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Abstract

This work focuses on a phase field approximation of Plateau’s problem. Inspired by Reifenberg’s
point of view, we introduce a model that combines the Ambrosio-Torterelli energy with a geodesic
distance term which can be considered as a generalization of the approach developed in [LS14,
BLS15] to approximate solutions to the Steiner problem. First, we present a Γ-convergence analysis
of this model in the simple case of a single curve located on the edge of a cylinder. In a numerical
section, we detail the numerical optimisation schemes used to minimize this energy for numerous
examples, for which good approximation of solutions to Plateau’s problem are found.
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1 Introduction

In this paper we introduce a phase field approximation of the famous Plateau’s problem, which consists
in finding a surface of minimal area spanning a given set of curves. The precise formulation of this
topological constraint raises challenging mathematical questions that contributed to the development
of the geometric measure theory, from which different major schools of thought have emerged.

On the one hand, Federer and Fleming introduced objects known as integral currents to describe
the boundary constraint, in the case of oriented surfaces [FF60]. They established the existence of an
integral current with fixed boundary and minimal mass, which can be interpreted as a weighted area.
On the other hand, Reifenberg developed a different approach using Čech homology to characterize the
property of spanning a curve [Rei60]. He obtained the existence of surfaces of minimal area in a class
including non-orientable surfaces, as well as those studied by Federer and Fleming. At the same time
De Giorgi developped the theory of sets of finite perimeter which provides a powerful approach in the
co-dimension one case (see [DG54, DG60] and the books [Mag12, Giu84]). More recently, some new
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approaches have been introduced as the one of Harrison and Pugh [Har14, HP16] using a very natural
spanning criterium together with an existence result. Another nice framework is the very general
existence theory in [DLGM17, MNR23b]. Alternatively, the notion of sliding minimizers of [Dav20]
attempts to give yet a better description of what a soap film should be.

Numerous numerical methods have been developed to approximate minimal surfaces. In refer-
ences [Dou28, Wag78, CG88, DH99a, DH99b], the surface is represented parametrically and then
discretized using a finite element approach. Numerical techniques involving an implicit representation
of minimal surfaces have been developed, for example, in references [Cho93] and [Cec05], in which a
level set method is employed. Concerning phase field methods, the approach proposed in [WC21] offers
particularly suitable numerical approximations, but is restricted to oriented surfaces. It is also worth
mentioning that a phase field approximation for Plateau’s problem was already proposed by Chambolle,
Merlet and Ferrari in [CFM19b, CFM19a], or more precisely for the α-Mass energy, which corresponds
to Plateau’s problem in the limit α → 0. In these works, the authors start with another interpretation
of the Steiner approximation introduced in [LS14], by looking at a dual formulation for the geodesic
distance. This allows them to transform the topological constraint into a divergence constraint on the
second variable, and gave rise to the paper [CFM19b] which focuses on the 2D-Steiner problem. It
was then extended by the same authors for any dimensions and co-dimensions in [CFM19a], but the
topological constraint in that paper is again a divergence constraint on the second variable that can
be seen as a boundary constraint on a k-current. Let us also mention the paper [MNR23a], in which
the authors study the Γ-limit of a phase field approximation but where the topology is prescribed as
a constraint in the level set of the field. The paper [BHM24] also proposes a numerical investigation
of Plateau’s problem based on Allen–Cahn’s equation and a penalty term localized on the skeleton of
the interface in order to control its topology during the computation.

In this paper, we propose a new phase field model to approximate a certain instance of Plateau’s
problem, that more closely resembles Reifenberg’s example than the formulation with currents pro-
posed in [CFM19a]. In particular, the present work also contributes to the challenging question of
prescribing the topology of the level set of a function. For that purpose we use a penalty term involv-
ing a certain geodesic distance, weighted by u, in the spirit of what was done for the Steiner problem
in [LS14, BLS15, BLM18, BBL20]. For the recall, the classical Steiner problem consists in finding
the shortest path connecting a given finite set of points, and can be interpreted as a Plateau problem
in lower dimension. In this context, a geodesic distance has been used to enforce the connectedness
constraint on the level set of the phase field u. On the other hand the elliptic energy of Cahn-Hilliard
type on u is the quantity that will encode the surface area. In this paper we aim to generalize this
approach to more complicated topological constraints in higher dimensions. Our approach is different
from [MNR23a], in the sense that we add a penalty term that prescribes the topology only at the limit,
which is more relevant in view of performing numerical results. Actually, showing that this penalty
term is indeed able to prescribe the topology is exactly the core of our results.

A curve geodesic phase field model for Plateau’s problem. Let us now describe how
to extend the mathematical formulation of the phase field approximation of Steiner’s problem to
Plateau’s problem. In the rest of the paper, we will always consider 2-dimensional surfaces in R3, since
it corresponds to the physical observations of soap films. However, we point out that the model and
the analysis performed in Section 2 can be generalized in codimension 1 for any dimension.

The approach developed in [LS14, BLS15, BLM18, BBL20] for Steiner’s problem over a set Ω ⊂ R2,
consists in adding to the classical Ambrosio-Tortorelli length approximation term

AT ε(u) :=

∫
Ω

Å
ε|∇u|2 + 1

4ε
(1− u)2

ã
dx,

a penalization term involving a geodesic distance to enforce the topological constraint of Steiner’s
problem. The energy to minimize reads

AT ε(u) +
1

cε

n∑
i=1

du,ε(a0, ai), (1)

where du,ε(a0, ai) is the geodesic distance between the points a0 and ai, with weight u2 + δε, defined

2



as follows:

du,ε(a0, ai) := inf

®∫
γ

(u2 + δε)dH1, γ Lipschitz curve connecting a0 to ai

´
.

In the previous definition, (δε) is a sequence of positive numbers converging to zero, whose role in the
modeling is to control the length of the geodesics associated with the energy (1), and gain compactness.

The goal of this paper is to propose and justify a variational approximation of the form (1) for
Plateau’s problem in R3, where the Ambrosio-Tortorelli term AT ε(u) naturally approximates the area
of the sought surface, and the penalized term enforces the topological constraint of spanning a set
of curves. By analogy with Steiner’s problem, where geodesic curves connect given points, optimal
surfaces for Plateau’s problem will connect fixed closed curves.

More precisely, we intend a set E to be spanned by a boundary Γ, when any pair of closed curves
γ1, γ2 contained in the boundary Γ can be joined continuously by an homotopy inside E. This is
inspired by Reifenberg’s topological assumption that any element of the first group of homology of Γ
should be trivial in the homology group of E. By interpreting these homotopies connecting two given
closed curves as a geodesic distance between the two curves, we obtain a very natural analogy between
Steiner’s approximation and Plateau’s approximation.

To explain this fact more in detail, let us define as follows, the set of admissible homotopies

Hom(γi, γj) := {ℓ ∈ Lip([0, 1]× S1,R3) such that ℓ(0) = γi and ℓ(1) = γj}.

For the sake of clarity, in the sequel, we will use the term “curve” only to refer to the given curves
associated with the topological constraint of Plateau’s problem. We shall employ the term “homotopy”
(or “path”) to identify an element of Hom(γi, γj).

For all paths ℓ ∈ Hom(γi, γj), we define the surface Sℓ as the image

Sℓ := ℓ([0, 1]× S1). (2)

Notice that the surface Sℓ is H2- rectifiable and has finite H2-measure.
We are now in position to define the generalized geodesic distance between curves, associated with

a given continuous function u.

Definition 1.1. Let p ∈ [1,+∞] and (δε)ε>0 be a sequence of positive numbers that converges to zero.
We define the p-geodesic distance between γi and γj as follows:

dpu,ε(γi, γj) := inf

ß∫
Sℓ

(|u|p + δε)dH2 | ℓ ∈ Hom(γi, γj)

™
if p < ∞,

d∞u,ε(γi, γj) := inf

®
sup
Sℓ

(|u|+ δε) | ℓ ∈ Hom(γi, γj)

´
.

Subsequently, for the sake of simplicity, we will use the notation dpu instead of dpu,ε. We can now
introduce the approximation functional for Plateau’s problem using this approach, with the given
closed curve γ0, . . . , γd contained in an open set C, as follows:

F p
ε (u) := ε

∫
C
|∇u|2dx+

1

4ε

∫
C
(1− u)2dx+

1

cε

d∑
i=1

dpu(γ0, γi). (3)

In the above definition, (δε) and (cε) are a sequences of positive numbers that converge to zero, such
that the ratio δε/cε converges to zero. The phases u are H1 functions with values in [0, 1], that we also
assume to be continuous. They will satisfied extra conditions, defined in the next Section, to ensure
that the topological constraint is fulfilled.

Main theoretical result. Our main result states that from a sequence of minimizers of F p
ε , we

can construct a solution of Plateau’s problem. More precisely, this solution is obtained as the limit of
connected components of the complementary set of a level set {uε ⩽ tε}. For the sake of simplicity, we
will prove this result in the particular case of a single curve, contained in the boundary of a cylinder.
In this particular situation we obtain the following Theorem.
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Theorem 1.1. Let p ∈ [1,+∞], d = 1 (the constant in (3)), and γ1 be a single curve which is the graph
of a Lipschitz function lying on the boundary of a cylinder. We also let γ0 be a constant curve inside
the support of γ1 (as precisely described in Section 2.1). Then, for any quasi-minimizing sequence
uε for F p

ε (in the sense of Definition 2.4), and setting gε := uε − u2
ε/2, there exists sε = O(cε) and

tε ∈ [sε, 1/2− ε] such that the connected component of the level set {gε > tε} containing the upper part
of the cylinder, converges in L1 (up to a subsequence) to a solution of Plateau’s problem (as defined
in (4)).

The proof of Theorem 1.1 follows from a Γ-convergence type analysis, combining a limsup and a
liminf inequality. The proof of the limsup inequality is rather standard, and relies on constructing the
appropriate recovery sequence using the 1D-profile. The more delicate part is for the liminf inequality,
for which the argument used in [BLS15] does not work. Indeed, for the Steiner problem in [BLS15] the
liminf was achieved by use of an integral geometric functional involving the length of the projection
over lines in every direction, that was able to bound the total length of the union of the geodesic
curves. This argument was purely 1D and here in higher dimensions, the analogue integral geometric
functional cannot be used in the same manner. We therefore have developed a completely different
argument, based on the co-area formula and on the selection of certain good level sets of uε. The main
issue is to show that those level sets satisfy the desired topological constraint, and that the convergence
is robust enough to preserve the topology at the limit.

Numerical experiments. The objective of the numerical part is twofold. First, it aims to demon-
strate the effectiveness of our approach for computing approximations of solutions to Plateau’s problem
in a framework that goes well beyond the scope of Γ-convergence proofs, taking into account multiple
curves, singularities, and non-oriented solutions. For example, Figure 1 shows three numerical approx-
imations of solutions to Plateau’s problem. These include the well-known cube example, which has a
singular solution. The second objective is to propose an efficient scheme to minimize the functional F 2

ε

by considering a discretization of it’s L2-gradient flow following the relaxation proposed in [BBL20].
We also consider a variant consisting of replacing the Ambrosio-Tortorelli length approximation with
the Willmore-Cahn-Hilliard energy recently introduced in [BCM24] in order to improve the regularity
of the phase field function u and accelerate the optimisation process. The minimization of the geodesic
term is also a delicate point that requires some approximation to use fast-marching algorithms as in
the case of the Steiner problem.

Figure 1: Examples of numerical approximations of the solution of the Plateau problem

Outline of the paper. The rest of the paper is organized as follows. In Section 2, we justify
precisely the convergence result outlined above in the simplified setting of a single curve prescribed in
a cylinder. In Section 3, we detail a numerical approach to justify the relevance of this approximation
and provide a proof of concept of the method in a wide class of examples.

Acknowledgments. The authors would like to thank Laurent Mazet for fruitfull discussions
about the proof of Proposition 2.1 and for giving us nice references on minimal surfaces. We also
warmly thank Camille Labourie for providing us with the reference about Borsuk Theorem and for
many “coffee-discussions” about this work. This work was partially supported by the ANR Project
“STOIQUES” and by the Institut Universitaire de France (IUF).
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2 Gamma-convergence of the approximate functional

To carry out the convergence analysis of the phase field approximation that we propose, we consider
the simplified setting where the boundary of the minimal surface is composed of only one closed curve,
contained in the side edge of a cylinder. As will be detailed in the next subsection, these geometric
assumptions will allow us to exploit the theory of sets with finite perimeter to get existence of a solution
to the limit problem. They will also imply separation properties that will be at the core of the level
set method developed in the proof of the lim inf result.

2.1 Definition of Plateau’s problem

We choose to work in a cylinder to guarantee the separation property described in detail in Subsec-
tion 2.3.1. Although the results remain valid for any cylinder with convex basis, we assume this basis
to be a disk for the sake of simplicity. This open cylinder is denoted by C0, and is assumed to be of
radius 1, centered at the origin and of height 2h > 0.

The prescribed closed curve Γ is assumed to be contained in the lateral edge of C0. Indeed, we as-
sume that Γ is a Lipschitz graph and denote by γ̃ the Lipschitz function such that Γ = {(x′, γ̃(x′)), x′ ∈
S1}. This setting will allow us to impose the boundary constraint in Plateau’s problem using a radial
extension of Γ outside C0, from which we will construct two open sets D± defined as follows.

We denote by C the dilatation of cylinder C0 by a factor λ > 1, in other words C = λC0, as shown in
Figure 2a, so that C0 ⊂ C. Analogously, we denote by Σ the radial extension of Γ in C, which consists
in the surface described in cylindrical coordinates by

Σ := {(r, ω, γ̃(1, ω)), r ∈]1, λ[ and ω ∈ S1} ⊂ C.

This surface Σ separates C \ C0 in two open connected components D+ and D−, located respectively
above and below, and defined by

D+ := {(r, ω, z) ∈ C \ C0, z > γ̃(ω)},
D− := {(r, ω, z) ∈ C \ C0, z < γ̃(ω)}.

We represent the geometrical setting in Figure 2.
Since the prescribed boundary is composed of only one curve, denoted by γ := (IdS1 , γ̃), in order

to use the geodesic distance between curves as in Definition 1.1, we introduce a constant curve γ0
associated to an arbitrary fixed point x0 ∈ Γ. Upon translating Γ vertically, we can assume that x0 is
at height 0.

Having introduced the objects required to define the boundary constraint, we are now in position
to define the competitors for the problem.

Definition 2.1. We say that a Borel set Ω ⊂ C is a competitor if its characteristic function χΩ has
bounded variation in C, D+ ⊂ Ω and D− ⊂ Ωc.

Definition 2.2. The Plateau problem that we consider is defined as

inf{P (Ω, C), Ω is a competitor}. (4)

The existence of a minimizer follows from the theory of sets with finite perimeter, and the direct
method of calculus of variations. Moreover, in this particular simplified case we also know from the
standard theory of minimal surfaces that the minimizer is actually a graph inside the cylinder C0, that
coincides with Γ on the boundary of C0. In the following statement we gather the known properties of
the minimizer that will be used later.

Proposition 2.1. Plateau’s problem (4) admits a solution Ω which is equivalent to an open set such
that H2-a.e. ∂∗Ω = ∂Ω (where ∂∗Ω denote the essential boundary of Ω). Moreover ∂Ω∩C0 is a smooth
graph which is locally analytic in C0, and ∂Ω ∩ ∂C0 = Γ. In particular, ∂Ω ∩ C0 is of the form Sℓ for
some ℓ ∈ Hom(γ, γ0), and Sℓ is Ahlfors regular “up to the boundary Γ” in the sense that there exist
some constants C1, C2 > 0 such that for all x ∈ ∂Ω ∩ C and r > 0 such that B(x, r) ⊂ C,

C1 ⩽
P (Ω, B(x, r))

r2
⩽ C2. (5)
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(a) Dilated cylinder (b) Section of the nested cylinders

Figure 2: Geometrical setting of Plateau’s problem. The boundary constraint is defined through a
radial extension of a prescribed curve Γ contained in the lateral edge of a cylinder C0.

Proof. The existence of a set of finite perimeter Ω that is a solution for the Problem (4) follows from
the direct method of calculus of variations (see for instance [Mag12, Proposition 12.29] or [Mac25]).
The fact that this minimizer is equivalent to an open set such that ∂∗Ω = ∂Ω H2-a.e., together with
the Ahlfors-regularity (up to the boundary) is one of the main results of [Mac25]. It is also known
from the regularity theory of perimeter minimizers, that ∂Ω is locally an analytic surface inside C0
(see [Mag12, Theorem 27.3]). It remains to prove that ∂Ω is a graph that coincides with the curve Γ
on the boundary of C0, in other words that ∂Ω ∩ ∂C0 = Γ. This will directly imply that ∂Ω ∩ C0 = Sℓ

for some ℓ ∈ Hom(γ, γ0). This claim actually follows from the theory of minimal surfaces. Indeed,
it was proved by Rado [Rad33] (see also [Law80, Theorem 16 page 94]) that when a Jordan curve Γ
admits a one-to-one orthogonal projection onto a convex Jordan curve in the plane (which is clearly
the case here for our choice of Γ, that is a graph above a 2D-circle), then there is a unique solution
to the minimal surface equation satisfying the Dirichlet condition Γ. Moreover, this solution can be
expressed as a graph. Now we claim that our BV-solution Ω must coincide with this minimal graph
solution. There are at least two different ways to prove it: the first one is to use the graph solution
as a barrier, to touch ∂Ω from above and below and then invoke the unique continuation property
for the minimal surface equation. The second way to see it is to use that a minimal graph admits a
calibration, obtained by extending the normal to the surface.

2.2 Statement of the main results

We recall the Definition of the approximation functional in the case of one closed curve.

Definition 2.3. Let p ∈ [1,+∞], (cε) and (δε) sequences of positive numbers converging to zero such
that δε/cε → 0, and u ∈ H1(C) ∩ C(C) such that 0 ⩽ u ⩽ 1 and u = 1 on ∂C. We define the energy
functional

F p
ε (u) := ε

∫
C
|∇u|2dx+

1

4ε

∫
C
(1− u)2dx+

1

cε
dpu(γ, γ0). (6)

The Γ-convergence type result that we prove in this paper is divided, as usual, into a Γ − lim sup
and a Γ− lim inf inequality.

Remark 2.1. In the following two statements we will use the notation P (Ω, F ) for the relative perime-
ter of Ω in the closed set F . This means HN−1(∂∗Ω∩F ), which is well defined for any set Ω that has
finite perimeter in RN .
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Theorem 2.1 (Γ− lim sup). Let p ∈ [1,+∞] and Ω ⊂ C be a competitor for the Plateau problem (4),
in the sense of Definition 2.1. Then, there exists a sequence (uε) ∈ H1(C)∩C(C) such that 0 ⩽ uε ⩽ 1,
uε = 1 on ∂C and

lim sup
ε→0

F p
ε (uε) ⩽ P (Ω, C0). (7)

Theorem 2.2 (Γ− lim inf). Let p ∈ [1,+∞] and Ω be a solution to the Plateau problem (4). For any
sequence uε ∈ H1(C) ∩ C(C) such that 0 ⩽ uε ⩽ 1 and uε = 1 on ∂C,

lim inf
ε→0

F p
ε (uε) ⩾ P (Ω, C0). (8)

As already mentioned in the Introduction, by combining these Theorems we obtain Theorem 1.1
which is a classical consequence of a Γ-convergence type result, and justifies the relevance of this
approach. Here below is the definition of a quasi-minimizing sequence that was used in the statement
of Theorem 1.1.

Definition 2.4 (Quasi-minimizing sequence for F p
ε ). Let p ∈ [1,∞]. We say that a sequence uε ∈

H1(C) ∩ C(C) such that 0 ⩽ uε ⩽ 1 and uε = 1 on ∂C is a quasi-minimal sequence for F p
ε if

F p
ε (uε)− inf

u
F p
ε (u) −−−→

ε→0
0. (9)

2.3 Technical tools

2.3.1 Separation

In this section, we discuss the property of separation satisfied by the surfaces Sℓ, where we consider
more precisely the set Hom(γ, γ0) of Lipschitz curves in C0 connecting γ to γ0,

Hom(γ, γ0) := {ℓ ∈ Lip([0, 1]× S1, C0) such that ℓ(0) = γ and ℓ(1) = γ0}.

This topological feature will be crucial for the proof of the Γ− lim inf inequality.

Proposition 2.2. Let ℓ ∈ Hom(γ, γ0). The set Sℓ defined by (2) separates the cylinder C0, in the
sense that C0 \ Sℓ has at least two connected components, one containing the north pole N = (0, 0, h),
the other one containing the south pole S = (0, 0,−h).

In order to show this result we will use the following Theorem (see for instance [Dug66, Chapter
XVII]).

Lemma 2.1 (Borsuk theorem). Let A ⊂ Rn be compact, and let p, q be in distinct connected compo-
nents of Rn \ A. If A is deformed over Rn into a set B, and if A never crosses either p or q during
this deformation, then p, q are still in distinct connected components of Rn \B.

Remark 2.2. The hypothesis of deformation, in the above Lemma, can be written as the existence
of a continuous function ϕ : A × [0, 1] → Rn such that, ∀x ∈ A, ϕ(x, 0) = x, ϕ(A × {1}) ⊂ B and
p, q /∈ ϕ(A× [0, 1]).

Proof of Proposition 2.2. Upon considering a higher cylinder, we can assume that there exists a cylin-
der A1, with the same radius as C0 and smaller height, containing Sℓ in its adherence. For simplicity,
we also suppose that the height of the cylinder A1 is 2 and that it is centered, i.e, z ∈ [−1, 1]. This
way A1 contains the unitary closed disk with height 0, denoted D := {(x, y, 0) ∈ R3,

√
x2 + y2 ⩽ 1}.

We consider A := ∂C0 ∪ D (which is compact) and B := ∂C0 ∪ Sℓ.
It is clear that the disk separates the cylinder, thus we can choose p, q ∈ C0 \ A1 belonging to

distinct connected components of Rn \ A. We now check the assumptions of the Borsuk theorem.
We will justify that we can deform A into B. To this aim, we introduce the following function on
A ⊂ R2 × R:

ϕ1(r, ω, z) :=


ℓ(1− r, eiω) if z = 0

(r, ω, (1− |z|)γ̃(ω) + z|z|) if |z| ⩽ 1

(r, ω, z) if |z| > 1

.

This function is continuous on A since for z = 0 and r = 1 we have ℓ(0, ω) = γ(eiω) = (1, ω, γ̃(ω))
from the assumption that Γ is a Lipschitz graph over the unitary circle.
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Then, we define ϕ(·, t) := (1 − t)id + tϕ1 on A. It is clear that ϕ is continuous on A × [0, 1] and
that for all x ∈ A, we have ϕ(x, 0) = x and ϕ(x, 1) = ϕ1(x) ∈ B. Finally, we must make sure that
the deformation does not cross either p or q. One can easily check that ϕ(A1 × [0, 1]) ⊂ A1 and
ϕ(∂C0 \A1 × [0, 1]) ⊂ ∂C0, which guarantees that p, q /∈ ϕ(A× [0, 1]).

Thus, we can apply Borsuk’s Theorem and conclude that p and q are points in the cylinder C0 and
in distinct connected components of Bc = (∂C0 ∪ Sℓ)

c. Hence Sℓ separates C0.

Corollary 2.1. Let ℓ ∈ Hom(γ, γ0). The set Sℓ ∪ Σ separates the cylinder C.

Proof. This is an immediate consequence of the fact that the Lipschitz graph Σ separates C \ C0 and
Proposition 2.2.

2.3.2 Covering a set by an open set with controlled perimeter

The following elementary lemma will be needed later for the proof of the liminf inequality.

Lemma 2.2. Let K ⊂ RN be any set such that 0 < HN−1(K) < +∞. Then for every ε > 0 there
exists an open set Aε ⊂ RN such that:

1. K ⊂ Aε

2. Aε ⊂ {x ∈ RN : dist(x,K) ≤ ε}

3. P (Aε) ≤ CHN−1(K),

where C > 0 is a universal constant.

Proof. Let K ⊂ RN and ε > 0 be given. By definition of the Hausdorff measure, there exists a
countable family of closed sets Ai such that diam(Ai) ≤ ε and∑

i∈I

diam(Ai)
N−1 ≤ CHN−1(K).

For each i ∈ I we let Bi be an open ball of radius diam(Ai) such that Ai ⊂ Bi. Then the balls {Bi}
form a new covering of K. We define Aε :=

⋃
i∈I Bi. Then,

P (Aε) ≤
∑
i∈I

P (Bi) =
∑
i∈I

CNdiam(Bi)
N−1 ≤ CHN−1(K),

thus Aε fulfils all the requirements of the statement and the lemma follows.

2.3.3 An average formula for finite measures

In this section we give a standard average formula for finite measures that will be used later in the
proof of the liminf inequality.

Lemma 2.3. Let A ⊂ Rn be a non empty set. Let µ be a finite measure on A and f : A → R be a
µ-measurable function such that

∫
A
f dµ ⩾ 0. Then, there exists t0 ∈ A such that∫

A

fdµ ⩾ µ(A)f(t0). (10)

Proof. If µ(A) = 0, the statement (10) is trivial, hence we may assume that µ(A) > 0 and set

m =
∫
A

fdµ

µ(A) . If m = 0, then either f = 0 µ-a.e. on A, or there exists t0 ∈ A such that f(t0) ⩽ 0.

In both cases, there exists t0 ∈ A such that (10) holds. Otherwise, if m > 0, we recall the following
inequality, valid for any t > 0:

µ({f > t}) =
∫
{f>t}

dµ <
1

t

∫
{f>t}

fdµ ⩽
1

t

∫
A

fdµ.

Taking t = m, we get

µ({f > m}) < 1

m

∫
A

fdµ = µ(A).

Thus, µ({f ⩽ m}) > 0, so there must exist t0 ∈ A such that f(t0) ⩽ m. This proves (10).
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2.4 Proof of Theorem 2.1: the limsup inequality

This section is devoted to the proof of the limsup inequality.

Proof of Theorem 2.1. Let Ω ⊂ C be a competitor and Ω0 be a minimizer for problem (4). It is enough
to show that there exists a sequence (uε) ∈ H1(C) ∩ C(C) such that 0 ⩽ uε ⩽ 1, uε = 1 on ∂C, for
which the lim sup inequality holds with Ω0, i.e.

lim sup
ε→0

F p
ε (uε) ⩽ P (Ω0, C0). (11)

Indeed, P (Ω0, C0) ⩽ P (Ω, C0) by definition of (4) (notice that in C \ C0 the essential boundaries both
coincide with Σ), therefore inequality (11) implies (7).

Let Ω0 be a solution of problem (4). To prove (11), we introduce the set K := ∂∗Ω0 ∩ C0, where
we recall that ∂∗Ω0 is the essential boundary of Ω0. Thus, P (Ω0, C) = H2(∂∗Ω0 ∩ C) = H2(∂∗Ω0 ∩
C0) +H2(∂∗Ω0 ∩ (C \ C0)) = H2(K) +H2(Σ), since ∂∗Ω0 ∩ (C \ C0) = Σ, by definition of the boundary
constraint.

Then, we follow the standard construction for the Γ− lim sup inequality, which is based on the well-
known optimal profile of minimizers for a Modica-Mortola type energy. We recall from Proposition 2.1
that, since Ω0 is a minimizer, its essential boundary is Ahlfors regular. Moreover, we also know from
Proposition 2.1 that K ∩ ∂C0 = ∅. As a result, for all x ∈ K, and all r > 0 such that B(x, r) ⊂ C,

H2(K ∩B(x, r)) = P (Ω0, B(x, r)) ⩾ Cr2. (12)

Applying [AFP00, Theorem 2.104], we deduce that the Minkowski content and the Hausdorff measure
of K coincide:

lim
r→0

L3(Kr)

2r
= H2(K), where Kr := {x ∈ R3 | d(x,K) ⩽ r}. (13)

Let (kε)ε>0 be a sequence of positive numbers, converging to 0, that will be specified later on. We
define aε := −2ε ln (ε), bε := ε2 and λε :=

1−kε

1−ε and we consider the function

uε :=


kε on Kbε ,

kε + λε

Ä
1− exp ( bε−d(x,K)

2ε )
ä

on Kbε+aε
\Kbε ,

1 on C \Kaε+bε .

We also take ε small enough so that Kaε+bε ⊂ C. We notice that with this definition, uε is continuous
and equal to 1 on ∂C. We can also easily show that uε is Lipschitz on C, therefore uε ∈ H1(C)∩C(C).

We claim that the sequence of functions (uε)ε>0 satisfy the inequality

lim sup
ε→0

Å∫
C
ε|∇uε|2 +

(1− uε)
2

4ε

ã
⩽ H2(K). (14)

On C \Kbε+aε
it is clear that the integral is exactly 0, and the contribution of the integral on Kbε is of

order ε since L3(Kbε) ⩽ Cε2. The main contribution of the integral is thus attained on Kbε+aε
\Kbε .

Setting τ(x) := d(x,K), we may observe that, in this region, uε is a function of τ , since uε(x) =
λεfε(τ(x)) + kε with fε(t) := (1 − exp( bε−t

2ε )). Moreover, this last function is the solution of the
ordinary differential equation ®

f ′
ε =

1−fε
2ε ,

fε(bε) = 0.

Applying the coarea formula to the Lipschitz function τ (see for instance [EG91, Theorem 3.11]), and
noticing that

1− kε − λεfε(t) = λε(1− ε− fε(t)),
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we get

Aε :=

∫
Kaε+bε\Kbε

ε|∇uε|2 +
(1− uε)

2

4ε

=

∫ bε+aε

bε

Ç∫
τ(y)=t

ε|∇uε(y)|2 +
(1− uε(y))

2

4ε
dH2(y)

å
dt

=

∫ bε+aε

bε

Å
ελ2

ε|f ′
ε(t)|2 +

(1− kε − λεfε(t))
2

4ε

ã
H2({τ = t})dt

= λ2
ε

∫ bε+aε

bε

Å
(1− fε(t))

2

4ε
+

(1− ε− fε(t))
2

4ε

ã
H2({τ = t})dt

⩽
λ2
ε

2ε

∫ bε+aε

bε

(1− fε(t))
2H2({τ = t})dt

=
λ2
ε

2ε

∫ bε+aε

bε

exp

Å
bε − t

ε

ã
H2({τ = t})dt.

Once again, the coarea formula yields

g(t) := L3(Kt) =

∫ t

0

H2({τ = t})dt,

hence g is differentiable a.e. and g′(t) = H2({τ = t}). Integrating by parts, we deduce the upper
bound

Aε ⩽
λ2
εε

2
g(aε + bε)−

λ2
ε

2ε
g(bε) +

λ2
ε

2ε2

∫ aε+bε

bε

exp

Å
bε − t

ε

ã
L3(Kt)dt.

Coming back to (13), we know that for any η > 0 and for t small enough, L3(Kt) ⩽ 2t(H2(K) + η).
As a result, using that limε→0 λε = 1 and limt→0 g(t) = 0, we can estimate Aε as follows:

lim sup
ε→0

Aε ⩽ lim sup
ε→0

Ç
λ2
εε

2
g(aε + bε) +

λ2
ε

2ε2

∫ aε+bε

bε

exp

Å
bε − t

ε

ã
L3(Kt)dt

å
⩽ lim sup

ε→0

Ç
1

2ε2

∫ aε+bε

bε

exp

Å
bε − t

ε

ã
L3(Kt)dt

å
⩽ (H2(K) + η) lim sup

ε→0

Ç
1

2ε2

∫ aε+bε

bε

exp

Å
bε − t

ε

ã
2tdt

å
= (H2(K) + η) lim sup

ε→0

Ç∫ aε/ε

0

exp(−s)(
bε
ε

+ s)ds

å
,

where we have used the change of variables t = bε+ εs in the last integral. Since aε

ε = −2 ln(ε) → +∞
and bε

ε = ε → 0, we get

lim sup
ε→0

Aε ⩽ (H2(K) + η)

∫ +∞

0

exp(−s)sds = H2(K) + η,

and letting η → 0,
lim sup

ε→0
Aε ⩽ H2(K).

The claim (14) follows from the previous observations.
Now, thanks to Proposition 2.1 there exists ℓ∗ ∈ Hom(γ, γ0) such that K = Sℓ∗ . By Definition 1.1,

if p = ∞,

d∞uε
(γ, γ0) ⩽ sup

Sℓ∗
(|uε|+ δε) = sup

K
(|uε|) + δε = kε + δε,

and if p < +∞,

dpuε
(γ, γ0) ⩽

∫
Sℓ∗

(|uε|p + δε)dH2 =

∫
K

|uε|pdH2 + δεH2(K) = H2(K)(kε + δε).
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Since, δε
cε

→ 0, setting kε = c2ε ensures that, for every p ∈ [1,+∞],

lim
ε→0

1

cε
dpφε

(γ, γ0) = 0. (15)

This choice of kε also guarantees that for ε small enough, uε takes values in [0, 1]. Combining (14)
and (15), we obtain inequality (11) and conclude the proof.

2.5 Proof of Theorem 2.2: the liminf inequality

This section is devoted to the proof of the liminf inequality.

2.5.1 Definition of the relaxed energies Ep
ε

The proof will also rely on relaxed energies associated with the functional F p
ε , depending not only on

a phase field u, but also on a path ℓ ∈ Hom(γ, γ0).

Definition 2.5. Let p ∈ [1,+∞], u ∈ H1(C) ∩ C(C) such that 0 ⩽ u ⩽ 1 and u = 1 on ∂C and
ℓ ∈ Hom(γ, γ0). We define

Ep
ε (u, ℓ) := ε

∫
C
|∇u|2dx+

1

4ε

∫
C
(1− u)2dx+

1

cε

∫
Sℓ

(|u|p + δε)dH2 if p < +∞,

E∞
ε (u, ℓ) := ε

∫
C
|∇u|2dx+

1

4ε

∫
C
(1− u)2dx+

1

cε
sup
Sℓ

(|u|+ δε).

Remark 2.3. From Definition 1.1 of the geodesic distance between closed curves, we know that for all
u ∈ H1(C) ∩ C(C) such that 0 ⩽ u ⩽ 1 and u = 1 on ∂C,

F p
ε (u) = inf {Ep

ε (u, ℓ) , ℓ ∈ Hom(γ, γ0)} .

2.5.2 Case p = ∞.

In this section we prove Theorem 2.2 in the particular case p = ∞.

Proof of Theorem 2.2 for p = ∞. Let Ω be a solution to Plateau’s problem (4), and uε ∈ H1(C)∩C(C)
such that 0 ⩽ uε ⩽ 1 and uε = 1 on ∂C.

Step 1. We start by using the relaxed energy E∞
ε to avoid taking an infimum over Hom(γ, γ0) but

instead approximating the geodesic distance d∞uε
(γ, γ0) by supSℓε

(|uε| + δε), for a well-chosen ℓε. For

instance, by Definition 1.1, we can find ℓε ∈ Hom(γ, γ0) such that

sup
Sℓε

(|uε|) ⩽ sup
Sℓε

(|uε|+ δε) ⩽ d∞uε
(γ, γ0) + εcε,

which implies F∞
ε (uε) + ε ⩾ E∞

ε (uε, ℓε). Since

lim inf
ε→0

F∞
ε (uε) = lim inf

ε→0
(F∞

ε (uε) + ε) ⩾ lim inf
ε→0

E∞
ε (uε, ℓε),

it is enough to show the following inequality:

lim inf
ε→0

E∞
ε (uε, ℓε) ⩾ P (Ω, C0), (16)

to deduce (8).

Step 2. We identify a sublevel-set of uε that contains the surface Sℓε , which possesses the cru-
cial property of separation (see Proposition 2.2). Without loss of generality, we may assume that
lim infε→0 E

∞
ε (uε, ℓε) is finite, and achieved by a subsequence, still denoted ε. Consequently, the

energy E∞
ε (uε, ℓε) is uniformly bounded, so there exists a constant C > 0 such that

sup
Sℓε

(|uε|) < Ccε.
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In particular,
Sℓε ⊂ {uε < Ccε}. (17)

Step 3. Using the above inclusion (17) and a classical estimate of the Ambrosio-Tortorelli term in

E∞
ε , we now exhibit a sublevel set {gε ≤ tε} of the function gε := uε− u2

ε

2 , whose perimeter in C allows
us to estimate from below lim infε→0 E

∞
ε (uε, ℓε) by

lim inf
ε→0

E∞
ε (uε, ℓε) ⩾

1

2
lim inf
ε→0

P ({gε ⩽ tε}, C). (18)

Inequality (18) can be proved as follows. Setting sε = Ccε − C2c2ε
2 , the inclusion (17) yields by

monotonicity of the mapping t 7→ t− t2

2 on [0, 1], the inclusion

Sℓε ⊂ {gε < sε}. (19)

Notice that gε takes values in [0, 1/2] a.e. in C, and that sε is positive for ε small enough. The definition
of gε comes from the classical estimate

E∞
ε (uε, ℓε) ⩾ ε

∫
C
|∇uε|2dx+

1

4ε

∫
C
(1− uε)

2dx

⩾
∫
C
|∇uε||1− uε|dx

=

∫
C
|∇gε|dx.

Since gε is an antiderivative of ∇uε(1 − uε), uε ∈ H1(C) and C is bounded, gε is in W 1,1(C). In
particular, it has bounded variations in C. As a result, we can apply the coarea formula for BV
fonctions, to obtain∫

C
|∇gε|dx =

∫
R
P ({gε > t}, C)dt =

∫ 1/2

0

P ({gε > t}, C)dt ⩾
∫ 1/2−ε

sε

P ({gε > t}, C)dt.

Then, we apply the average formula (10) with µ = L, A = [sε, 1/2− ε] and f(t) = P ({gε > t}, C).
This gives us the existence of tε ∈ [sε, 1/2− ε] that satisfies∫ 1/2

sε

P ({gε > t}, C)dt ⩾ (
1

2
− ε− sε)P ({gε > tε}, C).

Hence, we get

lim inf
ε→0

E∞
ε (uε, ℓε) ⩾ lim inf

ε→0
(
1

2
− ε− sε)P ({gε > tε}, C) =

1

2
lim inf
ε→0

P ({gε ⩽ tε}, C).

This proves (18).

Step 4. To conclude the proof of inequality (16), we will construct two competitors Ω1
ε and Ω2

ε such
that the following inequality holds:

P ({gε ≤ tε}, C) ⩾ P (Ω1
ε, C) + P (Ω2

ε, C)− 2H2(Σ). (20)

The construction of these two competitors constitutes the main novelty of our approach. Its main
ingredient is the topological property of separation satisfied by the surface Sℓε (see Theorem 2.2).

We denote
Aε := {gε ⩽ tε} (21)

and set Ãε := Aε∩C0. Since intersecting a set of finite perimeter with a convex set reduces its perimeter
(see for instance [Mag12, exercise 15.14], and [Mac25] for a proof),

P (Ãε, C) = P (Aε ∩ C0, C) ⩽ P (Aε, C).
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Figure 3: Construction of the competitors Ω1
ε and Ω2

ε.

Then we recall that Sℓε ⊂ {gε < sε} ∩ C0 ⊂ Aε ∩ C0 = Ãε because sε ⩽ tε. By Corollary 2.1, Ãε ∪ Σ
separates C. This implies that C\(Ãε ∪ Σ) contains at least two connected components. We denote
by Ω1

ε the connected component containing the north pole N = (0, 0, h) (where 2h is the height of
the centered cylinder C) and Ω2

ε the one containing the south pole S = (0, 0,−h), as represented on
Figure 3. By construction, Ω1

ε and (Ω2
ε)

c are two competitors. Notice that, since gε is continuous, then
Ω1

ε and Ω2
ε are open sets.

Now to see that inequality (20) holds true, we will identify the essential boundary of Ωi
ε in the

three disjoint regions C0, C \ C0, and ∂C0.
We start with the region C0 and notice that,

∂Ω1
ε ∩ ∂Ω2

ε ∩ C0 = ∅.

Indeed, we know that Sℓε separates C0 thus Ω1
ε ∩ C0 is contained in the (different) connected component

of C0 \Sℓε containing N , and Ω2
ε ∩ C0 is contained in the connected component of C0 \Sℓε containing S

(notice that Sℓε cannot touch Ωi
ε ∩ C0 because gε is lower than sε on it which is strictly less than tε).

This yields a contradiction in the case when there would exist x ∈ ∂Ω1
ε∩∂Ω2

ε∩C0, then it would belong
to two different connected components of C0 \Sℓε . Since the essential boundary is always contained in
the topological boundary, we deduce that

∂∗Ω1
ε ∩ ∂∗Ω1

ε ∩ C0 = ∅. (22)

Now in C \ C0 we clearly have, by construction, that ∂∗Ωi
ε cöıncides with Σ. It remains to identify

the essential boundary of Ωi
ε on ∂C0. But here again, we must have that

∂Ω1
ε ∩ ∂Ω2

ε ∩ ∂C0 \ Γ = ∅. (23)

Indeed, the curve Γ separates ∂C0 into an upper part Z+ ⊂ ∂C0 \Γ and a lower part Z− ⊂ ∂C0 \Γ.
Let us show that ∂Ω1

ε ∩∂C0 \Γ ⊂ Z+ and ∂Ω2
ε ∩∂C0 \Γ ⊂ Z−. If not, then there would be for instance

a point x ∈ Z− and a sequence xn ∈ Ω1
ε such that xn → x. Since Ω1

ε is disjoint from D−, this means
that xn ∈ C0 for all n. But this is not possible since Sℓε separates Z+ from Z− in C0, and that Ω1

ε ∩ C0
belongs to the same connected component of C0 \ Sℓε as Z+. Since x ∈ Ω1

ε ∩ C0, it cannot be in Z−.
This proves that ∂Ω1

ε ∩ ∂C0 \ Γ ⊂ Z+. The same holds for ∂Ω2
ε and (23) follows.

From (22), (23), using also the fact that Γ ∩ ∂C0 has zero H2-measure and the fact that ∂Ωi
ε

coincides with Σ on C \ C0, we deduce that

P ({gε ≤ tε}, C) ⩾ P (Ω1
ε ∪ Ω2

ε, C) = P (Ω1
ε, C) + P (Ω2

ε, C)− 2H2(Σ), (24)

and so follows (20).

Step 5. Since lim infε→0 E
∞
ε is finite, (20) yields that the perimeters of Ω1

ε and Ω2
ε are uniformly

bounded. Thus, there exist subsequences (not relabeled) of (Ω1
ε) and (Ω2

ε) and two sets of finite
perimeter in C, Ω1 and Ω2, such that

lim
ε→0

Ω1
ε = Ω1 and lim

ε→0
Ω2

ε = Ω2 in L1(C).
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This naturally implies that Ω1 and (Ω2)c are competitors. And, the lower-semi-continuity of the
perimeter, combined with (18) and (20), yields

lim inf
ε→0

E∞
ε (uε, ℓε) ⩾

1

2
(P (Ω1, C) + P (Ω2, C))−H2(Σ)

=
1

2
(P (Ω1, C0) + P (Ω2, C0)) (25)

=
1

2
(P (Ω1, C0) + P ((Ω2)c, C0)). (26)

By definition, Ω1 and Ω2 have larger perimeter in C0 than the minimizer Ω, so inequality (26)
clearly implies (16).

2.5.3 Case p < ∞.

Proof of Theorem 2.2 for p < ∞. Step 1. As in the p = ∞ case, we introduce ℓε ∈ Hom(γ, γ0) such
that ∫

Sℓε

|uε|pdH2 ⩽
∫
Sℓε

(|uε|p + δε)dH2 ⩽ dpuε
(γ, γ0) + εcε.

Hence, we need to prove the inequality

lim inf
ε→0

Ep
ε (uε, ℓε) ⩾ P (Ω, C0). (27)

Step 2. As in the case p = ∞, we may assume that Ep
ε (uε, Sℓε) ⩽ C, in particular∫

Sℓε

|uε|pdH2 ⩽ Ccε.

Contrary to the p = ∞ case, we cannot conclude from the above inequality that Sℓε is contained in
the sublevel-set {uε < Ccε}. However, Tchebychev inequality yields that for all α > 0,

H2(Sℓε ∩ {uε ⩾ α}) ⩽
Å
Ccε
α

ãp
.

Thus, taking αε :=
√
cε > 0 leads to

H2(Sℓε ∩ {uε ⩾ αε}) −→ 0. (28)

Now we introduce Kε := Sℓε ∩ {uε > αε}, and we apply Lemma 2.2 to find an open set Uε ⊂ C, such
that Kε ⊂ Uε and

P (Uε) ≤ CH2(Kε), (29)

for a universal constant C > 0. By construction we have

Sℓε ⊂ {uε ≤ αε} ∪ Uε. (30)

The main idea of the proof relies on the fact that the set {uε ≤ αε}∪Uε still possesses the separation
property whilst adding the set Uε to the sublevel set of uε does not contribute to the perimeter in the
limit.

Step 3. As previously, we introduce the function gε := uε − u2
ε

2 and using the monotonicity of

t 7→ t− t2/2, the inclusion (30), and setting sε = αε − α2
ε

2 , we get

Sℓε ⊂ {gε < sε} ∪ Uε.

The same computations as in case p = ∞ yield the existence of tε ∈ [sε, 1/2− ε] such that

Ep
ε (uε, ℓε) ⩾

∫ 1/2

sε

P ({gε > t}, C)dt ⩾ (
1

2
− ε− sε)P ({gε > tε}, C).
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We claim moreover that

lim inf
ε→0

P ({gε ⩽ tε}, C) = lim inf
ε→0

P ({gε ⩽ tε} ∪ Uε, C). (31)

This follows from the following estimates,

P ({gε ⩽ tε} ∪ Uε, C) ⩽ P ({gε ⩽ tε}, C) + P (Uε, C),

and
lim inf
ε→0

P (Uε, C) = 0

because of (28) and (29).
Then, following exactly the same reasoning as in Step 4 from Section 2.5.2, replacing the sublevel-

set {gε ⩽ tε} by {gε ⩽ tε} ∪ Uε, we obtain the desired lim inf.

2.6 Proof of Theorem 1.1

We finally give a proof for the main result stated in the Introduction.

Proof Theorem 1.1. We start with the case p = +∞. We recall the conclusion (26) from the proof of
Theorem 2.2, where we have constructed two competitors Ω1 and (Ω2)c such that

lim inf
ε→0

F p
ε (uε) ⩾ lim inf

ε→0
Ep

ε (uε, lε) ⩾
1

2
(P (Ω1, C0) + P ((Ω2)c, C0)).

We denote by ũε the sequence obtained in Theorem 2.1. Since uε is assumed to be a quasi-
minimizing sequence for F p

ε , it follows that

F p
ε (uε) ⩽ F p

ε (ũε) + o(1).

Thus passing to the limit and applying Theorem 2.1 yield

1

2
(P (Ω1, C0) + P ((Ω2)c, C0)) ⩽ lim inf

ε→0
F p
ε (uε) ⩽ lim inf

ε→0
F p
ε (ũε)

⩽ lim sup
ε→0

F p
ε (ũε) ⩽ P (Ω0, C0),

where Ω0 is a minimizer of Plateau’s problem (4). Hence,

1

2
(P (Ω1, C0) + P ((Ω2)c, C0)) ⩽ P (Ω0, C0). (32)

This impose that at least P (Ω1, C0) or P ((Ω2)c, C0) is smaller than P (Ω0, C0). Let assume that
P (Ω1, C0) is smaller that P (Ω0, C0). Then, since Ω1 is a competitor and Ω0 is a minimizer, it follows
that Ω1 is also a minimizer of Plateau’s problem, i.e., P (Ω1, C0) = P (Ω0, C0). Thus, (32) yields that
P ((Ω2)c, C0) ⩽ P (Ω0, C0), which implies that (Ω2)c is also a minimizer.

Hence, both Ω1 and Ω2 are minimizers of Plateau’s problem (4), and this achieves the proof of
Theorem 1.1 in the case when p = +∞.

Now if p < +∞, the only difference is that Ω1 is no more the limit of the connected component Ωε of
the level set {gε > tε}, but we had to remove the set Uε for topological reasons. But since P (Uε) → 0,
we deduce from the isoperimetric inequality (see [Mag12, Proposition 12.35]) that |Uε| → 0. This
proves that the L1-limit of Ωε is the same as Ωε \ Uε, and achieves the proof of of Theorem 1.1.

3 Numerical experiments

This section details the numerical discretization schemes that enabled us to perform the experiments
presented in the Introduction. We consider Plateau’s problem where the given boundary Γ is a finite
union of d closed curves:

Γ = ∪d
i=1Γ

i.
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Figure 4: Left: case of one curve Γ1, parametrized by γ1 and connected to a point x2 ∈ Γ1, represented
by the constant curve γ2. Right: case of two curves Γ1 and Γ2, resp. parametrized by γ1 and γ2. Several
possibilities occur: Γ1 can be connected to a point x3 ∈ Γ2, or Γ2 to a point x4 ∈ Γ1, or the curves Γ1

and Γ2 can be connected globally through the use of the geodesic distance du(γ
1, γ2).

We also assume that each component Γi is parametrized by a Lipschitz function γi : S1 → R3. The
case analysed in Section 2 corresponds to d = 1 where the geodesic distance term connects the curve
γ := γ1 to a fixed point x2 ∈ Γ1, represented by a constant curve γ2.

To extend this approach to cases with multiple components (d ≥ 2), we can add a finite collection
of distinct points xj ∈ Γj−d, indexed by d + 1 ≤ j ≤ N = 2d and identified to a constant curve γj .
In this general setting, the first step towards the generalization of the approximation functional Fε

defined in case d = 1 in Section 2, will be to set

Fε(u) = AT ε(u) +
1

cε

∑
(i,j)∈Iγ

d2u(γ
i, γj) (33)

where Iγ contains the couples (i, j) for which we propose to connect the curves γi, γj . Here du is still
the geodesic distance introduced in Definition 1.1 (with p = 2) and defined by

d2u(γ
i, γj) := inf

ß∫
Sℓ

(u2 + δε)dH2| ℓ ∈ Hom(γi, γj)

™
,

with
Hom(γi, γj) := {ℓ ∈ Lip([0, 1]× S1, C0) such that ℓ(0) = γi and ℓ(1) = γj},

and Sℓ = ℓ([0, 1]× S1).
As shown in Figure 4, let us give some examples to illustrate the possible choices of energies Fε of

the form (33).

Case d = 1: Γ1 is the image of one closed curve γ1 : S1 → R3. In this situation, we use the exact
same framework as the one studied in Section 2: for a given point x2 ∈ Γ1, identified with a constant
curve γ2, the energy Fε reads

Fε(u) = AT ε(u) +
1

cε
d2u(γ

1, γ2).

Case d = 2: Γ is the union of two distinct curves Γ1 and Γ2, which are respectively parametrized by
γ1 and γ2. In such configuration, one may consider several strategies in order to preserve the topology
of the approximate optimal surface.

- Connect Γ1 to Γ2 globally, which conduces to

Fε(u) = AT ε(u) +
1

cε
d2u(γ

1, γ2). (34)
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- Connect Γ1 to a point x3 ∈ Γ2, and Γ2 to a point x4 ∈ Γ1 as well. In this second configuration,
the energy reads

Fε(u) = AT ε(u) +
1

cε

[
d2u(γ

1, γ3) + d2u(γ
2, γ4)

]
. (35)

Since Plateau’s problem can be interpreted as an extension of Steiner’s problem in three dimensions
and the phase field models are ultimately very similar, we begin by recalling in Section 3.1 the numerical
strategies developed in [BBL20] to obtain efficient approximations to Steiner’s problem. In particular,
we review the following concepts:

- relaxing the energy Fε avoids the need to compute the derivative of the geodesic term with
respect to u;

- regularizing the geodesic term to improve the smoothness of phase field function u;

- using a variant of the Ambrosio-Tortorelli term to improve the regularity of the phase field
solution u, and facilitate its minimization;

- detailing the schemes used to solve the phase field PDE.

In section 3.2, we apply the same strategy to Plateau’s problem. The novelty mainly lies in our
treatment of the geodesic term, for which we propose two approaches. The first one, which is limited
to circles, demonstrates how to reduce the problem of computing an optimal geodesic in infinite
dimensions to a reduced space. For this smaller space, we can use fast marching algorithms in 2D.
However, this approach is too restrictive, so we then explain how to compute a non-optimal geodesic
easily allowing us to deal with a large number of cases. Despite the non-optimality of the calculated
geodesics, our model’s ability to find approximations of the minimal surface in many configurations
is illustrated by numerical experiments, extending far beyond the mathematical study of Plateau’s
problem of a curve in a cylinder.

3.1 Phase-field models and discretization of Steiner’s problem

In this section, we focus on Steiner’s problem in dimension two to observe the influence of the phase
field model on numerical solutions. We first recall the numerical discretization strategy proposed in the
article [BBL20], following the approximation strategy introduced in [BLS15] and refined in [BLM18].
We then compare this method with a new phase field model for which we replace the Ambrosio-
Tortorelli term AT ε with a higher-order version whose profile is smoother and better located around
the diffuse interface.

Consider a bounded and convex open set Ω ⊂ R2. The Steiner problem consists in finding, for a
given collection of points a0, . . . , aN ∈ Ω, a compact connected set K ⊂ Ω containing all the ai’s and
having minimal length. The idea is to obtain a minimizer of energy

Fε(u) = AT ε(u) +
1

λε

N∑
i=1

D(u2 + δε; a0, ai),

where D(w; a, b) is now defined by

D(w; a, b) := inf
Γ∈Ga,b(Ω)

∫
Γ

w dH1.

Here, Ga,b(Ω) is the set of Lipschitz curves in Ω connecting a and b.

3.1.1 Reminder of the discretization scheme from [BBL20]

From a numerical point of view, as the minimization of Fε requires the computation of the gradient
of the geodesic terms with respect to u and raises some numerical difficulties, a relaxation approach
was proposed in [BBL20]. It consists in introducing an extra variable γ := (γi)1≤i≤N , where each
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γi : [0, 1] → Ω is a Lipschitz curve joining the base point a0 to the point ai in Ω, and then consider
the relaxed energy Eε defined by

Eε(u, γ) = AT ε(u) +Rε(u, γ), where Rε(u, γ) =
1

λε

N∑
i=1

∫
γi([0,1])

(δε + u2)dH1.

In particular, this approach can be viewed as a relaxation since

Fε(u) = inf
γ∈Pa

{Eε(u, γ)} ,

where Pa is the set of N -uplets of Lipschitz curves defined by

Pa := {γ = (γi)i=1:N : γi ∈ Lip([0, 1]; Ω), γi(0) = a0 and γi(1) = ai}.

An advantage is that its L2-gradient flow®
ut = −∇uEε(u, γ),

γ = argminγ∈Pa
{Eε(u, γ)},

can be approximated at time t = nδt by the solution (un, γn) of a time-decoupled scheme which
alternates

- a geodesic computation:

γn = argmin
γ∈Pa

Eε(u
n, γ) = argmin

γ∈Pa

Rε(u
n, γ);

- a phase field evolution: un+1 ≃ v(δ) where v is the solution of the PDE:

vt = −∇uEε(v, γ
n) = ε∆v − 1

ε
V ′(v)− 2

λε

[
N∑
i=1

H1|γn
i ([0,1])

]
v,

with v(0) = un and where the potential V is defined ∀s ∈ R by V (s) = 1
4 (1− s)2.

Regularization of the geodesic term. The method presented above makes it possible to avoid
differentiating the geodesic term with respect to the phase field function u. However, another difficulty
arises from the lack of regularity of the solution v, which is a consequence of the singularity of the
geodesic contribution.

∑N
i=1 H1|γn

i ([0,1]). In particular, without additional regularization, the numer-
ical approximation of the solution is likely to be highly dependent on the spatial discretization used,
with non-negligible anisotropic effects. An initial solution proposed in the work [BBL20] consisted of
filtering this geodesic term using a convolution kernel

vt = ε∆v − 1

ε
V ′(v)− 2

λε
ωε,α[γ]v, where ωε,r[γ] =

N∑
i=1

(
ρεr ∗ H1 γi([0, 1])

)
,

and ρεr if a kernel of size εr, i.e. ρε = 1
ε2 ρ(·/ε). Notice that this new term is still variational and

corresponds to the geodesic term

Rε,r(u, γ) =
1

λε

∫
Ω

ωε,r[γ](δε + u2)dx =
1

λε

N∑
i=1

∫
γi([0,1])

ρεr ∗ (δε + u2)dH1.

Computation of γn. The computation of each geodesic γn = (γn
i )1=1:N defined as

γn = argmin
γ∈Pa

Rε(u
n, γ),

can then be carried out in two steps:
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1) Use the Fast Marching Method [Set99a, Set99b] to compute the weighted distance function
x 7→ da0,ω(x) corresponding to the distance function from a0 to x, associated to the weight
w = ρεr ∗ (δε+u2). Notice that it can be defined as a viscosity solution of the non linear Eikonal
equation

|∇da0,ω(x)| = ω(x), in Ω, with da0,ω(a0) = 0.

In practice, we use the Toolbox Fast Marching proposed by G. Peyre in the Matlab environment
http://www.mathworks.com/matlabcentral/fileexchange/.

2) Compute each geodesic γi : [0, 1] 7→ Ω satisfying γi(0) = a0 and γi(1) = ai by considering a
discrete version of the flow

(γ̃i)′(s) = −∇da0,ω(γ̃
i), with γ̃i(0) = ai.

Here, we can use the Matlab function compute geodesic from the Fast Marching Toolbox to obtain
an approximation of each geodesic. Figure 5 shows an example of distance function da0,ω and
the associated estimate geodesic γ1 connecting the points (a0, a1).

The weighted function w
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Figure 5: Numerical example of geodesic computation. Left: the weight function w = ∥x∥2 and the
endpoints a0 = [−0.7, 0.7] and a1 = [0.7,−0.7]. Right: the distance function dω,a0

computed using a
fast Marching algorithm, and the geodesic γ1 between a0 and a1.

Computation of un+1. As far as the numerical resolution of PDEs is concerned, we assume here
that the computation box Ω is a square Ω = [0, 1]2 and that all PDEs are considered with additional
periodic boundary conditions. In order to get a high accuracy approximation in space, we also use a
semi-implicit convex-concave Fourier-spectral method [Eyr98, SWWW12] where for instance un+1 can
be defined as follows:

un+1 − un

δt
= ε∆un+1 − 1

2ε
(un+1 − 1)− αun+1 −

Å
2

λε
ωε,r[γ

n]− α

ã
un.

As explained in [BBL20], α can be viewed as a stabilization parameter which ensures the decrease of
Eε(·, γn), i.e Eε(u

n+1, γn) ≤ Eε(u
n, γn) as soon as

α ≥ sup
x∈Ω

ß
2

λε
ωε,r[γ

n]

™
.

In practice, we will consider a stabilization parameter α which evolves along the iterations and take

αn = supx∈Ω

¶
2
λε
ωε,r[γ

n]
©
. Finally, un+1 is computed using the following formula

un+1 =

Å
Id + δt(ε∆+

1

2ε
+ αn)

ã−1 Å
un + δt

Å
1

2ε
−
Å

2

λε
ωε,r[γ

n]− αn

ã
un

ãã
,

where the operator
(
Id + δt(ε∆+ 1

2ε + αn)
)−1

can be computed easily in Fourier space using Fast
Fourier Transform.
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Numerical experiments. Figure 6 shows two examples of numerical approximations of solutions to
Steiner’s problem in the case of 3 and 4 points uniformly distributed over a circle. These simulations
were carried out with a spatial discretization step of δx = 1/P with P = 27. We have also chosen
an approximation parameter ε = 4δx. Without going into detail about the choice of other simulation
parameters, these two experiments show that the numerical approach does indeed provide a relatively
good approximation to the solution of Steiner’s problem. On the other hand, it was difficult to use
a smaller ε parameter without resorting to a multi-resolution approach, where the ε parameter could
decrease during the iterations. Another remark concerns the phase field solution u, which appears
rather singular and poorly localised around the interface K, with an expected profile of the form

uε(x) ≃ 1− exp

Å−dist(x,K)

2ε

ã
,

which admits singularity on K.
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Figure 6: Numerical experiments to approximate solutions of Steiner’s problem. First line with 3
points, second line with 4 points. In each line, we plot the phase field function u at different time tn
along the iterations.

3.1.2 A new Willmore Cahn-Hilliard phase field model

Although the previous numerical experiments have all shown the ability of our phase field model to
approximate the solutions to Steiner’s problem, the minimization of the Eε function itself raises a
number of practical difficulties.

• Firstly, the solution u of the phase field model is not very regular, which leads to a strong
influence of the discretization parameter field on the solution itself. Therefore, we now propose
to modify the Ambrosio-Tortorelli length approximation term to improve the regularity of the
associated profile.

• One of the major difficulties in the optimisation of Eε is that it contains 2 terms whose action
is ambivalent, which leads to ill-conditioned problems. It is indeed the alternating action of
computing the geodesic and minimizing the phase field model that causes the interface to evolve
towards Steiner’s solution, but each of the two energies AT ε and Rε does not independently allow
the interface to be moved in order to reduce its length. Here, we propose to use a Willmore Cahn-
Hilliard energy [BCM24], which approximates the perimeter of the set K and whose L2-gradient
flow allows us to approximate mean curvature flow of interface K.

The aim of this section is to show how replacing the term AT ε by this new phase field model leads
to a much more numerically efficient model, without fundamentally changing the spirit of our phase
field model. In particular, the Γ-convergence result should always be true and obtained in a similar
way.
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Phase field approximation of mean curvature flow in non oriented interface. In [BCM24],
the authors propose a Γ-convergence analysis of the modified Cahn-Hillard functional

Pε(u) =

∫
Ω

Å
ε

2
|∇u|2 + 1

ε
W (u)

ã
dx+

σε

2ε

∫
Ω

Å
ε∆u− 1

ε
W ′(u)

ã2
dx,

where the real novelty concerns the non smooth potential W which is defined as

W (s) =

®
s2(1/2− 2s) if s ≤ 1

4 ,

+∞ otherwise.

Here, σε > 0 satisfies ε2/σε → 0 to obtain a phase field profile sufficiently stable. Notice that the
potential W admits a smooth well in s = 0 and an obstacle at s = 1/4. More precisely, it has been
constructed so that the derivative y = −q′ of the standard phase field profile q(s) = 1

2 (1− tanh(s/2)))
satisfies the equation

|y′(s)| =
»
2W (q), and y′′(s) = W ′(y(s)).

An optimal minimizing sequence uε of Pε is then expected of the form

uε(x) = −q′
Å
dist(x,K)

ε

ã
=

1

4

Ç
1− tanh

Å
dist(x,K)

2ε

ã2å
,

as soon as the contribution of the second order term of Pε, which can be viewed as an approximation
of the Willmore energy, is sufficiently important to stabilize the profile y = −q′. In particular, the
authors show in [BCM24] that the ε-gradient flow of Pε which reads

ut = ∆u− 1

ε2
W ′(u) + σε

Å
−∆(∆u− 1

ε2
W ′(u)) +

W ′′(u)

ε2
(∆u− 1

ε2
W ′(u))

ã
,

can be used to approximated the non oriented mean curvature flow. Without going into detail about
the simulation parameters and the choice of numerical discretization, Figure 7 shows a numerical
approximation example of a mean curvature flow based on the modified Cahn Hilliard energy Pε. Note
that the profile is stable and the minimization of Pε allows the interface K to evolve, which was clearly
not the case by considering the L2-flow of Ambrosio-Tortorelli energy.
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Figure 7: Example of numerical approximation of mean curvature flow using the ε-gradient flow of Pε.
The phase field function u is plotted along the iterations.

Application to the case of Steiner’s problem and discretization. We now propose to replace
AT ε by Pε. One just has to be careful about the profile, which does not have the same properties. In
the case of AT ε, the profile vanishes on the interface K and takes the value s = 1 far from it, whereas
for Pε, the profile u vanishes far from K and takes the value s = 1

4 on it. We thus consider the relaxed

version Ẽ defined by
Ẽε,r(u, γ) = Pε(u) +Rε,s(1− 4u, γ).

In particular, its L2-gradient flow reads®
ut = −∇uẼε(u, γ),

γ = argminγ∈Pa
{Ẽε(u, γ)}.

The solution (un, γn) at time t = nδt can be still approximated using a time-decoupled scheme, which
alternates

21



- a geodesic computation:

γn = argmin
γ∈Pa

Ẽε(u
n, γ) = argmin

γ∈Pa

Rr,ε(1− 4un, γ),

- a phase field evolution: un+1 ≃ v(δ) where v is the solution of the PDE:

vt = ε

Å
∆u− 1

ε2
W ′(u) + σε

Å
−∆(∆u− 1

ε2
W ′(u)) +

W ′′(u)

ε2
(∆u− 1

ε2
W ′(u)))

ãã
− 2

λε
ωε,r[γ

n](4v − 1),

with v(0) = un.

We compute un+1 by a semi-implicit convex-concave Fourier-spectral method which reads un+1 =
L[g(un)], where the explicit term g is defined as

g(u) = u+ δtε

Å
−F ′(u)

ε2
+ σε

Å
−∆[F ′(u)/ε2] +

F ′′(u)

ε2
[
∆u− F ′(u)/ε2

]ã
+ αu− β∆u

− 2

ελε
ωε,r[γ

n](4u− 1)

ã
,

and where the homogeneous linear operator L satisfies L =
(
Id + εδt(−∆+ σε∆

2 + αId − β∆))
)−1

.
Here, α and β can be viewed as stabilization parameters which need to be chosen sufficiently large to
guarantee the decrease of Ẽε(·, γn).

Numerical experiments. In Figure 8, we present two numerical experiments analogous to the
cases presented in Figure 6. For these experiments, we are still using a spatial resolution given by
P = 27. However, with this new phase field model, it is possible to use smaller ε parameters and, in
particular, we have used ε = 2/P . We first point that from a qualitative point of view, the numerical
results obtained with this method seem comparable with the ones obtained by our original model (see
Figure 6). However, the interface appears to localize better around the Steiner tree, probably due to
the choice of the ε parameter, which is twice as small. Note also that the solution u seems smoother,
which was expected with this new profile. From a convergence rate point of view, the use of this new
phase field model makes it possible to obtain approximations to Steiner’s solution more quickly. In the
case of three points, for example, we manage to obtain a correct solution after 1000 iterations only,
which is clearly not the case using AT ε term, even though the ε parameter is smaller.

In conclusion, this new model appears to be highly beneficial in all respects, justifying our use of
this modified version to approximate the numerical solutions to Plateau’s problem.

Remark 3.1. The stabilisation of the profile is due to the presence of the second order terms in the
energy Pε, which improves the conditioning of the optimisation problem. However, this Willmore term
only makes sense for profiles with regular phase fields and could not have been applied in the case of
the standard potential V (s) = 1

4 (1 − s)2. It is therefore the combination of the potential W with the
Willmore term that makes it possible to significantly improve Steiner’s phase field model.

3.2 Plateau’s problem and geodesic distance approximation

The numerical results for the approximation of Steiner’s problem have shown the significant numerical
advantage of using Cahn-Hilliard’s approximation Pε instead of its original version AT ε. Consequently,
we will use this variant in the case of Plateau’s problem by subsequently considering the following
model: ‹Fε(u) = Pε(u) +

1

cε

∑
(i,j)∈Iγ

d21−4u(γ
i, γj).

The idea is to adapt also the same regularization strategy by considering a relaxed and regularized
version of the geodesic term. We are primarily interested in a relaxed version which consists of
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Figure 8: Numerical experiments to approximate solution of Steiner problem using the second order
Cahn-Hilliard model; First line with 3 points, second line with 4 points. In each line, we plot the phase
field function u at different time tn along the iterations

introducing the variable ℓ = (ℓi,j)(i,j)∈Iγ where each ℓi,j ∈ Hom(γi, γj) and considering the following
relaxed energy‹Eε(u, ℓ) = Pε(u) +Rε(1− 4u, ℓ), with Rε(u, ℓ) =

1

cε

∑
(i,j)∈Iγ

∫
Sℓi,j

(δε + u2)dH2.

As in the case of Steiner, with Pγ = {ℓ = (ℓi,j)(i,j)∈Iγ ; ℓi,j ∈ Hom(γi, γj)}, one has‹Fε(u) = inf
ℓ∈Pγ

¶‹Eε(u, ℓ)
©
,

and the geodesic term is regularized and replaced by

Rε,α(u, ℓ) =
1

cε

∫
Ω

ωε,r[ℓ](δε + u2)dx =
1

cε

∑
(i,j)∈Iγ

∫
Sℓi,j

ρεr ∗ (δε + u2)dH2,

with ωε,r[ℓ] =
∑

(i,j)∈Iγ

(
ρεr ∗ H2 Sℓi,j

)
. It is then possible to effectively minimize the relaxed and

regularized energy ‹Eε,α(u, ℓ) = Pε(u) +Rε,α(1− 4u, ℓ),

by considering the discretization of its L2-gradient flow®
ut = −∇u

‹Eε,α(u, ℓ)

ℓ = argminℓ∈Pℓ
{‹Eε,α(u, ℓ)}

with a time decoupled scheme (un, ℓn) which alternates

- a geodesic computation :

ℓn = argmin
ℓ∈Pℓ

‹Eε,α(u
n, ℓ) = argmin

ℓ∈Pℓ

Rr,ε(1− 4un, ℓ);

- a phase field evolution : un+1 ≃ v(δ) where v is the solution of the PDE:

vt = ε

Å
∆u− 1

ε2
W ′(u) + σε

Å
−∆(∆u− 1

ε2
W ′(u)) +

W ′′(u)

ε2
(∆u− 1

ε2
W ′(u)))

ãã
− 2

λε
ωε,r[ℓ

n](4v − 1),

with v(0) = un.

The phase field part is very similar to the approaches presented in the case of Steiner’s problem and
for which we use exactly the same choices of discretization of the PDE to estimate v(δt). It therefore
did not seem appropriate to repeat these algorithms here. On the other hand, the treatment of the
geodesic part is quite different here and requires clarification.
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3.2.1 Computation of the geodesic

The first point to understand here is that, from a methodological point of view, the step

ℓn = argmin
ℓ∈Pℓ

Rr,ε(1− 4un, ℓ).

requires some approximation and simplification.
Indeed, let us consider the case of a Plateau problem where the given boundary contains only a

single regular curve Γ1 which corresponds to taking Iγ = {(1, 2)} and (γ1, γ2) such that γ1([0, 1]) = Γ1

and γ2([0, 1]) = x0 ∈ Γ1. Using the initial condition u0 = 0, it is not difficult to see that the first step
of our algorithm, i.e. the computation of ℓ0 defined by

ℓ0 = argmin
ℓ∈Pℓ

Rr,ε(1, ℓ),

requires determining the geodesic that connects the curves γ1 and γ2, whose image precisely corre-
sponds to the desired solution of the Plateau problem. It therefore seems unrealistic to solve this
optimisation problem and, except in very specific cases, we treat an approximate version that allows
us to obtain one curve in the set Pℓ.

Case of a circular curve. The first idea is to calculate a geodesic in a small space. For instance,
in the case where γ1 γ2 correspond to horizontal circles with respective radii r1 and r2 and positioned
at X1 = (0, 0, z1) and X2 = (0, 0, z2), then at least when u = 0, we can expect the geodesic ℓ1,2 to be
identified for all t ∈ [0, 1] with horizontal circles of radius R(t) and positioned at X(t) = (0, 0, z(t)). In
this specific case, the problem can therefore be reduced to a calculation of geodesics in a 2 dimensional
space corresponding to a radius r and a height z. The next step is to determine numerically the weight
function ω : R2 → R defined by

∀(r, z) ∈ R2 ω(r, z) =

∫ 2π

0

(1− 4u(r cos(θ), r sin(θ), z))
2
rdθ.

Thus, as in the case of Steiner’s problem in dimension 2, an approximation of the geodesic ℓ will be
obtained by

1) computing using the Fast Marching Method the weighted distance function x 7→ dγ1,ω(γ) corre-
sponding to the distance function from γ1 = (r1, z1) to γ = (r, z) and associated to the weight
ω;

2) computing the geodesic ℓ1,2 : [0, 1] 7→ R2 satisfying ℓ1,2(0) = γ1 and ℓ1,2(1) = γ2 by considering
a discrete version of the flow

(ℓ1,2)
′(s) = −∇dγ1,ω(ℓ1,2(s)), with ℓ1,2(0) = γ2.

Figure 9 shows an example of a geodesic obtained numerically using this reduced space approach.
In Figure 10 we present a second example of a geodesic computation. In this case, the reduced space
corresponds to the radii of circles of same center X = (x1, 0, 0), connecting a small circle to a large
one in the same horizontal plane.

This approach produces consistent results, but it is difficult to generalize to more complicated
Plateau problems since Fast Marching algorithms are challenging to use in spaces greater than three
dimensions. Therefore, we will not use it in the complete model with the phase field approach.

General case and approximation. The idea is now to examine each curve using the following
parametric representation:

ℓ1,2(t) = γ(t) = {ℓ1,2(t, θ) ∈ Ω ; θ ∈ [0, 2π]}.

once again, the computation of the geodesic will be carried out in two steps:

24



0 0.2 0.4 0.6 0.8 1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Figure 9: Example of calculation of a geodesic between two centered and horizontal circles. Left:
the weight function ω and the geodesic ℓ in the reduced 2-dimensional space. Right: the geodesic
represented in real space in dimension 3.
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Figure 10: Example of calculation of a geodesic between two horizontal circles at z = 0. Left: the weight
function ω and the geodesic ℓ in the reduced 2-dimensional space. Right: the geodesic represented in
real space in dimension 3.

1) computation in the real space and using the Fast Marching Method of the weighted distance
function x 7→ dγ1,ω(γ) corresponding to the distance function to the curve γ1 and associated to
the weight ω = (1− 4u)2;

2) computation of a geodesic ℓ by considering a discrete version of the flow

∂t(ℓ1,2(t, θ)) = −∇dγ1,ω(ℓ1,2(t, θ)), with ℓ1,2(0, θ) = γ2(θ), ∀θ ∈ [0, 2π].

Remark 3.2. To prevent the discrete approximation of the parametric representation of the curve
from revealing discrepancies, which would correspond to a discontinuity, we propose to re-parameterize
the curve with respect to the variable θ when it is no longer sufficiently uniform.

Figure 11 shows examples of geodesic approximations obtained by applying this strategy to the case
of a single curve Γ1. In the first example, where Γ1 is a circle, the computed geodesic is a disk, which
effectively corresponds to the solution of Plateau’s problem. On the other hand, the second example
clearly shows a geodesic that does not correspond to the solution of Plateau’s problem. However the
computed path ℓ connects the green curve γ1 to the red point γ2, and therefore properly spans the set
Γ1.

Figure 12 shows examples of geodesic approximations in the case of a Plateau problem with two
edges Γ1 and Γ2. Although this case does is not covered by the Gamma-convergence analysis carried
out in Section 2, this situation can be dealt with numerically. As before, the geodesic obtained is
clearly not the optimal geodesic but does allow us to connect the two green and red curves γ1 and γ2.

Remark 3.3. As we will see in the next subsection, even if the geodesic computation does not provide
the optimal geodesic ℓ in the sense of the optimisation problem, this approach allows us to find good
approximations to the solution of Plateau’s problem by considering the complete phase field model. In
a sense, the combined contributions of the phase field and the Willmore Cahn-Hilliard Pε energy to the
minimisation of the area of the geodesics, yield the convergence to minimal surfaces.
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Figure 11: Two numerical examples of geodesic computations in the case of a single curve Γ with
γ1([0, 2π]) = Γ and γ2([0, 2π]) = X2 ∈ Γ, setting u = 0.

Figure 12: Two numerical examples of geodesic computations in the case of a two curves Γ1 and Γ2

with γ1([0, 2π]) = Γ1 and γ2([0, 2π]) = Γ2, setting u = 0.

3.2.2 Numerical experiments

All the numerical experiments were done with the same set of numerical parameters, namely P = 27,
ε = 2/P , δt = 10 ε2, σϵ = 1/ε2 and r = 0.1 ε2. The scheme applied to the phase field part is exactly
the same as that used for the Steiner problem. In particular, we consider all PDEs in the calculation
box Ω = [0, 1]3 with additional periodic boundary conditions, using a semi-implicit convex-concave
Fourier approach for numerical integration. Numerical approximations of geodesic curves are obtained
by applying the approximate method, which only enforces the connection between curves γi and γj .
Note that in this case, we cannot guarantee that the optimal surface is calculated, as demonstrated
by the example of the two circles, where the cylinder replaces the expected catenoid. Nevertheless,
our approach to numerically minimizing the function Fε enables us to find good approximations of
solutions to Plateau’s problem when there are one, two, three or six curves. In particular, we will see
that the choice of the γi curve and how it is connected has a significant impact on the type of Plateau
solutions that can be approximated.

In each figure, we plot the curves γi in green or red. The approximation of Plateau’s problem is
plotted in blue and obtained as a level set of the phase field function u:

Sε = {x ∈ Q ; uε(x) = 3/16}.

Simple case: one curve, cylindrical case. The first two examples are shown in Figure 13 and
correspond to the case d = 1 with a single Γ1 curve positioned on a cylinder.

We plot the approximation Sε of the minimal surface solution of Plateau’s problem on each line
at different stages of the optimisation process. Initially, the solution resembles the geodesic obtained
when u = 0. Then, under the influence of the Willmore Cahn-Hilliard term, it evolves until it reaches
a stationary solution that is a good approximation of the Plateau solution. These first two examples
correspond to the case studied in the Gamma-convergence analysis of our phase field model.
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Figure 13: Numerical approximations of Plateau’s problem ; case d = 1. In each line, we plot the
solution at different time tn along the iterations. In green, the curve Γ1, in red, the point γ2 = γ2(0)
and in blue the surface Sε.

Case of two curves. Figure 14 shows four new experiments in the case of two curves Γ1 and Γ2.
Here we are in the first configuration of the case d = 2 (described at the beginning of Section 3) where
γ1 and γ2 represent a parametrization of the two curves Γ1 and Γ2 and where the geodesic term aims
to connect γ1 and γ2 only. Hence, the energy Fε is given by (34).

The first line shows the case of two circles that are close enough together (in terms of their radii)
that the Plateau solution is a catenoid. Initially, the solutions resemble a cylinder corresponding to the
geodesic approximation computed with u = 0, and then converge to the geodesic after 3000 iterations
of the algorithm.

The second example is very similar, and as previously, it can be seen that in the first iterations the
solution resembles the geodesic approximation with u = 0, before evolving towards a perturbation of
the catenoid.

The third example is of particular interest since the obtained solution is not oriented, and conse-
quently does not fall within the framework of the analysis of Plateau’s problem in a cylinder.

The fourth example considers circles that are far enough apart to prevent a catenoid from connecting
them. In this case, the solution converges to two disks connected by a narrow tube. Note that the
thickness of the tube depends on the parameter σε. We can expect this tube to disappear when ε
approaches 0, which corresponds to two disks — the solution to Plateau’s problem in such case.

Figure 15 presents a numerical experiment of configuration 2 with d = 2: we consider two circles
Γ1 = γ1([0, 2π]), Γ2 = γ2[0, 2π] and two points γ3 = γ1(0) and γ4 = γ2(0). The geodesic penalization
term connects (γ1, γ3) and (γ2, γ4), and the energy Fε is defined by (35).

In this situation, the catenoid is indeed a minimal surface. The point here is that this catenoid
cannot be approached with the chosen penalty term alone. To do so, it must be supplemented by at
least one disk, which is indeed the numerical solution found by our algorithm. This example therefore
illustrates the influence of the choice of the geodesic term on the solution of Plateau’s problem.

Extension to multiple curves. The last three examples presented in Figures 16, 17 and 18 illustrate
how our approach can easily be extended to more than two curves. In the first case, Figure 16, we use
a geodesic term composed of the three terms associated with the pairs (γ1, γ2),(γ1, γ3) and (γ2, γ3)
where each curve γi is associated to Γi. This situation corresponds to configuration 1 with d = 3.
In the end, the algorithm does find a surface whose boundary corresponds to the set {Γi}i∈1,2,3 and
appears to be a minimal surface. The next example in Figure 17 also corresponds to the case of three
circles but using a type 2 configuration: we take γ1([0, 2π]) = Γ1, γ2([0, 2π]) = Γ2, γ3([0, 2π]) = Γ3,
γ4 = γ1(0), γ5 = γ2(0) and γ6 = γ3(0) and propose to penalize the distance between (γ1, γ4), (γ1, γ5),
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Figure 14: Numerical approximations of Plateau’s problem ; d = 2 with configuration 1; Γ1 =
γ1([0, 2π]) and Γ2 = γ2[0, 2π]. In each line, we plot the solution at different time tn along the it-
erations. In green, the curve Γ1, in red, the curve γ2 and in blue the surface Sε.

Figure 15: Numerical approximations of Plateau’s problem ; d = 2 with configuration 2 ; Γ1 =
γ1([0, 2π]), Γ2 = γ2([0, 2π]), γ3 = γ1(0) and γ4 = γ2(0) . In each line, we plot the solution at different
time tn along the iterations. In green, the curves Γ1 and Γ2, in red, the points γ3 and γ4 and in blue
the surface Sε.
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(γ2, γ4), (γ2, γ6), (γ3, γ4) and (γ3, γ5). As before, the algorithm seems to converge to a stationary
solution, which is in fact a Plateau solution to our problem. The last example shown in Figure 18
corresponds to the classic cube example, for which we break down the given boundary Γ as a union of
six squares connected with a configuration of type 2. In particular, this latest numerical experiment
highlights the ability of our phase field approach to find complex and not smooth solutions to Plateau’s
problem.

Figure 16: Numerical approximations of Plateau’s problem ; d = 3 with configuration 1 ; Γ1 =
γ1([0, 2π]), Γ2 = γ2([0, 2π]), Γ3 = γ3([0, 2π]). In each line, we plot the solution at different time tn
along the iterations. In green, the curves Γ1, Γ2 and Γ3. In blue the surface Sε.

Figure 17: Numerical approximations of Plateau’s problem ; d = 3 with configuration 2 ; Γ1 =
γ1([0, 2π]), Γ2 = γ2([0, 2π]), Γ3 = γ3([0, 2π]), γ4 = γ1(0),γ5 = γ2(0) and γ6 = γ3(0) . In each line, we
plot the solution at different time tn along the iterations. In green, the curves Γ1, Γ2 and Γ3. In blue
the surface Sε.

Figure 18: Numerical approximations of Plateau’s problem ; d = 6 with configuration 2. In each line,
we plot the solution at different time tn along the iterations. In green, the curves ∪d

i=1Γ
i. In blue the

surface Sε.
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