/τξ,i for every i ∈ {1, . . . , N} with λε,i ∈ [0, 1]

(using the notation introduced in the previous step). In particular, λε,i = 1 for i ∈ {2, . . . , N − 1} even

because ξi = 0 and hς(0) = 0. Therefore, from Step 1 we get for δ sufficiently small

Fκ
ε (uε, vε, I) ≤ H(u, I) + oε + (δφ(∞) + κεL1(Ω))

N∑
i=1

|ξi|2

+ CN
ε

δ
+ C

N−1∑
i=2

∫ ai+δ/2

ai−δ/2

Q(1− vε)

ε
dx , (3.28)

where C > 0 is a universal constant, oε → 0 as ε → 0, and we have used (1.4) and the convergence

vε → 1 in L∞(Ω). Next, note that ϕi−1(x) + ϕi(x) = 1 on (ai − δ/2, ai + δ/2) for δ sufficiently small, so

that on such a set 1 − vε = (1 − λε,i−1)ϕi−1 + (1 − λε,i)ϕi. In addition, using that u′ = 0 on (ai, ai+1)

for even i ∈ {2, . . . , N − 1}, then 1 − vε = (1 − λε,i)ϕi if i ≥ 3 is odd, and 1 − vε = (1 − λε,i−1)ϕi−1 if

i ≥ 2 is even. Hence, if i is odd on (ai − δ/2, ai + δ/2) we have

Q(1− vε) = Q((1− λε,i)ϕi) ≤ Q(1− λε,i) = ετξi l(λε,i) ,

where we have used that Q is non-decreasing in a neighbourhood of the origin (cf. (Hp 1)), and ϕi ∈ [0, 1].

Clearly, an analogous statement holds if i is even. Thanks to this estimate and to (3.28) we conclude
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that

Fκ
ε (uε, vε, I) ≤ H(u, I) + oε + (δφ(∞) + κεL1(Ω))

N∑
i=1

|ξi|2

+ CN
ε

δ
+ Cδ

N∑
i=1

τξi l(λε,i) ,

from which we conclude (3.27) by taking first the superior limit as ε→ 0 and then as δ → 0.

Finally, given any piecewise affine function u with an underlying partition {a1, .., aN}, consider

uj(x) =


u(x) if x ∈ [a1, a2]

u(ai) if x ∈ [ai, ai + 1/j]

u(ai+1) +
u(ai+1)−u(ai)
ai+1−ai−1/j (x− ai+1) if x ∈ [ai + 1/j, ai+1]

for i ∈ {2, .., N − 1}, where 0 < 1/j < mini(ai+1 − ai). It is easy to show that uj → u in L∞(Ω) and

u′j → u′ in Lp(Ω) for every p ∈ [1,∞) as j → ∞. We conclude using the density argument explained at

the beginning of the proof.

Step 3. The inequality in (3.26) holds on W 1,1(Ω).

We use first the continuity of H with respect to the strong W 1,1(Ω) convergence together with the

density of piecewise affine functions in W 1,1(Ω) (this is easily established for the dense class of smooth

functions, see also [ET99, Proposition 2.1 in Chapter X]) to extend the validity of inequality (3.27) to

every u ∈W 1,1(Ω) via the density argument explained at the beginning of the proof.

Step 4. The inequality in (3.26) holds if u is SBV (Ω) with H0(Ju) <∞.

We explicit the construction first for u ∈ SBV (Ω) with Ju = {x0} such that u = u(x−0 ) on (x0−2λ, x0)

and u = u(x+0 ) on [x0, x0 + 2λ) for some λ > 0 with (x0 − 2λ, x0 + 2λ) ⊆ Ω, where u(x−0 ), u(x
+
0 )

are respectively the left and the right limit of u in x0 (without loss of generality we suppose that

u(x−0 ) < u(x+0 )).

A simple contradiction argument yields that it is sufficient to show that for every infinitesimal se-

quence {εj}j∈N there are a subsequence {εjk}k∈N and (uεjk , vεjk ) → (u, 1) in L1(Ω,R2) for which

lim sup
k→∞

Fκ
εjk

(uεjk , vεjk ) ≤ Fς(u, 1) .

Fix, {εj}j∈N infinitesimal, and consider I1 := (a, x0) and I2 := (x0, b). Being u ∈ W 1,1(I1 ∪ I2), there
are sequences (u

(i)
εj , v

(i)
εj ) → (u, 1) in L1(Ii,R2) such that F ′′(u, Ii) = limj Fκ

εj (u
(i)
εj , v

(i)
εj , Ii). We may

then extract a subsequence such that (u
(i)
εjk
, v

(i)
εjk

) → (u, 1) L1-a.e. on Ii for i ∈ {1, 2}, as well. For

the sake of notational simplicity in what follows we denote (u
(i)
εjk
, v

(i)
εjk

) simply by (u
(i)
k , v

(i)
k ). By a.e.

convergence we can find points x1 ∈ I1 ∩ (x0 − 2λ, x0 − λ) and x2 ∈ I2 ∩ (x0 + λ, x0 + 2λ), such that

(u
(i)
k (xi), v

(i)
k (xi)) → (u(xi), 1), with u(x1) = u(x−0 ) and u(x2) = u(x+0 ).

By item (v) in Proposition 2.5 for every η > 0 there exist Tη > 0 and (γη, βη) ∈ U|[u](x0)|(0, Tη) such

that ∫ Tη

0

(
φ′(0+)f2(βη)|γ′η|2 +

ω(1− βη)

4
+ |β′

η|2
)
dx ≤ g(|[u](x0)|) + η . (3.29)

Set Aη
k :=

(
x0 −

εjkTη

2 , x0 +
εjkTη

2

)
, then Aη

k ⊆ (x1 + λ, x2 − λ) for k sufficiently big. Then define
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{(uηk, v
η
k)}k∈N by

uηk(x) =



u
(1)
k x ∈ (a, x1)

u
(1)
k (x1) + (u(x−0 )− u

(1)
k (x1))λ

−1(x− x1) x ∈ [x1, x1 + λ]

u(x−0 ) x ∈ (x1 + λ, x0 −
εjk
2 Tη]

u(x−0 ) + γη

(
x−x0

εjk
+

Tη

2

)
x ∈ Aη

k

u(x+0 ) x ∈ [x0 +
εjk
2 Tη, x2 − λ),

u
(2)
k (x2) + (u

(2)
k (x2)− u(x+0 ))λ

−1(x− x2) x ∈ [x2 − λ, x2]

u
(2)
k x ∈ (x2, b) ,

and

vηk(x) =



v
(1)
k x ∈ (a, x1)

ζ
(1)
k x ∈ [x1, x0 −

εjkTη

2 ]

βη

(
x−x0

εjk
+

Tη

2

)
x ∈ Aη

k

ζ
(2)
k x ∈ [x0 +

εjkTη

2 , x2]

v
(2)
k x ∈ (x2, b) ,

where ζ
(1)
k (x) = (v

(1)
k (x1) +

1
εjk

(x − x1)) ∧ 1 and ζ
(2)
k (x) = (v

(2)
k (x2) +

1
εjk

(x2 − x)) ∧ 1. Therefore, if

ζ
(i)
k ≤ 1 then x ∈ [x1, x1 + εjk(1 − v

(1)
k (x1))] if i = 1, and x ∈ [x2 − εjk(1 − v

(2)
εjk

(x2)), x2] if i = 2.

Note that (uηk, v
η
k) ∈ H1(Ω,R × [0, 1]) thanks to the assumptions on u. Moreover, (uηk, v

η
k) → (u, 1) in

L1(Ω,R2) as γη, βη ∈ L∞(0, Tη). To estimate the energy of {(uηk, v
η
k)}k∈N we start with the contribution

on I1 ∪ I2 \Aη
k:

lim sup
k→∞

Fκ
εjk

(uηk, v
η
k , I1 ∪ I2 \A

η
k)

= lim sup
k→∞

(
Fκ

εjk
(u

(1)
k , v

(1)
k , I1 \Aη

k) + Fκ
εjk

(u
(2)
k , v

(2)
k , I2 \Aη

k)
)

≤ F ′′(u, 1, I1) + F ′′(u, 1, I2) ≤
∫
Ω

hς(|u′|)dx , (3.30)

by the previous step as the intervals are disjoint. Next, we use a change of variable to estimate the

contribution on Aη
k as follows

Fκ
εjk

(uηk, v
η
k , A

η
k)

≤
∫ Tη

0

(
1

εjk
(φ(εjkf

2(βη)) + κεjk )|γ
′
η|2 +

ω(1− βη)

4
+ |β′

η|2
)
dx .

Being φ (right) differentiable in 0 and bounded, there is C > 0 such that φ(t) ≤ Ct for all t ≥ 0. Hence

by Lebesgue dominated convergence theorem, by κεjk = o(εjk) as k → ∞, and by (3.42) we conclude

that

lim sup
k→∞

Fκ
εjk

(uηk, v
η
k , A

η
k) ≤ g(|[u](x0)|) + η , (3.31)

Finally, we are left with estimating the energy on the set Ωη
k := Ω \ (I1 ∪ I2 ∪ Aη

k). Recalling that u is

constant on (x0 − 2λ, x0) and on (x0, x0 + 2λ), then uηk is piecewise affine, and vηk is affine, respectively,
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on such sets by construction. A direct computation then yields

Fκ
εjk

(uηk, v
η
k ,Ω

η
k) ≤

1

λ
(φ(∞) + κεjk )

(
(u(x+0 )− u

(1)
k (x1))

2 + (u(x+0 )− u
(2)
k (x2))

2
)

+
κεjk
εjk

∫ Tη

0

|γ′η|2dx+ (2− v
(1)
k (x1)− v

(2)
k (x2))(sup

[0,1]

ω + 1) .

Therefore, by the choice of x1 and x2 we conclude that

lim sup
k

Fκ
εjk

(uηk, v
η
k ,Ω

η
k) = 0 (3.32)

By collecting (3.30)- (3.32) and letting η → 0, (3.26) follows at once.

To remove the assumption that u is piecewise constant close to the jump point x0, we define the

sequence

uj(x) = u(x)χΩ\[x0− 1
j ,x0+

1
j ]
+ u(x0 − 1

j )χ(x0− 1
j ,x0] + u(x0 +

1
j )χ(x0,x0+

1
j )
. (3.33)

We have uj → u in L1(Ω) and u′j = u′χΩ\[x0− 1
j ,x0+

1
j ]

L1-a.e. on Ω, and thus we conclude using the

density argument explained before the statement.

Finally, since our construction modifies recovery sequences of F ′′ on each sub-interval on which u is in

W 1,1 only in a neighbourhood of the endpoints, we can extend the validity of (3.26) to every u ∈ SBV (Ω)

with H0(Ju) <∞ arguing locally.

Step 5. The inequality in (3.26) holds if u ∈ SBV (Ω).

We claim that each function u ∈ SBV (Ω) can be approximated with a sequence of functions uj ∈
SBV (Ω) and H0(Juj

) <∞ for every j ∈ N, converging to u in L1(Ω) and with energies Fς(uj) → Fς(u).

Indeed, consider the decomposition u = u(a) + u(s), where ua ∈ W 1,1(Ω) and us(x) =
∑

y∈Ju∩(a,x][u](y)

is piecewise constant, and define uj := u(a) +
∑

y∈Ij∩(a,x][u](y), where Ij := {y ∈ Ju : |[u](y)| ≥ 1/j}.

Step 6. The inequality in (3.26) holds if u ∈ GBV (Ω).

Note that if (3.26) holds on BV (Ω), we may conclude it on GBV (Ω) by means of the sequence of

truncations defined in (2.1), together with the standard density argument.

To show inequality (3.26) on BV (Ω) we use a relaxation argument. Indeed, thanks to Step 5 we may

apply [BBB95, Theorem 3.1] to get that the relaxed functional with respect to the weak∗ BV topology

of F̃ς : BV (Ω) → [0,∞] defined as F̃ς = Fς on SBV (Ω) and ∞ otherwise is given by

F̃ς(u) =

∫
Ω

(h∗∗ς ▽g0)(|u′|)dx+

∫
Ju

((h∗∗ς )∞▽g)(|[u]|)dH0 +

∫
Ω

(h∗∗ς ▽g0)∞dDcu , (3.34)

for every u ∈ BV (Ω), where ψ1▽ψ2(t) := inf{ψ1(x)+ψ2(t−x) : x ∈ [0, t]} is the usual infimal convolution

of two functions, and for every s ≥ 0

g0(s) := lim sup
t→0

g(st)

t
, (h∗∗ς )∞(s) := lim

t→∞

h∗∗ς (st)

t
.

In particular, g0(s) = (h∗∗ς )∞(s) = ς(φ′(0+))
1/2s for every s ≥ 0 by Lemma 2.1 and (2.20), respectively.

We have ψ1▽ψ2 ≤ ψ1 ∧ ψ2 by the very definition. On the one hand, item (ii) in Proposition 2.5 implies

g ≤ (h∗∗ς )∞ so that (h∗∗ς )∞▽g ≤ g and actually the equality holds by sub-additivity of g. On the other

hand, (2.4) in Lemma 2.1 implies h∗∗ς ≤ g0 so that h∗∗ς ▽g0 ≤ h∗∗ς and actually the equality holds thanks
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to the convexity of h∗∗ς , and the fact that if ζ belongs to the subdifferential of h∗∗ς in t, then ζ ≤ g0(1)

by g0(s) = (h∗∗ς )∞(s) = ς(φ′(0+))
1/2s.

The conclusion then follows at once from (3.34) by taking into account that F ′′ ≤ F̃ς on SBV (Ω)×{1}
by Step 5, and that F ′′ is L1 lower semicontinuous.

3.2 Case ς = ∞

In this section we consider the case ς = ∞.

Theorem 3.6 (Compactness). Under the assumptions of Theorem 1.1 with ς = ∞, let {(uε, vε)}ε>0 ∈
L1(Ω,R2) be such that

sup
ε>0

(Fε(uε, vε) + ∥uε∥L1(Ω)) <∞ , (3.35)

then there are {εk}k∈N and u ∈ L1 ∩GSBV (Ω) with u′ ∈ L2(Ω) such that (uεk , vεk) → (u, 1) L1-a.e. on

Ω. If, moreover, (uε)ε is equi-integrable then uεk → u in L1(Ω).

Proof. The proof follows the same strategy of Theorem 3.1. We adopt the same notation used there and

highlights only the main changes. The convergences of (vε)ε to 1 in measure on Ω, and of a subsequence

(uεk)k to some u ∈ L1 ∩GBV (Ω) follows from the same argument. The L1-a.e. convergence on Ω, and

the L1(Ω) convergence if (uε)ε is equi-integrable, are analogous.

We need only to show that u ∈ GSBV (Ω) and that u′ ∈ L2(Ω). With this aim we note that in case

ς = ∞, the estimate Hδ(ũε,δ) ≤ Fε(uε, vε) established in Lemma 2.3 holds with bulk density h1/γ−1,

for every γ ∈ (0, 1) (cf. (2.13)). Thus, in view of Proposition 2.4 we conclude that for every M > 0,

γ ∈ (0, 1) and δ ∈ (0, δγ)

ζ1(δ)

∫
Ω

h∗∗1/γ−1(|(u
M )′|)dx+ ζ1(δ)

(
1

γ
− 1

)
|DcuM |(Ω) ≤ C .

By letting first δ → 0 and then γ → 0 we conclude |DcuM |(Ω) = 0 for every M ∈ N, that is equivalently
uM ∈ SBV (Ω), from which we conclude that u ∈ GSBV (Ω). In addition, the latter estimate and

Lemma 2.1 imply

φ(∞)

∫
Ω

|(uM )′|2dx ≤ C .

The conclusion then follows at once by letting M → ∞.

The lower bound inequality in the case ς = ∞ follows as the analogous result in Proposition 3.2.

Proposition 3.7. Under the assumptions of Theorem 1.1 with ς = ∞, for every (uε, vε), (u, v) ∈
L1(Ω,R2) with (uε, vε) → (u, v) in L1(Ω,R2), we have∫

A

h∞(|u′|)dx ≤ lim inf
ε→0

Fε(uε, vε, A) , (3.36)

for every A ∈ A(Ω).

Proof. First of all we suppose that the inferior limit on the right hand side of (3.36) to be finite, otherwise

the claim is obvious. Therefore, (uε, vε) ∈ H1(Ω,R × [0, 1]) for ε > 0 sufficiently small, u ∈ GSBV (Ω)

and v = 1 L1-a.e. by Theorem 3.6. We show the result in case u ∈ SBV (Ω), the general case follows as

in Proposition 3.2.
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Fix γ ∈ (0, 1) and A ∈ A(Ω), using the notation and the results in Lemma 2.3 we find δγ ∈ (0, 1)

such that for every δ ∈ (0, δγ) there is ũε,δ := (ũε)δ ∈ SBV (A) (for every ε small enough) we have

Hδ(ũε,δ, A) ≤ Fε(uε, vε, A) ,

with density h1/γ (cf. (2.13)). Thus, in view of Proposition 2.4 we conclude that

ζ1(δ)

∫
A

h∗∗1/γ−1(|u
′|)dx ≤ lim inf

ε→0
Fε(uε, vε, A) , (3.37)

recalling that |Dcu|(Ω) = 0. By letting first δ → 0 and then γ → 0 we conclude (3.36) in view of (2.10),

(2.6) in Lemma 2.1, and Beppo Levi’s theorem.

The proof of the lower bound inequality for the surface part takes advantage of Proposition 3.3 and

of [CFI25, Step 2 in Corollary 4.8].

Proposition 3.8. Under the assumptions of Theorem 1.1 with ς = ∞, for every (uε, vε), (u, v) ∈
L1(Ω,R2) with (uε, vε) → (u, v) in L1(Ω,R2), we have∫

Ju∩A

g(|[u]|)dH0 ≤ lim inf
ε→0

Fε(uε, vε, A) (3.38)

for every A ∈ A(Ω), where g is defined in (1.10).

Proof. The proof is similar to that of Proposition 3.2, therefore we highlight only the necessary changes

adopting the notation introduced there. We proceed up to formula (3.12), noticing that Theorem 3.6

implies that u ∈ GSBV (Ω) with u′ ∈ L2(Ω). Next, we change the argument as the truncation procedure

in (3.13)-(3.15) does not work in this setting. As an outcome of the blow up procedure we are given a

sequence (ũj , ṽj) → (u0, 1) in L1(I1), where I1 = (−1/2, 1/2) and u0(x) = u(x−0 )χ(− 1
2 ,0)

+ u(x+0 )χ[0, 12 )
,

such that lim infj Gj(ũj , ṽj) <∞, Gj defined in (3.11).

Let γ > 0 and δ > 0 such that φ(t)
t ≥ φ′(0+) − γ for all t ∈ (0, δ). Because of the continuity

of f on [0, 1) and f(t) → ∞ as t → 1−, then {t ∈ [0, 1) : εjf
2(t) > δ} = (δj , 1) for j large, where

δj → 1− as j → ∞. Hence, {t ∈ I1 : εjf
2(ṽj) > δ} = {t ∈ I1 : ṽj > δj} = ∪i(a

i
j , b

i
j), being

ṽj ∈ H1(I1). Consider the function ûj := ũjχ{ṽj≤δj} +
∑

i ũj(a
i
j)χ(ai

j ,b
i
j)
, then ûj ∈ SBV (I1) with

Dûj = ũ′jχ{ṽj≤δj}L1 I1 +
∑

i(ũj(b
i
j) − ũj(a

i
j))δt=bij

. Take its absolutely continuous part wj in the

standard decomposition of BV functions, namely

wj(x) := ũj(−1/2) +

∫ x

−1/2

û′j(t)dt .

We claim that wj → u0 in L1(I1) and that

F̂j(wj , ṽj) :=

∫
Ω

(
ηj(φ

′(0+)− γ)f2(ṽj)|w′
j |2 +

ω(1− vj)

4ηj
+ ηj |v′j |2

)
dx

≤ Gj(wj , ṽj) ≤ Gj(ũj , ṽj). (3.39)
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Indeed, first note that

ηj
εj
φ(δ)

∫
{ṽj>δj}

|ũ′j |2dx ≤ ηj
εj

∫
{ṽj>δj}

φ(εjf
2(ṽj))|ũ′j |2dx ≤ Gj(ũj , ṽj) ,

and then that w′
j = û′jχ{ṽj≤δj} = ũ′jχ{ṽj≤δj} L1-a.e. on I1. Hence, wj → u0 in L1(I1) as

∥wj − ũj∥L∞(I1) ≤
∫
{ṽj>δj}

|ũ′j |dx ≤
(

εj
φ(δ)ηj

Gj(ũj , ṽj)

)1/2

,

and furthermore we have

F̂j(wj , ṽj) ≤Gj(wj , ṽj) = Gj(ũj , ṽj , {ṽj ≤ δj})

+

∫
{ṽj>δj}

(
ω(1− ṽj)

εj
+ εj |ṽj ′|2

)
dx ≤ Gj(ũj , ṽj) ,

and thus (3.39) follows.

The final argument is similar to that employed in Proposition 3.3 using Proposition 2.6 rather than

Proposition 2.5, and finally letting γ → 0+.

The lower bound inequality follows arguing analogously as in Proposition 3.4.

Proposition 3.9 (Lower Bound inequality). Under the assumptions of Theorem 1.1 with ς = ∞, for

every (uε, vε), (u, v) ∈ L1(Ω,R2) with (uε, vε) → (u, v) in L1(Ω,R2) we have

F∞(u, v) ≤ lim inf
ε→0

Fε(uε, vε), (3.40)

where Fε and F∞ are defined in (1.7) and (1.11), respectively.

To conclude we show the upper bound inequality in this setting for the perturbed family {Fκ
ε }ε>0

defined in (3.24). We recall that the notation F ′′ = Γ(L1)- lim sup
ε→0

Fκ
ε .

Proposition 3.10 (Upper Bound inequality). Under the assumptions of Theorem 1.1 with ς = ∞, let

(u, v) ∈ L1(Ω;R2) then

F ′′(u, v) ≤ F∞(u, v) . (3.41)

Proof. Without loss of generality we assume u ∈ GSBV (Ω) with u′ ∈ L2(Ω), and v = 1 L1-a.e. on Ω,

the inequality being trivial otherwise. Moreover, we can reduce to u ∈ SBV (Ω) with u′ ∈ L2(Ω) by the

density argument explained before Proposition 3.5 by using the sequence of truncations in (2.1). Fur-

thermore, we may even assume that H0(Ju) <∞ by using the construction in Step 5 of Proposition 3.5.

First, consider u ∈ SBV (Ω) with u′ ∈ L2(Ω), Ju = {x0} and u = u(x−0 ) on (x0−λ, x0) and u = u(x+0 )

on [x0, x0 + λ) for some λ > 0 with (x0 − λ, x0 + λ) ⊆ Ω, where u(x−0 ), u(x
+
0 ) are respectively the left

and the right limit of u in x0 (without loss of generality we can suppose that u(x−0 ) < u(x+0 )), and argue

as in Step 4 of Proposition 3.5. In particular, the assumption that u is constant near the jump point x0

is not restrictive up to a density argument and the construction in (3.33).

By item (v) in Proposition 2.6 for every η > 0 there exist Tη > 0 and (γη, βη) ∈ U|[u](x0)|(0, Tη) such

that ∫ Tη

0

(
φ′(0+)f2(βη)|γ′η|2 +

ω(1− βη)

4
+ |β′

η|2
)
dx ≤ g(|[u](x0)|) + η . (3.42)

29 ACF-Part-I-final.tex [July 16, 2025]



Set Aη
ε :=

(
x0 − εTη

2 , x0 +
εTη

2

)
, then Aη

ε ⊆ (x0−λ, x0+λ) for ε sufficiently small. Define {(uηε , vηε )}ε by

uηε(x) =

u(x
−
0 ) + γη

(
x−x0

ε +
Tη

2

)
x ∈ Aη

ε

u x ∈ Ω \Aη
ε

and

vηε (x) =

βη
(

x−x0

ε +
Tη

2

)
x ∈ Aη

ε

1 x ∈ Ω \Aη
ε .

Note that (uηε , v
η
ε ) ∈ H1(Ω,R × [0, 1]) thanks to the assumptions on u. Moreover, (uηε , v

η
ε ) → (u, 1) in

L1(Ω,R2) as γη, βη ∈ L∞(0, Tη).

Next, we estimate the energy of the family {(uηε , vηε )}ε. We start with the contribution on Ω \ Aη
ε

by taking into account that vηε = 1 and uηε = u on such a set to get (recall that φ(εf2) is extended by

continuity with value φ(∞) to t = 1)

Fκ
ε (u

η
ε , v

η
ε ,Ω \Aη

ε) ≤ (φ(∞) + κε)

∫
Ω\Aη

ε

|u′|2dx . (3.43)

For the contribution on Aη
ε we change variable to get

Fκ
ε (u

η
ε , v

η
ε , A

η
ε) ≤

∫ Tη

0

(
1

ε
(φ(εf2(βη)) + κε)|γ′η|2 +

ω(1− βη)

4
+ |β′

η|2
)
dx .

Being φ (right) differentiable in 0 and bounded, there is C > 0 such that φ(t) ≤ Ct for all t ≥ 0. Hence

by Lebesgue dominated convergence theorem, κε = o(ε) as ε→ 0, and by (3.42) we conclude that

lim sup
ε→0

Fκ
ε (u

η
ε , v

η
ε , A

η
ε) ≤ g(|[u](x0)|) + η , (3.44)

By collecting (3.43) and (3.44) and letting η → 0, (3.41) follows at once.

Finally, arguing locally we can extend the validity of (3.41) to every u ∈ SBV 2(Ω) with H0(Ju) <∞
(cf. Step 4 of Proposition 3.5).

3.3 Dirichlet boundary values problem

In this section we impose Dirichlet boundary conditions on the approximating energies, determine the

related Γ-limit and discuss the convergence of the related minimum problems. With this aim define

Dε : L
1(Ω,R2)×A(Ω) → [0,∞] by

Dε(u, v,A) := Fκ
ε (u, v,A) (3.45)

if (u, v) ∈ H1(Ω,R × [0, 1]) and u(a+) = 0, u(b−) = L, v(a+) = v(b−) = 1, where Ω = (a, b), and ∞
otherwise. Here, κε = o(ε) and it is strictly positive.

Theorem 3.11. Assume (Hp 1)-(Hp 4) hold with ς ∈ (0,∞], and let Dε be the functional defined in

(3.45). Then, for all (u, v) ∈ L1(Ω,R2)

Γ(L1)- lim
ε→0

Dε(u, v) = D ς(u, v) , (3.46)
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where

D ς(u, v) :=

Fς(u) + g(|u(a+)|) + g(|u(b−)− L|) if v = 1 L1-a.e. on Ω

∞ otherwise .
(3.47)

Moreover, if (uε, vε) ∈ argminL1(Ω,R2)Dε, there are a subsequence (not relabeld) and a function u ∈
GBV (Ω) such that (uε, vε) → (u, 1) in L1(Ω,R2) and

lim
ε→0

Dε(uε, vε) = D ς(u, 1) . (3.48)

Proof. We first show how to deduce (3.46) thanks to the results in Theorem 1.1. With this aim, for

every (u, v) ∈ H1(Ω,R2) denote by (U, V ) the extensions given by

U(x) =


u(x) if x ∈ Ω

0 if x ∈ (a− 1, a]

L if x ∈ (b, b+ 1]

V (x) =


v(x) if x ∈ Ω

1 if x ∈ (a− 1, a]

1 if x ∈ (b, b+ 1]

Note that for every (u, v) ∈ L1(Ω,R2) and η ∈ (0, 1) we have

Dε(u, v) = Fε(U, V, (a− η, b+ η)) .

Therefore, given (uε, vε) → (u, v) in L1(Ω,R2) then (Uε, Vε) → (U, V ) in L1((a− η, b+ η),R2) and either

by Proposition 3.4 if ς ∈ (0,∞) or by Proposition 3.9 if ς = ∞, we deduce that

lim inf
ε→0

Dε(uε, vε) = lim inf
ε→0

Fε(Uε, Vε, (a− η, b+ η))

≥ F ς(U, V, (a− η, b+ η)) = D ς(u, v) .

It is sufficient to show the upper bound inequality for u ∈ GBV (Ω) and v = 1 L1-a.e. on Ω. In this case,

by using the standard density argument we can reduce to functions which are constant on a neighborhood

of the boundary of Ω by considering λ ∈ (0, 1) and uλ(x) := U(a+b
2 + λ(x− a+b

2 )), for x ∈ (a− 1, b+ 1),

and vλ = 1 L1-a.e. on Ω. Indeed, we have

lim
λ→1−

F ς(uλ, vλ) = D ς(u, 1) .

For this class of functions the upper bound inequality follows from Propositions 3.5 if ς ∈ (0,∞) or from

Proposition 3.7 if ς = ∞.

Finally, for every ε > 0 the functional Dε is coercive. Denote by (uε, vε) a minimizing sequence.

By truncation we can assume that uε ∈ [0, L] L1-a.e. on Ω. Therefore, Theorem 3.1 if ς ∈ (0,∞) or

Theorem 3.6 if ς = ∞ provide the L1(Ω,R2) convergence of (uε, vε) up to a subsequence not relabeled.

The fundamental theorem of Γ-convergence yields (3.48).

3.4 Corollaries of Theorem 1.1

In this section we collect several consequences of Theorem 1.1 essentially by using only simple comparison

arguments. First, we establish Theorem 1.2.
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Proof of Theorem 1.2. We give the proof in case ς ∈ (0,∞), the case ς = ∞ being similar and even

simpler. By assumption γε/ε → +∞, therefore for every j ∈ N and for ε sufficiently small depending

on j we deduce the pointwise estimate F̃ε ≥ F (j)
ε , where the latter functionals are defined as Fε in

(1.7) with φ(γεf
2) substituted by φ(jεf2). Thus, we deduce that Γ- lim inf

ε→0
F̃ε ≥ Γ- lim

ε→0
F (j)

ε =: F
(j)
ς

for every j ∈ N. In particular, if Γ- lim inf
ε→0

F̃ε(u, v) is finite, then u ∈ GBV (Ω) and v = 1 L1-a.e.

x ∈ Ω. Furthermore, Theorem 1.1 yields that the energy densities of F
(j)
ς are given by the convex

envelope of h
(j)
ς (t) = inf

τ∈[0,∞)
{φ( 1τ )t

2 + ς2

4 jτ} for every t ≥ 0 for the bulk term (cf. (1.9) and use a

reparametrization), g(j)(s) = g1
(
j
1/2s

)
for every s ≥ 0 for the jump term (cf. (1.10) and use (1.12)), and

(jφ′(0+))
1/2ςt for every t ≥ 0 for the Cantor term. From the latter, by letting j → ∞ we immediately

deduce that u ∈ GSBV (Ω). Moreover, from the equality g(j)(s) = g1
(
j
1/2s

)
(cf. (1.12)) it is clear

that g(j)(s) → 2Ψ(1)χ(0,∞)(s) as j → ∞ thanks to (2.19) in Proposition 2.5. Therefore, u ∈ SBV (Ω).

Finally, let t > 0 and τj ∈ [0,∞) be such that φ( 1
τj
)t2 + ς2

4 jτj ≤ h
(j)
ς (t) + 1/j. Then, as h

(j)
ς (t) ≤ φ(∞)t2

for all j, (τj)j is infinitesimal as j → ∞, so that h
(j)
ς (t) → φ(∞)t2 as j → ∞. Thus, we have shown that

Γ- lim inf
ε→0

F̃ε ≥ F̃ .

The upper bound inequality easily follows from the estimate φ(γεf
2(t)) ≤ χ(0,∞)(t) for every t > 0,

and the construction in Proposition 3.10.

Note that if γε = 1 for every ε > 0 and Q is strictly increasing, we recover exactly the Ambrosio and

Tortorelli model with any assigned continuous degradation function ψ choosing φ appropriately.

Now we turn to address the case ς = 0.

Proposition 3.12. Assume (Hp 1)-(Hp 4), and (1.4) holds with ς = 0. Then

Γ(L1)- lim
ε→0

Fε(u, v) = 0 (3.49)

if u ∈ L1(Ω) and v = 1 L1-a.e. on Ω, and ∞ otherwise on L1(Ω,R2).

Proof. By a standard density argument and the L1(Ω) lower semicontinuity of the Γ-limsup, to prove

the result it is sufficient to establish the upper bound inequality for u ∈ BV (Ω) and v = 1 L1-a.e. on Ω.

With this aim, fix j ∈ N and define for every t ∈ [0, 1)

f (j)(t) :=
l(t)

(j2ω(1− t)) ∧Q(1− t)
.

Notice that, f (j)(t) ≥ f(t) for every t ∈ [0, 1) and j ∈ N; and moreover as ς = 0 there is tj such that

(j2ω(1− t)) ∧Q(1− t) = j2ω(1− t) for all t ∈ [tj , 1), and f
(j)(t) = f(t) for all t ∈ [0, tj ]. In particular,

if F (j)
ε denotes the functional defined as Fε with f (j) in place of f , we have that Fε(u, v) ≤ F (j)

ε (u, v),

for every (u, v) ∈ L1(Ω,R2), and j ∈ N. Thus, by Proposition 3.5 we get that

Γ(L1)- lim sup
ε→0

Fε(u, 1) ≤
∫
Ω

h∗∗1/j(|u
′|)dx+

1

j
|Dcu|(Ω) +

∫
Ω

g(
1/j)(|[u]|)dH0,

where g(
1/j) is defined as g in (1.10) with f (j) in place of f .

Finally, we conclude by dominated convergence by taking into account that (h∗∗1/j)j∈N and (g(
1/j))j∈N

are decreasing in j, with h∗∗1/j → h0 = 0 by (2.7) in Lemma 2.1, and g(
1/j)(s) → 0 for every s ∈ [0,∞) as

g(
1/j)(s) ≤ s/j ∧ 2Ψ(1) by item (ii) in Proposition 2.5.
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Finally, we discuss the role of the assumptions {φ(∞), φ′(0+)} ∈ (0,∞). Clearly, φ(∞) > 0 not to

have a trivial limit, the other alternatives are dealt with in the next result. Recall that with φ′(0+) = ∞
we mean that the limit of the difference quotient of φ in t = 0 exists and it is not finite, and that in such

a case the corresponding function h∗∗ς is superlinear at infinity (cf. (2.3)). Instead, if φ(∞) = ∞, h∗∗ς is

subquadratic in the origin (cf. (2.5))

Corollary 3.13. Assume (Hp 1) and (Hp 2).

(a) If (Hp 4) holds, and φ is continuous, non-decreasing with φ(∞) = ∞, then Γ(L1)- lim
ε→0

Fε = Fς (cf.

(1.11)) if ς ∈ (0,∞). Instead, if ς = ∞

Γ(L1)- lim
ε→0

Fε(u, v) =

∫
Ju

g(|[u]|)dH0 (3.50)

if u ∈ GSBV (Ω) with u′ = 0 L1-a.e. on Ω and v = 1 L1-a.e. on Ω, ∞ otherwise on L1, and g is

defined in (1.10);

(b) if (Hp 3) holds, φ−1(0) = 0, φ′(0+) = 0, then for every ς ∈ (0,∞]

Γ(L1)- lim
ε→0

Fε(u, v) = 0 (3.51)

if u ∈ L1(Ω) and v = 1 L1-a.e. on Ω, and ∞ otherwise on L1(Ω;R2);

(c) if (Hp 3) holds, φ−1(0) = 0, φ′(0+) = ∞, then for every ς ∈ (0,∞]

Γ(L1)- lim
ε→0

Fε(u, v) =

∫
Ω

h∗∗ς (|u′|)dx+ 2Ψ(1)H0(Ju) (3.52)

if u ∈ SBV (Ω) and v = 1 L1-a.e. on Ω, and ∞ otherwise on L1(Ω,R2);

(d) if φ is continuous, non-decreasing, with φ−1(0) = 0, and φ(∞) = φ′(0+) = ∞, then the equality in

(3.52) holds for every ς ∈ (0,∞), while for ς = ∞

Γ(L1)- lim
ε→0

Fε(u, v) = 2Ψ(1)H0(Ju) (3.53)

if u ∈ GSBV (Ω) with u′ = 0 L1-a.e. on Ω and v = 1 L1-a.e. on Ω, ∞ otherwise on L1(Ω;R2).

Proof. The general strategy is to compare each Fε with an auxiliary functional F (j)
ε either from below

or from above according to the case. For every j ∈ N, we may apply Theorem 1.1 to (F (j)
ε )ε, letting F

(j)
ς

be the corresponding Γ-limit, we then pass to the limit as j → ∞ to obtain an estimate from above for

the Γ-limsup or from below for the Γ-liminf with the functional in the corresponding statement.

Proof of (a). If ς ∈ (0,∞), we can argue as in Theorem 1.1. Indeed, the only difference is that

the bulk energy density h∗∗ς is sub-quadratic close to the origin (cf. (2.5)). Instead, if ς = ∞ let F (j)
ε

be obtained substituting φ with j ∧ φ(t), then Γ- lim inf
ε→0

Fε(u, v) ≥ F (j)
∞ . Note that the surface energy

densities are given by g in (1.10) for every j ∈ N, instead the bulk energy densities equal to jt2 by item

(ii) in Lemma 2.1. The lower bound then follows. The upper bound is a consequence of Proposition 3.10.

Proof of (b). Let F (j)
ε be obtained by substituting φ in the definition of Fε with the function given

by t/j on the connected component of the set {t ∈ (0,∞) : φ(t) < t/j} whose closure contains the origin,

and equal to φ otherwise. Then, Γ- lim sup
ε→0

Fε(u, v) ≤ F
(j)
ς . In view of (1.12), the surface energy density
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g(j) of the latter equals g1(j
−1/2s). Thus, g(j)(s) → 0 for every s ∈ [0,∞). Hence, for every ς ∈ (0,∞] a

rough upper bound for Γ- lim sup
ε→0

Fε is given by

F̃ς(u, v) = φ(∞)

∫
Ω

|u′|2dx

if u ∈ GBV (Ω) and v = 1 L1-a.e. on Ω, and ∞ otherwise on L1. The L1 lower semicontinuous envelope

of F̃ς coincides with the functional on the right hand side of (3.51), as the class of piecewise constant

functions with a finite number of jumps is dense in L1.

Proof of (c). Let F̃ς be the functional on the right hand side of (3.52), and let F (j)
ε be obtained

substituting φ with jt ∧ φ(t) for every j ∈ N. Then Γ- lim inf
ε→0

Fε(u, v) ≥ F
(j)
ς , with g(j)(s) = g1(js) →

2Ψ(1)χ(0,∞)(s), and h∗∗ς,j ≤ h∗∗ς,j+1 with h∗∗ς,j → h∗∗ς for every j ∈ N. Indeed, the latter assertion is

trivial if ς = ∞ thanks to the identity h∗∗∞,j(t) = φ(∞)t2 for every j ∈ N and t ≥ 0 (cf. item (iii) in

Proposition 2.1). Instead, if ς ∈ (0,∞) as hς,j(t) = inf [0,∞){( 1τ ∧ φ( 1
jτ ))t

2 + ς2

4 jτ} ≤ hς(t) ≤ φ(∞)t2, a

minimum point τj satisfy jτj ≤ 4
ς2
φ(∞)t2. Thus, being φ bounded, we have hς,j(t) = φ( 1

jτj
)t2 + ς2

4 jτj ≥
hς(t) for j sufficiently large. More precisely, for every M > 0, hς,j = hς on [0,M ] for j sufficiently large.

The conclusion then follows arguing as to establish (2.6) in Proposition 2.1. Thus, Γ- lim inf
ε→0

Fε ≥ F̃ς ,

and the upper bound follows as in Proposition 3.10 if ς = ∞, and Proposition 3.5 otherwise (in the latter

case h∗∗ς has superlinear growth at infinity, cf. (2.3) in Lemma 2.1).

Proof of (d). If ς = ∞ we consider j ∧ φ(t) and use the approximation argument in item (a) to

conclude. Instead, if ς ∈ (0,∞) we consider jt ∧ φ(t) and use the approximation argument in item (c)

to conclude.
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