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Abstract. We investigate local regularity properties of weak solutions to a broad class of
nonlinear nonlocal kinetic Kolmogorov-Fokker-Planck equations. In particular, we focus
on proving an interpolative apriori boundedness estimate for weak subsolutions in terms
of a tail term encoding the nonlocal contributions of the diffusion.

1. Introduction

In this work we deal with a wide class of kinetic equations, whose diffusion term is driven
by an integro-differential operator of differentiability order s ∈ (0, 1), which is allowed to be
nonlinear with at most quadratic growth. More specifically, we investigate local properties of
weak solutions f ≡ f(t, x, v) to the following class of equations
(1.1) (∂t + v · ∇x)f(t, x, v) = Lf(t, x, v) for (t, x, v) ∈ R × Rn × Rn ,

where the nonlocal operator L is given by

(1.2) Lf(t, x, v) := P. V.

ˆ
Rn

Φ

(
f(t, x, w) − f(t, x, v)

|v − w|s

)
dw

|v − w|n+s
.

Here, the symbol P. V. stands for “in the principal value sense”, s ∈ (0, 1) and the nonlinear-
ity Φ satisfies the following assumption.

Assumption 1.1. We assume that Φ : R → R is an odd function such that for any τ, τ ′ ∈ R
and some Λ ≥ 1, it holds

|Φ(τ) − Φ(τ ′)| ≤ Λ|τ − τ ′|(1.3)
and

(
Φ(τ) − Φ(τ ′)

)
(τ − τ ′) ≥ Λ−1|τ − τ ′|2.

Note that, since Φ is an odd function, it is also true that Φ(0) = 0.

As a prototype for Equation (1.1), even though in this scenario the difficulties arising
when dealing with a nonlinear operator vanish, one can consider Φ to be the identity. Then,
the diffusion in velocity coincides with the classical fractional Laplacian and in this setting
Equation (1.1) does reduce to
(1.4) (∂t + v · ∇x)f + (−∆v)sf = 0,
Equation (1.1) can be seen as a nonlocal extension of the nonlinear (local) equation studied
in [13] by Nyström and Garain where the vector filed A(·), generating the nonlinear structure
of the equation, satisfies standard ellipticity and quadratic growth assumptions, which can be
recovered, say by taking s = 1 in (1.1). Aside from the aforementioned paper, where interior
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regularity á la De Giorgi-Nash-Moser is addressed we recall [22] by Lascialfari and Morbidelli,
where the well-posedness of a Dirichlet problem in the local quasilinear case is addressed, as
well as the recent [20] where precise pointwise estimates in the spirit of nonlinear potential
theory and fine gradient regularity results under borderline assumptions on the data were
achieved in a setting analogous to [13].

For what regards the linear nonlocal case, the study of the regularity theory and qualita-
tive properties of fractional kinetic equations has recently witnessed a substantial growth by
attracting the attention of different mathematical communities. This is partially due to the
appearence of nonlocal kinetic equations in several, even seemingly unrelated, models, as, e.
g., in Finance, in order to describe the evolution of Asian options, where the drift term is con-
nected with risk-free interest rates as well as in Gas Dynamics where they appear as linearized
models for the Boltzmann equation without cutoff. In this scenario, a priori boundedness and
further regularity estimates would be very useful results in order to tackle with well-posedness
issues and long-time behavior studies; see for instance the famous result on the trend to global
equilibrium of Desvillettes and Villani [9] for the Boltzmann equation without cutoff where
solutions are assumed apriori to be smooth up to the boundary. In this scenario, the weak
regularity theory for nonlocal equations has been the main focus of various recent efforts by
different communities; see [3] and the references therein. In particular, we refer the reader to
the Hölder regularity results in [30], possibly including unbounded source terms, as well as the
ones in [24] covering more general, possibly nonsymmetric diffusion operators. Furthermore,
regarding classical estimates, we mention the very recent breakthrough counterexample to the
classical Harnack inequality [19], as well as its related new formulation in [2], where a strong
Harnack inequality with tail is proved provided that solutions have σ-summable nonlocal tail
along the transport variables for some σ > σ⋆(n, s), which is in fact naturally implied by the
usual assumptions considered in literature, e.g., from the usual mass density boundedness (as
for the Boltzmann equation without cut-off), and in clear accordance with the aforementioned
counterexample in [19]. Still in the flavor of Harnack-type inequalities, it is worth mentioning
the very recent paper [25], in which amongst other results, the author proves a strong Harnack
inequality for global solutions, a priori bounded, periodic in the space variable, and under an
integral monotonicity-in-time assumption (see Definition 2.2 there). Finally, we mention [33]
for the proof of the existence of weak solutions, and [15] for existence, uniqueness and regu-
larity results for solutions in the viscosity sense to fractional linear kinetic equations. Always
regarding these existence and uniqueness issues, we also recall the very recent works [5, 6].

For what regards more general nonlinear nonlocal kinetic equations to the best of our knowl-
edge, our contribution would be the first. In this respect, forthcoming Theorem 1.2 serves
as a first step in the direction of proving that solutions to (1.1) enjoy classical qualitative
properties and extend the results already available in the local case proved in the aforemen-
tioned [13]; see Section 4 for further information on other types of growth (subquadratic, or
superquadratic ones) in the same flavour of [1, 23,32].

Aside from the novelty of our results, these quantitative estimates are very useful when
dealing with local regularity, or qualitative properties of solutions to (1.1). However, even
proving a L2-L∞ estimate for nonlinear nonlocal kinetic equations is not a simple task. Indeed,
even in the linear case – as proven in the aforementioned work [19] – it is not possible, in
general, to bound the L∞ norm of a solution in terms of only local quantities even starting
from globally bounded solutions. Moreover, a deeper analysis of the counterexample in [19]
shows that such supremum estimate remains false also when an error term is added on its
right-hand side – basically a tail-type contribution as in (1.5) – if the tail belongs to Lσ,
for σ < (n(1 + 2s))/(2s).
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In order to balance in a quantitative way the nonlocal behavior of the diffusion in velocity
with the lack of ellipticity in the spacial variable given by the additional transport term,
we have to work under a sufficient integrability assumption on the the nonlocal tail of a
function ( [10,11]) defined as

(1.5) Tail(f ;Br(vo)) := r2s

ˆ
Rn\Br(vo)

|f(t, x, v)|
|vo − v|n+2s

dv .

Indeed, the finiteness of the Lσ-energy of the tail term is a turning point in the local analysis
of (1.1), and appears to be in contrast with most of the parabolic literature, where nonlocal
effects have been compensated via a (sharp) L1-tail (see [18]), which however is critical with
respect to kinetic scalings. Moreover, even if by definition weak solutions are not required to
have finite Lσ-tail, the usual constraints on the mass observable, see [16], plainly imply our
requirements on the Lσ-energy of the nonlocal tail.

Lastly, as in [2], the backbone of the proof of a L2-L∞ estimate is a hypoelliptic gain of
integrability, which is proven by making use of the fundamental solution of the fractional
Kolmogorov equation. More specifically, as in the classical framework for kinetic equations (
[28]), the transfer of regularity is based on treating as source term the difference between
the constant coefficients diffusion operator and the one with measurable entries, and then
estimating its L2-norm tracking down the long-range interactions appearing as Lσ-norm of
the tail quantity (1.5) on the right-hand side; see, in particular, [2, Theorem 1.4]. However, as
well as for velocity averaging lemmas, such a procedure can not be pursued in a very general
nonlinear setting. Hence, we focus on a fractional nonlinear case with quadratic growth, and
we prove that subsolutions to (1.1) satisfy interpolative estimates in terms of their local and
nonlocal contributions. The interpolative nature of the estimates below lies specifically in
the arbitrariness in the choice of the parameter δ, which plays the role of an interpolation
coefficient between the local and nonlocal part of the estimate. We also remark that essentially
the Tail(·) behaves as a source term. Hence, in this respect the forthcoming lower bound on
the integrability condition in (1.6) is the expected one also with respect to the local analogue
of Kolmogorov equation; see [4, 14].

Theorem 1.2. Let Ω := (t1, t2) × Ωx × Ωv ⊂ R1+2n be a domain, s ∈ (0, 1) and let Ns be
the homogeneous dimension in (2.5). Assume that f ∈ W is a weak subsolution to (1.1).
If Tail(f+;B) ∈ Lσ

loc((t1, t2) × Ωx) for any B ⋐ Ωv, for some σ satisfying

(1.6) σ >
Ns

2s ,

then, for any Qr(zo) ⊂ Q1(zo) ⊂ Ω and any δ ∈ (0, 1], it holds

sup
Q r

2
(zo)

f ≤ c

(
⟨vo⟩ 3

2

r
n
σ +2(n+2s)δ

) σNs
2sσ−Ns

(ˆ
Qr(zo)

|f |2 dtdxdv
) 1

2

+ δ

(ˆ
Ur(to,xo)

|Tail(f+;B r
2
(vo))|σ dt dx

) 1
p

,

where c ≡ c(n, s, Λ, σ) > 0.

Remark 1.3. It is possible to extend this results to an even wider class of nonlinear nonlocal
kinetic operators defined as

∂tf(t, x, v) + ∇x · (vf(t, x, v) + u(t, x)f(t, x, v)) = Lf(t, x, v)(1.7)
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for (t, x, v) ∈ R × Rn × Rn, where L is defined in (1.2) and u : R × Rn → Rn is a vector field.
This class is the nonlinear nonlocal counterpart of the one considered in [35], and to extend
our analysis to this case one needs to follow the theory presented in the aforementioned paper,
since the major difference between (1.1) and (1.7) lies in the structure of the transport, where
a vector field not depending on v is added. On the other hand, a more careful investigation
would be needed in order to consider a nonlinear nonlocal equation of the following type

(∂t + b(v) · ∇x)f(t, x, v) = Lf(t, x, v)

for (t, x, v) ∈ R × Rn × Rn, where L is defined in (1.2) and b satisfies a non-degeneracy
assumptions, see for instance Equation (1.3) of [34], where the analogous analysis in the
linear local case is carried out.

The proof of the above theorem strongly relies on the combination of a Caccioppoli inequal-
ity, see forthcoming Lemma 3.1, together with a higher integrability result for subsolutions to
(1.1) proved by making use of the fundamental solution of the linearized version of equation
(1.1) and following the approach presented in [2].

Outline of the paper. In Section 2 we introduce preliminary notions about the functional
and geometrical setting of this work. Section 3 is devoted to the proof of Theorem 1.2.
Section 4 we discuss in detail the challenges one needs to face when dealing with the nonlocal
p-growth case.

Aknowledgements. FA is partially supported by the INdAM - GNAMPA project “Vari-
ational problems for Kolmogorov equations: long-time analysis and regularity estimates”,
CUP E55F22000270001. MP is partially supported by the INdAM - GNAMPA project
“Fenomeni non locali in problemi locali”, CUP E55F22000270001. Both authors are par-
tially supported by the INdAM-GNAMPA Project “Problemi non locali: teoria cinetica e non
uniforme ellitticità”, CUP E53C22001930001.

2. Notation and preliminaries

In this Section, we recall some known results about our underlying geometrical and func-
tional setting. After fixing the notation, we introduce an appropriate geometric framework to
study integral kinetic equations; then, we recall some properties of fractional Sobolev spaces
and the functional setting required to deal with Equation (1.1).

2.1. Notation and geometric framework. We denote with c a positive universal constant
greater than one, which may change from line to line. For the sake of readability, dependencies
of the constants will be often omitted within the chains of estimates, therefore stated after
the estimate. Relevant dependencies on parameters will be emphasized by using parentheses.
For any O ⊂ Rn we denote with 1O the indicator function of O. As customary, for any r > 0
and any yo ∈ Rn we denote by Br(yo) ≡ B(yo; r) :=

{
y ∈ Rn : |y − yo| < r

}
, the open

ball with radius r and center yo. We shall often abbreviate B1 ≡ B1(0), where we denote
with 0Rn := 0. For any measurable function g, we define the positive and negative part of g
as g±(y) := max{±g(y), 0}. We denote with z := (t, x, v) a generic point of R1+2n. We shall
often abbreviate B1 ≡ B1(0), where we denote with 0Rn := 0. For any measurable function g,
we define the positive and negative part of g as g±(y) := max{±g(y), 0}. Given any open
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set O ⊂ R1+2n, with positive Lebsegue measure |O| > 0 we denote with

∥g∥Lp(O) :=
(ˆ

O
|g|p dz

) 1
p

.(2.1)

In a similar fashion, as for the geometrical setting of the Boltzmann kernel [17] or as in [26],
we start by endowing R1+2n with the following Galilean transformation
(2.2) zo ◦ z := (t+ to, x+ xo + tvo, v + vo).
With respect to the group law ◦, the couple (R1+2n, ◦) is a Lie group with identity element 0 :=
(0, 0, 0) ∈ R1+2n and inverse element

z−1 = (t, x, v)−1 = (−t, −x+ tv, −v) for any (t, x, v) ∈ R1+2n.

Furthermore, for any r > 0, we consider the usual fractional nonlinear kinetic scaling D(r) :
R1+2n 7→ R1+2n defined by
(2.3) δr(t, x, v) := (r2st, r1+2sx, rv).
Then for any r > 0, we denote by Qr a cylinder centered in the origin of radius r; that is,

Qr ≡ Qr(0) := Ur(0, 0) ×Br(0) = (−r2s, 0] ×Br1+2s(0) ×Br(0) .(2.4)

For every zo ∈ R1+2n and for every r > 0, the slanted cylinder Qr(zo) is defined as follows,
Qr(zo) :=

{
z := (t, x, v) ∈ R1+2n : −r2s < t− to ≤ 0,

|x− xo − (t− to)vo| < r1+2s, |v − vo| < r
}
.

We denote with Ns the homogeneous dimension related to (2.3) defined as
(2.5) Ns := n(2 + 2s) + 2s.
Such quantity encodes the scaling properties of the underlying kinetic scalings. Indeed, we
have that |Qr| = rNs |Q1|, and in general |δr(Ω)| = rNs |Ω|, for any Lebesgue measurable
sets Ω ⊂ R1+2n.

2.2. The functional framework. Lastly, we now introduce the family of related function
spaces. For s ∈ (0, 1) denote with Hs(O) the classical fractional Sobolev space

Hs(O) :=
{
f ∈ L2(O) : [f ]Hs(O) < +∞

}
,

where the fractional seminorm [f ]Hs(O) is the usual one defined via the Gagliardo kernel

[f ]Hs(O) :=
(¨

O×O

|f(v) − f(w)|2

|v − w|n+2s
dv dw

)1/2

,

and where we have equipped Hs with the usual norm
∥f∥Hs(O) := ∥f∥L2(O) + [f ]Hs(O) .

A function f belongs to Hs
loc(O)) if f ∈ Hs(O)′) whenever O)′ ⋐ O). We will denote

with H−s(Rn) the dual of Hs(Rn) and denote with ⟨·, ·⟩H−s,Hs the usual duality paring
between H−s and Hs. Let us remark that, via Riesz-Fréchet’s Representation Theorem for
any f ∈ H−s(Rn), there exists two functions ho, h1 ∈ L2(Rn) such that f = h1 + (−∆v)s/2ho
and ∥ho∥L2(Rn) + ∥h1∥L2(Rn) ≈ ∥f∥H−s(Rn). For any f ∈ Hs(Rn) we define Lf as an element
of H−s(Rn) that acts on ϕ ∈ Hs(Rn) via

⟨Lf, ϕ⟩H−s,Hs = 1
2

¨
Rn×Rn

Φ

(
f(v) − f(w)

|v − w|s

)
(ϕ(v) − ϕ(w))

|v − w|n+2 dw dv.
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Consider the following tail space

L1
2s(Rn) :=

{
g ∈ L1

loc(Rn) :
ˆ
Rn

|g(v)|
(1 + |v|)n+2s

dv < ∞
}
,

as firstly defined in [21]. Then, given Ω := (t1, t2) × Ωx × Ωv ⊂ R1+2n, we denote by W the
natural functions space to which weak solutions to (1.1) belong to, and defined as

W :=
{
f ∈ L2

loc((t1, t2) × Ωx; Hs
loc(Ωv)) ∩ L1

loc((t1, t2) × Ωx;L1
2s(Rn))

: (∂t + v · ∇x)f ∈ L2
loc((t1, t2) × Ωx; H−s(Rn)

}
.

We are now in a position to recall the definition of weak sub- and supersolution.

Definition 2.1. A function f ∈ W is a weak subsolution (resp., supersolution) to (1.1) in Ω
if

ˆ t2

t1

ˆ
Ωx

¨
Rn×Rn

Φ

(
f(t, x, v) − f(t, x, w)

|v − w|s

)
ψ(t, x, v) − ψ(t, x, w)

|v − w|n+s
dw dv dxdt

−
ˆ t2

t1

ˆ
Ωx

ˆ
Ωv

f(t, x, v) (∂t + v · ∇x)ψ(t, x, v) dv dxdt ≤ 0
(

≥ 0, resp.
)
,

for any nonnegative ψ ∈ L2((t1, t2) × Ωx;Hs
0(Ωv)). A function f ∈ W is a weak solution

to (1.1) if it is both a weak sub- and supersolution.

3. The L2-L∞ estimate

From now on, for any two functions f, g ∈ Hs(Rn), and t ∈ R and x ∈ Rn, we define the
bilinear operator

E(f, g)(t, x) :=
¨

Rn×Rn

Φ

(
f(t, x, w) − f(t, x, v)

|v − w|s

)
g(w) − g(v)
|v − w|n+s

dw dv.

As in the classical theory, a fractional Caccioppoli-type inequality is needed in order to
built the proper iteration scheme. This extends to the nonlinear setting the approach seen
in [2, Lemma 3.1]; see in particular Step 1 there.

Lemma 3.1 (Caccioppoli inequality). Let s ∈ (0, 1) and Ω ⊂ R1+2n be a bounded domain.
Let f be a weak subsolution to (1.1) in Ω according to Definition 2.1. For any r ∈ (0, 1) such
that Qr(zo) ⊂ Ω the following estimate holds true for any κ ∈ R, σ > 2 and ϱ ∈ (0, r)

sup
t∈(−ϱ2s+to,to]

ˆ
Qt

ϱ(zo)
(f − κ)2

+ dxdv +
ˆ

Uϱ(to,xo)
[(f − κ)+]2Hs(Bϱ(vo)) dtdx

≤ c⟨vo⟩
(r − ϱ)2(1+s)

ˆ
Qr(zo)

(f − κ)2
+ dtdxdv(3.1)

+c |Qr(zo) ∩ {f > κ}| 1
2 − 1

σ

(r − ϱ)2(n+2s) ∥(f − κ)+∥L2(Qr(zo))∥Tail((f − κ)+;Br(vo))∥Lσ(Ur(to,xo)) ,

where the constant c > 0 depends only on Λ, n and s.

It is possible to prove an analogous result even for nonquadratic growths. For further
information on this matter, we refer the reader to upcoming Section 4.
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Proof. Let us fix r ∈ (0, 1) such that Qr(zo) ⊂ Ω. Then, with no loss of generality we
assume that the main cylinder is centered at the origin. Indeed, by [30, Lemma 5.1] the
function f̃(z) := f(zo ◦ z) satisfies

∂tf̃ + v · ∇xf̃ = Lf̃ in z−1
o ◦ Ω.

Fix 0 < ϱ < r < 1 such that Qr ≡ Qr(0) ⊂ z−1
o ◦ Ω, and consider a weak subsolution to (1.1).

Then, we consider two function that for −r2s < τ1 < τ2 < 0 and 0 < δ < min{τ1 + r2s,−τ2}
are defined as

θδ(t) :=



0 for − r2s ≤ t ≤ τ1 − δ,

1 + t−τ1
δ for τ1 − δ < t ≤ τ1,

1 for τ1 < t ≤ τ2,

1 − t−τ2
δ for τ2 < t ≤ τ2 + δ,

0 for τ2 + δ < t ≤ 0 ,
whereas φ = φ(x, v) is defined as

φ ∈ C∞
c (B( ϱ+r

2 )1+2s ×B ϱ+r
2

),
0 ≤ φ ≤ 1 and ϕ ≡ 1 on Bϱ1+2s ×Bϱ

|∇vφ| ≤ c/(r − ϱ) and |v × ∇xφ| ≤ c⟨vo⟩/(r − ϱ)1+2s.

We observe that, by their definition, θ ∈ W 1,2([−r2s, 0]), whereas φ is a smooth function.
Now, since we are working on a cylinder centered at the origin which is defined through

euclidean open balls of suitable dimension (see (2.4)), we are allowed to introduce two sym-
metric standard mollifiers, the first one ζh = ζh(t) in time supported in (−h, h) ⊂ (t1, t2), and
the second one γℓ = γℓ(x) in space supported in Bℓ1+2s(0) ⊂ Ωx, and we define

fh,ℓ(t, x, v) =
ˆ
R

ˆ
Rn

ζh(t− τ)γℓ(x− ξ)f(τ, ξ, v) dξ dτ.

Note that in any domain U ⋐ (t1, t2) × Rn and any O ⊂ Rn on which f ∈ L2(U ;Hs(O)), by
the Lebesgue differentiation theorem for a.e. t ∈ (t1, t2) we have that

lim
h→0

ˆ
U×O

|fh,ℓ(t, x, v) − fℓ(t, x, v)|2 dxdv = 0.

Now, for any given κ ∈ R, we denote ϕ(t, x, v) = θδ(t)φ(x, v) and introduce

ψh,ℓ(t, x, v) = ((fh,ℓ − κ)+(t, x, v)ϕ(t, x, v))h,ℓ ,

a test function which is C∞
c (Qr), and we test Definition 2.1 against it:

0 ≥ −
ˆ t2

t1

ˆ
Ωx

ˆ
Ωv

f(∂t + v · ∇x)ψh,ℓ dtdxdv

+
ˆ t2

t1

ˆ
Ωx

E(f, ψh,ℓ) dtdx =: J1,h,ℓ + J2,h,ℓ.

We begin estimating J1,h,ℓ. Using the fact that the convolution is symmetric and fε is smooth
with respect to t and x, the term J1,h,ℓ is equal to

J1,h,ℓ = −
ˆ t2

t1

ˆ
Ωx

ˆ
Ωv

fh,ℓ(t, x, v)ϕ(t, x, v)(∂t + v · ∇x)(fh,ℓ − κ)+(t, x, v) dv dxdt

=
ˆ t2

t1

ˆ
Ωx

ˆ
Ωv

(∂t + v · ∇x)fh,ℓ(t, x, v)ϕ(t, x, v)(fh,ℓ − κ)+(t, x, v) dv dxdt
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= 1
2

ˆ t2

t1

ˆ
Ωx

ˆ
Ωv

(∂t + v · ∇x)(fh,ℓ − κ)2
+(t, x, v)ϕ(t, x, v) dtdxdv

= −1
2

ˆ
Qr

(fh,ℓ − κ)2
+(t, x, v)(∂t + v · ∇x)ϕ(t, x, v) dtdxdv.

Now, recalling the definition of φ and θδ, and in particular since θδ is a.e. differentiable and
its derivative is equal to

∂tθδ = 1
δ

1(τ1−δ,τ1] − 1
δ

1(τ2,τ2+δ],

we infer

−1
2

ˆ
Qr

(fh,ℓ − κ)2
+(t, x, v)φ2(x, v)∂tθδ(t) dtdxdv ≥ 1

2δ

ˆ τ2+δ

τ2

ˆ
Qt

ϱ

(fh,ℓ − κ)2
+(t, x, v) dtdxdv

− 1
2δ

ˆ τ1

τ1−δ

ˆ
Qt

r

(fh,ℓ − κ)2
+(t, x, v) dtdxdv

Then, putting the above computations into (3.2), and letting δ → 0 we recover the definition
of derivative ”in measure” and this yields

0 ≥ 1
2

ˆ
Bϱ1+2s×Bϱ

(fh,ℓ − κ)2
+(τ2, x, v) dtdxdv(3.2)

−1
2

ˆ
Br1+2s×Br

(fh,ℓ − κ)2
+(τ1, x, v) dtdxdv

− c⟨vo⟩
(r − ϱ)1+2s

ˆ
Br1+2s ×Br

(fh,ℓ − κ)2
+(t, x, v) dtdxdv

+
ˆ τ2

τ1

ˆ
Br1+2s

E(f,
(
(fh,ℓ − κ)+φ

2)
h,ℓ

) dtdx.

Then, taking the averaged integral in τ1 ∈ (−r2s, 0] and taking h, ℓ → 0

ˆ
Bϱ1+2s ×Bϱ

ω2(τ2, x, v) dx dv +
ˆ τ2

−r2s

ˆ
Br1+2s

E(f, ωφ2) dtdx

≤ c⟨vo⟩
(r − ϱ)1+2s

ˆ
Qr

ω2(t, x, v) dtdxdv,(3.3)

where we have denoted with ω(t, x, v) := (f − κ)+(t, x, v). Note that it would have been
possible to consider a standard symmetric convolution defined according to the group (see for
instance [7]), but in this case it would have been necessary to carry out the analysis on metric
balls defined according to the Carnot-Carathéodory distance of the group.
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Then, we estimate the second term on the left-hand side, that is the one related to the
energy E(f,

(
(f − κ)+φ

2)). Indeed, let us split the nonlocal energy as follows
ˆ

Br

ˆ
Br

Φ

(
f(t, x, v) − f(t, x, w)

|v − w|s

)
×
(
ω(t, x, v)φ2(x, v) − ω(t, x, w)φ2(x,w)

)
|v − w|n+s

dw dv

+ 2
ˆ

Br

ˆ
Rn\Br

Φ

(
f(t, x, v) − f(t, x, w)

|v − w|s

)
ω(t, x, v)φ2(x, v)

|v − w|n+s
dw dv

=: J2,1 + J2,2,

where we have recalled the definition of φ, which is only supported in Br1+2s × Br, and we
have considered that Φ is odd.

We begin by estimating the argument of the term J2,1 by cases. With no loss of generality
let us assume that f(t, x, v) > f(t, x, w). If the opposite inequality holds true, then we
exchange the roles of v and w by relying on the oddness of the nonlinearity Φ.

Then, if ω(t, x, v)φ2(x, v)−ω(t, x, w)φ2(x,w) ≥ 0, by (1.3) it holds Φ(τ)−Φ(τ ′) ≥ Λ−1(τ−
τ ′) for any τ ̸= τ ′, we obtain

Φ

(
f(t, x, v) − f(t, x, w)

|v − w|s

)
×

×

(
ω(t, x, v)φ2(x, v) − ω(t, x, w)φ2(x,w)

)
|v − w|n+s

≥ Λ−1
(
f(t, x, v) − f(t, x, w)

)
×

×
(
ω(t, x, v)φ2(x, v) − ω(t, x, w)φ2(x,w)

)
|v − w|n+2s

.(3.4)

On the other hand, if ω(t, x, v)φ2(x, v)−ω(t, x, w)φ2(x,w) ≤ 0, by (1.3) it holds |Φ(τ)| ≥ Λ|τ |,
so that

Φ

(
f(t, x, v) − f(t, x, w)

|v − w|s

)
×

×

(
ω(t, x, v)φ2(x, v) − ω(t, x, w)φ2(x,w)

)
|v − w|n+s

≥ Λ
(
f(t, x, v) − f(t, x, w)

)
×

×
(
ω(t, x, v)φ2(x, v) − ω(t, x, w)φ2(x,w)

)
|v − w|n+2s

.(3.5)

Now we continue to split in different cases

(f(t, x, v) − f(t, x, w))
(
ω(t, x, v)φ2(x, v) − ω(t, x, w)φ2(x,w)

)

=


(ω(t, x, v) − ω(t, x, w))

×
(
ω(t, x, v)φ2(x, v) − ω(t, x, w)φ2(x,w)

)
if f(t, x, v) > f(t, x, w) > κ,

(f(t, x, v) − f(t, x, w))ω(t, x, v)φ2(x, v) if f(t, x, v) > κ ≥ f(t, x, w),
0 otherwise
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≥


(ω(t, x, v) − ω(t, x, w))

×
(
ω(t, x, v)φ2(x, v) − ω(t, x, w)φ2(x,w)

)
if f(t, x, v) > f(t, x, w) > κ,

ω2(t, x, v)φ2(x, v) if f(t, x, v) > κ ≥ f(t, x, w),
0 otherwise

≥
(
(ωφ)(t, x, v) − (ωφ)(t, x, w)

)2 − ω(t, x, v)ω(t, x, w)
(
φ(x, v) − φ(x,w)

)2
.

Combining the above estimates into J2,1 yields

J2,1 ≥ c[ωφ]2Hs(Br)

− c

¨
Br×Br

max{ω(t,x,v),ω(t,x,w)}2|φ(x,v)−φ(x,w)|2

|v−w|n+2s dv dw

for some c ≡ c(Λ) > 0. Now, we apply further estimate the last term. By symmetry of the
Gagliardo kernel we can assume with no loss of generality that ω(t, x, v) ≥ ω(t, x, w), up to
exchanging the roles of v and w. Hence,¨

Br×Br

max{ω(t, x, v), ω(t, x, w)}2|φ(x, v) − φ(x,w)|2

|v − w|n+2s
dv dw

≤
ˆ

Br

ω2(t, x, v)
(ˆ

B2r(v)

∥∇vφ∥2
L∞(Qt

r) dw
|v − w|n−2(1−s)

)
dv

≤ c r2(1−s)

(r − ϱ)2

ˆ
Br

ω2(t, x, v) dv.(3.6)

All in all, combining the above estimates yields

J2,1 ≥ c[ωφ]2Hs(Br) − c

(r − ϱ)2

ˆ
Br

ω2(t, x, v) dv.(3.7)

Now, we deal with the nonlocal term in J2,2. Firstly, we observe that when let us assume
f(t, x, v) > f(t, x, w), then by the second estimate in (1.3) we get

Φ

(
f(t, x, v) − f(t, x, w)

|v − w|s

)
ω(t, x, v)φ2(x, v)

|v − w|n+s

≥ Λ−1 f(t, x, v) − f(t, x, w)
|v − w|n+2s

ω(t, x, v)φ2(x, v)

≥ Λ−1κ− f(t, x, w)
|v − w|n+2s

ω(t, x, v)φ2(x, v)

≥ −Λ−1ω(t, x, w)ω(t, x, v)φ2(x, v)
|v − w|n+2s

.

Note that the above chain of inequalities holds trivially when f(t, x, v) = f(t, x, w). Finally,
when f(t, x, v) < f(t, x, w) we get an analogous estimate by considering the first estimate in
Assumption 1.1 as follows

Φ

(
f(t, x, v) − f(t, x, w)

|v − w|s

)
ω(t, x, v)φ2(x, v)

|v − w|n+s

= Φ

(
f(t, x, w) − f(t, x, v)

|v − w|s

)(
−ω(t, x, v)φ2(x, v)

|v − w|n+s

)
≥ Λ

f(t, x, w) − f(t, x, v)
|v − w|n+2s

(−ω(t, x, v)φ2(x, v))
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≥ Λ
f(t, x, w) − κ

|v − w|n+2s
(−ω(t, x, v)φ2(x, v))

≥ −Λω(t, x, w)ω(t, x, v)φ2(x, v)
|v − w|n+2s

.

Then J2,2 can be estimated as follows:

(3.8) J2,2 ≥ −c
ˆ

Br

ˆ
Rn\Br

φ2(x, v)ω(t, x, v)ω(t, x, w)
|v − w|n+2s

dw dv.

Now, combining (3.7) and (3.8) with (3.3)
ˆ

Bϱ1+2s ×Bϱ

ω2(τ2, x, v) dxdv +
ˆ τ2

−r2s

ˆ
Br1+2s

[ωφ]2Hs(Br) dtdx

≤ c⟨vo⟩
(r − ϱ)2(1+s)

ˆ
Qr

ω2(t, x, v) dtdxdv

+c
ˆ

Qr

ˆ
Rn\Br

φ2(x, v)ω(t, x, v)ω(t, x, w)
|v − w|n+2s

dw dv dxdt ,

where the constant c > 0 depends only on Λ, n and s. Now, with some standard manipulations
as in [2, Lemma 3.1], we arrive at

sup
t∈[−ϱ2s,0]

ˆ
Bϱ1+2s ×Bϱ

ω2(t, x, v) dxdv +
ˆ

Uϱ

[ω]2Hs(Bϱ) dtdx

≤ c⟨vo⟩
(r − ϱ)2(1+s)

ˆ
Qr

ω2(t, x, v) dtdxdv(3.9)

+c
ˆ

Qr

ˆ
Rn\Br

φ2(x, v)ω(t, x, v)ω(t, x, w)
|v − w|n+2s

dw dtdxdv .

Furthermore, we estimate from above the nonlocal tail on the right-hand side of (3.9) by
applying Hölder’s Inequality with

(
σ, σ

σ−1
)
, with σ > 2. In this way we obtain

ˆ
Qr

ˆ
Rn\Br

φ2(x, v)ω(t, x, v)ω(t, x, w)
|v − w|n+2s

dw dtdxdv

≤
ˆ

Qr∩supp(φ)
φ2(x, v)ω(t, x, v)

(ˆ
Rn\Br

ω(t, x, w)
|v − w|n+2s

dw
)

dtdx dv

≤

(ˆ
Qr∩{f>κ}

ω
σ

σ−1 dtdxdv
)σ−1

σ

×

×

[ˆ
Qr∩ supp(φ)

(ˆ
Rn\Br

ω(t, x, w)
|v − w|n+2s

dw
)σ

dtdxdv
] 1

σ

≤ c |Qr ∩ {f > κ}| 1
2 − 1

σ

(r − ϱ)n+2s
∥ω∥L2(Qr)∥Tail(ω;Br)∥Lσ(Ur),

where in the last display we applied Hölder’s Inequality once again with
( 2(σ−1)

σ , 2(σ−1)
σ−2

)
,

noting that σ > 2 implies that σ/(σ − 1) < 2 and we centered the Gagliardo kernel since for
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any v ∈ Br ∩ supp(φ) ⊂ B(r+ϱ)/2 and any w ∈ Rn \Br, it holds

|w|
|v − w|

≤ 1 + |v|
||w| − |v||

≤ 1 + r + ϱ

r − ϱ
= c r

r − ϱ
.

Then, combining the above estimates with (3.9) yields the desired result. □

Proof of Theorem 1.2. The proof follows with an analogous procedure as in [2, Theorem
1.1]. For the sake of the reader we just give a sketch here as well. Note now, that by
Assumption 1.1 it follows that

(3.10) Lf(t, x, v) := P.V.
ˆ
Rn

(
f(t, x, v) − f(t, x, w)

)
K(t, x, v, w) dw

where for every v ̸= w the symmetric kernel K is defined as

(3.11) K(t, x, v, w) = Φ

(
f(t, x, v) − f(t, x, w)

|v − w|s

)
|v − w|−n−s

f(t, x, v) − f(t, x, w) ,

and satisfies

(3.12) Λ−1

|v − w|n+2s
≤ K(t, x, v, w) ≤ Λ

|v − w|n+2s
,

see [12, Remark 4.1]. Now, the proof proceed in two steps.

Step 1: The gain of integrability. By performing the same argument as in [2] – see
also [14] for a related approach in the local case – we can rely on the higher integrability
estimates achievable via the fundamental solution of the fractional Kolmogorov equation, in
turn obtaining the following Sobolev type inequality (see [2, Theorem 1.4])

(r − ϱ)n+2s∥(f − κ)+∥Lq(Qϱ(zo))

≤ c ⟨vo⟩∥(f − κ)+∥L2(Ur(to,xo);Hs(Br(vo)))(3.13)

+ c |Qr(zo) ∩ {f > κ}|
1
2 + s

Ns
− 1

σ ∥Tail((f − κ)+;Br(vo))∥Lσ(Ur(to,xo)) ,

for any κ ∈ R, any ϱ ∈ (0, r) where the constants c ≡ c(n, s, Λ, p) > 0 and the exponent (σ, q)
satisfies

2 ≤ q ≤ 2Ns

Ns − 2s , and σ >
Ns

2s .

Step 2: De Giorgi iteration. The second step of the proof is based on a classical De
Giorgi argument. Indeed, let us translate the problem considering f̃(z) := f(zo ◦ z), so that
the center of the cylinder is the origin. Hence, by [30, Lemma 5.1] we have that f̃ solves

(∂t + v · ∇x)f̃ = L̃f̃ in Ω̃ := z−1
o ◦ Ω ,

where L̃ is an integro-differential operator whose kernel satisfies the same ellipticity condition
as in (3.12). Then, for any j ∈ N, define

rj := 1
2(1 + 2−j)r and κj := (1 − 2−j)κ ,

where κ > 0 will be fixed later on. Now, we apply estimate (3.13) to (f̃ − κj+1)+, with q =
2Ns

Ns−2s and with radii rj+1 and rj .
Let us first note that by the Caccioppoli estimate (3.1) we can estimate the

L2(Ur(to, xo);Hs(Br(vo)))-norm of (f − κj+1)+ on the right-hand side of (3.13).
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Indeed, first, by Chebychev’s Inequality we have
|Qrj ∩ {f̃ > κj+1}|

|Qrj
|

≤ c 22j

κ2

ˆ
Qrj

(f̃ − κj)2
+ dtdxdv.(3.14)

Indeed, first of all, let us note that choosing

(3.15) κ ≥ δ∥Tail((f̃)+;Br/2)∥Lσ(Ur) for δ ∈ (0, 1] ,

where the notation of the right-hand side is defined in (2.1), yields

|Qrj
∩ {f̃ > κj}| 1

2 − 1
σ

|Qrj
|

∥Tail((f̃ − κj)+;Brj )∥Lσ(Urj
)

(ˆ
Qrj

(f̃ − κ)2
+ dtdx dv

) 1
2

≤ |Brj |− 1
σ

(
|Qrj

∩ {f̃ > κj}|
|Qrj |

) 1
2 − 1

σ

∥Tail((f̃ − κj)+;Brj )∥Lσ(Urj
) ×

×

(ˆ
Qrj

(f̃ − κ)2
+ dtdxdv

) 1
2

≤ c2jκ|Brj
|− 1

σ

(ˆ
Qrj

(f̃ − κ)2
+

κ2 dtdxdv
)1− 1

σ

∥Tail(f̃)+;B r
2
)∥Lσ(Ur)

≤ c r− n
σ 2j

(κ
δ

)2
(ˆ

Qrj

(f̃ − κ)2
+

κ2 dtdxdv
)1− 1

σ

.

Thus, by the Caccioppoli estimate (3.1) we obtainˆ
Qrj+1

ˆ
Brj+1

|(f̃ − κ)+(t, x, v) − (f̃ − κ)+(t, x, w)|2

|v − w|n+2s
dw dtdx dv

≤ c r− n
σ −2(n+2s)22j(1+s)+jNs⟨vo⟩2∥(f̃ − κj)+∥2

L2(Qrj
)(3.16)

+cr− n
σ −2(n+2s)24j(n+s)+jNs

(κ
δ

)2
∥(f̃ − κj)+/κ∥2(1− 1

σ )
L2(Qrj

) ,

where we used also that |Qrj
|/|Qrj+1 | ≲ 2jNs .

Also, from (3.14) and the choice of κ in (3.15) we obtain

∥Tail((f̃ − κj+1)+;Brj
)∥2

Lσ(Urj
)
|Qrj

∩ {f̃ > κj+1}|1+ 2s
Ns

− 2
σ

|Qrj |

≤ |Qrj
|

2s
Ns |Brj

|− 2
σ ∥Tail((f̃ − κj+1)+;Brj

)∥2
Lσ(Urj

) ×

×

(
|Qrj

∩ {f̃ > κj+1}|
|Qrj

|

)1+ 2s
Ns

− 2
σ

≤ c r− 2n
σ 2j(2+ 4s

Ns
− 4

σ )|Q1|
2s
Ns ∥Tail((f̃)+;B r

2
)∥2

Lσ(Ur) ×

×

(ˆ
Qrj

(f̃ − κj)2
+

κ2 dtdx dv
)1+ 2s

Ns
− 2

σ

≤ c r− 2n
σ 2j(2+ 4s

Ns
− 4

σ )
(κ
δ

)2
∥(f̃ − κj)+/κ∥

2(1+ 2s
Ns

− 2
σ )

L2(Qrj
) .(3.17)
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Then, combining (3.17) and (3.16) together with (3.13) yields
∥(f̃ − κj+1)+∥2

L2(Qrj+1 )

≤
∥(f̃ − κj+1)+∥2

Lq(Qrj
)

|Qrj |
|Qrj+1 ∩ {f̃ > κj+1}|

2s
Ns

≤ c∗ b
jκ2

[
Yj + Y

1− 1
σ

j + Y
1+ 2s

Ns
− 2

σ

j

](
|Qrj+1 ∩ {f̃ > κj+1}|

|Qrj+1 |

) 2s
Ns

,

for
b ≡ b(n, s) > 1, c∗ :=

(
c δ−1r− n

σ −2(n+2s))2⟨vo⟩3 > 0,

and Yj :=
∥(f̃ − κj)+∥2

L2(Qrj
)

κ2 .

Thus, by applying once again Chebychev’s Inequality (3.14), up to eventually relabeling b and
c we get

(3.18) Yj+1 ≤ c∗ b
j

(
Y

1+ 2s
Ns

j + Y
1+2( 2s

Ns
− 1

σ )
j + Y

1+ 2s
Ns

− 1
σ

j

)
.

Note that Ns/(2s) < σ implies that 2s
Ns

> 1
σ .

Hence, up to choosing κ such that
(3.19) κ ≥ ∥f̃+∥L2(Qr) ,

we can rewrite (3.18) as follows
Yj+1 ≤ c∗b

jY 1+α
j ,

for some positive α ≡ α(n, s, σ) := 2s
Ns

− 1
σ > 0 and b > 1. Then, up to choosing (upon

translating and dilating back)

κ := b
1

2α2 c
1
α

⟨vo⟩ 3
2α(

r
n
σ +2(n+2s)δ

) 1
α

∥f+∥L2(Qr(zo) + δ ∥Tail(f+;B r
2
(vo))∥Lσ(Ur(to,xo)) ,

in clear accordance with (3.15) and (3.19), the iteration argument of [10, Lemma 2.6] yields
that Yj → 0 as j → ∞, which gives the desired result. □

4. Further comments on general nonlinear nonlocal diffusions

In this section, we give a brief overview of the particular case when Φ(τ) = |τ |p−2τ , and
in particular we highlight the major challenges one has to face to deal with nonlocal kinetic
p-Laplace equations in contrast to the elliptic case [10, 11], or the parabolic one [1, 23, 32].
Our equation reads as follow
(4.1) (∂t + v · ∇x)f = Lf for (t, x, v) ∈ R × Rn × Rn ,

where the diffusion term L is an integro-differential operator of differentiability order s ∈ (0, 1)
and summability order p ∈ (1,∞) given by

Lf(t, x, v) := P.V.
ˆ
Rn

|f(t, x, v) − f(t, x, w)|p−2(f(t, x, w) − f(t, x, v))K(t, x, v, w) dw,

(4.2)

where K is a symmetric measurable kernel such that
(4.3) Λ−1|v − w|−n−sp ≤ K(t, x, v, w) ≤ Λ|v − w|−n−sp for a. e. v, w ∈ Rn,
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for a. e. (t, x) ∈ R1+n and for a positive constant Λ > 0.

As a prototype for Equation (4.1), even though in this scenario the difficulties arising
when dealing with only measurable coefficients vanishes, one can consider the simpler case
when the involved kernel K does coincide with the classical Gagliardo kernel in velocity,
i. e. K(t, x, v, w) ≡ |v − w|−n−sp. In this setting, Equation (4.1) does reduce to

(∂t + v · ∇x)f + (−∆v)s
pf = 0,

where (−∆v)s
p is the classical (s, p)-Laplacian with respect to the v-variable.

Employing the techniques already proposed in this work, see Section 3, we are able to
prove a Caccioppoli inequality for weak solutions of the equation above. For this, one has to
introduce the proper notion of weak solution and the correct geometry to deal with the new
nonlinear fractional setting.

In a similar fashion of what already done in Section 2, in this case we endow R1+2n =
R×Rn ×Rn with the same group law ◦, whereas for any p > 1 and for any r > 0, we consider
the usual fractional nonlinear kinetic scaling δr : R1+2n 7→ R1+2n defined by

(4.4) δr(t, x, v) := (rspt, r1+spx, rv).

Then for any r > 0, the slanted cylinder Qr(zo) is defined as follows,

Qr(zo) :=
{
z := (t, x, v) ∈ R1+2n : −r2p < t− to ≤ 0,

|x− xo − (t− to)vo| < r1+2p, |v − vo| < r
}
,

and the homogeneous dimension Nsp related to (4.4) is defined as

Nsp := n(2 + sp) + sp.

Furthermore, for p ∈ (1,∞), s ∈ (0, 1) and any O ⊆ Rn, we denote with W s,p(O) the
fractional Sobolev space

W s,p(O) :=
{
f ∈ Lp(O) : [f ]W s,p(O) < +∞

}
,

where the fractional seminorm [f ]W s,p(O) is the usual one via Gagliardo kernels,

[f ]W s,p(O) :=
(¨

O×O

|f(v) − f(w)|p

|v − w|n+sp
dv dw

) 1
p

.

We endow W s,p(O) with the following norm

∥f∥W s,p(O) := ∥f∥Lp(O) + [f ]W s,p(O).

A function f belongs to W s,p
loc (O) if f ∈ W s,p(O′) whenever O′ ⊂⊂ O. In a similar fashion,

we denote with W s,p
0 (O) the closure of C∞

0 (O) with respect to ∥×∥W s,p(O). Lastly, we recall
that as a definition of tail we consider the nonlinear version of the one suggested in (1.5)

Tail(f ;Br(vo)) := rsp

ˆ
Rn\Br(vo)

|f(t, x, v)|p−1

|vo − v|n+sp
dv .

and we consider the corresponding tail space

Lp−1
sp (Rn) :=

{
g ∈ Lp−1

loc (Rn) : ∥g∥Lp−1
sp (Rn) :=

ˆ
Rn

|g(v)|p−1

(1 + |v|)n+sp
dv < ∞

}
,

as firstly defined in [21]; see Section 2 there for related properties.



16 F. ANCESCHI AND M. PICCININI

Then, following the steps of the classical approach for instance proposed in [31], given Ω :=
(t1, t2)×Ωx×Ωv ⊂ R1+2n we denote by W the natural functions space to which weak solutions
to (1.1) of our interest belong to, and we defined it as

W :=
{
f ∈ Lp((t1, t2) × Ωx;W s,p(Ωv)) ∩ Lp−1((t1, t2) × Ωx;Lp−1

sp (Rn))

: (∂t + v × ∇x)f ∈ Lp′
((t1, t2) × Ωx; (W s,p(Rn))∗)

}
,

where (W s,p(Rn))∗ is the dual space of W s,p(Rn), and if p ∈ (1,+∞) we denote p′ := p/(p−1)
as its conjugate exponent.

Furthermore, we denote by E the nonlocal energy associated with our diffusion term L
in (4.2); that is

E(f, φ) :=
¨

Rn×Rn

|f(v) − f(w)|p−2(f(v) − f(w))(φ(v) − φ(w))K(v, w) dv dw ,

for any test function φ smooth enough. We are now in a position to recall the definition of
weak sub- and supersolution.

Definition 4.1. A function f ∈ W is a weak subsolution (resp., supersolution) to (4.1) in Ω
if

ˆ t2

t1

ˆ
Ωx

E(f, φ) dtdx

−
ˆ t2

t1

ˆ
Ωx

ˆ
Ωv

f (∂t + v · ∇x)φdtdxdv ≤ 0
(

≥ 0, resp.
)
,

for any nonnegative φ ∈ Lp((t1, t2) × Ωx;W s,p(Rn)) and (∂t + v × ∇x)φ ∈ Lp′((t1, t2) ×
Ωx; (W s,p(Rn))∗), such that suppφ ⊂⊂ (t1, t2) × Ωx × Ωv.
A function f ∈ Wp is a weak solution to (4.1) if it is both a weak sub- and supersolution.

Note that, when a general p > 1 is considered, we cannot get rid of the requirement
suppφ ⋐ Ω, because it ensures the validity of the integration by parts formula we will later
on employ.

Lemma 4.2. Let p ∈ (1,+∞), s ∈ (0, 1) and Ω ⊂ R1+2n be a bounded domain. Let f
be a weak subsolution to (4.1) in Ω according to Definition 4.1. For any r ∈ (0, 1) such
that Qr(zo) ⊂ Ω the following estimate holds true for any κ ∈ R, σ > p

p−1 and ϱ ∈ (0, r)

sup
t∈(−ϱsp+to,to]

ˆ
Qt

ϱ(zo)
(f − κ)2

+ dx dv +
ˆ

Uϱ(to,xo)
[(f − κ)+]2W s,p(Bϱ(vo)) dtdx

≤ c⟨vo⟩
(r − ϱ)p(1+s)

ˆ
Qr(zo)

(f − κ)p
+ dtdxdv

+c |Qr(zo) ∩ {f > κ}|1− 1
p − 1

σ

(r − ϱ)2(n+sp) ∥(f − κ)+∥Lp(Qr(zo))∥Tail((f − κ)+;Br(vo))∥Lσ(Ur(to,xo)) ,

where the constant c > 0 depends only on p and on the kernel constant Λ.

Proof. With no loss of generality let us assume zo = 0. Let Qr ≡ Qr(0) ⋐ Ω and let f be a
weak subsolution to (1.1) according to Definition 2.1.
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The proof is carried out as in Lemma 3.1, and we recover the estimateˆ
Bϱ1+sp ×Bϱ

ω2(τ2, x, v) dx dv +
ˆ τ2

−rsp

ˆ
Br1+sp

E(f, ωφp) dtdx

≤ c⟨vo⟩
(r − ϱ)1+sp

ˆ
Qr

ω2(t, x, v) dtdxdv.(4.5)

which is the analogous to (3.3). Here, we only treat the estimates regarding the third term
on the left-hand side involving the energy of the equation Ep(f, ωφp), where ω = (f − κ)+ as
in the proof of Lemma 3.1, and splitting it we obtainˆ

Qr

ˆ
Br

|f(t, x, v) − f(t, x, w)|p−2(f(t, x, w) − f(t, x, v))×

× (ω(t, x, v)φp(t, x, v) − ω(t, x, w)φp(x,w))K(t, x, v, w) dw dtdxdv

+ 2
ˆ

Qr

ˆ
Rn\Br

|f(t, x, v) − f(t, x, w)|p−2(f(t, x, w) − f(t, x, v))×

× ω(t, x, v)φp(x, v)K(t, x, v, w) dw dtdxdv
=: J2,1 + J2,2,

We begin by estimating the term J2,1. Firstly, if f(t, x, v) ≥ f(t, x, w), then

|f(t, x, v) − f(t, x, w)|p−2(f(t, x, v) − f(t, x, w))
(ω(t, x, v)φp(x, v) − ω(t, x, w)φp(x,w))

=
(
f(t, x, v) − f(t, x, w)

)p−1(
ω(t, x, v)φp(x, v) − ω(t, x, v)φp(x,w)

)

≥


∣∣ω(t, x, v) − ω(t, x, w)

∣∣p−1×
×
(
ω(t, x, v)φp(x, v) − ω(t, x, w)φp(x,w)

)
if f(t, x, v), f(t, x, w) > κ,∣∣ω(t, x, v)

∣∣p−1
ω(t, x, v)φp(x, v) if f(t, x, v) > κ ≥ f(t, x, w),

0 otherwise,

≥
(
ω(t, x, v) − ω(t, x, w)

)p−1(
ω(t, x, v)φp(x, v) − ω(t, x, w)φp(x,w)

)
,

which yields

|f(t, x, v) − f(t, x, w)|p−2(f(t, x, v) − f(t, x, w))
(ω(t, x, v)φp(x, v) − ω(t, x, w)φp(x,w))K(t, x, v, w)

≥
∣∣ω(t, x, v) − ω(t, x, w)

∣∣p−2(
ω(t, x, v) − ω(t, x, w)

)(
ω(t, x, v)φp(x, v) − ω(t, x, w)φp(x,w)

)
K(t, x, v, w).

If the opposite holds true, i. e. f(t, x, v) ≤ f(t, x, w), then we exchange the roles of v and w
and repeat the computations above.

Furthermore, under the assumptions ω(t, x, v) ≥ ω(t, x, w) and φ(x,w) ≥ φ(x, v), by ap-
plying [10, Lemma 3.1] we obtain

(1 − cpε)φp(x,w) − (1 + cpε)ε1−p|φ(x, v) − φ(x,w)|p ≤ φp(x, v).

Then, by choosing

ε := 1
max(1, 2cp)

ω(t, x, v) − ω(t, x, w)
ω(t, x, v) ∈ (0, 1],
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we get (
ω(t, x, v) − ω(t, x, w)

)p−1
ω(t, x, v)φp(x, v)

≥
(
ω(t, x, v) − ω(t, x, w)

)p−1
ω(t, x, v) max{φ(x, v), φ(x,w)}p

−1
2
(
ω(t, x, v) − ω(t, x, w)

)p max{φ(x, v), φ(x,w)}p

−cmax{ω(t, x, v), ω(t, x, w)}p|φ(x, v) − φ(x,w)|p.

Then, one easily observes that the estimates above trivially hold when 0 = ω(t, x, v) =
ω(t, x, w), or ω(t, x, v) ≥ ω(t, x, w) and φ(x, v) ≥ φ(x,w).

Hence, by only keeping the assumption ω(t, x, v) ≥ ω(t, x, w), we get

(
ω(t, x, v) − ω(t, x, w)

)p−1
(
ω(t, x, v)φp(x, v) − ω(t, x, w)φp(x,w)

)
≥
(
ω(t, x, v) − ω(t, x, w)

)p max{φ(x, v), φ(x,w)}p

−1
2
(
ω(t, x, v) − ω(t, x, w)

)p max{φ(x, v), φ(x,w)}p

−cmax{ω(t, x, v), ω(t, x, w)}p|φ(x, v) − φ(x,w)|p

≥ 1
2
(
ω(t, x, v) − ω(t, x, w)

)p max{φ(x, v), φ(x,w)}p

−cmax{ω(t, x, v), ω(t, x, w)}p|φ(x, v) − φ(x,w)|p.

Now, recalling that ω(t, x, v) ≥ ω(t, x, w), we rewrite the above estimate as follows

∣∣ω(t, x, v) − ω(t, x, w)
∣∣p−1

(
ω(t, x, v)φp(x, v) − ω(t, x, w)φp(x,w)

)
≥ 1

2
∣∣ω(t, x, v) − ω(t, x, w)

∣∣p max{φ(x, v), φ(x,w)}p

−cmax{ω(t, x, v), ω(t, x, w)}p|φ(x, v) − φ(x,w)|p,

which is symmetric with respect to v, w. Hence, the above inequality holds true for every
v, w ∈ Br by exchanging the roles of v and w. Finally, observing that

|ω(t, x, v)φ(x, v) − ω(t, x, w)φ(x,w)|p

≤ 2p−1|ω(t, x, v) − ω(t, x, w)| max{φ(x, v), φ(x,w)}p

+ 2p−1|φ(x, v) − φ(x,w)|p max{ω(t, x, v), ω(t, x, w)}p,

we conclude

J2,1 ≥ c

ˆ
Ur

[ωφ]pW s,p(Br) dtdx

− c

ˆ
Ur

¨
Br×Br

max{ω(t,x,v),ω(t,x,w)}p|φ(x,v)−φ(x,w)|p

|v−w|n+sp dv dw dtdx

≥ c

ˆ
Ur

[ωφ]pW s,p(Br) dtdx− c rp(1−s)

(r − ϱ)p

ˆ
Qr

ωp(t, x, v) dtdxdv,(4.6)
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where, once again we reasoned as in (3.6) by symmetry of the Gagliardo kernel. Now, we deal
with the nonlocal term in J2,2. Note that

|f(t, x, v) − f(t, x, w)|p−2(f(t, x, v) − f(t, x, w))ω(t, x, v)

≥ −
(
f(t, x, w) − f(t, x, v)

)p−1
+

(
f(t, x, v) − κ

)
+

≥ −
(
f(t, x, w) − κ

)p−1
+

(
f(t, x, v) − κ

)
+ = −ωp−1(t, x, w)ω(t, x, v).

From this, we conclude that J2,2 can be treated as follows:

J2,2 ≥ −c
ˆ

Qr

ˆ
Rn\Br

ωp−1(t, x, w)ω(t, x, v)φp(x, v)
|v − w|n+sp

dw dtdx dv(4.7)

≥ −c
ˆ

Qr

ω(t, x, v)φp(x, v)
(

sup
v∈ supp φ

ˆ
Rn\Br

ωp−1(t, x, w) dw
|v − w|n+sp

)
dtdxdv.

Hence, combining (4.6) and (4.7), it yields that

J2 ≥ c

ˆ
Ur

[ωφ]pW s,p(Br) dtdx− c rp(1−s)

(r − ϱ)p

ˆ
Qr

ωp(t, x, v) dv dxdt(4.8)

− c

ˆ
Qr

ω(t, x, v)φp(x, v)
(

sup
v∈ supp φ

ˆ
Rn\Br

ωp−1(t, x, w) dw
|v − w|n+sp

)
dtdxdv.

All in all, by combining (4.5) and (4.8) we obtain the desired result up to proceeding with
the same estimates as at the end of Lemma 3.1, for some constant c depending only on p and
on the kernel constant Λ. □

Nevertheless, one has to face great difficulties when studying the weak regularity theory
for (4.1), being the lack of a proper gain of integrability one of the greater ones. Indeed, the
study of kinetic Sobolev spaces of the type W has not yet been fully addressed, despite some
very recent work [27]. Hence, there is no available proof of any Sobolev-type embeddings in
this specific framework, nor any information on the existence a fundamental solution for the
operator when p ̸= 2. All in all, it appears it is not easy to overcome the obstacles posed by
both the lack of ellipticity and by the p-growth of the integral diffusion by replacing the result
of Bouchut [8], or the use of the fundamental solution constructed by Kolmogorov. Indeed,
not even the apriori boundedness of weak solutions, such as in [30], does lead to prove an
explicit interpolative result in the fashion of Theorem 1.2 without assuming, for instance, a
suitable adaptation of the boundedness away from the vacuum assumption.
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[23] N. Liao: Hölder regularity for parabolic fractional p-Laplacian. Calc. Var. Partial Differential Equations
63, no. 22,(2024)

[24] A. Loher: Quantitative De Giorgi methods in kinetic theory for non-local operators. J. Funct.
Anal. 286 (2024), no. 6, Art. 110312.

[25] A. Loher: Semi-local behaviour of non-local hypoelliptic equations: divergence form.
arxiv.org/abs/2404.05612v3 (2024).

[26] M. Manfredini, S. Pagliarani, S. Polidoro: Intrinsic Hölder spaces for fractional kinetic operators. (2024)
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