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Abstract. Wireless magnetic actuation offers precise control over microscopic devices,
yet full planar manipulation of rigid, tethered magnetic particles remains challenging. We
introduce a minimal variational model: a permanently magnetized planar ellipse anchored
by two linear springs. First, we derive exact geometric conditions under which the springs
can be configured so that the ellipse rotates freely without elastic penalty—producing a
continuous family of zero-energy equilibria in which the ellipse’s center traces a closed
loop dictated solely by spring geometry. Next, we incorporate a uniform in-plane magnetic
field and prove that the equilibrium magnetization aligns uniformly with the field. In the so-
called full-controllability regime—when the spring rest length are long enough—rotating
the external field directly prescribes the ellipse’s orientation: the particle follows its zero-
energy trajectory to maintain magnetic alignment, achieving a global energy minimum.
For shorter springs, zero-energy configurations exist over a restricted orientation range;
outside this range the ellipse is pinned at the origin. Our results yield exact criteria for
planar control in this simplest magnetoelastic setting, offering clear guidelines for the
design of microscale actuators and metamaterials.

1. Introduction

The remote actuation of soft devices without onboard power is crucial for advances in
microrobotics, biomedical engineering, and adaptive materials. By embedding magnetic
nanoparticles within elastic substrates, one can induce rapid deformations when exposed
to external magnetic fields. As a result, magnetic actuation strategies have become
widespread in applications ranging from microelectromechanical systems (MEMS) and
microfluidics to targeted biomedical interventions [9, 10, 12, 13].

A central concept in these systems is magnetoelastic coupling, whereby mechanical
deformations and magnetic responses influence one another, enabling both locomotion
and sensing at small scales. In soft composites with ferromagnetic inclusions, externally
applied fields can induce bending, buckling, and twisting. These magnetoelastic systems
have been investigated primarily through continuum approximations and molecular dy-
namics (MD) simulations, predicting a variety of instabilities including buckling, dilation,
and torsion [1, 2, 4, 11]. While these methods clarify many key mechanisms, their re-
liance on detailed simulations and approximate models often obscures the broader energy
landscape and makes it difficult to extract simple, widely applicable design principles.

Here, we investigate a minimal magnetoelastic system: a uniformly magnetized rigid
ellipse tethered by linear springs to a fixed frame, subject to a homogeneous in-plane
magnetic field. Specifically, the ellipse (semi-major axis a) is attached to two linear
springs of rest length L0 and initial length L anchored at fixed points (cf. Figure 1). A
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uniform, in-plane external field ha of fixed magnitude but variable direction ψ serves as
the sole control input. As ψ varies, one seeks to guide the ellipse’s center c = (x, y) ∈ R2

along a continuous closed trajectory while simultaneously adjusting its orientation θ.
Remarkably, whenL0 ⩾ L + 2a, the system enters a full-controllability regime, allowing
arbitrary planar positioning and rotation using only the single parameter ψ. Our analysis
goes beyond small-deflection, linearized treatments by exploring the full nonlinear energy
landscape associated with large deformations and rotations of the tethered ellipse.

Unlike more intricate metamaterials or multi-component microrobots, this simplified
variational model reveals rich behavior through the interplay of elastic and magnetic
energies alone. By focusing on this paradigmatic system, we aim to gain fundamental
insights into the energy landscapes that govern magnetic particles embedded in elastic
media.
Outline. The remainder of the paper is organized as follows. In Section 2 we introduce
our minimal elastic model of a rigid, permanently magnetized ellipse tethered by two
linear springs and derive an explicit expression for its elastic energy (12). Section 3
is devoted to the purely elastic problem: we characterize all zero-energy configurations
and prove Theorem 1. In Section 4 we couple the elastic model to a uniform in-plane
magnetic field, show that the magnetization remains spatially uniform at equilibrium,
and—under the same rest-length hypothesis—demonstrate full planar controllability by
rotating the external field (Theorem 2). We also analyze the non–full-controllability
regime L < L0 < L + 2a, identifying when the ellipse must “pin” at the origin versus
when it can still follow a zero-energy path.

2. The elastic model

What we are going to derive works for general bounded domains in R2. However, for
concreteness, we assume that Ω is an ellipse in R2 made of ferromagnetic material. We
assume (cf. Figure 1) that in the reference configuration Ω is centered at the origin and that
its major axis is aligned along the e1 axis. We denote by a > 0 the length of its semi-major
axis. The ellipse is elastically connected to two perpendicular walls at w1 := −(a+ L)e1
and w2 := (a + L)e1 through linear springs, which are free to rotate about their pins.
The springs are assumed to be at rest when their length is L0. Hence, depending on the
position of the walls, the initial length of the springs can be in an extension (if L > L0) or
compression (if L < L0) state.
Assumption. In this work, we assume that the initial (reference) length of the springs is
in a compression state:

L < L0. (1)
The regime L ⩾ L0 can be investigated as well, but it is degenerate for our purposes as
the critical points of E are isolated.

The state-space of Ω can be parameterized by the parameters c ∈ R2 and θ ∈ R, which
identify the center of the new position of Ω and the angle θ between its semi-major axis
(initially in e1) and e1. We denote by Ωc,θ the state in which Ω is centered at c ∈ R2 and
rotated by an angle θ. Also, we denote by ℓ1, ℓ2 the increments of the springs connected,
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Figure 1. We assume that in the reference configuration Ω is centered at the origin and that
its major axis is aligned along the e1 axis. We denote by a > 0 the length of it semi-major
axis. The ellipse is elastically connected to two perpendicular walls at w1 := −(a+ L)e1
and w2 := (a + L)e1 through linear springs that are free to rotate about their pins. The
springs are assumed to be at rest when their length is L0. The state-space of Ω can be
parameterized by the parameters c ∈ R2 and θ ∈ R which identify the center of the new
position of Ω and the angle θ between its semi-major axis (initially in e1) and e1.

respectively, to w1 and w2, when the magnetic ellipse occupies the region Ωc,θ. The total
elastic energy associated with the configuration Ωc,θ then reads as

E (c, θ) :=
1

2
[(L− L0) + ℓ1]

2 +
1

2
[(L− L0) + ℓ2]

2. (2)

To explicitly express the elastic energy E in terms of the state variables c, θ, we first observe
(cf. Figure 1) that in terms of position vectors, the increments L+ ℓi satisfy the relations

|L+ ℓ1| = |σ1 − w1| , (3)
|L+ ℓ2| = |σ2 − w2| , (4)

where σ1, σ2 are the position vectors of the extremities of the spring attached to Ωc,θ with
respect to the origin. Simple vector algebra (cf. Figure 1) gives σ1 = c − aRθe1 and
σ2 = c+ aRθe1. Here, Rθ denotes the 2d rotation matrix

Rθ :=

(
cos θ − sin θ
sin θ cos θ

)
. (5)

Expanding the previous equations, we get
|L0 + (L− L0) + ℓ1| = |(a+ L)e1 + (c− aRθe1)| , (6)
|L0 + (L− L0) + ℓ2| = |(a+ L)e1 − (c+ aRθe1)| . (7)

To further simplify the expressions (6) and (7), we rely on a classical physical assumption:
the impenetrability of matter.
Assumption. We assume the impenetrability of matter, i.e., that the compression cannot
collapse the spring to more than a point. This amounts requiring that L + ℓi ⩾ 0 for
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i = 1, 2. Equivalently, we require that
|σi − wi| = L+ ℓi (i = 1, 2). (8)

Under assumption (8), the previous relations (6) and (7) can be rearranged under the
form

(L− L0) + ℓ1 = |(a+ L)e1 + (c− aRθe1)| − L0, (9)
(L− L0) + ℓ2 = |(a+ L)e1 − (c+ aRθe1)| − L0. (10)

Plugging the previous two relations into (2) we infer that in terms of the state variables
c, θ, the total elastic energy reads as

E (c, θ) =
1

2
(|(a+ L)e1 + (c− aRθe1)| − L0)

2

+
1

2
(|(a+ L)e1 − (c+ aRθe1)| − L0)

2 . (11)

To shorten notation, we set

E (c, θ) :=
1

2
(|c− va,L(θ)| − L0)

2 +
1

2
(|c+ va,L(θ)| − L0)

2 , (12)

with
va,L(θ) = aRθe1 − (a+ L)e1 = a

(
cos θ − (1 + L/a)

sin θ

)
. (13)

Remark 2.1. Also, it is useful to keep in mind the geometric meaning of the vectors
c± va,L(θ). They describe the segments occupied by the springs

c− va,L(θ) = σ1 − w1, (14)
c+ va,L(θ) = σ2 − w2. (15)

For future reference, it is important to observe the estimates
|va,L(θ)|2 = a2 sin2 θ + (a(1− cos θ) + L)2 ⩾ L2 (16)

and
|va,L(θ)|2 ⩽ a2 + (a+ L)2 ⩽ 2(a+ L)2, (17)

which hold uniformly with respect to θ ∈ R.

3. Minimizers of the elastic energy

In this section, we characterize the energy landscape described by the minimizers of the
elastic energy (11). As we are going to show, the set of minimizers of E is degenerate in
the sense that it is the image of a curve in R2.

Theorem 1. Let
δ :=

L2
0 − L2

2 a (a+ L)
,

and define the angular interval

Iδ :=

{
[− arccos(1− δ), arccos(1− δ)], if L ⩽ L0 ⩽ L+ 2a,

[−π, π], if L0 ⩾ L+ 2a.
(18)
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Then the minimal value of the elastic energy E is zero. Moreover, this minimum is achieved
if, and only if, (c, θ) belongs to the set M ⊆ R2 × [−π, π] generated by the graph of the
closed curve

γδ : θ ∈ Iδ 7→ (c1(θ), c2(θ)) ∈ R2 (19)

with

c1(θ) :=
c2(θ) sin θ

(1 + L/a)− cos θ
, (20)

c2(θ) :=

[
(a(1− cos θ) + L)2(L2

0 − [L2 + 2a(a+ L)(1− cos θ)])

L2 + 2a(a+ L)(1− cos θ)

]1/2
. (21)

Precisely, there holds

M := {(γδ(θ), θ) : θ ∈ Iδ} ∪ {(−γδ(θ), θ) : θ ∈ Iδ}. (22)

In particular, if L0 ⩾ L + 2a, we have full controllability in the angle, that is, for every
θ ∈ [−π, π] there exist centers c := ±γδ(θ) where the energy is minimized. Therefore, if
L0 ⩾ L+ 2a, then Ω can be stabilized in any rotation state θ.

Before proving Theorem 1, we make some observations.

Remark 3.1. Note that γδ is a closed curve. Indeed, γδ(± cos−1(1 − δ)) = (0, 0) if
L ⩽ L0 ⩽ L + 2a and γδ(±π) = 0 if L0 ⩾ L + 2a. The maximum of c2(θ) is always
reached at θ = 0 where c22(0) = L2

0 − L2. Instead, the minimum value of c2(θ) depends
on the regime. It is c2(θ) = 0 (reached at θ = ± cos−1(1− δ)) if L ⩽ L0 ⩽ L + 2a, and
c22(θ) = L2

0 − (2a+ L)2 (reached at θ = ±π) if L0 ⩾ L+ 2a. In Figure 2 we sketch, for
different values of L0 ⩾ L, a qualitative plot of the family of trajectories that can be traced
by the center c (i.e., by the curve γδ) without altering the minimal elastic energy. On the
left part of the picture, we plot the regime L ⩽ L0 ⩽ L+ 2a, and on the right part of the
picture, we plot the regime L0 ⩾ L+ 2a.

Remark 3.2. It can be useful to know under which conditions the configurations Ωc,nπ

(n ∈ N) are energy minimizing. For that, note that If cos θ = 1, i.e., if θ = nπ, n ∈ Z and
n even, then from (21) we get c22 = L2

0−L2. Therefore, Ωc,0 is a minimizing configuration
only when L0 ⩾ L. The minimizing configurations are associated with the centers

c =
(
0,±

√
L2
0 − L2

)
.

Similarly, if cos θ = −1, i.e., if θ = nπ, n ∈ Z and n odd, then from (21) we get
c22 = L2

0− (2a+L)2. Therefore, Ωc,π and Ωc,−π are minimizing configurations only when
L0 ⩾ 2a+ L. The minimizing configurations are associated with the centers

c =
(
0,±

√
L2
0 − (2a+ L)2

)
.

Remark 3.3. It is lightning to consider a concrete example. For L = 2a and L0 = 4a we
are in the limiting case L0 = L + 2a. For every θ ∈ [−π, π] the equations (20) and (21)
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Figure 2. A qualitative plot of the family of trajectories that can be traced by the center
c (without losing minimal elastic energy) for different values of L0 ⩾ L. On the left part
of the picture, we plot the regime L ⩽ L0 ⩽ L + 2a, and on the right part of the picture,
we plot the regime L0 ⩾ L + 2a. Note that the curve γδ is a closed curve. Precisely,
γδ(± cos−1(1 − δ)) = (0, 0) if L ⩽ L0 ⩽ L + 2a and γδ(±π) = 0 if L0 ⩾ L + 2a. The
maximum of c2(θ) is reached at θ = 0 where c22(0) = L2

0 − L2. Instead, the minimum
value of c2(θ) depends on the regime. It is c2(θ) = 0 if L ⩽ L0 ⩽ L + 2a, and
c22(θ) = L2

0 − (2a+ L)2 if L0 ⩾ L+ 2a.

reduces to

c22(θ) = 3a2
(3− cos θ)2(1 + cos θ)

(5− 3 cos θ)
, (23)

c1(θ) =
c2 sin θ

3− cos θ
. (24)

Given the symmetries of the elastic system (cf. (28)), without loss of generality, we can
focus on the positive brunch for c2(θ). Plotting the curve γδ(θ) for θ ∈ [−π, π], we get the
admissible positions of the center c that minimize the energy. A plot in this limiting case
L0 = L+ 2a, together with its physical meaning is given in Figure 3.

Proof. (of Theorem 1) We split the proof into three steps. The first step concerns the
energy level associated with ground states, the second step is about symmetries of the
minimizers.
Step 1. Minimizers have null energy. First, we show that if (c, θ) is a minimizer of E , then
E (c, θ) = 0. For that, we note that va,L(0) = −Le1. Hence, for θ = 0 and c = c2e2 the
energy reduces to

E (c, 0) =
(√

L2 + c22 − L0

)2

.

Taking c22 = L2
0 − L2 > 0 (cf. (1)) we get

E (c, 0) =
(√

L2 + c22 − L0

)2

= 0.
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Figure 3. State-space of the system in the limiting case L0 = L + 2a. The red curve
represents γδ(θ) which starts at θ = −π and ends at θ = π. Note that for θ = ±π the
springs are attached to opposite vertices with respect to the reference configuration (this is
energy favorable when L0 ⩾ L+ 2a).

Therefore, if (c, θ) is a minimizer of E then

(|c− va,L(θ)| − L0)
2 = (|c+ va,L(θ)| − L0)

2 = 0. (25)

Step 2. Symmetries of the minimizers. We now show that if (c, θ) is a minimizer of of E ,
so are

(−c, θ) = ((−c1,−c2), θ), (26)
(Zπ/2c,−θ) = ((−c1, c2),−θ), (27)
(Zπc,−θ) = ((c1,−c2),−θ). (28)

First, by the invariance of the euclidean norm under rotations gives E (−c, θ) = E (c, θ).
Also, if we denote by Zϕ the reflection about a line through the origin that makes an angle
ϕ with the x-axis, i.e.,

Zϕ :=

(
cos 2θ sin 2θ
sin 2θ − cos 2θ

)
then

Zϕva,L(θ) = a

(
cos(θ − 2ϕ)− (1 + L/a) cos 2ϕ
− sin(θ − 2ϕ)− (1 + L/a) sin 2ϕ

)
.

We deduce that Zϕva,L(θ) = −va,L(−θ) when ϕ = +π/2 (reflection about the y axis).
Moreover, we have that Zϕva,L(θ) = va,L(−θ) when ϕ = π (reflection about the x axis).
Step 3. Characterization of the minimizers. By (25) we know that the minimal elastic
energy is reached when the relations |c− va,L(θ)| = |c+ va,L(θ)| = L0 are satisfied.
A direct computation shows that the equation |c− va,L(θ)|2 = |c+ va,L(θ)|2 is satisfied
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when
c1 :=

c2 sin θ

(1 + L/a)− cos θ
. (29)

Note that the denominator is always strictly positive. Expanding the equation

|c+ va,L(θ)|2 = L2
0 (30)

and taking into account the expression of c1 in (29), we get that

c22 =
(a(1− cos θ) + L)2(L2

0 − [L2 + 2a(a+ L)(1− cos θ)])

L2 + 2a(a+ L)(1− cos θ)
. (31)

The existence of a solution is constrained to the condition that the right-hand side of (31)
is nonnegative, i.e., provided that L2

0 ⩾ L2 + 2a(a+ L)(1− cos θ). This is equivalent to

cos θ ⩾
L2 + 2a(a+ L)− L2

0

2a(a+ L)
= 1− L2

0 − L2

2a(a+ L)
. (32)

Observe that the previous inequality in θ is well-posed due to the regime of compression
we are investigating where L0 ⩾ L. After that, any θ ∈ R is a solution of (32) if

1− L2
0 − L2

2a(a+ L)
⩽ −1 (33)

i.e., when L0 ⩾ L + 2a. Instead, if 0 < L0 < L + 2a, then we have only a subset of
angles that solves (32) and this is given by the interval where

|θ| ⩽ cos−1(1− δ), δ :=
L2
0 − L2

2a(a+ L)
(34)

Overall, it follows that for any given θ there exists at most a solution (c1(θ), c2(θ)), and this
is given by (20) and (21). Moreover, from the symmetries of the elastic system (cf. (28)),
we deduce that if L0 ⩾ L+2a, then for every θ there exists a unique (c1, c2) ∈ R2, c2 ⩾ 0,
such that Ωc,θ is at minimal energy with angle θ. In particular, we have full controllability
in the angle θ when L0 ⩾ L + 2a. Instead, if L < L0 < L + 2a, then the minimizers of
the elastic energy are the image of the curve

γδ(θ) = (c1(θ), c2(θ)) with θ ∈ Iδ := [− cos−1(1− δ), cos−1(1− δ)].

In particular, for any |θ| ⩽ cos−1(1 − δ) there exists a unique c ∈ R2, c2 ⩾ 0, such
that Ωc,θ is at minimal energy with angle θ. Combining these observations with the
symmetry properties of the elastic system (cf. (28)), we get the characterization of the
energy landscape given in (22). □

4. Minimizers of the magnetoelastic system

Our investigation targets the small-scale regime, in which device dimensions become
comparable to the magnetic exchange length. In this limit, the variational theory of micro-
magnetics offers a natural description: the magnetization is represented by a unit-length
vector field that minimizes a total energy functional comprised of exchange, crystalline
anisotropy, Zeeman, and demagnetizing terms [3,5,8]. Crucially, this variational setting is
well-suited to include elastic effects by introducing a coupled energy that depends jointly
on the strain field and the magnetization. In a two-dimensional formulation, the magnetic
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energy of an elastic ellipse Ωc,θ in the deformed state characterized by parameters (c, θ) is
expressed as follows [6, 7]:

FΩc,θ
(m; θ) :=

1

|Ωc,θ|

[∫
Ωc,θ

a2ex |∇m|2 + κ2
∫
Ωc,θ

(m · e3)2

−
∫
Ωc,θ

ha ·m+
κ2an
2

∫
Ωc,θ

|m× eθ|2
]

(35)

for m ∈ H1 (Ωc,θ, S2). If Ω is the reference ellipse centered at the origin as in Figure 1,
then Ωc,θ is the image under Ω of the map

µc,θ : x ∈ Ω 7→ (Rθx+ c) ∈ Ωc,θ.

Here Rθ is the three-dimensional rotation matrix about the out-of-plane e3-axis. To
simplify the exposition, we assume that in the reference configuration the direction of the
anisotropy axis corresponds to e1. Therefore eθ := Rθe1. Note that, with a small abuse of
the notation, we denote by the same symbols the basis vectors in R2 and R3. The context
clarifies what is meant.

The total magnetoelastic energy associated with the system in the configuration Ωc,θ

reads as
G (m; c, θ) = FΩc,θ

(m; θ) + E(c, θ).
We are interested in the minimization problem

min
(c,θ)∈R2×[−π,π]

(
min

m∈H1(Ωc,θ,S2)
[FΩc,θ

(m; θ)] + E (c, θ)

)
. (36)

Our main result reads as follows.

Theorem 2. Let ha ̸= 0 and ψ ∈ [−π, π] the angle that the applied field ha makes with
e1. If (m; c, θ) in H1 (Ωc,θ,S2)× R2 × [−π, π] is a minimizer of the energy functional G
then m ∈ S1, i.e., m is constant in Ωc,θ.

Moreover, if

ψ ∈ [− cos−1(1− δ), cos−1(1− δ)], δ :=
L2
0 − L2

2a(a+ L)
, (37)

then the magnetoelastic minimizers are given by

m = ha/ |ha| , eθ = ±ha/ |ha| , c = γδ(θ),

with θ = ψ+kπ, k ∈ Z, and c = γδ(θ) the curve characterized in Theorem 1. The minimal
value of the energy is then G (m; c, θ) = − |ha|. In particular, in the full controllability
regime L0 ⩾ L+ 2a, the characterization holds for every ψ ∈ [−π, π].

Instead, if (37) does not hold, i.e., if ψ /∈ [− cos−1(1−δ), cos−1(1−δ)] and, therefore,
necessarily L < L0 < L+2a, the following assertions hold. If (m; c, θ) is a minimizer of
G the following dichotomy holds:

i. Either cos θ ⩾ 1−δ; in which caseE (c, θ) = 0with the optimal center c determined
by the curve γδ defined by (20) and (21),
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ii. or else, cos θ < 1− δ; in which case c = 0.

Therefore, if cos θ < 1− δ then any minimizer (m; c, θ) of G is centered at the origin, i.e.,
of the form (m; 0, θ), with (m, θ) minimizer in S1 × [−π, π] of the energy

F (m; θ) := −ha ·m+
κ2an
2

|m× eθ|2 + (|va,L(θ)| − L0)
2 . (38)

Equivalently, if we express the quantities in polar coordinates through the angles (ϕ, ψ)
such that m := Rϕe1 and ha := |ha|Rψe1, then (38) reads as

F (m; θ) =
κ2an
2

sin2(θ − ϕ)− |ha| cos(ψ − ϕ) + (|va,L(θ)| − L0)
2 . (39)

In Figure 4 we represent the magnetoelastic energy minimizers associated with a full
rotation of the applied field ha (encoded in the angle ψ) in the interval [0, 2π]. In order to
catch the nonfull controllability regimeL < L0 < L+2a, we setL = 3a andL0 = L+a .
Also, we set |ha| = 1 and κan = 2. This choice entails that the minimal magnetizationm is
not aligned with the applied field ha when the associated angle ψ is such that cosψ < 1−δ
(see the configuration at c = 0). Note that, without any loss of generality, in Figure 4 we
can restrict the visualization to the case c2 ⩾ 0. Indeed, we already pointed out that if (c, θ)
is a minimizer of the elastic energy E , so are (cf. (28)) (−c, θ), (Zπ/2c,−θ), (Zπc,−θ).
This is because of

E (c, θ) = E (−c, θ) = E (Zπ/2c,−θ) = E (Zπc,−θ) .
The previous relations imply similar symmetry relations on the magnetoelastic energy F .
Precisely, if we set

Fψ (m; c, θ) =
κ2an
2

sin2(θ − ϕ)− |ha| cos(ψ − ϕ) + E (c, θ)

so that the notation for F also the dependence from the external field direction ψ, then we
have

Fψ (ϕ; c, θ) = Fψ (ϕ;−c, θ) = F−ψ (−ϕ, Zπ/2c,−θ) = F−ψ (−ϕ, Zπc,−θ) .
Therefore, the visualization of the energy landscape for c2 ⩾ 0 does not affect any
generality.

Before the proof of Theorem 2 we make some observations and prove complementary
results.
Remark 4.1. The analysis of the minimizers in the elastic regime is independent of the
shape of Ω. Indeed, it depends only on the segment of length 2a passing through Ω to
which the springs are connected.
Remark 4.2. Intuitively, the energy in (39) reveals that the higher is |ha|, the more the
magnetization m (in terms of ϕ) tends to be aligned with the field ha. Also, the higher is
κ2an, the more the axis of Ω (expressed in terms of θ) tends to follow the orientation of m.
To make these statements quantitative, we prove the following result.
Proposition 1. If (m; c, θ) is a minimum point for F in (39) then

| sin(ϕ− ψ)| ⩽ 1

2 |ha|
(40)
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Figure 4. Numerical computation of the magnetoelastic energy landscape associated with
a full rotation of the applied field ha (encoded in the angle ψ) in the interval [0, 2π]. Here,
we set L = 3a and L0 = L + a so that we are in the nonfull controllability regime
L < L0 < L+2a. Also, we set |ha| = 1 and κan = 2. This choice entails that the minimal
magnetizationm (in red in the Figure) is not aligned with the applied field ha (in cyan in the
Figure) when the associated angleψ is outside of the interval [− cos−1(1−δ), cos−1(1−δ)]
(see the configuration pinned at c = 0). Left, position and orientation of the ellipse as ψ
varies in the interval [0, 2π]. When ψ = 0, the center of the ellipse is on the y axis and
is represented by a white dot. As ψ varies in [0, 2π] the ellipse rotates and moves along
the curve γδ (represented in light blue in the picture. Center, for clarity, we represent the
minimal magnetization m (in dark red) associated with the applied field ha. Right, we
overlap the two plots so as to have a complete picture of the induced dynamics.

and

| sin(2(θ − ϕ))| ⩽ 1

κ2an
. (41)

Remark 4.3. Relation (41) gives a quantitative justification to the observation that the
bigger is κ2an, the more is (θ − ϕ) close to the set {−π/2, 0, π/2, π}. Also, (40) tells us
that the bigger is |ha| the more is (ϕ − ψ) close to the set {0, π}. In terms of limiting
relations, this tells us that

∢ (m · eθ)
κan→∞−−−−→ {−π/2, 0, π/2, π}, ∢ (m · ha)

|ha|→∞−−−−→ {0, π},

where eθ coincides with the axis of the ellipse to the extremities of which the springs
are attached. On the other hand, by minimality, we know that if (m; c, θ) minimizes the
energy, then necessarily ∢ (m · ha) ⩽ π/2 because if ∢ (m · ha) > π/2, one can decrease
the energy by reversing the magnetization from m to −m. This is because the only part
of the energy that depends on m is the density −ha · m + κ2an

2
|m× eθ|2 and, therefore,

switching from m to −m does not alter the anisotropy energy while reducing the Zeeman
energy. Overall, we get that

∢ (m · eθ)
κan→∞−−−−→ {−π/2, 0, π/2, π}, ∢ (m · ha)

|ha|→∞−−−−→ {0}.
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Proof. (of Proposition 1) Let (m; c, θ) be a minimizer of F in (39). From the stationary
condition ∂mF (m; c, θ) = 0 we get that the following Euler–Lagrange holds

(m · eθ) eθ + ha = λm, λ := (m · eθ)2 +m · ha, (42)

with λ the Lagrange multiplies coming from the nonconvex constraint m ∈ S1. By
cross multiplying both sides of the Euler–Lagrange equation by eθ we get (ha × eθ) =
λ (m× eθ), from which

|ha|2 − (eθ · ha)2 =
(
(m · eθ)2 + (m · ha)

)2 (
1− (m · eθ)2

)
. (43)

Dot multiplying both sides of of the Euler–Lagrange equation by eθ we get (m · eθ) +
(eθ · ha) = λ (m · eθ), from which it follows that

(eθ · ha) =
(
(m · eθ)2 + (m · ha)− 1

)
(m · eθ) . (44)

Combining (43) and (44) through the in common term (eθ · ha) we get the relation

|ha|2 −
(
(m · eθ)2 + (m · ha)− 1

)2
(m · eθ)2 =

(
(m · eθ)2 + (m · ha)

)2 (
1− (m · eθ)2

)
,

which after some algebra reduces to the equation

(m · eθ)4 − (m · eθ)2 + |ha ×m|2 = 0. (45)

Therefore the solutions of (45) satisfy the relation

(m · eθ)2 =
1±

√
1− 4 |ha ×m|2

2
. (46)

Since we know about the existence of solutions, this implies that

1

4
⩾ |ha ×m|2 . (47)

In terms of angles, the previous relation reads as | sin(ϕ − ψ)| ⩽ 1/2 |ha|, which is
exactly (40). After that, if (m; c, θ) is a minimizer, then also the stationary condition
∂ϕF (m; c, θ) = 0 holds. In polar coordinates, the stationary condition ∂ϕF (m; c, θ) = 0
reads as

κ2an
2

sin(2(θ − ϕ)) = |ha| sin(ϕ− ψ). (48)

Combining (40) and (48) we get (41). □

Proof. (of Theorem 2) We divide the proof into three steps.
Step 1. Magnetoelastic minimizers have m ∈ S1. Our first step shows that if (m; c, θ) is a
minimizer in H1 (Ωc,θ,S2) × R2 × [−π, π] of the energy functional G then m ∈ S1, i.e.,
m is constant in Ωc,θ. Moreover, the minimization problem (36) is equivalent to

min
(c,θ)∈R2×[−π,π]

(
min
m∈S1

[
−ha ·m+

κ2an
2

|m× eθ|2
]
+ E (c, θ)

)
. (49)
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Indeed, we have

G (m; c, θ) ⩾ min
(c,θ)∈R2×[−π,π]

(
min
m∈S2

[
κ2

2
(m · e3)2 − ha ·m+

κ2an
2

|m× eθ|2
]
+ E (c, θ)

)
⩾ min

(c,θ)∈R2×[−π,π]

(
min
m∈S2

[
−ha ·m+

κ2an
2

|m× eθ|2
]
+ E (c, θ)

)
= min

(c,θ)∈R2×[−π,π]

(
min
m∈S1

[
−ha ·m+

κ2an
2

|m× eθ|2
]
+ E (c, θ)

)
. (50)

The last equality (50), which reduces a minimization problem on S2 to a minimization
problem on S1, is justified by the following argument. First, we observe that by using
m = ±eθ as competitors, one can deduce the bound

min
m∈S2

[
−ha ·m+

κ2an
2

|m× eθ|2
]
⩽ − |ha · eθ| ⩽ 0. (51)

Thus, the minimization problem in (51) is solved by configuration with nonpositive energy.
After that, we can exclude that m = ±e3 are minimizers of (51) given that the resulting
energy would be strictly positive because of

−ha ·m+
κ2an
2

|m× eθ|2 =
κ2an
2
.

Also, note that any minimizer of (51) has to be such that ha ·m = ha ·m⊥ ⩾ 0; otherwise,
again, the energy would be strictly positive. That said, if m · e3 ̸= 0, m ̸= ±e3, and
ha ·m⊥ ⩾ 0 then

−ha ·m+
κ2an
2

|m× eθ|2 =
κ2an
2

−
∣∣ha ·m⊥∣∣− κ2an

2

(
m⊥ · eθ

)2
⩾
κ2an
2

−
∣∣∣∣ha · m⊥

|m⊥|

∣∣∣∣− κ2an
2

(
m⊥

|m⊥|
· eθ

)2

= −ha ·
m⊥

|m⊥|
+
κ2an
2

∣∣∣∣ m⊥

|m⊥|
× eθ

∣∣∣∣2 ,
from which it follows that m = m⊥

|m⊥| has a lower energy density. Overall, we get that
S2-minimizers of κ2an

2
|m× eθ|2 − ha ·m are actually elements of S1.

Step 2. Solution of the minimization problem in the full controllability setting. From
the previous step and Theorem 1, we get that if L0 ⩾ L + 2a then, as a function of
m ∈ S1, the energy density (κ2an/2) |m× eθ|2 − ha ·m is minimized when θ is such that
eθ = ±ha/ |ha|, and m = ha/ |ha| because in this case, we have

κ2an
2

|m× eθ|2 − ha ·m = − |ha| .

After that, we recall that in the full controllability regime, the elastic energy has a minimizer
Ωc,θ for every θ ∈ [π, π]. It is sufficient to take c = γδ(θ). This implies that the minimal
magnetoelastic energy is reached in the state (m; c, θ) with

m =
ha
|ha|

, Rθe1 = ± ha
|ha|

, c = γδ(θ). (52)
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Indeed, for every m ∈ S1, the following energy lower bound holds
G (m; c, θ) ⩾ − |ha| ,

and with the choices in (52) we reach the equality G (m; c, θ) = − |ha|. This is the reason
why we refer to the case L0 ⩾ L+ 2a as the full controllability regime.

Instead, if L < L0 < L + 2a, then, depending on the direction of the applied field
ha, we have to distinguish between two possible scenarios. First, recall from (18) that the
elastic energy vanishes whenever

θ ∈ [− cos−1(1− δ), cos−1(1− δ)], δ :=
L2
0 − L2

2a(a+ L)
.

Given ha ̸= 0, we denote by ψ ∈ [−π, π] the angle that the applied field ha makes with e1.
If ha/ |ha| = Rψe1 for some ψ ∈ [− cos−1(1− δ), cos−1(1− δ)], then the magnetoelastic
minimizer is given by (m; c, θ) with m = ha/ |ha|, θ such that eθ = Rθe1 = ±ha/ |ha|
(i.e., θ = ψ + kπ, k ∈ Z), and c = γδ(θ). Indeed, arguing as before, in this configuration
we have that m× eθ = 0 and, therefore,

G (m; c, θ) = FΩc,θ
(m; θ) = − |ha| .

It remains to understand the minimal configuration when ha/ |ha| = Rψe1 and |ψ| >
cos−1(1− δ). For that, we need to investigate the whole energy functional, which thanks
to Step 1 can be written as (cf. (49))

F (m; c, θ) := −ha ·m+
κ2an
2

|m× eθ|2 + E (c, θ) , (53)

with

E (c, θ) =
1

2
(|c− va,L(θ)| − L0)

2 +
1

2
(|c+ va,L(θ)| − L0)

2 . (54)

Note that the minimization problem for F is finite-dimensional. However, given the
nonconvex constraint m ∈ S1, the critical points are solutions of a high order equation
in the powers of m · eθ and m · ha. In order to proceed, it is convenient to express the
quantities in polar coordinates through the angles (ϕ, ψ) whose meaning is given by

m := Rϕe1, ha := |ha|Rψe1. (55)
In this way, we have

ha ·m = |ha|Rψe1 ·Rϕe1 = |ha| cos(ψ − ϕ). (56)
Similarly, we have

|m× eθ|2 = |m×Rθe1|2 = 1−
(
e1 ·R⊤

θ Rϕe1
)2

= sin2(θ − ϕ).

Therefore the total magnetoelastic energy (38) reads as

F (m; c, θ) =
κ2an
2

sin2(θ − ϕ)− |ha| cos(ψ − ϕ) + E (c, θ) (57)

The energy functional F has to be minimized in the configuration space (c, θ, ϕ) ∈
R2

+ × [−π, π]3.
Step 3. Proof of (38). According to Proposition 1, depending on the strength of the
physical parameters κ2 and |ha|, the minimal angle θ can differ from the direction of the
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applied field (encoded in the angle ψ) and, in general, only numerical simulations can
predict the behavior of the minimal magneto-elastic states. However, we can still predict
the position of the center c depending on the minimal angle θ. For that, we observe that if
(c, θ) is a critical point of the elastic energy E , then ∂cE (c, θ) = 0. In expanded form, the
stationary condition ∂cE (c, θ) = 0 reads as

∂cE (c, θ) = (|c+ va,L(θ)| − L0)
c+ va,L(θ)

|c+ va,L(θ)|

+ (|c− va,L(θ)| − L0)
c− va,L(θ)

|c− va,L(θ)|
= 0. (58)

In writing the previous relation, we assumed that |c+ va,L(θ)| ≠ 0 and |c− va,L(θ)| ≠ 0.
But actually this is always the case for minimizers. To see this, we observe that if
|c+ va,L(θ)| = 0 or |c− va,L(θ)| = 0, then one of the two springs is at the maximal
compression. Suppose that |c− va,L(θ)| = 0, then c = va,L(θ) and the value of the
associated elastic energy is

E (va,L(θ), θ) =
1

2
L2
0 +

1

2
(2 |va,L(θ)| − L0)

2 .

On the other hand, c = 0 has lower energy regardless of the angle θ. Indeed, we have

E (va,L(θ), θ)− E(0, θ) = 1

2
L2
0 +

1

2
(2 |va,L(θ)| − L0)

2 − (|va,L(θ)| − L0)
2

=
1

2
L2
0 +

1

2

(
4 |va,L(θ)|2 + L2

0 − 4L0 |va,L(θ)|
)

−
(
|va,L(θ)|2 + L2

0 − 2L0 |va,L(θ)|
)

=
1

2
L2
0 + 2 |va,L(θ)|2 +

1

2
L2
0 − 2L0 |va,L(θ)|

− |va,L(θ)|2 − L2
0 + 2L0 |va,L(θ)|

= |va,L(θ)|2 ,

and we know from (16) that |va,L(θ)|2 ⩾ L2. This means that the choice c = va,L(θ)
never gives an energy minimizing configuration. The same argument applies to the
|c+ va,L(θ)| = 0. Overall, we have shown that if (c, θ) is a minimum point of the elastic
energy E then |c± va,L(θ)| ≠ 0, i.e.,

c ̸= ±va,L(θ). (59)

As a side remark, note that this observation holds regardless of the current regime L <
L0 < L+ 2a.

Having proved that (58) is well-defined at minima, we observe that (58) implies, in
particular, that at minima equipartition of the energy holds:

1

2
(|c− va,L(θ)| − L0)

2 =
1

2
(|c+ va,L(θ)| − L0)

2 . (60)

In other words, at equilibrium, the variation in absolute value of the length of the two
springs (computed with respect to the rest length L0) is the same for the two springs.
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The previous relation allows us to focus on the case |c± va,L(θ)| −L0 ̸= 0. Indeed, if
θ is such that |c± va,L(θ)| = L0, then we already know from Theorem 1 that minimizers
have zero elastic energy, the angle θ is such that

cos θ ⩾ 1− δ with δ :=
L2
0 − L2

2a(a+ L)
, (61)

and the position of c is given by (20) and (21).
From (58) and (60) we get that if |c± va,L(θ)| − L0 ̸= 0, then

c+ va,L(θ)

|c+ va,L(θ)|
= ± c− va,L(θ)

|c− va,L(θ)|
. (62)

In particular, the wedge product of c+ va,L(θ) with c− va,L(θ) vanishes, i.e.,
(c+ va,L(θ))× (c− va,L(θ)) = 0. (63)

The previous expression simplifies to
c× va,L(θ) = 0. (64)

The previous relation (64) implies that if (c, θ) is a stationary point for E (satisfying (59))
then c = λva,L(θ) for some λ ∈ R with λ ̸= ±1.

However, a direct computation shows that either λ = 0 or λ = L0

|va,L(θ)|
. Indeed, for

c = λva,L(θ) we have

∂cE (c, θ) = (|1 + λ| · |va,L(θ)| − L0) · sgn(1 + λ)
va,L(θ)

|va,L(θ)|

− (|1− λ| · |va,L(θ)| − L0) sgn(1− λ)
va,L(θ)

|va,L(θ)|
. (65)

Therefore, if |λ| < 1 then

∂cE (c, θ) = ((1 + λ) · |va,L(θ)| − L0)
va,L(θ)

|va,L(θ)|

− ((1− λ) · |va,L(θ)| − L0)
va,L(θ)

|va,L(θ)|
= 2λ |va,L(θ)| (66)

and the right-hand side vanishes if, and only if, λ = 0. On the other hand, if λ > 1 then

∂cE (c, θ) = ((1 + λ) · |va,L(θ)| − L0)
va,L(θ)

|va,L(θ)|

+ ((λ− 1) · |va,L(θ)| − L0)
va,L(θ)

|va,L(θ)|

= 2 (λ |va,L(θ)| − L0)
va,L(θ)

|va,L(θ)|
(67)

and the right-hand side vanishes if, and only if, λ = L0

|va,L(θ)|
. Similarly, if λ < −1 then

∂cE (c, θ) = 2 (λ · |va,L(θ)|+ L0)
va,L(θ)

|va,L(θ)|
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and the right-hand side vanishes if, and only if, λ = −L0/|va,L(θ)|.
Summarizing, in the regime L < L0 < L+ 2a we have that if (m; c, θ) is a stationary

point of the magnetoelastic energy, then the following alternatives are possible for the
position of the center c (in what follows, as usual, δ := (L2

0 − L2)/(2a(a+ L))):

i. There holds cos θ ⩾ 1 − δ; in which case E (c, θ) = 0 with the optimal center c
determined by the curve γδ defined by (20) and (21).

ii. There holds cos θ < 1− δ and λ = 0; in which case c = 0.

iii. There holds cos θ < 1 − δ and λ = ±L0/ |va,L(θ)| with L0 > |va,L(θ)| and; in
which case c = ±L0va,L(θ)/ |va,L(θ)| (and |c| = L0).

From the previous possibilities it appears clear that a full characterization of the minimal
center c associated with θ is achieved as soon as we compare the energy associated with
possibilities ii and iii. For that, recalling that |λ| > 1, we have

E (λva,L(θ), θ) = (|λ− 1| |va,L(θ)| − L0)
2

=

(∣∣∣∣± L0

|va,L(θ)|
− 1

∣∣∣∣ |va,L(θ)| − L0

)2

= (|±L0 − |va,L(θ)|| − L0)
2

= |va,L(θ)|2 .

Also, we have

E(0, θ) = (|va,L(θ)| − L0)
2 = |va,L(θ)|2 − 2L0 |va,L(θ)|+ L2

0.

Hence, when cos θ < 1− δ, the center c = 0 is energetically favored whenever |va,L(θ)| >
L0/2. From the expression of |va,L(θ)| we get that this happens if, and only if,

a2 sin2 θ + (a(1− cos θ) + L)2 > L2
0/4.

Simplifying the previous expression we see that this happens when

cos(θ) <
2a2 + 2aL+ L2 − L2

0/4

2a(a+ L)
=

2a(a+ L) + L2 − L2
0/4

2a(a+ L)
= 1− L2

0/4− L2

2a(a+ L)
.

But this is always the case because by assumption cos θ < 1− δ and, on the other hand,

1− δ < 1− L2
0/4− L2

2a(a+ L)
.

This concludes the proof. □
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