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Abstract. This paper deals with the obstacle problem for the fractional infinity Laplacian
with nonhomogeneous term f (u), where f : R+ 7→ R+:

L[u] = f (u) in {u > 0},

u ≥ 0 in Ω,

u = g on ∂Ω,

with

L[u](x) = sup
y∈Ω, y,x

u(y) − u(x)
|y − x|α

+ inf
y∈Ω, y,x

u(y) − u(x)
|y − x|α

, 0 < α < 1.

Under the assumptions that f is a continuous and monotone function and that the
boundary datum g is in C0,β(∂Ω) for some 0 < β < α, we prove existence of a solution u
to this problem. Moreover, this solution u is β−Hölderian on Ω. Our proof is based on
an approximation of f by an appropriate sequence of functions fε where we prove using
Perron’s method the existence of solutions uε, for every ε > 0. Then, we show some
uniform Hölder estimates on uε that guarantee that uε → u where this limit function u
turns out to be a solution to our obstacle problem.

Contents

1. Introduction 1
2. Preliminaries 5
3. Existence of viscosity solution 9
3.1. Subsolutions and Supersolutions 9
3.2. Perron’s Method 12
4. Obstacle problem 18
References 19

1. Introduction

The analysis of solutions to the infinity Laplacian equations dates back to the early
results of Arronson in [4, 5]. Let Ω be a Lipschitz domain in Rn and g be a Lipschitz
function on ∂Ω. Then, the optimal Lipschitz extension u of the boundary datum g
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minimizing the L∞−norm of the gradient of u on Ω (i.e. ||∇u||L∞(Ω)) is a solution in the
viscosity sense of the following Dirichlet infinity Laplacian boundary value problem:∆∞u := D2u∇u · ∇u = 0 in Ω,

u = g on ∂Ω.
(1.0.1)

Generalization to the Aronsson Functional ||F(x,u,∇u)||L∞(Ω) has been also extensively
studied in [7, 8, 11].

From [6], the solution u to the infinity Laplacian problem (1.0.1) can also be obtained
as the limit when p→∞ of the minimizers up of the p-Laplacian mimimization problem

min
{∫
Ω

|∇u|p : u ∈W1,p(Ω), u = g on ∂Ω

}
.

On the other hand, the fractional Laplacian operator is a non-local operator which
appears in many differential equations related to non-local tug-of-war game [9, 14],
optimal control problems [3], image processing [2], SQG and porous medium models
[1, 15]. In [10], the authors studied the limit of the fractional p−Laplacian when p→∞.
More precisely, they consider the minimization problem

min

x
Ω×Ω

|u(x) − u(y)|p

|x − y|αp dx dy : u ∈Ws,p(Ω), u = g on ∂Ω

 , (1.0.2)

where α ∈ (0, 1) is fixed, s = α −
n
p

, g ∈ C0,α(∂Ω) and the fractional Sobolev space

Ws,p(Ω) is defined as follows:

Ws,p(Ω) =
{
u ∈ Lp(Ω) : ∥u∥p + [u]s,p,Ω < ∞

}
where

[u]s,p,Ω =

x
Ω×Ω

|u(x) − u(y)|p

|x − y|sp+n dx dy


1/p

.

Let up be the unique minimizer of Problem (1.0.2). Then, it is easy to see that up solves
the following Euler Lagrange equation: for any test function φ ∈ C∞0 (Ω), one has

x

Ω×Ω

|u(x) − u(y)|p−1

|x − y|α
sgn(u(x) − u(y)) (φ(x) − φ(y)) dx dy = 0

where sgn(s) = s
|s| for s , 0. It is then proved in [10, Proposition 6.4] that up is a viscosity

solution of the equation:

Lp[u] :=
∫
Ω

∣∣∣∣∣u(x) − u(y)
|x − y|α

∣∣∣∣∣p−1 sgn(u(x) − u(y))
|x − y|α

dy = 0. (1.0.3)

From [10, Theorem 1.1], up converges uniformly to a function u∞ ∈ C0,α(Ω) which is
a viscosity solution to the Hölder (or fractional) infinity Laplace equation (we can see
this operator L as the limit of Lp when p→∞):

L[u](x) := sup
y∈Ω, y,x

u(y) − u(x)
|y − x|α

+ inf
y∈Ω, y,x

u(y) − u(x)
|y − x|α

= 0. (1.0.4)
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Moreover, u∞ is an optimal Hölder extension of the boundary datum g ∈ C0,α(∂Ω), in
the sense that the Hölder seminorm [u∞]α,Ω is always less than or equal [u]α,Ω for any
α−Hölder function u such that u = g on ∂Ω, where

[u]α,Ω = sup
x,y∈Ω, x,y

|u(x) − u(y)|
|x − y|α

.

In [13], the authors have considered the associated Dirichlet obstacle problem to (1.0.4),
i.e. they studied the fractional infinity Laplacian problem but in the presence of an
obstacle ψ: 

L[u] = 0 in {u > ψ},

L[u] ≤ 0 in {u = ψ},

u ≥ ψ in Ω,

u = g on ∂Ω.

(1.0.5)

Following the approximation of (1.0.4) by the fractional p−Laplacian as in [10, Section
6], the authors in [13] proved existence of a viscosity solution to (1.0.5) by studying the
limit when p→∞ of the following fractional p−Laplacian problem with obstacle:

min
{ x

Ω×Ω

|u(x) − u(y)|p

|x − y|αp dx dy : u ∈Ws,p(Ω), u ≥ ψ in Ω, u = g on ∂Ω
}
. (1.0.6)

On the other side, we note that the existence of a solution to the nonhomogeneous
fractional infinity Laplacian, i.e. to equation (1.0.4) but with right hand term f (x),
cannot be obtained by means of a p−Laplacian approximation. However, the authors
of [10] have also considered the nonhomogeneous version of (1.0.4): L[u] = f (x) in Ω,

u = g on ∂Ω.
(1.0.7)

In fact, they prove that if f ∈ C(Ω) ∩ L∞(Ω) and g ∈ C(∂Ω), then a viscosity solution
u ∈ C(Ω) to Problem (1.0.7) exists. Moreover, they show that solutions u are locally
β−Hölder continuous, for any 0 < β < α, and a global β−Hölder estimate was also
obtained when g ∈ C0,β(∂Ω). In addition, there is a partial result in [10] about the
uniqueness of the solution u to (1.0.7). In the homogeneous case (i.e. when f = 0),
the solution u is unique and locally Lipschitz (see [10, Theorem 1.5]) and an implicit
representation of this solution u has been proven; u(x) is the unique root r to the
following equation:

sup
y∈∂Ω

g(y) − r
|y − x|α

+ inf
y∈∂Ω

g(y) − r
|y − x|α

= 0.

But, the uniqueness of the solution to Problem (1.0.4) in the general nonhomogeneous
case (i.e. when f , 0) is still widely an open question. Moreover, the optimal
C0,α
−regularity of the solution remain open for general functions f .
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Motivated by the results of [10], we study in this paper the fractional infinity
Laplacian equation but with nonhomogeneous term f (u) that depends on the solution
u. To be more precise, we aim to prove the existence of a solution u to the following
equation that satisfies also the Dirichlet boundary condition u = g on ∂Ω:

L[u] = f (u) in Ω. (1.0.8)

We note that the dependence of the right hand term f (u) on the solution itself makes
the problem more complicated. So, the question here is to find the good assumptions
on f that guarantee the existence of a solution to (1.0.8). Like in [10], the continuity
of f will be essential here too. But, we will not assume that f is bounded (which is a
required condition in [10]). However, we will impose a monotonicity condition on f
and prove by the mean of maximum principle that if f is monotone and g is β−Hölder
continuous then a solution u to (1.0.8) exists satisfying u = g on ∂Ω. Local and global
Hölder regularity of solutions will be also proved.

In addition, we will consider equation (1.0.8) but in the presence of an obstacle.
Concretely, we will prove existence of a function u that is nonnegative over Ω (here
u ≥ 0 represents the obstacle), that takes the datum g on ∂Ω, and solves the following
equation (1.0.8) but inside the positivity set {u > 0}:

L[u] = f (u) in {u > 0}. (1.0.9)

The paper is organized as follows. In Section 2, we show some properties on the
operator L. In particular, we show that the function |x − x0|

β (where β ≤ α) is a strict
subsolution to (1.0.4); this will be fundamental in our later analysis. In section 3, we
introduce the notion of viscosity (sub/super) solution to (1.0.8) and show in Proposition
3.5 the comparison principle. Moreover, we will prove a stability result on subsolutions.
We also develop a Perron’s Method argument in Section 3.2 and prove the following
existence and regularity results.

Theorem 1.1. Assume f : R 7→ R is continuous and monotone and the boundary datum g is
β−Hölder for some 0 < β < α. Then, the following fractional infinity Laplacian problem: L[u] = f (u) in Ω,

u = g on ∂Ω,

has a solution u. Moreover, u ∈ C0,β(Ω).

We note that the solution constructed in the proof of Theorem 1.1 is non-negative
when both f and g are non-negative; this will allow us to introduce the obstacle problem
in Section 4 and show the following second main result of the paper.

Theorem 1.2. Assume f is nonnegative, continuous and monotone on [0,∞)] and g ∈
C0,β(∂Ω) non negative with 0 < β < α. Then, there exists a nonnegative β−Hölder solution u
to the following obstacle fractional infinity Laplacian problem: L[u] = f (u) in {u > 0},

u = g on ∂Ω.
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The main idea of the proof of Theorem 1.2 is to approximate the function f with
a sequence of non-decreasing continuous functions and use the result of Section 3
to obtain a sequence of solutions to (1.0.8) converging to a solution for the obstacle
problem 1.0.9 with boundary data g.

2. Preliminaries

In this section, we introduce some properties of the fractional infinity Laplacian
operator L that we will use later in our paper. First of all, we define the following
intermediary operators

L+[u] = sup
y∈Ω, y,x

u(y) − u(x)
|y − x|α

and L−[u] = inf
y∈Ω, y,x

u(y) − u(x)
|y − x|α

.

Recalling the definition of the operator L, we clearly have L[u] = L+[u] + L−[u].
We start by the following simple lemma that we use frequently in the sequel (we give

the proof just for the sake of completeness).

Lemma 2.1. Fix α ∈ (0, 1). Then, for all x, y ∈ Rn, we have the α−triangle inequality:

|x + y|α ≤ |x|α + |y|α.

In addition, the equality holds if and only if we either have x = 0 or y = 0.

Proof. Let a, b > 0. For any r ≥ 0, we define the function h(r) = (r + b)α − rα − bα. Notice
that

h′(r) = α
[
(r + b)α−1

− rα−1
]
< 0.

Hence, we infer that h is strictly decreasing on [0,∞) and so, one has the following
inequality:

h(a) = (a + b)α − aα − bα < h(0) = 0. (2.0.1)

For x, y ∈ Rn non zero, we get from (2.0.1) with a = |x|, b = |y| and using the classical
triangle inequality, that

|x + y|α ≤ (|x| + |y|)α < |x|α + |y|α.

Finally, we note that equality follows immediately when x = 0 or y = 0. □

Fix x0 ∈ Ω. Then, we define the barrier function ψβ,x0(x) = |x− x0|
β. First, we calculate

L[ψβ,x0] when 0 < β < α. We note that ψβ,x0 will be used later in Section 3.2 to construct
sub/supersolutions as well as to show β−Hölder regularity on solutions.

Proposition 2.2. Assume 0 < β < α ≤ 1, x0 ∈ Ω and ψβ,x0(x) = |x − x0|
β. Then, for every

x ∈ Ω \ {x0}, we have

L[ψβ,x0](x) ≤ |x − x0|
β−α

 rβ⋆ − 1
(r⋆ − 1)α

− 1

 < 0, (2.0.2)

where r∗ >
1 − β
α − β

is the unique solution in (1,∞) to the following equation:

(α − β) rβ + β rβ−1
− α = 0.
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Proof. First, it is clear that

L−[ψβ,x0](x) ≤
ψβ,x0(x0) − ψβ,x0(x)

|x0 − x|α
= −|x − x0|

β−α. (2.0.3)

On the other hand,

L+[ψβ,x0](x) = sup
y∈Ω, y,x

|y − x0|
β
− |x − x0|

β

|y − x|α
= sup

y∈Ω, |y−x0|>|x−x0|

|y − x0|
β
− |x − x0|

β

|y − x|α

≤ sup
y∈Ω, |y−x0|>|x−x0|

|y − x0|
β
− |x − x0|

β

(|y − x0| − |x − x0|)α
= |x − x0|

β−α sup
y∈Ω, |y−x0|>|x−x0|

(
|y − x0|

|x − x0|

)β
− 1(

|y − x0|

|x − x0|
− 1

)α .
Hence

L+[ψβ,x0](x) ≤ |x − x0|
β−α sup

1<r< diam(Ω)
|x−x0 |

Ψ(r), (2.0.4)

whereΨ(r) :=
rβ − 1

(r − 1)α
. We note that limr→1+Ψ(r) =

 0 if α < 1

β if α = 1
and limr→∞Ψ(r) = 0.

Moreover, one has

Ψ′(r) =
βrβ−1(r − 1)α − α(r − 1)α−1(rβ − 1)

(r − 1)2α =
βrβ−1(r − 1) − α(rβ − 1)

(r − 1)α+1 =
(β − α)rβ − βrβ−1 + α

(r − 1)α+1 .

Now, set p(r) = (β − α)rβ − βrβ−1 + α. Notice that p(1) = 0, limr→∞ p(r) = −∞, and we
have

p′(r) = β(β − α)rβ−1
− β(β − 1)rβ−2 = βrβ−2[(β − α)r − (β − 1)].

Let r0 =
1 − β
α − β

be the unique root of p′(r) = 0. From above we deduce that p has a

unique root r⋆ > r0 such that

sup
r>1
Ψ(r) = Ψ(r⋆).

Combining the estimates (2.0.3) on L− and (2.0.4) on L+ , we conclude (2.0.2). But, from
Lemma 2.1, we have

rβ⋆ < (r⋆ − 1)β + 1 ≤ (r⋆ − 1)α + 1.

Hence, we have L[ψβ,x0](x) < 0. □

Moreover, we give an estimate on L[ψβ,x0] but in the case when β = α. This will be
used in Section 4 to show α−Hölder regularity on solutions to the obstacle problem
(1.0.9).

Proposition 2.3. Letting ψα,x0(x) = |x − x0|
α with α ∈ (0, 1) and x0 ∈ Ω. Then, one has

L[ψα.x0](x) ≤ −1 +

(
diam(Ω)
|x − x0|

)α
− 1(

diam(Ω)
|x − x0|

− 1
)α < 0, for all x , x0.
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Proof. From Lemma 2.1, one has |x − x0|
α
≤ |x − y|α + |y − x0|

α and so for y , x, we have
the following:

|y − x0|
α
− |x − x0|

α

|y − x|α
≥ −1,

with equality attained at y = x0. So, L−[ψα,x0](x) = −1. Proceeding as in Proposition 2.2,
one has

L+[ψα,x0](x) ≤ sup
1<r< diam(Ω)

|x−x0 |

Ψ(r),

withΨ(r) =
rα − 1

(r − 1)α
. In this case,Ψ′(r) =

α(1 − rα−1)
(r − 1)α+1 > 0. Consequently, we get that

L+[ψα,x0](x) ≤ Ψ
(

diam(Ω)
|x − x0|

)
=

(
diam(Ω)
|x − x0|

)α
− 1(

diam(Ω)
|x − x0|

− 1
)α < lim

r→∞
ψ(r) = 1.

If α < 1, then we have for x , x0

L[ψα,x0](x) ≤ −1 +

(
diam(Ω)
|x − x0|

)α
− 1(

diam(Ω)
|x − x0|

− 1
)α < 0. □

In the following lemma, we will show some estimates on L±[φ] in the case when φ is
a smooth function.

Lemma 2.4. Assume φ is a C1 function in a neighborhood of some point x0 ∈ Ω. Then, for
α ∈ (0, 1], we have

L−[φ](x0) ≤ 0 ≤ L+[φ](x0).

Moreover, if α = 1 then

L+[φ](x0) ≥ |∇φ(x0)| and L−[φ](x0) ≤ −|∇φ(x0)|.

Proof. Let e be a unit vector in Rn. From the definition of L+, one has the following:

L+[φ](x0) ≥ lim
h→0

φ(x0 + he) − φ(x0)
|h|α

= lim
h→0

φ(x0 + he) − φ(x0)
|h|

|h|1−α

=

 0 if 0 < α < 1,

∇φ(x0) · e if α = 1.

For α = 1, taking e =
∇φ(x0)
|∇φ(x0)|

when ∇φ(x0) , 0, we deduce in this case that L+[φ](x0) ≥

|∇φ(x0)|.
The estimates on L−[φ] follow directly from the fact that L−[φ] = −L+[−φ]. □

Next, we show that L±[φ] must be continuous for smooth functions φ.

Proposition 2.5. If φ ∈ C1(Ω), then L±[φ] ∈ C(Ω).
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Proof. Fix x0 ∈ Ω and let {xn} be a sequence of points converging to x0. Let us show that

L+[φ](xn)→ L+[φ](x0).

We have

L+[φ](xn) = sup
y∈Ω̄, y,xn

φ(y) − φ(xn)
|y − xn|

α
.

First, assume that there exists an ε0 > 0 such that for all n there is a point yn ∈ Ω̄\B(x0, ε0)
such that

L+[φ](xn) =
φ(yn) − φ(xn)
|yn − xn|

α
≥
φ(y) − φ(xn)
|y − xn|

α
, for all y ∈ Ω̄, y , xn.

Hence, lim infn→∞ L+[φ](xn) ≥
φ(y) − φ(x0)
|y − x0|

α
for every y , x0 and so, lim infn→∞ L+[φ](xn) ≥

L+[φ](x0). On the other hand, yn has a convergent subsequence ynk say to y0, then since
y0 , x0,

lim
k→∞

L+[φ](xnk) =
φ(y0) − φ(x0)
|y0 − x0|

α
≥
φ(y) − φ(x0)
|y − x0|

α
for all y ∈ Ω̄, y , x0,

and so limk→∞ L+[φ](xnk) = L+[φ](x0). We conclude that in this case limn→∞ L+[φ](xn) =
L+[φ](x0).

Now, assume that for every n there is a point yn , xn such that |yn − x0| → 0 when
n→∞ and

φ(y) − φ(xn)
|y − xn|

α
−

1
n
≤ L+[φ](xn) −

1
n
≤
φ(yn) − φ(xn)
|yn − xn|

α
(2.0.5)

for all y ∈ Ω̄, y , xn. Take δ > 0 such that B(x0, δ) ⊆ Ω. Since φ ∈ C1(Ω), then we clearly
have

|φ(x) − φ(x′)| ≤M|x − x′| ∀x, x′ ∈ B(x0, δ).

If α < 1, for n large, we get

|φ(yn) − φ(xn)|
|yn − xn|

α
≤M|xn − yn|

1−α
→ 0.

Hence, (2.0.5) becomes

φ(y) − φ(x0)
|y − x0|

α
≤ lim sup

n→∞
L+[φ](xn) ≤ 0, for all y , x0.

Since y is arbitrary, then L+[φ](x0) ≤ lim supn→∞ L+[φ](xn) ≤ 0. From Lemma 2.4, we
infer that

lim
n→∞

L+[φ](xn) = L+[φ](x0) = 0.

Finally, we assume α = 1. Notice that (2.0.5) and Lemma 2.4 imply together that

|∇φ(x0)| ≤ L+[φ](x0) ≤ lim inf
n→∞

L+[φ](xn).

From the mean value theorem, there exists a point ξn on the line segment joining xn to
yn such that

φ(yn) − φ(xn)
|yn − xn|

= ∇φ(ξn) ·
yn − xn

|yn − xn|
≤ |∇φ(ξn)|.
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Then, again from (2.0.5),

lim sup
n→∞

L+[φ](xn) ≤ |∇φ(x0)|,

concluding in this case that

lim
n→∞

L+[φ](xn) = L+[φ](x0) = |∇φ(x0)|. □

Remark 2.6. Notice that the result of Proposition 2.5 fails ifφ is assumed to be only continuous.
In fact, let x0 ∈ Ω and consider ψx0(x) = |x− x0|.We have from the proof of Proposition 2.3 that
L−[ψx0](x) = −1 for x , x0 though L−[ψx0](x0) = 1.

We complete this section with the following Lemma.

Lemma 2.7. Assume φ ∈ C1(Ω) ∩ C(Ω) and x0 ∈ Ω. Define φδ(x) = φ(x) + δ|x − x0|
2, with

δ ∈ R. Then, we have

|L[φδ](x) − L[φ](x)| ≤ 4|δ|diam(Ω)2−α.

In particular, this estimate implies that L[φδ] converges uniformly in δ to L[φ].

Proof. Notice that for y , x, one has

φδ(y) − φδ(x)
|y − x|α

=
φ(y) − φ(x)
|y − x|α

+ δ
|y − x0|

2
− |x − x0|

2

|y − x|α

=
φ(y) − φ(x)
|y − x|α

+ δ
(y − x) · (y + x − 2x0)

|y − x|α
.

Hence,

|L±[φδ](x) − L±[φ](x)| ≤ |δ||y − x|1−α
(
|y − x0| + |x − x0|

)
≤ 2|δ|diam(Ω)2−α. □

3. Existence of viscosity solution

In this section, we show the existence of a viscosity solution to (1.0.8) by using the
Perron’s method with some conditions on the function f .

3.1. Subsolutions and Supersolutions. First of all, we start by introducing the notions
of viscosity subsolutions, supersolutions and solutions. For the theory of viscosity
solutions, we refer the reader to [12].

Definition 3.1. Let Ω be an open bounded domain, α ∈ (0, 1], and f : R 7→ R. We say
that u : Ω 7→ R is a subsolution (resp. supersolution) to the equation L[u] = f (u) and write
L[u] ≥ f (u) (resp. L[u] ≤ f (u)) if and only if u : Ω 7→ R is upper semi- continuous (resp. lower
semi-continuous), and for any test function φ ∈ C1(Ω) ∩ C(Ω) such that u ≤ φ (resp. u ≥ φ)
with equality at some x0 ∈ Ω then −L[φ](x0)+ f (φ(x0)) ≤ 0 (resp. −L[φ](x0)+ f (φ(x0)) ≥ 0).
If the last inequality is strict for every such φ and x0 we say that u is a strict subsolution (resp.
supersolution) and write L[u] > f (u) (resp. L[u] < f (u)).

We say that u is a viscosity solution to L[u] = f (u) if it is a viscosity subsolution and a
viscosity supersolution to the same equation.
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Remark 3.2. Notice that since L[−u] = −L[u] so if u is a supersolution to L[u] = f (u)
then −u is a subsolution to L[v] = − f (−v); this follows from the fact that −u is upper
semi-continuous and if φ ∈ C1(Ω) ∩ C(Ω) is such that −u ≤ φ with equality at x0 then
u − (−φ) attains a minimum at x0 and since u is a supersolution to L[u] = f (u), we get

−L[−φ](x0) + f (−φ(x0)) ≥ 0.

Yet, this implies that −L[φ](x0) − f (−φ(x0)) ≤ 0.

Remark 3.3. The notion of viscosity solution in this paper is stronger than the one
in [10] where a viscosity solution there is not necessarily continuous but the upper
semicontinuous envelope is a subsolution and the lower semicontinuous envelope is a
supersolution.

Let u be a viscosity solution on Ω. Since L is a non-local operator, then it is not
clear whether or not u will be always a solution on a subset of Ω. In the following
proposition, we will show that this is true provided we remove only one point.

Proposition 3.4. Fix x0 ∈ Ω. Assume that u is a subsolution of L[u] = f (u) on Ω, then u
is also a subsolution on Ω \ {x0}.

Proof. Letφ ∈ C1(Ω\{x0})∩C(Ω) such that u ≤ φ onΩwith equality at some x1 ∈ Ω\{x0}.
From Lemma 2.7, for δ > 0 φδ(x) = φ(x)+δ|x−x1|

2
∈ C1(Ω\ {x0})∩C(Ω) such that u < φδ

for every x ∈ Ω \ {x1}with equality at x1, and L[φδ](x1)→ L[φ](x1) as δ→ 0.
Fix δ > 0. We have x0 , x1, let ε0 > 0 be such that B(x0, ε0) ⊆ Ω and not containing x1.

We construct a sequence φn ∈ C1(Ω) converging uniformly to φδ in B(x0, ε0) and such
that φn = φδ on Ω \ B(x0, ε0). We have u < φδ in B(x0, ε0) then for n sufficiently large
u < φn in B(x0, ε0) and so u < φn in Ω \ {x1} with equality at x1. Since u is a subsolution
on Ω, then

−L[φn](x1) + f (φn(x1)) ≤ 0.

But, we have that outside B(x0, ε0), φn = φδ and so, φn(x1) = φδ(x1) = φ(x1). Therefore,
one has

sup
y∈Ω\B(x0,ε0), y,x1

φn(y) − φn(x1)
|y − x1|

α
= sup

y∈Ω\B(x0,ε0), y,x1

φδ(y) − φδ(x1)
|y − x1|

α
.

Now, by uniform convergence ofφn and since x1 < B(x0, ε0), then we have the following:

lim
n→∞

sup
y∈B(x0,ε0)

φn(y) − φn(x1)
|y − x1|

α
= sup

y∈B(x0,ε0)

φδ(y) − φδ(x1)
|y − x1|

α
,

and similarly for the infimum. Hence, we get that limn→∞ L[φn](x1) = L[φδ](x1), and so

−L[φδ](x1) + f (φδ(x1)) ≤ 0.

But, δ > 0 is arbitrary and φδ(x1) = φ(x1) so letting δ → 0+, we infer that −L[φ](x1) +
f (φ(x1)) ≤ 0, concluding that u is a subsolution on Ω \ {x0}. □

We next show a comparison principle when f is non-decreasing which will help later
in proving our Hölder estimates.
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Proposition 3.5. Assume that f is non-decreasing. Let u be a subsolution (resp. supersolution)
of L[u] = f (u) and v be a strict supersolution (resp. subsolution) such that u ≤ v (resp. u ≥ v)
on ∂Ω and v ∈ C1(Ω) ∩ C(Ω). Then, u < v (resp. u > v) in Ω.

Proof. Assume this is not the case, i.e. there is a point x⋆ ∈ Ω such that u(x⋆) − v(x⋆) =
max
x∈Ω

[u(x) − v(x)] := M ≥ 0. Note that the maximum is attained since u is upper

semicontinuous and v is continuous on Ω. We clearly have u ≤ v + M on Ω with
u(x⋆) = v(x⋆) +M. Since u is a subsolution and v ∈ C1(Ω) ∩ C(Ω), then we must have

−L[v +M](x⋆) + f (v(x⋆) +M) ≤ 0.

Yet, f is non-decreasing. Hence, we get that

−L[v](x⋆) + f (v(x⋆)) ≤ 0.

But, this contradicts the fact that v is a strict supersolution which concludes the proof.
□

Now, we prove the following stability result when f is continuous.

Proposition 3.6. Assume f is continuous. Let F be a non-empty family of subsolutions to
(1.0.8). Define v(x) := supu∈F u(x) < ∞ and assume that v is continuous on Ω. Then, v is a
subsolution to (1.0.8).

Proof. We show that−L[v]+ f (v) ≤ 0 in the viscosity sense. We proceed by contradiction.
Assume there exists φ ∈ C1(Ω) ∩ C(Ω) such that v(x) − φ(x) ≤ 0 on Ω with equality at
x0 and such that −L[φ](x0) + f (φ(x0)) > 0. Take φδ(x) = φ(x) + δ|x − x0|

2, with δ > 0, a
peturbation of φ. We have v(x) ≤ φ(x) < φδ(x) for x , x0 and v(x0) = φ(x0) = φδ(x0).
Hence, x0 is the unique maximum to v − φδ. From Lemma (2.7), we have

−L[φδ](x0)+ f (φδ(x0)) = −L[φδ](x0)+ f (φ(x0)) ≥ −L[φ](x0)+ f (φ(x0))−4δdiam(Ω)2−α > 0,

for δ small enough. Then, we deduce the existence of a function that we still call it
φ ∈ C1(Ω) ∩ C(Ω) such that v < φ with equality only at x0 and such that −L[φ](x0) +
f (φ(x0)) > 0.

Since v(x0) = supu∈F u(x0), then for every n ∈N⋆ there exists un ∈ F such that

v(x0) −
1
n
≤ un(x0). (3.1.1)

Let Mn = supx∈Ω[un(x) − φ(x)], which by upper-semicontinuity of un and compactness
of Ω is attained at some yn ∈ Ω.
Claim. Mn → 0 and yn → x0 as n→∞.
Proof of the Claim. Suppose there exists a subsequence ynk that converges to x1 ∈ Ω.
We have

Mnk = unk(ynk) − φ(ynk) ≤ v(ynk) − φ(ynk)→ v(x1) − φ(x1).

On the other hand, by (3.1.1), one has

Mnk ≥ unk(x0) − φ(x0) ≥ −
1
nk
.
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Then lim infk→∞Mnk ≥ 0, implying that

v(x1) − φ(x1) ≥ 0,

but v < φ with equality only at x0 hence x1 = x0. We conclude that every convergent
subsequence of yn converges to x0, and hence by compactness yn → x0 as n→∞. From
the argument above, we get also that

lim
n→∞

Mn = 0.

Now, we complete the proof of the proposition. We define φn = φ +Mn. Notice that

un = (un − φ) + φ ≤Mn + φ = φn,

with equality at yn. Then, since un ∈ F , we get

0 ≥ −L[φn](yn)+ f (φn(yn)) ≥ −L[Mn+φ](yn)+ f (Mn+φ(yn)) = −L[φ](yn)+ f (Mn+φ(yn)).

Hence, thanks to Lemma (2.5), the claim and the continuity of f , we conclude that
−L[φ](x0) + f (φ(x0)) ≤ 0, a contradiction. □

Remark 3.7. From Remark 3.2, we obtain a similar stability result for supersolutions,
that is, if G is a family of supersolutions to L[u] = f (u) and if w(x) := infu∈G u(x) is
continuous, then w is aslo a supersolution.

3.2. Perron’s Method. The aim of this subsection is to construct a viscosity solution to
(1.0.8) by applying the Perron’s method. First, we start by constructing a sub/supersolution.

Lemma 3.8. Assume f is non-decreasing and continuous, and g ∈ C0,β(∂Ω) for some β > 0.
Then, there exist a subsolution u− and a supersolution u+ to (1.0.8) such that u− ≤ u+ on Ω
and u− = u+ = g on ∂Ω.

Proof. Assume without loss of generality that β < α. We define

u−(x) = sup{g(x0) − Cψβ,x0(x), x0 ∈ ∂Ω}, for all x ∈ Ω,

where we recall thatψβ,x0(x) = |x−x0|
β and the constant C > 0 is to be chosen sufficiently

large. For every x0 ∈ ∂Ω, thanks to the monotonicity of f , we see that

−L[g(x0) − Cψβ,x0](x) + f (g(x0) − Cψβ,x0(x)) ≤ C L[ψβ,x0](x) + f (||g||∞).

Recalling Proposition 2.2, we have

L[ψβ,x0](x) ≤ |x − x0|
β−α

 rβ⋆ − 1
(r⋆ − 1)α

− 1

 ≤ diam(Ω)β−α
 rβ⋆ − 1

(r⋆ − 1)α
− 1

 .
Hence,

−L[g(x0) − Cψβ,x0] + f (g(x0) − Cψβ,x0) ≤ C diam(Ω)β−α
 rβ⋆ − 1

(r⋆ − 1)α
− 1

 + f (||g||∞) ≤ 0

as soon as

C ≥
diam(Ω)α−β f (||g||∞)[

1 −
rβ⋆ − 1

(r⋆ − 1)α

] .
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Moreover, it is clear that u− ∈ C0,β(Ω). Thanks to Proposition 3.6, this yields that u− is a
subsolution. On the other hand, it is clear that

u−(x0) ≥ g(x0) − Cψβ,x0(x0) = g(x0), for all x0 ∈ ∂Ω.

Thanks to the β−Hölder regularity of g on ∂Ω, we have the following estimate for
C ≥ [g]α,∂Ω

g(x0) − Cψβ,x0(x) ≤ g(x), for all x0 ∈ ∂Ω.

Hence,
u−(x) ≤ g(x), for all x ∈ ∂Ω.

Consequently, u− = g on ∂Ω.
Now, we define

u+(x) = min{g(x0) + Cψβ,x0(x), x0 ∈ ∂Ω} for all x ∈ Ω.

One has

−L[g(x0) + Cψβ,x0] + f (g(x0) + Cψβ,x0) ≥ −C L[ψβ,x0] + f (−||g||∞) ≥ 0

provided that C is large enough. Hence, thanks to Remark 3.7, u+ ∈ C0,β(Ω) is a viscosity
supersolution. In addition, u+ = g on ∂Ω.

Finally, let us check that u− ≤ u+ on Ω. For x0, x1 ∈ ∂Ω, we have from Lemma 2.1
that

g(x0) − g(x1) ≤ C|x1 − x0|
β
≤ C(|x − x0|

β + |x − x1|
β), for every x ∈ Ω.

Fix x ∈ Ω. Hence, one has

g(x0) − Cψβ,x0(x) ≤ g(x1) + Cψβ,x1(x), for every x1 ∈ ∂Ω.

Thus,

g(x0) − Cψβ,x0(x) ≤ min{g(x1) + Cψβ,x1(x), x1 ∈ ∂Ω} = u+(x), for every x0 ∈ ∂Ω.

Consequently, we get that

u−(x) = sup{g(x0) − Cψβ,x0(x), x0 ∈ ∂Ω} ≤ u+(x) on Ω.

Yet, this concludes the proof. □

We are now ready to prove Theorem 1.1. We first show the regularity of subsolutions
and then prove existence.

Proposition 3.9. Assume f is non-decreasing. If u is a bounded continuous viscosity
subsolution of (1.0.8), then u is locally β−Hölderian, for any β < α. More precisely, we
have

[u]C0,β(ω) ≤ max
{ 2||u||∞

dist(ω, ∂Ω)β
,

[diam(Ω)]α−β [ f (−||u||∞)]−
1 −Ψ(r⋆)

}
, for every w ⊂⊂ Ω,

where using the notation of Proposition 2.2

Ψ(r⋆) =
rβ⋆ − 1

(r⋆ − 1)α
< 1.
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In addition, assume that g ∈ C0,β(∂Ω), if u is a continuous viscosity solution of (1.0.8) with
u = g on ∂Ω, then u is β−Hölderian in Ω, and we have the following estimate:

||u||C0,β(Ω) ≤ C
(
α, β, diam(Ω), ||g||C0,β(∂Ω), [ f (±||g||∞)]±, [ f (−||u||∞)]−

)
.

Proof. Fix x0 ∈ ω ⊂⊂ Ω. Thanks to Proposition 3.4, u is a viscosity subsolution of (1.0.8)
on Ω\{x0}. Now, we define

v(x) = u(x0) + C|x − x0|
β.

Recalling Proposition 2.2, v is a strict supersolution on Ω\{x0} since

−L[u(x0) + C|x − x0|
β] + f (u(x0) + C|x − x0|

β) ≥ −CL[|x − x0|
β] + f (−||u||∞) > 0

as soon as C ≥ [diam(Ω)]α−β [ f (−||u||∞)]−
1−Ψ(r⋆) . Moreover, one has v(x0) = u(x0), and for every

x ∈ ∂Ω, we have

u(x) − v(x) = u(x) − u(x0) − C|x − x0|
β
≤ 2||u||∞ − C dist(ω, ∂Ω)β ≤ 0

as soon as we choose the constant C ≥ 2||u||∞/dist(ω, ∂Ω)β. Thanks to the comparison
principle in Proposition 3.5, we infer that u < v in Ω\{x0} and so, we have

u(x) ≤ u(x0) + C|x − x0|
β for all x ∈ ω.

Interchanging the role of x0 and x, we get that

|u(x) − u(x0)| ≤ C|x − x0|
β.

This shows that u ∈ C0,β(ω).
Now, let us show the second statement. Assume g ∈ C0,β(∂Ω). Fix x0 ∈ ∂Ω. Then, we

set the function
w+(x) = g(x0) + C |x − x0|

β,

where C ≥ [g]β,∂Ω. Since g ∈ C0,β(∂Ω) and u = g on ∂Ω, then we have for every x ∈ ∂Ω
the following inequality:

u(x) = g(x) ≤ g(x0) + C |x − x0|
β = w+(x).

Moreover, one can show that w+ is a strict supersolution provided that C is large enough.
Indeed,

−L[w+] + f (w+) = −C L[ψβ,x0] + f (g(x0) + C |x − x0|
β) ≥ C|x − x0|

β−α[1 −Ψ(r⋆)] + f (−||g||∞) > 0

provided that

C ≥
diam(Ω)α−β [ f (−||g||∞)]−

1 −Ψ(r⋆)
.

Thanks again to the comparison principle in Proposition 3.5, so we get that u < w+ in
Ω. Therefore, one has

u(x) ≤ g(x0) + C |x − x0|
β, for all x ∈ Ω.

In the same way, we set
w−(x) = g(x0) − C |x − x0|

β,
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where C > 0 is a large constant that we will choose later. We claim that w− is a strict
subsolution. In fact, we have the following:

−L[w−]+ f (w−) = C L[ψβ,x0]+ f (g(x0)−C |x− x0|
β) ≤ C|x− x0|

β−α[Ψ(r⋆)− 1]+ f (||g||∞) < 0

provided that

C ≥
diam(Ω)α−β [ f (||g||∞)]+

1 −Ψ(r⋆)
.

On the other hand, assuming that the constant C ≥ [g]β,∂Ω then we get thanks to the
Hölder regularity of g that

u(x) = g(x) ≥ w−(x) = g(x0) − C |x − x0|
β, for all x ∈ ∂Ω.

Hence,

u(x) ≥ w−(x), for all x ∈ Ω.

Consequently,

w−(x) ≤ u(x) ≤ w+(x), for all x ∈ Ω.

Yet, u(x0) = g(x0). Then,

|u(x) − u(x0)| ≤ C |x − x0|
β, for all x ∈ Ω.

□

Now, we are ready to prove our existence result.

Theorem 3.10. Under the assumptions that f is non-decreasing, continuous and g ∈ C0,β(∂Ω)
for some β > 0, there exists a viscosity solution u to Problem (1.0.8).

Proof. Without loss of generality, we assume that β < α. Set

S =
{
w ∈ C(Ω) is a subsolution : u− ≤ w ≤ u+ on Ω

}
.

First, we note that S , ∅ since the subsolution u− constructed in Lemma 3.8 belongs to
S. Then, we define the function

u = sup
w∈S

w.

For any w ∈ S, we clearly have

||w||∞ ≤ max{||u+||∞, ||u−||∞} := Λ.

Then, by Proposition 3.9, one has

[w]C0,β(ω) ≤ max
{ 2Λ

dist(ω, ∂Ω)β
,

[diam(Ω)]α−β [ f (−Λ)]−
1 −Ψ(r⋆)

}
, for every w ⊂⊂ Ω.

Hence, we infer that u is locally β−Hölder. In particular, u is continuous in Ω. From
Proposition 3.6, this implies that u is a subsolution of (1.0.8) with u = g on ∂Ω.
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Let us show that u is also a supersolution, so that it will be a viscosity solution.
Assume that this is not the case, i.e. there is a point x0 ∈ Ω and a function φ ∈

C1(Ω) ∩ C(Ω) such that u ≥ φ on Ωwith u(x0) = φ(x0) and

−L[φ](x0) + f (φ(x0)) < 0. (3.2.1)

We recall that we may assume x0 to be the unique minimum of u−φ. Indeed, for δ > 0
small enough, set φδ(x) = φ(x) − δ|x − x0|

2. Hence, we clearly have φδ ≤ φ ≤ u on Ω
with φδ(x0) = φ(x0) = u(x0). Moreover, by Lemma 2.7, we have

−L[φδ](x0) + f (φδ(x0)) ≤ −L[φ](x0) + Cδ + f (φ(x0)) < 0,

as soon as δ > 0 is sufficiently small.
Now, we claim that u(x0) < u+(x0). Suppose it is not the case, i.e. we have u(x0) =

u+(x0). Hence, we infer that φ ≤ u ≤ u+ on Ω with u+(x0) = φ(x0), and having u+ is a
viscosity supersolution, then

−L[φ](x0) + f (φ(x0)) ≥ 0,

which is a contradiction.
Since u+, φ are continuous on Ω, φ(x0) = u(x0) < u+(x0), φ ≤ u ≤ u+ and x0 is the

unique minimum of u−φ, then there will be a small constant ζ0 > 0 such thatφ+ζ ≤ u+

on Ω, for all 0 < ζ ≤ ζ0. We set

uζ = max{u , φ + ζ}.

We shall prove that uζ ∈ S, for ζ > 0 small enough. In this case, since u ≥ uζ on Ω, one
has in particular at x = x0 that

u(x0) ≥ uζ(x0) = φ(x0) + ζ = u(x0) + ζ,

which is clearly a contradiction as ζ > 0. Hence, it remains to prove the claim that
uζ ∈ S. First, it is clear that u− ≤ u ≤ uζ ≤ u+. Let us show that uζ is a subsolution.
Assume it is not the case, so there exists a point xζ ∈ Ω and a functionφζ ∈ C1(Ω)∩C(Ω)
such that uζ ≤ φζ on Ω and uζ(xζ) = φζ(xζ) with

−L[φζ](xζ) + f (φζ(xζ)) > 0. (3.2.2)

Here, we have two possibilities: either uζ(xζ) = u(xζ) or uζ(xζ) = φ(xζ) + ζ. If uζ(xζ) =
u(xζ) for some ζ, then we have u(xζ) = φζ(xζ) and u ≤ uζ ≤ φζ. But u is a subsolution,
then we must have

−L[φζ](xζ) + f (φζ(xζ)) ≤ 0,

which is a contradiction.
The remaining case is when uζ(xζ) = φ(xζ) + ζ for all ζ small, so φζ(xζ) = φ(xζ) + ζ.

Since φ + ζ ≤ uζ ≤ φζ, then one has

φ ≤ φζ − ζ on Ω.

Hence, we have
L[φ](xζ) ≤ L[φζ − ζ](xζ) = L[φζ](xζ).
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In particular, we get that

−L[φζ](xζ) + f (φ(xζ)) ≤ −L[φ](xζ) + f (φ(xζ)).

Consequently,

[−L[φζ](xζ) + f (φζ(xζ))] + [ f (φ(xζ)) − f (φζ(xζ))] ≤ −L[φ](xζ) + f (φ(xζ)). (3.2.3)

Recalling (3.2.2), (3.2.3) yields that

f (φ(xζ)) − f (φζ(xζ)) ≤ −L[φ](xζ) + f (φ(xζ)). (3.2.4)

However, we claim that the sequence of points xζ converges to x0. Otherwise, it means
that up to a subsequence xζ → x⋆ , x0. But, we have

u(xζ) ≤ uζ(xζ) = φ(xζ) + ζ, for all ζ.

Letting ζ→ 0+, we infer that u(x⋆) ≤ φ(x⋆). Hence, u(x⋆) = φ(x⋆) and x⋆ is a minimum
point of u − φ. Yet, x0 is the unique minimum point for u − φ and so, x⋆ = x0. Yet, this
is also a contradiction. So, our claim is proved.

Passing to the limit in (3.2.4), we get

0 ≤ −L[φ](x0) + f (φ(x0)).

But, this contradicts (3.2.1). Hence, this concludes the proof that uζ ∈ S. □

We finish this section by the following observation that we will use in the next section.

Remark 3.11. Assume the boundary datum g ≥ 0 on ∂Ω. Recalling the construction of
the supersolution u+ in Lemma 3.8, we see that u+ ≥ 0 in Ω. However, the subsolution
u− defined in Lemma 3.8 is not necessarily nonnegative.

Now, assume f = 0 on R−. Then, there will always be a nonnegative subsolution
u− such that u− ≤ u+ on Ω and u+ = u− = g on ∂Ω. In fact, it is easy to see that
w⋆ := max{u−, 0} is also a subsolution with w⋆ = g on ∂Ω. Moreover, we have w⋆

≤ u+.
Hence, w⋆

∈ S. From the definition of the Perron’s solution u (see Proposition 3.10),
this yields that

u = sup
w∈S

w ≥ w⋆
≥ 0.

Then, u ≥ 0 on Ω.
Finally, assume that there is a point x0 ∈ Ω such that u(x0) = 0. Since u , 0 and

u ∈ C(Ω), then there is a point x⋆ , x0 ∈ Ω such that u > u(x⋆)
2 > 0 on B(x⋆, ε), where

ε > 0 is small enough. Now, let φ ∈ C1(Ω) ∩ C(Ω) be such that supp(φ) ⊂ B(x⋆, ε) and
0 ≤ φ ≤ u(x⋆)

4 . In particular, we have u ≥ φ and u(x0) = φ(x0) = 0. Therefore, we must
have

0 < L[φ](x0) ≤ f (φ(x0)) = 0,

which is a contradiction.
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Notice also that when f = 0 on R−, we obtain from Proposition 3.9 the following
uniform (does not depend on the solution u) estimate:

||u||C0,β(Ω) ≤ C
(
α, β, diam(Ω), ||g||C0,β(∂Ω), f (||g||∞)

)
.

4. Obstacle problem

In this section, we assume that f : [0,∞) 7→ R is continuous, non-negative and
non-decreasing and g ≥ 0 on ∂Ω. Assuming α < 1. We prove Theorem 1.2 by showing
that there exists a non-negative function u that is locally α−Hölder continuous and in
C0,β(Ω) for any β < α, solution to the following obstacle problem L[u] = f (u) in {u > 0}

u = g on ∂Ω
. (4.0.1)

Proof of Theorem 1.2. In the case when f (0) = 0, we extend f by 0 on R−. Then, this
extension (we still denote it by f ) is continuous and non-decreasing on R and so, by
Proposition 3.10, Problem (1.0.8) has a solution u. Thanks to Remark 3.11, u > 0. Hence,
u solves Problem (4.0.1).

We consider now the case when f (0) > 0. Let fε be a sequence of non-decreasing
continuous functions such that fε = 0 on R− and fε = f on [ε,+∞). For every ε > 0,
by Proposition 3.10, we know that there exists a solution uε to Problem (1.0.8) with
uε = g on ∂Ω. Recalling Remark 3.11, we may assume that uε > 0 on Ω. In addition,
by Proposition 3.9, we have that

||uε||C0,β(Ω) ≤ C
(
α, β, diam(Ω), ||g||C0,β(∂Ω), f (||g||∞)

)
,

for ε > 0 small enough. Hence, (uε)ε is bounded in C0,β(Ω). Therefore, up to a
subsequence, uε → u uniformly in C0,β(Ω) and u ≥ 0 on Ω.

We will show that u is a viscosity subsolution to (4.0.1) (the fact that u is a supersolution
can be treated similarly). Therefore, u will be a viscosity solution for Problem (4.0.1)
with boundary datum u = g. Assume by contradiction that u is not a subsolution then
there exists x0 ∈ {u > 0} and a function φ ∈ C(Ω) ∩ C1(Ω) such that u ≤ φ on Ω with
u(x0) = φ(x0) but

−L[φ](x0) + f (φ(x0)) > 0.

Thanks to the uniform convergence of uε to u, one can find a sequence φε converging
uniformly to φ such that φε ∈ C(Ω) ∩ C1(Ω), uε ≤ φε on Ω and uε(xε) = φε(xε), where
xε → x0 when ε→ 0. Since uε is a viscosity solution, then

−L[φε](xε) + fε(φε(xε)) ≤ 0. (4.0.2)

Yet,

L[φε](xε) = sup
y∈Ω̄, y,xε

φε(y) − φε(xε)
|y − xε|α

+ inf
y∈Ω̄, y,xε

φε(y) − φε(xε)
|y − xε|α

.

We claim that
|L[φε](xε) − L[φ](xε)| ≤ C||φε − φ||1−α∞ .
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We will show this inequality for L+ (the proof for L− will be similar and so, it will be
omitted). First, one has

φε(y) − φε(xε)
|y − xε|α

=
φ(y) − φ(xε)
|y − xε|α

+
φε(y) − φ(y) + φ(xε) − φε(xε)

|y − xε|α
.

But, it is clear that
φε(y) − φ(y) + φ(xε) − φε(xε)

|y − xε|α
≤ 2 min

{
||φε − φ||∞
|y − xε|α

,C |y − xε|1−α
}
,

where C < ∞ is a uniform constant such that Lip(φε), Lip(φ) ≤ C on B(x0, δ), for δ > 0
small enough. Then, we get that

φε(y) − φ(y) + φ(xε) − φε(xε)
|y − xε|α

≤ C min
{
||φε − φ||∞
|y − xε|α

, |y − xε|1−α
}
≤ C||φε − φ||1−α∞ .

On the other hand, it is clear that φε(xε) → φ(x0) > 0 and so, fε(φε(xε)) = f (φε(xε)) →
f (φ(x0)). Hence, thanks to Lemma 2.5 and passing to the limit when ε → 0 in (4.0.2),
we infer that

−L[φ](x0) + f (φ(x0)) ≤ 0,

which contradicts our main assumption.
Finally, following the same argument in Proposition 3.9 and using the fact that f = 0

onR− and Propositon 2.3, we get that uϵ are locally α−Hölder continuous uniformly in
ϵ, then letting ϵ→ 0 we get that u is locally Hölder continuous. □
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