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ABSTRACT. We associate to every function v € GBD(f2) a measure p, with values in
the space of symmetric matrices, which generalises the distributional symmetric gradient
Eu defined for functions of bounded deformation. We show that this measure p,, admits
a decomposition as the sum of three mutually singular matrix-valued measures ug, py,
and yZ,, the absolutely continuous part, the Cantor part, and the jump part, as in the
case of BD(2) functions. We then characterise the space GSBD(f2), originally defined
only by slicing, as the space of functions v € GBD(2) such that ug, = 0.
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1. INTRODUCTION

Given a bounded open set Q@ C RY, with d > 1, the spaces GBD(Q) of functions of
generalised bounded deformation and GSBD(2) of special functions of generalised bounded
deformation were introduced in [20] to provide a functional framework for variational
problems related to Griffith’s energy in fracture mechanics (see [9,30]). The main feature
of these spaces is that they avoid the unnatural L> a priori bounds typically required for
compactness in the space SBD(Q) (see [8]).

Thanks to the very weak requirements appearing in the definitions of GBD(2) and
GSBD((Q), it was shown in [20] that compactness in these spaces is achieved under very
mild assumptions (see also [4,/14]). For the space GSBD(f)) compactness results under
even weaker conditions have later been obtained by Friedrich and Solombrino [33] in the
planar case, and Chambolle and Crismale in the general case [12]. These results are
similar to those available in the more restrictive setting of functions of bounded variation
(see [5,129,131]). These advancements allow one to solve, in a weak sense, minimisation
problems concerning Griffith’s functional, thereby justifying the use of GSBD(Q2) for
brittle models in fracture mechanics. Many more applications of the space GSBD()
were also considered in the recent literature, see, for instance, [1-3,/11}|16-18.(32,39].

The study of cohesive models for fracture mechanics in the anti-plane case carried
out in [24}25] suggests that GBD(2) should be the appropriate space for the study of
minimisation problems connected with these models, when the anti-plane hypothesis is
dropped. This requires to extend to GBD(£2) the structure theorems proved in [6] for the
space BD(Q) of functions of bounded deformation (see [6,[37,/40,/41]), in analogy with what
was done in [23] in the setting of functions of bounded variation.

The analysis of the fine properties of functions in GBD(2) carried out in [20] reveales
that many of the key structural features of the space BD(2) of functions of bounded defor-
mation (see [6,37,40,41]) naturally extend to GBD((2), albeit with suitable modifications
to account for the weaker regularity of these functions. The fine properties of BD(£2) were
thoroughly examined in [6], where the authors show for a function u:  — RY in BD(f)
that the following conditions hold:
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(a) u admits an approzimate gradient Vu € L*(Q; R*?), where R%*? is the space of
d x d matrices with real entries, and u := (Vu + Vul)/2 defines an approzimate
symmetric gradient of u (see also [35]); moreover, if H4~! is the (d— 1)-dimensional
Hausdorff measure, for every ¢ € S¥1 := {¢ € R? : |¢| = 1} and for H? -a.e
y € I := {y € R%: y- & = 0}, the one-dimensional scalar function ¢ ug(t) =
u(y + t€) - € has bounded variation and

Eu(y +tE- &= Vug(t) for Ll-ae. t € {scR:y+ s €, (1.1)

where £! is the one-dimensional Lebesgue measure and Vug denotes the absolutely

continuous part of the distributional derivative Dug of ug;
(b) the jump set J, (see Definition is (H9!,d — 1)-rectifiable (see (2.1I) and
also [26]), with measure theoretical unit normal 14,; in addition, for every ¢ € S%—1

and for H% 1-a.e. y € TI¢, setting [u] := uT—u~, where u* and u~ are the unilateral
traces of u on J,, and (JS)E, ={teR:z=y+t& € J, and [u)(x) - £ # 0}, we
have

Jug = (J§)§ and [u)](y+t§)- &= [ug](t) for every t € (Jg)g’

(c) the distributional symmetric gradient Eu := (Du + Du’)/2, which by definition
is a bounded Radon measure taking values in the space deyxnﬁl of d x d symmetric
matrices, can be decomposed as the sum of three mutually singular measures:

Eu = (Eu)LY+ Eu+ ([u] © v ) H L Ty, (1.2)

where £? is the Lebesgue measure in R?, E¢u is called the Cantor part of Eu, ®
is the symmetric tensor product, and H* ! L J, is the restriction of H% ! to J;
the Cantor part E°u is singular with respect to £¢ and vanishes on all Borel sets
that are o-finite with respect to H¢ 1.

In GBD(?) property (c) would not make sense, since, in general, the symmetrised
gradient Fu cannot be defined in the sense of distributions. In particular, it is not clear
what is the analogue of E€u for a function u € GBD(f2). Understanding how to generalise
this term is crucial for possible applications to cohesive fracture mechanics, as shown in
the corresponding problems for the anti-plane case (see [24}25]).

However, for u € GBD(f) it is shown in [20] that property (b) still holds and also that
u admits an approximate symmetric gradient Eu that enjoys the slicing property . It
is still an open question whether every GBD(£2) function admits an approximate gradient.

In this paper we extend the analysis of the fine properties of functions in GBD(f)
by introducing two matriz-valued measures u,, and pS, which are closely related to the
measures Fu and Eu when u € BD(2). To describe this result, we fix some notation.
Given R > 0, let Tp: R — R be the 1-Lipschitz function defined by

R : R
-3 1f3§—5,
if St <s<
: R
if s > 3.

It follows from the definition of GBD(2) (see Definition and Remark that for
every £ € ST"! and R > 0 the distributional derivative of 7g(u - £) in direction £, denoted
by D¢(Tr(u - €)), is a scalar-valued bounded Radon measure on §2.

The main result of our paper is that (see Corollary for every w € GBD(Q2) and
r > 0, there exists a bounded Radon measure i, , on §} with values in ngxn‘f such that for

ol

Tr(s) =

)

vl @

every £ € S we have

for every Borel set B C Q2 such that BN J], = @, where J] := {x € J,, : |[u](z)| > r}.
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If u € BD(Q2) we can see that p, (B) = (Eu)(B) for every Borel set B C Q with BN
Ji = O (see Remark[8.7)). In the general case u € GBD(Q), the measure i, is not always
the symmetrised distributional gradient Fu, and its connection with the distributional
derivatives of u is given only by , which takes into account the directional derivatives
of suitable truncations of the scalar components of u. However, the measure ji, , enjoys
many of the formal properties of Fu and in particular an analogue of property (c) above
holds for i, ;.

More precisely, in Corollary we prove that for every v € GBD(2) the measure f, ,
can be decomposed as the sum of three mutually singular measures:

P = Hy + g+ 4 (1.4)
where for every Borel set B C )

piB) = [eude B = [ (o)
B ' (J\JI)NB

and ¢ is a singular measure (with respect to the d-dimensional Lebesgue measure) with
values in ngxn‘j that vanishes on all o-finite Borel sets with respect to H?~! (see Proposition
. We remark that both pf and puf, do not depend on 7.

A slicing property of the measure u, obtained in Proposition [8.5] allows us to charac-
terise the space GSBD(f?), introduced in [20, Definition 4.2] using slicing arguments, as
the set of functions u € GBD(Q2) such that u§ = 0, in analogy with what happens for
SBD() (see [6, Definition 4.6]). Combining this result with the recent characterisation
of the space GBD(2), proved by Chambolle and Crismale in [13], we obtain, in Theorem
an analogous characterisation for the space GSBD(f2).

We now give a brief sketch of how we prove the existence of a measure fi,, = ft,,,1 which
satisfies with r = 1. Straightforward arguments show that the limit in the right-hand
side of exists for every &€ € R?\ {0} (see Proposition and that this limit is equal

to
w§(B) = lel [ Dus(B\ TDg an ), (1.5

where for every E C R? and for every y € II¢ we set Eg ={teR:y+1t£ € FE}. By the
definition of GBD(?) (see Definition the expression above defines a bounded Radon
measure for every ¢ € R%. To conclude, one needs to show that for every Borel set B C
there exists ju,(B) € RZX? such that

sym
pu(B)E & = 05(B) (1.6)
for every ¢ € R?\ {0}. To prove this fact, we will show that for every Borel set B C
the function ¢ — o¢(B) is 2-homogeneous, lower bounded, and satisfies the parallelogram
identity, i.e.,
oST(B) + 0§7(B) = 205(B) + 2011(B) (1.7)
for every &, € R%. Indeed, these three conditions imply (see Proposition the existence
of a symmetric matrix p, (B) such that holds. It is then easy to check that B — pu,,(B)
is a bounded Radon measure. Since the 2-homogeneity and the lower boundedness are
easily obtained, to conclude we only need to show that holds.

This is done first in dimension d = 2 by means of a discretisation argument. We fix two
linearly independent vectors &, € R? and assume that B is a parallelogram with sides
parallel to £ and n. For every ¢ € {{,n,£ + 1, —n} we approximate the integral Jg(B)
given by by means of Riemann sums corresponding to a well-chosen grid of points
y; of 11 and write each term Dugj ((B\ J&)gj) = Dugj(ng \ (J}L)gj) as a sum over ¢ of the
numbers Dugj (IZ] \ (J&)gj), where Iij = [ag, { +1) are well-chosen disjoint small intervals,

whose union is the interval Bg ;- The points y; and al can be chosen by projecting onto the
straight lines II¢ and {y;+1t¢ : t € R} the points x; ; of a two-dimensional grid, constructed
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using discrete linear combinations of { and 7, and translated by a small vector w to be
chosen carefully. We observe that if I] N (J&)%,] = (), then
. ) : 4
Du, (7 \ (Ja)y,) = w(y; + a3;10) - € = uly; + a;Q) - €.

This leads to an approximation of O’%(B) based on the difference of the values of u on
neighbouring grid-points z; ;. Hence, if I N (J&)gj = (), writing carefully this approxi-
mation for every ¢ € {{,n,& +n,& —n} we obtain a discrete version of the parallelogram
identity (1.7). To conclude, we have to show that in this approximation we can neglect
all terms that correspond to pairs ¢, j such that I/ N (J;)f,] # (). This step constitutes the
main difficulty of the proof and will be the content of Section [6 This result is obtained
by regarding the sum of the contribution of these ill-behaved indices as sort of Riemann
sum of arbitrarily small integrals.

Once the planar case d = 2 is settled, the general case d > 2 can be obtained by a
Fubini-type argument, considering a sort of two dimensional slicing in the spirit of [6].

In our case, this is based on the properties of the restrictions of GBD functions to two
dimensional slices proved in [20] (see Theorem below).

The paper is structured as follows. In Section [2] we introduce the basic notions and
the necessary tools we will use throughout the paper, while in Section [3| we present some
technical results concerning approximation of Lebesgue integrals by means of Riemann
sums. Then, we introduce in Section |4| the measures 05, which will be the main focus of
the rest of the paper, and prove several properties of these measures. Section [5|is devoted
to the proof of the quadraticity of the function £ — O'S(B) in the planar case d = 2. In
Section [6] we complete this proof by means of some technical arguments. This result is
then extended to every dimension in Section [7] In Section [§, we prove the decomposition
and deduce from it several consequences. The Appendix is devoted to proving the
measurability of several auxiliary functions appearing in the arguments of Section [6]

2. NOTATION AND PRELIMINARY RESULTS

In this section we fix the notation and lay down the basic tools used in this paper.
Q is a bounded open set of R? with d > 1. The scalar product in R¢ is denoted by - ,
while the Euclidean norm of R? is denoted by | |. For every p > 0 and = € R? the open
ball of centre x and radius p is denoted by B,(x). The unit sphere of R? is denoted by
STt .= {¢ € R?: |¢] = 1}. The vector space R?*? is identified with the space of d x d
matrices. Given A € R%*4 its ij-th component is denoted by Ajj. For A € R4 and
¢ € R4, A¢ € R? is defined via the standard rules of matrix multiplication. The symbol
ngxnﬁl denotes the space of all d X d symmetric matrices, that is, the space of those matrices
A € R¥d gych that A = AT, where AT is the transpose of A. We recall that all matrices
A € R4%4 satisfy the polarisation identity, i.e.,

Ag-n= (A€ +m) - (E+n) — A€ —n) - (€~ )

for every &,n € R,
We recall the definition of quadratic function.

dxd
Sym

Definition 2.1. A function f: R? — R is quadratic if there exists a matrix A € R
such that f(£) = A€ - ¢ for every & € R%.

We recall the following characterisation of quadratic functions.

Proposition 2.2. A function f: R* — R is quadratic if and only if the following condi-
tions are satisfied:

(a) 2-homogeneity: f(t&) = t2f(&) for every € € R? and every t € R;

(b) parallelogram identity: for every £,n € R we have

FE+mn)+ f(§—n)=2f(&) +2f(n);
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(¢) lower bound: there exists a constant ¢ > 0 such that

(&) > —c|¢]?  for every € € RY.

Proof. Assume that (a)-(c) hold. By applying [19, Proposition 11.9] to the function g(&§) =
f(&) +cl€]* we obtain a matrix B € R&< such that g(§) = BE-¢ for every £ € R%. Setting

A:= B —cl, where I is the identity matrix, we obtain f(£) = A¢ - £ for every ¢ € R%.
The converse implication is trivial. ]

Given two vectors &, € R?, the symmetric tensor product ¢ ® n € RE? is defined by

Sym

(EOn)i; = %(fmj +&;m;). Given two distinct points x1, 22 € R? we set
[371,1'2] = {t.fEl + (1 — t)l’g it e [0, 1]}

The notation naturally extends to [z, z2), (21, x2], and (x1,x2) replacing [0, 1] by [0, 1),
(0,1], and (0,1), respectively. Given a set A C €2, we say that A is relatively compact in
Q and write A CC Q if there exists a compact set K C € such that A C K. Given k € N
and E C R¥ the characteristic function of F is the function yz: R¥ — {0,1} such that
xe(z) =1if z € E and 0 otherwise.

Given a finite dimensional real normed vector space X, My(9; X) is the space of all
bounded Radon measures with values in X; the indication of X is omitted if X = R.
The symbol M;(Q) denotes the space of all positive bounded Radon measures. Given
1€ Mp(€2; X) and A € M, (2), du/dA is the Radon-Nikodym derivative of 4 with respect
to X\. Given a measure p € My(€2; X), the total variation measure of p with respect to
the norm | | on X, is the Borel measure defined for Borel set B C 2 by

l(B) = sup 3 (B,
icl
where the supremum is taken over all finite sets I C N and all Borel partitions (B;);er of
B. Given a measure A € M, (Q) and a Borel measurable function f: €2 — X, the symbol
fA denotes the X-valued measure defined for every Borel set B C 2 by

fu(B)= | ran

The k-dimensional Lebesgue measure and the k-dimensional Hausdorff measure are
denoted by £F and HF*, respectively. Given a measure p on § and a p-measurable set
B C Q, we introduce the measure pl_ B defined by (ul B)(FE) := u(BNE) for every Borel
set E C (.

We say that £ C R? is (H9"',d — 1)-rectifiable if there exist a collection of compact
sets (K;)ien, a collection of (d — 1)-dimensional C'! manifolds M; C RY, with K; C M; and
HIY(M;) < 400 for every i € N, and a set Ny with H4~1(Ng) = 0 such that

E=Nou(|JE). (2.1)
1€N
We refer the reader to [7, Chapter 2] and to |28, Chapter 3] for the properties of these
sets.
Approximate limits. Let E be a Lebesgue measurable subset of R% and let z € R? be
such that
LYE N By(z))

- > 0. (2.2)

lim sup
p—0 1Y

We say that an £%measurable function u: E — R™ has approximate limit u(z) € R™ at
x, in symbols
aplim u(y) = i(z), (2.3)
yekE
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if for every € > 0 we have

LYy € E : |uy) — ()| > e} N By(x))

7 =0.

lim
p—0 p
Throughout the paper the symbol u(x) is always used to denote the approximate limit of
u considered in (2.3]). By (2.2) the vector u(x) is uniquely defined. The set S,, is defined
as the complement of the points where the approximate limit exists. It is well-known that

for an £%measurable function u: RY — R™ it holds £4(S,) = 0.

Jump set. We now give the definition of jump set of a measurable function.

Definition 2.3. Let U be an open set of R? and u: U — R™ an £%measurable function.

The jump set J, is the set of all points # € U such that there exists (u™ (x),u™(x), (7)) €

R™ x R™ x S9!, with ut(z) # v~ (), such that
aplim  u(y) = u
yeEH* (2)NU

where H(z) := {y € R : +(y — ) - v,(z) > 0}. The triple (u*(z),u(z),vy(z)) is

uniquely defined up to swapping u™ (x) and u~ (z) and changing the sign of v, (x). Given

x € Jy, we set [u](z) :=ut(z) —u (x). For r > 0 we also introduce J! as the set defined
by

(@),

Jy o =A{x € Jy : |[u](x)] >} (2.4)
Slicing. For every £ € R%\ {0}, y € R%, and A C Q we define
AS = {teR:y+1t e A}

Given a function u: A — R? we define the slice in direction ¢ of the &-component of u as
the function uf/: R — R? defined by

+tE)-€ ifte AS,
o (s ri0e 11

0 otherwise.

u

I1¢ denotes the hyperplane orthogonal to & and passing through 0, that is,
¢ :={yeR?:y.-£=0}
The projection map onto II¢ is denoted by n¢: R? — TI¢. We shall use the following
estimate.
Lemma 2.4. Let £ € R?\ {0} and let B C R be a Borel set. Then the function y
HO(Bg) is HO Y -measurable on TI¢ and
0/ ¢ d—1 d—1
HﬁH (By) dH " (y) <HY(B). (2.5)

Proof. For every k € N and i € Z we set By; :={zx € B:i/2F <x-¢ < (i +1)/2"} and
we consider the function fj,: TI¢ — [0, +o00] defined by

Fe) = Xt (o), (2.6)
1EZ
where X¢(p, ,) Is the characteristic function of the projection of By, ; onto I1¢. We observe
that fi < fr11 for every k € N.

It follows from the definition of BS that
HO(BS) = lim fi(y) for every y e II°. (2.7)
k—+o0

By the Projection Theorem (see, e.g., |15, Proposition 8.4.4]) for every k € N and i € Z
the set ¢ (Bg,) is H?1-measurable on II¢. By (2.6) and (2.7)) this implies that the same
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is true for the function y — HO(Bg). By the Monotone Convergence Theorem we obtain

from (2.7)) that

HO(By)dH T (y) = lim [ fuly) dH* 7 (y). (2.8)
¢ k—+oco IIé
By (12.6) we have
fe(y) AR () = D HT (7 (Bra)) < Y HT (Bra) = HTN(B),
1 : 5
1€EZ €L
which, together with (2.8)), gives ([2.5). O

Functions of generalised bounded deformation. We recall the definition of the space
of functions of generalised bounded deformation, introduced in |20, Definition 4.1]. This
definition uses the collection T of regular truncation functions defined by

T:={recCYR): -1/2<7<1/2 and 0 <7 <1}.
Definition 2.5. The space GBD() is the space of all LI-measurable functions u: Q — R?
for which there exists a measure A € M, (€2) such that the following equivalent conditions

are satisfied for every ¢ € S
(a) for every 7 € T we have D¢(7(u-§)) € My(2) and

|De(7(u-§))[(B) < A(B) for every Borel set B C ; (2.9)
(b) for He¥ 1-a.e. y € TIS we have ug € BVlOC(Qg) and

/ (IDU|(BS\ T ) +HO(BSNT L)) dH ™ (y) < A(B) for every Borel set B C Q. (2.10)
¢ Uy Uy

Remark 2.6. If u € GBD(R) it follows from (b) of Definition [2.5 that for every ¢ € S?—1
there exists a Borel set Ne C II¢, with H41(N¢) = 0, such that uS € BVloc(Qg) and
]Du§|(Q§) < o0 for every y € I1*\ N¢. In particular, if Q§ is an interval and y € II¢\ N,
then ug € BV(Qg).
Remark 2.7. The previous remark implies that, if d = 1, then GBD(Q) := {u €
BVioe(®) : |Duf(Q) < +o0}.
Remark 2.8. Condition (a) of Definition can be strengthened by requiring that
holds also for every 7 € T, where

Tiip := {7 € Lip(R) : —=1/2 <7 <1/2, 0 <7 <1, 7 has compact support}.
Indeed, every function 7 € 7T;, can be approximated uniformly on R by a sequence
(Tw)n C T, so that 7, (u- &) — 7(u-£) in L}(). Since for every U C Q open, the function

v+ |Dev|(U) is lower semicontinuous with respect to the L!(£2) convergence, by (2.9) we
obtain that D¢(7(u-§)) € Mp(Q2) and that

[De(r(u-)|(U) < liminf | De(ra (- ©)|(U) < AU)

for every U C Q2 open. Inequality (2.9)) for a general Borel set B C €2 follows by approxi-
mation with open sets.

Remark 2.9. Inequality can be extended to non-unitary vectors. Elementary
arguments show that for every ¢t # 0, £ € R4\ {0}, y € II¢, and A C R?
AS = tAIL, (2.11)
Since uéf(s) = tug(st) for every s € R, we have
Dugf(S) = |t|Du§(tS) and |Du§f|(S) = |t||Du§|(tS),

t
£, = J,c and tJng = Jls (2.12)
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for every Borel set S C ng. In particular, if B C €0 is a Borel set, taking S = B;g \ Jlgé
and using (2.11)) and (2.12) we get

t
[Duf[(Byf \ Je) = 1| Du§ | (B \ ). (2.13)

while, taking S = Bég and using (2.11])
te( ey _
Dulf(BY) = |t| Du§(BS), (2.14)
which will be used later in the proof of Proposition Applying (2.12)) and (2.13) with
t = [¢]| and & replaced by £/|¢], from (2.10) we obtain

[ IIDaiB5\ Tant ) < lgPAE), (2.15)

| HB 0T 8AHT (y) S A(B),

for every & € R?\ {0} and every Borel set B C Q.

Remark 2.10. It follows from [4, Remark 3.6] that, if u € GBD(Q), then HI¥1(J}) <
+00. More precisely, it is shown that, if A € M;(Q) satisfies (2.10)), then for every Borel
set B C ) we have the inequality

HI7(JL N B) < 4d\(B). (2.16)
Since by Theorem below for H !-a.e. y € TI* we have
¢
Tie © (5
it follows from (2.F)), (2.15)), and (2.16)) that
/H NEDUI((BN L)5) R () < [EPA(B), (2.17)

g HO((B N Jy)5)dH " (y) < 4dA(B).
II

Given 0 < r < 1, we can consider the function v = u/r, which by [20, Remark 4.6] satisfies

(2.10)) with A/r. Applying (2.16] to this function, we obtain
4d
HIL(J" N B) < —\(B) (2.18)
r

for every Borel set B C €. In particular, this implies that [u] € LL_ (J,, H*1). Moreover,

weak
since Jy, = Ug<,<1 Ji,, we have that J, is o-finite with respect to HIL

Definition 2.11. For every v € GBD(Q) and ¢ € R%\ {0} we introduce the bounded
Radon measure X} defined for every € € R%\ {0} and every Borel set B C 2 by

X(B) = /m (11D51 B\ T + #0551 7)) ant= ) (2.19)

Given u € GBD(RQ), let A, be the smallest measure A for which (a) and (b) of Definition
hold true. It can be shown (see [20, Proposition 4.17]) that

k
Ay (B) = sup Z M (B;)  for every Borel set B C Q, (2.20)
i=1

where the supremum is taken over all k € N, all families (¢;)%_, of vectors of S9!, and all
Borel partitions (B;)%_; of B.

The following theorem collects some of the fine properties of GBD(2) functions, proved
in [20, Proposition 6.1 and Theorems 6.2, 8.1, 9.1].
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Theorem 2.12. Let u € GBD(2). Then the following properties hold:
(a) existence of the approzimate symmetric gradient: there exists Eu € L'(€;R¥X4)

sym
such that for L%a.e. x € Q we have
ol (10) ) = Eu(@)y =) (g —2)
y—T |.CC - y|
moreover, for every &€ € R\ {0} and for HY '-a.e. y € TI¢ we have
Euly +16)¢ - € = Vug(t)

for L'-a.e. t € Q v, where Vug denotes the density of the absolutely continuous part of Dug
with respect to L1;

(b) Jy and its slices: the jump set J, is (H9',d — 1)-rectifiable; for every € € R4\ {0}
and for H¥ -a.e. y € TI¢ we have

T =1{z € Jy:[ul(2) € # 0} C (Ju)5, (2.21)
(W) F(t) =uF(y+18) - & for every t € (J)5, (2.22)
T (DS, (2.23)

where the normals at J, and Jug are oriented in such a way that v, - € > 0 and Ve = 1;
Yy Yy
moreover, setting

_ ot Au(Bp())

we have that ©, is (H1, d — 1)-rectifiable, J, C Oy, and that H*1 (0, \ J,) =0

It is easy to see that for a function v € GBD(Q2) \ BD(Q) its jump [u] may be not
integrable on J,, with respect to %! (see, for instance, [20, Example 12.3]). More pre-
cisely, one can show (see, for instance, |6, Proposition 3.2] or [38, Remark 2.17]) that, if
u € GBD(Q)NLY(Q;RY) and [u] € L(J,, H?™1), then u belongs to BD(Q). Nonetheless,
we now show that [u] is integrable on J, \ J! with respect to H4~!. This is the content of
the following proposition.

Proposition 2.13. Let w € GBD(RY). Then
/ |([u] © v)é - €] dHT < 400 (2.25)
Ju\J}

for every € € R, This is equivalent to [u] € L'(J, \ JL, HIY).

Proof. By homogeneity it is enough to show (2.25) for a fixed ¢ € S¥"!'. By definition of
©® we have ([u] ® vy)€ - &€ = ([u] - &)(v - £). Therefore, by the Area Formula [36], 12.4], we

can write

/ (] © v)é - €] M = / ([ - €) (v - €)] AHA
Ju\JL W\ J}
= [ ol 09 g @) (226)

/HE /]E\Jl ’dHO( )>de71(y)7

where in the inequality we have used -—. By (b) of Definition for Hé L-a.e
y € II¢ we have ug € BVlOC(Qg), so that

s 0 d-1 ol 1 d—1
/m(/%iviéu 01 ar(0)ans-1) = [ 1D\ ans-i)

< / DU (96 \ JL)dHI () < A(Q) < +oo,
¢ Uy



10 GIANNI DAL MASO AND DAVIDE DONATI

which, together with (2.26]), concludes the proof of (2.25)).
From the polarisation identity it follows that for every &, 1 € R?\ {0} one has

[([u] © v)€ -l < i(!([UJ © ) +m) - (E+m)]+[([u] ©vu)(& —n) - (€ —n)l)

on J,. Hence, by (2.25) we deduce that [u] ® v, € L'(J, \ JL, H?1). Since for every
a,b € R? we have |a||b] < v/2|a ® b|, the proof is concluded. O

The space GBD({2) behaves nicely with respect to restriction to affine subspaces of the
domain 2. This fact is made rigorous by the following result.

Theorem 2.14. Assume d > 2. Let u € GBD(Q), let V be a vector subspace of R of
dimension k, with 1 < k < d — 1, let V- be its orthogonal subspace, and let my: R* — V
be the orthogonal projection onto V. For every z € V+ and E C Q we set EY = {z €
V:z+a € E} = VN (E —2) and consider the function uY: QY — V defined by
uY (z) := 7y (u(z + x)). Then the following properties hold:

(a) for HiF-a.e. z € V- we have v} € GBD(QY);

(b) for H¥*-a.e. z € VL we have Ju C (J.)Y UN, for a Borel set N, C V with

HFL(N,) = 0.

To prove property (b) we need the following result concerning the relation between
the jump points of a function u € GBD(2) and the jump points of its restriction to a
hyperplane that does not intersect the set .S,, of approximate discontinuity points.

Proposition 2.15. Assume d > 2. Let u € GBD(Q), x9 € Q, and ¢ € S* 1. Assume
that

HIL(S, N (o + T1¢)) = 0. (2.27)
Let v: (2 —x0) NI — TI¢ be the function defined by v(y) := 7 (t(xo +y)) for H¥ 1-a.e.
y € (Q — z) NS, Assume that there exist a direction v € ST NI and two vectors
bt € TI¢, with b™ # b~, such that for every € > 0 we have

HEY{y € B,(0) NI : £y - v >0, [v(y) — b*| > €})

lim sup = =0. (2.28)
p—0t pd 1
Then xg € ©,.
Proof. See 20, Theorem 7.1]. O

Proof of Theorem[2.1]]. The proof of (a) can be found in [20, Theorem 4.19].

We divide the proof of (b) into two steps.
Step 1. Assume that k = d — 1 and let £ € S~! be such that V = II¢. We claim that for
L'-a.e. s € R there exists a Borel set Ny C V, with H?~2(N,) = 0, such that

Juy, € (Ju)ge + N
To prove this property, we observe that by the Fubini Theorem the equality Ed(Su) =0

implies that for £'-a.e. s € R and for every yo € II¢ = V condition (2.27) holds with
xo = s& 4 yo , while the equality & = u £%a.e. in  implies that for £'-a.e. s € R we have

U(sé +y) =u(s€ +y) for H lae. y € TIS, (2.29)

Let us fix s € R with these properties. Given yg € J“l/g , we consider the function v(y) :=
7 (u(s€ 4 yo +y)) for y € II¢ and observe that by we have
v(y) = u;/g(yo +y) for H¥ lae. y € TIC.

Since yg € Ju;% , v satisfies . We can then apply Proposition to obtain that

s&+yo € Oy, which gives yg € (@u);/f Setting Ny := (@u\Ju);/g, we have yg € (Ju);g U N,

hence Ju;/g C (Ju);/é U Ns. Since by Theorem [2.12| we have H?~1(0, \ J,) = 0, it follows
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from [28, Theorem 2.10.25] that H9~2(N,) = 0 for L!-a.e. s € R. This concludes the proof
of the claim. Of course, if d = 2 this Step also completes the proof of (b).

Step 2. Assume d > 2. We now prove (b) by induction on the codimension of V. Step 1
gives (b) when the dimension of V' is d — 1. Given 1 < k < d — 2, we assume now that
(b) holds for every subspace of dimension k£ + 1 and we want to prove that it holds in
dimension k. Let us fix a subspace V of dimension k and & € VN S? 1. We consider
the vector space 1% generated by V and £. By (a) for H¥ *lae. 2 € VL we have that
uY € GBD(Q)Y). Using the inductive hypothesis, we deduce that for H¥*~l-a.e. z € v+
there exists a Borel set N, C V, with H¥(N,)=0, such that

Ty C (L)Y UN.. (2.30)

Let us fix z € V+ satisfying both these properties. We observe that for every s € R and
E C Q we have

1% VvV 1% 1

Ez+s£ - (Ez )35 and uz+s§ - (uz

)ie on € QY . (2.31)
Applying Step 1 with R? replaced by V and with u replaced by uf, we have that for
L'-a.e. s € R there exists a Borel set Ny C V, with H¥~1(N,) = 0, such that
J ‘7);/5 c(J ‘7);/£UNS.

(uz uZ

By (2.30]) this implies that

By (2.31)) this gives
Ty, . © (Ju) e U (N.)% U N. (2.32)

By [28, Theorem 2.10.25] we deduce that for L'-a.e. s € R we have Hk_l((]vz);/g) = 0.
Setting N, y¢¢ := N, U (Nz);/g, it follows that Hk_l(Nersg) =0 for L£'-a.e. s € R. Finally,
from ([2.32) we deduce that

Jv

z+s€

C (Ju)Yise U Noysg (2.33)

Since V= is the space generated by VL and ¢ and (2.33)) holds for £'-a.e. s € R and for

Hik1 ge. 2 € ‘N/L, property (b) for V' follows from the Fubini Theorem. This concludes
the proof of the inductive step and hence of the theorem. [l

3. APPROXIMATIONS BY RIEMANN SUMS

In the proof of the main result of this paper, we will approximate various integrals with
well-chosen Riemann sums, using a suitable version of a result that goes back to Hahn
(see [34]). Similar results are proved also in [10, Lemma A.1]. For technical reasons, we
use a construction described in [27, Page 63] and further developed in |21, Lemma 4.12].
Since this result is crucial for our arguments, we give here the precise statement and a
detailed proof.

Lemma 3.1. Let I = [a,b] C R be a bounded closed interval. For every z € I, k € N, and
i €Z let t¥ := 2z +i/k. Let (X,| -||) be a Banach space and let f: R — X be a Bochner
integrable function such that f =0 on R\ I. Then there exist an infinite subset K C N
and an L'-negligible set N C I such that

tim 3 [ — @ ae = o 3.

k—~o00 4
ke €LTT
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for every z € I\ N. Moreover, given h € N and setting Iy := {i € Z : [th_, tF ] C I}
and FF = {i € Z : tF € I} \ Ik, for every e > 0 there exists a Borel set I. C I, with
LI\ I.) <&, such that

] k _ . '
k_lﬁlooZ/ lf(t5) — f(t)]|dt =0  wuniformly for z € I, (3.2)
kek €L
1
pim Z f(t5) /If(t) dt  uniformly for z € I, (3.3)
kek  i€If
" k .
Jim = S FE)I=0  wniformly for 2 € I.. (3.4)
keK iE]'-;f

Proof. We follow closely the proof of [21, Lemma 4.12]. Given k € N, we consider the set
TJE={ieZ: kla—b)—1<i<kb-a)}. (3.5)
Note that for every z € I we have
it INT4£0 = ieJ"

Integrating with respect to z the sum on the left-hand side of (3.1)) and using Fubini’s
theorem we obtain

/ Z/ e )||dt)dz—/j(z /j“ I7(5) — F(0)] dr)az
/ Z/ If(z+£)— flz+ £ +s)||ds>

EJ’“
+o0
gj:k/ / Ifz+4)—flz++ +s)||dz) s
+o0
e%:k/ / 1£(2) z—l—s)Hdz) (3.6)

By the L'-continuity of translations for every € > 0 there exists § > 0 such that

+oo
/_ 1£(2) — f(z+ )| dz < e

whenever 0 < s < §. Hence,

/Oi </+°°||f< )= fz+3)| dz)ds <2

for k > 1/8. Observing that the number of elements of J* satisfies H*(J*) < 2k(b—a)+2
from the previous inequality and (3.6) we deduce that

thy
Jim | (Z / 1F(5) — ()] de)az = .

Hence, there exists an infinite set K C N and an £'-negligible set N C I such that
holds.

To prove the second part of the statement, we first observe that by Egorov’s theorem
there exists a Borel set I‘E C I, with £}(I'\ I.) < ¢, such that holds.

To prove and , we first observe that, since the number of elements of

fk = {Z eEZ: [tl,tlJrl]mI?é@}\If’i
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is less than 2h + 2, by the absolute continuity of the integral we have

k—+oco
1EF, h

lim Z / |f(t)]|dt =0 wuniformly for z € I.. (3.7)

Since
L3 ||<Z/ 17 (t5) - rdt+2/ 17 ()]l dt,
ze]—"C 1E€EZ e]_-k

(3-4) follows from (3.2)), (3-7), and from the inclusion F}¥ C F FF. Similarly, the inequality

H%f@— ﬂf<t>dt‘\f2€l;§+l"f<tf> ot 3 [ isona

z]:k

together with and , gives ([l

In the next technical result we will consider the Riemann sums associated with functions
converging to 0 in L' and depending on an additional parameter. This result will be crucial
in Section [6

Lemma 3.2. Let I :=[a,b] and J := [c,d] be bounded closed intervals. For every z1 € I,
kEN, andi € Z let t¥ := 21+ . Let (X, |- ||) be a Banach space and let fr,: R xR — X
be a sequence of Bochner integrable functions, with fr =0 on (R x R)\ (I x J), such that

lim fr(t,20) =0 for L'-a.e. t €T and L' -a.e. 2o € J. (3.8)
k——+o0

Assume also that there exists an integrable function g: R — [0, 4+00) such that
I fu(t, z2)|| < g(t)  for L'-a.e. t € I, L'-a.e. 2o € J, and every k€ N. (3.9)

Then there exists an L2-negligible set N C I x J and a infinite set K C N such that for
every (z1,22) € (I x J)\ N we have

lim — th 1
Jim LS, 20)] (3.10)
kek €L

Moreover, for every € > 0 there exists a Borel set A. C I x J, with L2((I x J)\ A:) < e
such that

lim — (t = l A.. 11
Jim Z%ka ¥, 2)ll = 0 uniformly for (21, 22) € (3.11)
keK =

Proof. For k € N let J* be given by (3.5)). Integrating the sum on the left-hand side of
(3.10]) with respect to z = (z1,22) € I x J

/(/( Zka , 22) H)dzl)sz /J(/I(;%ka(zﬁri=22)!\>d21)d2’2
Z/ /ka Z1+k,zz)\|dzl>d22 ’Ho(jk /R(/Rnfk(zl,zz)]dzl)dz'g, (3.12)

icJk
where in the inequality we have used the hypothesis on the supports of fr. By (3.8) for
L2-a.e. every z € I x J the sequence || fi(z1, 22)| converges to 0 as k — +o0o. Thanks to
(3-9), by the Dominated Convergence Theorem we have limy, || f¢||z1(r2;x) = 0. This fact,

together with (3.12]) and the boundedness of H%(J*)/k, implies that

lim (ank 22)]| )dz =0,

k——+o0 IxJ

which gives (3.10]). By Egorov’s Theorem we obtain also (3.11)), concluding the proof. [J
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Remark 3.3. Suppose that for every n € N we have a function (f™) that satisfies the
hypotheses of Lemma Arguing as in [21, Remark 4.13], one can find sets K and I,
as in the statement of Lemma for which — and hold with f = f™ for
every n € N.

Similarly, if for every n € N we have a sequence of functions (f}'); that satisfies the
hypotheses of Lemma [3.2] the same argument shows that one can find sets K and U. as

in the statement of Lemma for which (3.10) and (3.11)) hold with f, = f;' for every
n € N.

4. AN AUXILIARY FAMILY OF MEASURES

Given u € GBD(R2), we associate to it a family of measures, closely related to the

measures Ay introduced in (2.19). For every &€ € R?\ {0} and every Borel set B C Q we
set

— 1 d—1
w§(B) = 1¢l [ DU\ TE)an ). (@)
For £ = 0, we set US(B) = 0 for every Borel set B C ) .

Remark 4.1. Suppose that u € BD(2), the space of functions of bounded deformation,
and let Eu the distributional symmetric gradient of u, which by definition belongs to the
space Mb(Q;ngerf). From the Structure Theorem for BD(2) functions [6, Theorem 4.5]
it follows that
05(B) = Bu(B\ J,)§ - €

for every Borel set B C  and ¢ € RY. Since o isa measure, this equality can be extended
to all functions u € BDj,.(2) such that Eu € M;(€; ngxn‘f). This implies that in this case
the function £ — ol (B) is quadratic in the sense of Definition In particular, if d = 1
this happens for every u € GBD(2) thanks to Remark

Remark 4.2. Let )\2 be the measure introduced in . One can see that for every

€ € S, we have the equality |05 = A§ L (Q\ J!) as Borel measures on €. In light

of |7, Theorem 3.103], this is an easy consequence of and of the fact that, by Theorem

2.12, for H9 l-a.e. y € TI¢ we have the inclusion Jig C (J,}L)f/ This fact, together with
Y

(2.20) and the 2-homogeneity of the function £ +— US(Q) proved in Proposition below,
implies that

|051(2) < [EPA(QN\ Jy). (4.2)
For R > 0 let 7Tg: R — R be the 1-Lipschitz functions defined by

if St <s<Z (4.3)

Thanks to Remark we have that D¢(Tr(u - §)) € My(S;R) for every u € GBD(12),
¢ € S%1 and R > 0. The following result shows that for Borel sets that do not intersect .J;
we can obtain the value of 65 (B) by considering the limit of D¢(tr(u-€))(B) as R — +o0.

Proposition 4.3. Let u € GBD(Q). Then for every £ € ST we have

oi(B) = lim De(ra(u-€)(B). (4.4)
N(B) = lim [De(ra(u-€)|(B). (45)

for every Borel set B C Q with H~Y (BN J}) = 0.
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Proof. Let us fix £ € S™! and a Borel set B C Q as in the statement. Since H4~'(BNJ}) =
0, it follows that He1(7(B N J})) = 0 and hence Bg N (J&)g = () for H¥ tae. y € TI¢.
Recalling that by Theorem for H?1-a.e. y € TI¢ the inclusion in ([2.23)) holds, we also
have that

Bg NJY = 0 for H ae. y € TIS. (4.6)
Uy
Thus, by (2.19) and we have
wi(B) = [ DB\ IS A ) = [ DusBH A, @)
X(B) = [ IDGIB\ Tl an ) = [ IDEE) . @)
€ Uy TIé

In particular, since A} € M (Q), we have
/H 1Dus|(B§) am () < +oc. (4.9)

We then remark that from (b) of Definition and the chain rule for BV-functions
(see [7, Theorem 3.99]) it follows that for H¢ '-a.e. y € TI¢ we have TR(ug) € BVlOC(Qg)

and
D(TR(ug)) = T&(vg)Vugﬁl + TI/%(UE)DCug + [TR(ug)]HO LJ

Tr(ug)’

(4.10)

where for every t € Qg \ Jug the function vg is defined by
vS(t) == lim 1 /E ul (t + s)ds
Y Teh0+ 2 —c Y ’

and we set Th(£4) = 0. Since the measures on the right-hand side of ({10 are mutually
singular, we have also

[D(rr(uf))| = [TR(v)) Vug| L1 + | (p) 1D ug| + |[rr(u§)[HOL T, e . (4.11)
Moreover, we observe that for every y € II¢ such that ug S BVlOC(Qg) we have
| Deug (925 \ J,¢) = [Dug|(€23),
REIEOO T]/%(Ug)(t) =1 for L'-ae. t € Qg, (4.12)
RETOO T}%(Ug)(t) =1 for |Dcu§|—a.e. te Qg, (4.13)
Jug = U JTR(uf,) and REIEOO[TR(Ug)](t) = [ug] (t) foreveryte Jug. (4.14)

R>0

Additionally, from (4.3) and (4.11]) it follows that

|D(7r(u$))|(B5) g/B€|Vu§|dt+|DCu§|(B§)+/é (]| dHO = | DuS|(BS). (4.15)

Byﬂjug

Recalling that by Remark for Hel-a.e. y € 1I¢ we have ]Du§|(B§) < 400, from
(4.10)-(4.14) and the Dominated Convergence Theorem we deduce for H4 l-a.e y € II¢
that

Jim D(rr(u$))(B) = Dus(BS), (4.16)
lim | D(rr(u§)|(B5) = [ D (BY). (4.17)

R—+o00
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Thanks to the general theory of slicing (see |7, Theorem 3.107]) and [20, Proposition 3.1])
for every R > 0 we have that

De(tr(u-€))(B) = - D(7r(u))(By) dH ™ (y), (4.18)

IDe(rn(u- )I(B) = [ 1D(r(u)I(B5) 4’ ), (4.19)
so that by and we have
De(ran(u-)B) = [ ([ rhie)vusar

Yy
dDu
L8y — Y cué 3 0 d—1
+/BE R Dty U0 */5 [rr(u$)] dH° ) aH " (y),

nJ
Y y TR(ug)

De(rn(u- )I(B) = [ ([ irhe§) v
+ [ rhefapidl+ [ . )| a0 am )

TR(u.S)

Y
Finally, recallin , and (4.15)), we can apply the Dominated Convergence The-
orem and from (4.7, (4.8]), and 1'1) we obtain and . O
The main goal of Sections will be proving that for every u € GBD(f2) and every
Borel set B C () the function £ — O’S(B) is quadratic. Toward this end, in the rest of this
section we investigate some of the properties of the measure defined by . We first
show that the function & — o (B) is 2-homogeneous.

Proposition 4.4. Let w € GBD(Q2) and let B C Q) be a Borel set. Then the function

€ — o5(B) is 2-homogencous.

Proof. Let us fix t # 0 and ¢ € R?\ {0}. By (2.14)), with B replaced by B\ J!, we have
t 1yt 1
Duy ((B\ Ju)yf) = [t1Dug (B \ J,)35).

Hence,
AEB) = Ite] | DB\ IDF) A ) = £l [ DuS((B\IDS) 4l (o) = P ().

This shows that £ — O’S(B) is 2-homogeneous, concluding the proof. (Il

In the next proposition we give an explicit formula for JE(B ) when the Borel set B is

contained in J,. This shows in particular that in this case the function & — o5(B) is
quadratic in the sense of Definition 2.1

Proposition 4.5. Let u € GBD(Q2) and let B C J, be a Borel set. Then for every
¢ € R\ {0} we have

AB) = [ (W ove o) (120)

Proof. Let us fix £ € R?\ {0}. Since a change of sign of v, implies a change of sign of
[u], we may assume without loss of generality that v, - £ > 0. Thanks to Proposition
the integral in the right-hand side of is well-defined. Hence, by and the Area
Formula [36], 12.4] we infer

oi(B) = Kl /H Du((B\ 1)) aH ) = el | ( /( s 0 aHO () ) aH " (y)

- / ([u] - ) (v - €) dHI () = / ([u] © v)€ - €) dHE(y),
B\J!

B\J;,
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which concludes the proof of (4.20)). O

Given two H4 l-measurable sets A, B C R?, we write A ~ B when H?1(AAB) = 0,
where /A denotes the symmetric difference. We now present a decomposition result for
GBD(Q) functions, which states that any function v € GBD(2) can be written as the
sum of two functions v and w, with v € SBV(Q;R%), w € GBD(Q), J, ~ J, \ J}, and
Jw ~ JL. We refer to [7] for the definition and properties of the space SBV of special
functions of bounded variation.

Proposition 4.6. Let u € GBD(Q). Then there exists v € SBV (;R?) such that

Jo = T\ JL, (4.21)
W] =[u] and v, =v, H¥'-ae. on J,\ JL. (4.22)
In particular, setting w := u — v, we have w € GBD(Q), u=w + v,
Jw = Joy = Ty, (4.23)
[w] =[u] H " -ae. J,. (4.24)

Proof. Since J,,\J} is (H?~1, d—1)-rectifiable and [u] is integrable on .J,,\ J} by Proposition
the proof of the statements concerning v can be obtained arguing as in [22, Theorems
3.1 and 4.1].

The inclusion w € GBD(f?) is due to the vector space properties of GBD(f2). Equalities
(4.23]) and (4.24)) follow from (4.21)) and (4.22)). O

From this result, we derive the following useful consequence.

Lemma 4.7. Let u € GBD(Q) and v € SBV (;R?) be as in Proposition and let

w = u —v. Assume that for a Borel set B C ) the function £& — an(B) s quadratic.

Then the function & — 05(3) is quadratic as well.

Proof. As v € SBV(Q;R?), from Remark it follows immediately that & — o (B) is
quadratic, so that the function & — 0% (B) + 05(B) is also quadratic. We claim that for
every £ € R\ {0} we have
0(B) = o%,(B) + o5(B). (4.25)
To prove this, let us fix £ € R?\ {0}. By definition we have u = w+wv. Thus, for H% -a.e.
y € II¢ it holds
Duf, = Duf, + Dvj (4.26)

as Borel measures on Qg Moreover, by construction we have J} ~ @ and J,, ~ J} ~ JL.
This implies that

Dwg((B \ J&,)g)) = Dwg((B \ Ji)g) for H¥ t-a.e. y € IIS.

Since v € SBV(Q;RY), from (£.21)) we deduce that [Dv|(J;) = 0. By slicing we obtain
that
|D’U§‘((Ji)§) =0 for H¥ lae. y e TIS.

for H% '-a.e. y € II¢. Recalling that J! ~ @ by (4.21)) and (4.22)), this implies that
1 1
Dug((B\ Jy)y) = Dv§(B) = Dug((B\ J,);5)-
These remarks, together with (#.26)), imply that for H% !-a.e. y € II¢ it holds
1 1 _ 1 _ 1
Duw((B\ Jy)5) + Du((B\ J3)5) = D(w) + v5)((B\ J,)5) = Dug((B\ J,)5).
Integrating this equality, by (4.1) we obtain (4.25)), concluding the proof. O
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5. THE CASE OF DIMENSION d = 2

In this and the next section we assume that Q C R%. Our aim is to prove the following
result.

Theorem 5.1. Let u € GBD(Y) and let B C § be a Borel set. Then the function

& JS(B) is quadratic.

Proof. Thanks to Proposition [£.6] and Lemma [£.7] it is not restrictive to assume that
Ju =~ J}. Moreover, it is enough to prove the result when B is an open set, which will be
denoted by U.

To prove that & — ag(U ) is quadratic we use Proposition Since by Proposition
the function & — Jg(U ) is 2-homogeneous and by Remark it satisfies the lower bound
(¢) of Proposition we are left with proving the parallelogram identity

oSTNU) + 087(U) = 205(U) + 207(U), (5.1)

for every &, € R%\ {0}.

To this aim, we fix £, € R?\ {0}. Note that, if £ and 1 are not linearly independent,
then the parallelogram identity follows from 2-homogeneity, so we may assume £ and 7
to be linearly independent. We also note that it is not restrictive to assume that U is a
parallelogram of the form

U={s¢+1tn:se(0,a)and t e (0,0)}, (5.2)

for suitable constants «, f > 0 and with U CC . Indeed, every open set U contained in
Q can be approximated by a sequence (Uy) of disjoint unions of such parallelograms for
which ag(U) = limy, Jg(Uk) for every ¢ € {{,n,§ +n,& —n}.

The vectors & and 7, as well as the parallelogram U, are kept fixed throughout the rest
of the proof.

To prove the parallelogram identity , we will use Lemma to approximate, by
means of Riemann sums, each integral appearing in the definition of the terms occurring
in . This will allow us to prove that the obtained approximations satisfy, up to an
arbitrarily small error, the parallelogram identity.

In order to construct these approximations, we need to introduce some notation first.
Given a point w € R?, for every k € N and for every 4, j € Z we set (see Figure

FiGure 1. The parallelogram U and the grid of points :1:iC ; associated to
weUand k=3

Since the points xf ; will be instrumental to the discretisation of the summands in (5.1),

which are integrals over the straight lines II¢ for ¢ € {&,n,€ +n,& — n}, we consider
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also the projections of the points xf ; onto these lines. For every k € N, ¢,j € Z, and
¢ced{&n & +n,& —n} we set

Yot = al(af)) = (W) + £74(€) + £aS(n) € IIC. (5.4)

We observe that Yij o depends only on 7 and Yi; k.n depends only on 4, while Yij REHT Qe-

pends only on ¢ — j and Yij RG=n depends only on ¢+ j. When we want to underline the
dependence of these famlhes on a single index, we set

k, k, k, k,

ké+ ké+ k.+ k k k
ij n_ y]’ﬁ "—yf]n, yjé n:yLS n_yj, m

(5.5)

see Figure [2]

- y?£+n3£+n

FIGURE 2. Projections of the points mf] onto the straight line TT*7

It is clear from these definitions that for every ¢ € {¢,n,{ +n,§ —n} and i, j € Z there
3 1 k"7C
exists a unique real number ¢; i such that

k,
ok =yt e, (5.6)
Let Ce,, == (1€)*|nf* — (¢ - 17)2)1/2 > 0. We observe that for i, j € Z we have

1
|yz]+1 - yz] ’ - |7T ( )| = @CE,N’

1
k‘yz+1] —Y; 77’ = |7"1(€)] = ch,n

(5.7)
k&t - k&+ k&4 1
|yi,j§ - J§+177’ - |yz‘,jé ! yzfl,y77 ’W£+n(§)\ = ’7T£+n(77)’ = mcﬁ,m
1
k k k, _ _
ki = il = bl =y = 7O = w00 = e e

For technical reasons, which will appear in Lemmas [6.2] and [A.2] it is convenient to
replace the set J, = J! by a set J C U that can be ertten as countable union of compact
sets. Since H!(J!) < +o0o by Remark there exist a countable family of compact sets
K, C J:NU and two Borel sets Ny C N C U with H(Ny) = H*(N) = 0 such that

JonU=(JEK.)UN, and J,NU=(|J Kn)UN. (5.8)
neN neN
We set
= J K (5.9)
neN

and observe that for every ¢ € {£,7,&€ +n,& —n} and for H'-a.e. y € IS we have the
equality (J! N U)g = (Ju N U)g = Jg. In particular, by (4.1) we have that

=1l [ DS\ a5 (5.10)
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for every ¢ € {¢,n,£ + 1, —n} and every Borel set B C U.
The following two lemmas will be used in the choice of w to obtain an approximation
of o$(U) by means of suitable Riemann sums.

Lemma 5.2. Let ¢ € {£,1,6 +n,& —n}. Then for L2-a.e. w € U the following conditions
are simultaneously satisfied:

(a) properties of the slices: for every k € N and i,j € Z we have
uS, . € BV(US,) and (JINU)S. = J%
Yi,j Yij Y5 Y

(b) the points a;fj are directional Lebesgue points: for every k € N and i,j € Z, with
:c,’fj € U, we have

lim 1/6 fu(z®, + 5¢) - ¢ — u(zk,) - ¢|ds = 0. (5.11)

e—0+ 2¢€ —e
Proof. Taking into account that U CC Q and recalling the definition of GBD(2) and
Remark from (5.8) and (5.9) it follows that there exists a Borel set N C II¢, with
HL(N;) = 0, such that for every y € II° \ N; we have ug € BV(U&) and (J! N U)g = Jg.
Let N&° = U jyezz (Ne — £m%(€) — £m%(n)). It is immediate to check that ’Hl(NCOO) =0.
By (5.4) we have
Yot =t (w) + £7(E) + Ln¢(),
so that if 7¢(w) ¢ N2°, we have u;M € BV(U;“_() and that (J1N U)ik,_c = J;k,;. This
1,7 1, 2,7 ¥
proves that for £2-a.e w € U condition (a).
Let us prove (b). Let B be the £2-measurable set defined by

B := {a:EU:limsupl/(E ]u(x+s§)-(—u(:r;)-(]ds>0}.

eso+ 26 ) ¢
For every y € 11\ N; we have ug € BV(UyC) and the slices Bg satisfy
. I
Bg = {t € Ug : hmsup2—€ /_E |u§(s +1) — ug(t)|ds > 0}.

e—0t

Therefore, by the Lebesgue Differentiation Theorem Ll(Bg) = 0 for every y € II¢ \ N¢
and by the Fubini Theorem this implies that £2(B) = 0. We observe that

.1
Eli%h % /E ]ug(t +s) — ug(t)] ds=0 (5.12)

for every t € TI§ \ Bg .
Recalling that by (5.6) we have that

k k
of =yl e, (5.13)
and that yf, }'C ¢ N¢ by the first step, from (5.12)) we deduce that ((5.11]) holds whenever
k?
te ¢ ij;,; : (5.14)
7

Thus, to prove (b) it is enough to show that, for given 4, j, and ¢, condition (5.14)) holds
for £2-a.e. w € U. Observing that y:f < ¢ = 0 and recalling (5.3)), if we multiply (5.13]) by
¢/|¢|? we obtain that

kO _ ThC _ we i 6C L jnC
Ly = =R T rRiep T RIE
Hence, (5.14]) holds whenever
we g NG _iEC _ jng
7 & N — kige ~ ki (5.15)
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Recalling that by . yf < has the form 7¢(w) + z for some z € TI¢, depending on k, ¢,
1, and j, we deduce that - holds for £2?-a.e. w € U. This proves that ([5.14)) holds for

£2—a.e. w € U, concluding the proof. O
Proof of Theorem [5.1] (continuation). Given i,j € Z and ¢ € {&,1,€ +n,& —n} we set
k kC ok,
IJC : [ti,jc’ti,j< T %)’ (5.16)
where tﬁ’f are defined in (b.6). We note that
k,
[k ks + L) = (s +1Cte I} (5.17)

For h € N we set

Ty = {(i,§) € 2 : wf; £ {¢ € U for every ¢ € {&,m,6 + 1,6 —n}}. (5.18)

Since every w € R? can be written in a unique way as w = s + tn with s, € R, by (5.2)
and ([5.3) we have

T ={(i,§) € 2*: 0<s+lih<aand0<t+%<ﬁ}. (5.19)

In the followmg lemma, glven a sequence (wk )k of elements of U, we consider the points

”- and y;; ¢ defined by (5.3) and with w = wyp. We recall that C¢, > 0 is the
constant Wthh appears in

Lemma 5.3. There exists an infinite set K C N and, for every e > 0, a Borel set

U. C U, with L2(U\ U.) < ¢, such that for every sequence (wi)ren in Us and for every
¢ ed{&n & +n,& —n} conditions (a) and (b) of Lemma are satisfied and

Cen ¢ Vv <
Jim =S Dukc \J o) =) (5.20)
keK (i,j)eTk

for every sequence (J*) in Z? for which there exists h € N such that JF ¢ J* ¢ JF for
every k € N,

Proof. Thanks to Lemma there exists a Borel set Uy C U, with £2(Ug) = £2(U), such
that (a) and (b) hold for every w € Uy, so that we only need to show that there exist an
infinite set K C N and for every ¢ > 0, a Borel set U. C Uy, with £2(U \ U.) < ¢, such
that holds. The proof for every ¢ € {{,n,& + n,& — n} will be carried out in four
steps, first for { = &, then for ( =7, next for ( = £ +n, and finally for { = £ —n. Starting
from the second step, N is replaced by the set K of the previous step and we may assume
that U; is contained in the corresponding set of the previous step, so that the sets K and
U. obtained at the end satisfy for every ¢ € {&,n, & +n,& —n}.

We begin by proving the result for ¢ = £&. We observe that every w € R? can be written
in a unique way as

w = z11m + 22§,
with 21, 29 € R. For every k € N and i, € Z by (j5.4)) we have
. .
yif = (21 + %)71’6(77). (5.21)

We set I := (0,8) = {t € R: tns(n )6 7¢(U)}. For every h,k € N and z; € I we define
IF(z1) == {jez: 21+] el}={je: yo’ging(n)Ewg(U)},
FF(z ::{]GZ:zleEGI}\Ih(zl).

Let N¢ C II¢ be the H!'-negligible Borel set introduced at the beginning of the proof of
Lemma for ( = ¢ and consider the Borel set Mg := {t € R : tn%(n) € N¢}. Applying
Lemma to the function defined for t € R by

£t) = Dutg ((U\J)tg() if t € R\ M,
lo if t € Mg,
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which vanishes out of I, and recalling (5.7), (5.10), and (5.21]), we obtain an infinite set
H C N and, for every € > 0, a Borel set I. C I, with £1(I'\ I.) < ¢ and I. N M¢ = @, such
that for every h € N we have

Jim S ST DU (U D) = I [ D e (U7 e, )
keH JETR (21)
= |§]/ Dué((U \ J)é) dH!(y) = o5(U) uniformly for z; € I, (5.22)
IIé
kEToo Z Z Du ye (U \ ) ) =0  uniformly for z; € L. (5.23)

keH  jeFF(z)
We set
Vei={weU:w=2z1n+ 2§, 21 € I, z0 € R} (5.24)

and observe that £2(U \ V.) < ce for a constant ¢ > 0 depending only on &, 7, a, and f.
For every h,k € N we set

WFE:={zeU: cither z + %5 or x— %f does not belong to U}, (5.25)
3 k ;
5t 29) = ]Dumé( (W3 \ J)mf ) ift e I.\ M¢ and 2 € (0,0 + ), (5.26)
0 otherwise,
3
o(t) = ]DutTrg |((U \ J)twi(n ) for t € I\ Mg, (5.27)
0 otherwise.

We observe that 0 < fr(t,2z2) < g(t) for Ll-a.e. t € I and Ll-a.e. 22 € R. Let A be a
measure as in Definition Since )\(W,If) converges to 0 as k — +o00, from and
we deduce that the sequence (fF) converges to 0 in L'(I x R) as k — +oc. Thanks
to Lemma and Remark applied with N replaced by H, we can find an infinite set
K C H C N and a Borel set U. C V. C U, with £2(U \ U.) < ce for a constant ¢ > 0
depending only on &, 1, a, and (3, such that for every heN

1
Jim > DU J(WEN TS ) = lim — § fRi+i,2)=0  (5.28)
—>+Ook Yo.5 Yo.5

keK JETF(21) keK GIk(zl)

uniformly for w = 211 + 20€ € Ue, where the first equality follows from (5.21).
For every j € Z let J"(j) :={i € Z: (i,j) € J*}. Since JF c J* c JF, by (5.16)) and
(5.25)) for every j € ZF(z1) it holds

U\ Dgee = WD U U (I Te).
0,7 0,5 ij()

Hence,

‘Duké (U\J Z Duk& \J5 ‘<}Duk€|(Wh\J)k5)
i€ T*(j)

Recalling that yl J = yO B the previous inequality gives

Z DukE U\J kg Z Duk§ \J§k£>‘

eIk (1) ipest 7
< ‘Duyk,§|((W,If \ J)yk,g) + Z |Duy’“’§ ((U\ J)§k5>}
* T jeF () o7 "7

Combining (5.22)), (5.23)), and (5.28)), we obtain ((5.20) for ( = £. The proof for the case

¢ = n can be obtained by arguing as above, exchanging the roles of £ and 7.
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In the case ¢ = & + 1 we argue as follows. First, we write every w € R? as
w =211+ 22(§ + 1),
with z1, 29 € R, so that by ((5.4))
i . . .
YT = (a1 + PRI + 1) = (1 + SRS,

Setting m := j — ¢, we have

i = (21 + ) (). (5.29)
We now set [ := {t € R: tx¢*(n) € 75+"(U)} and for every k € N and z; € I we define
TFz) ={meZ:z + 2 I} (5.30)

Let N¢yy be the H!-negligible Borel introduced at the beginning of the proof of Lemma
. 5.2/ for ¢ = & + 1 and consider the Borel set M, := {t € R : tx*+"(n) € Neip}. We can
apply Lemma [3.1] to the function defined for ¢ € R by

+ + .
h(t) = D“fnszn ((U \ J)fﬂ—{??kn(n)) ifteR \ Mﬁ_ﬂ,,
0 ifte M§+77.

and arguing as in the previous part of the proof we obtain an infinite set H contained in
the set K obtained in the previous steps and, for every € > 0, a Borel set I. C I, with
LI\ I. ) < e and I. N Mgy, = @, such that

klim Z Dug;:?ﬁ U\J) e ) =oS™(U) uniformly for z; € I.. (5.31)
Z&Jﬁ’o meTk (21) Yo,m

For every h,k € N now define
WF = {z € U : there exists ¢ € {£&, £n, (€ +n), £(£ — n)} such that = + %C ¢ U}
and we observe that and the inclusions j,f cJkc jlk imply that
{(i,5) eZQ' PeUNWEY C I",
P C{(i,g) € 2 [af,af; £ 1] C U for every ¢ € {€,n,€ + 1, —n}}.
It follows from (5.16|) and ((5.17) that

k
O\ = WAL, U U BTN (5.32)
" (ij)eT
Jj—i=m

For every k € N we now define V. , W}’f, f,]f, and ¢ as in -, with & replaced
by € + 1. Arguing as in the first part of the proof, we obtain that ( f}’f) converges to 0
in L'(I x R) as k — +4oo. Hence, recalling , we may apply Lemma with N
replaced by H, to obtain an infinite set X C H C N and a Borel set U, C V. C U, with
L2(U\ U ) < ce for a constant ¢ > 0 depending only on &, 1, a, and 3, such that

lim — Z|Du5,jg7+n W/f\J)jéfgﬂ): lim = Y ff(z1+%,2) =0 (5.33)

k—+oo k k—+o0 k
keEK meTk(z1) keEK meZk(z1)
umformly for w = z1n+22(£+n) € Ue. Recalling the equality yk £ yk frj'" for j—i = m,
from it follows that
+ + +nphEt + +

\Dufk’gn((v VDG = X DS U IS < DL VR DS
(ig)eT* o "
j—i=m

Since by (5.29) and ([5.30) we have

2 2 = >

meZ*(z1) (i ,j)ejk (i,5)eT*
j—i=m
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combining ([5.31)) and (5.33) with the previous inequality, we obtain (5.20)) for { = & + 7.
The proof for ( = £ — 7 is similar. O

Proof of Theorem/[5.1] (continuation). By Lemmal[5.3| we may choose a sequence (w) C U
and an infinite set K C N such that for every ¢ € {&,n,& + n,& — n} conditions (a) and
(b) of Lemma [5.2| hold and

khm E DUM \JCkC) g(U)
—4-00 ki Yij
keK (i,5)eTk

for every J* such that J& ¢ J* ¢ JF (see (5.18)), where the projections Yi ) R:C are defined
taking w = wy, in ((5.4)).

To present the technique we will employ in the sequel, let us assume for a moment that
ok ko ok ko ok k ok

for every (’L ]) € \71 the Segments [ INE Tit1 ]] [ 2,57 zj+1] [ 1,57 Tit1 j+1] [ Tit1 j’ Tit1 ]+1]

[z ]'ij+1’ §+1,j+1] and [2F T3 g ”_H] do not intersect the set J, which implies I \J - 4 =

szv hence
kgrgoo Y. D = o (U), (5.34)
keK (i,j)eTk ”

whenever J¥ ¢ J¥ ¢ JF. By (a) and (b) of Lemma and (5.17)), for every k € N and
(i,j) € JF we have that ui,g € BV(U@;,C) and

Du M(I’“) (u(afs + £¢) —u(z “)) ¢ forevery ¢ € {&,n, €+, —n}.  (5.35)
Let e; := (1,0) and e := (0,1) and set
JF+er={(+15):(,5) € TF} and JF+ep:={(i,j+1):(i,5) € T},

and observe that by (5.19) we have jgk C JQk +e C jlk and j3k C jzk + ey C Jlk. From
(5.3) and (5.35)) it follows that

Z Dukg )

Z (“(mfﬂ,j) - U(ﬂﬁﬁj)) <&,

(4,5)eT¥ (i,)eTy
Z Dut y .s(I ) Z (u($i‘€+1,j) - U(xfj)) -,
(4,9)ETF +ea (1,)ETH +e2
Z Du” kn Ik’n) Z (U(fﬂf,jﬂ) - u(ycf])) e
(i,4)eTy (i,4)eTy
>  Du M(I’“”) Yo (ulafye) —ulaty) n,
( 7])€~72 +e; (Z,j)EJQk+G1
Z DU’E:?M I gM) Z (w(@fi1,541) — ulzly)) - (€ +n),
(i 7])6\72 ('J)Ejzk
Z Dut;, kg n k£ 77) Z (U($?+1,j) - U(l'?,j-&-l)) -(E—n).
(4,4) €T (4,4)€TF
Thus,
k
Z Du f/:ngn k’§+77 Z Du k£ 77 5 77)
(i.))ETF e (i,5)eT¥
= Z (u(forl,jJrl)_u(xﬁj))'(§+77)+ Z (U(xfﬂ,j) u(z ,]+1)) E—mn)
(i,§)€TE (i.9) €T
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= Z (U($§+1,j+1) - U(xf,jﬂ)) &+ Z (U(l‘fﬂ,j) - U(wf;g)) & (5.36)

+ Z z+1,]+1 ( Tip1 ] e+ Z zj—i—l u($f’j)) N
(17])6]2 ( ,])EJQ
Z:Duk,g ZDukE -l—ZDukn ZDU,M
(i ,J>ejz < i)editer (if)editer Gers 7

Thanks to we obtain
0y "NU) +0y7(U) = 205(U) + 203(U),
which implies that & — o§(U) is quadratic.
Unfortunately, the hypothesis that for every k& € N and (i, ) € JF the every one of the
: k k k k k k k k k k
SIX Segments [90”-, fL’iH,j], [%j, xi,jJrl]’ [xi,jv $i+1,j+1]v [%H,j, $i+1,j+1]v [%’JH» xi+1,j+1]7
and [zF 1,50 zk i+1) do not intersect the set .J is almost never satisfied. Therefore, for every

k € N we introduce the set G c Z2 of good indices, defined as

k ;o k koo k ko k ko k
:={(i,j)€ Jy : none of the segments [} ;, 271 ], [27 5,27 501] 5 (27 1, 281 joa)s (5.37)

! k k ! K koo
(231 4> i ja)s (25441, i ja)s (#5415, 25 41] intersects J},
Note that by (5.17)) we have

kgﬂJC c—® for every (i, ) € G,
kg N Jgk £ =@ for every (i,5) € GF + eo, (5.38)
Ii’f}n N J;’?W =@ for every (i,5) € GF + ey,
2,3

where
G" e ={(i+1,§)€Z?: (i,5) €G*} and GF +ey:={(i,j+1):(i,5) € GF}.
To prove the result in the general case, in the next section (see Theorem we shall show

that the sequence (wg)r C U and the infinite set K C N can be chosen in such a way that
conditions (a) and (b) of Lemma-hold and, in addition, for every ¢ € {£,n,£+n,{—n},

i 0 Dy U5 <ok,
keK (2,5)€G*
lim e ot
k—l>r—|I—100 A Z Du k.f(‘[ ) w(U), (5.39)
keK (4,5)EGF+e2
keK (4,7)€G*+e1

Assuming that these equalities hold, we now conclude the proof in the general case.
Observing that (5.35) still holds for (i,5) € G*, and also for (i,j) € G¥ 4+ e; when ¢ =7
and for (i,7) € G¥ 4+ e5 when ¢ = &, repeating the arguments that led to (5.36) we obtain

+ i3 k
Z Dugkgw; 5 17 Z DU k& n 5 17)

(i,5)€G* (i,7)EG*
Z Dukglkg)—i— Z Dukg(l %)
(i,)€gk (i,7)€GF +ez

+ > D" e I+ Y Dut e (.

( 7])6gk+€1 ( 7])6gk
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Multiplying the previous equality by Cg¢ ,/k and using (5.39) we obtain (5.1). This con-
cludes the proof. O

6. CONCLUSION OF THE PROOF IN DIMENSION d = 2

In this section we prove a technical result, which concludes the proof of Theorem [5.1
Throughout this section u, £, 1, and U are as in Section [5| and we use the notation
introduced in the proof of Theorem In particular, we recall that G¥ is defined by
(5.37). Before stating the main result of this section we introduce the set of bad indices
B* C 72, defined as

k T k k k k k k k

BY:={(i,j) € Jy + one of the segments (27 ;, 27,y j], [27;, 27 01], [ 5, @341 j1a s (6.1)

k k k k k k . :
[y, i1l #8500 @i jals (@841, @341] intersects J},

Theorem 6.1. There exist an infinite set K C N and a sequence (wi)geny C U such that

for every ¢ € {&,n,& +n,& —n} conditions (a), (b) of Lemma and (5.20) of Lemma
hold and the following equalities are satisfied:

. Ce, i
kllffoo 277 Z Du;,_c,g(lif) = o$(0), (6.2)
keK (i,j)€GF e
. Ce, i
Jm S 3 Dl () = i), (63)
keK (1,)€GE +e2 .
) Ct, &
i DY Duly,(L5") = ai(U), (6.4)
keK (i,4)€G5+er I
. 1 i
Jm ) [Duse |15\ oc) =0, (6.5)
keK (i,5)€eBk “d b3
1 .
i > |Du§‘?»§|(Ii,f \ Jj%w&) =0, (6.6)
keK (i,)EBF+ea i “J
1 i
kEI-Poo k Z |D“Z%€»W|(Ii,}'n \ J;M) =0, (6.7)
keK (i,§)EB*+ey I “J
where the points yfj ’J.C introduced in (5.5)) are defined by taking w = wy.

The crucial part in the proof of this result is proving —, as 1) can then
be obtained from by difference, using . We only prove (6.5)), as the proof of
and are similar. This proof is extremely technical. The arguments we are going
to use require some additional notation.

Given ¢ € {{,n,§ — n,§ +n}, we set
(=€ if Ce{né+ny and (=79 if (e{{E—n) (6.8)
We observe that ¢ and ¢ are linearly independent. For y € R?, k € N, j € Z, and
ced{&nE+n,E—n}let tf’g(y) be the real number characterised by

Y+t (y)¢ € {w+ ¢+ s R} (6.9)

We also set " b
z;°(y) ==y + ;7 (Y)S. (6.10)
In other words, xfg(y) is the intersection of the straight lines {y + ¢ : t € R} and
{w+4¢+5¢: s € R}. Note that the family of straight lines ({w 4 £¢ + s : s € R})jez

coincides with the family of the straight lines parallel to ¢ passing through one of the
points mfj for i,j € Z.
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Note that for every j € Z and t € R we have
k‘, k, ky k7
() = )+ and 5y +10) = 15 (y) — 1,
which give
() = 2 () + ¢ and 2y + Q) = 2§ C(y). (6.11)
Moreover,
25 (), 28 () = Ly +1¢ L € (150 (), 18 (w) - (6.12)

Therefore for every y € R? each straight line {y + t¢ : t € R} can be written as disjoint
union of segments in the following way

k, k,
y+icterR}y = Jla3 ) 235 0). (6.13)
JEZ
We need to introduce some sets which are useful to establish (6.5)) and whose definition

requires some additional notation. Let us fix ¢ € {&,n,£+n,£ —n} and k € N. In view of
(6.13)), for every o € R? there exists a unique j € Z such that

k, k,
x € [2(x), 28 (2)). (6.14)
We define the map zF¢: R? — R? (see Figure 3) as
F() = 2 (x), (6.15)

where j € Z is the unique index such that (6.14]) holds.

{xf-‘rl,j + sn s € R}

FIGURE 3. The map z + 2%¢(z).

By (6.11) and (6.12)) for every y € R?
Ky +1¢) = 2 (y)  for every t € [tV (y), )81 (y)). (6.16)

Geometrically (see Figure [3)), 2%¢(x) is given by x — t¢ where ¢t > 0 is the smallest
number such that 2 — t¢ belongs to one of the straight lines parallel to ¢ passing through
one of the points xf ;- By this geometric characterisation, 2% is a Borel function.

We consider the union S of the sides and the diagonals of the parallelogram of vertices
at 0, &, {+n,n, ie.,

§:=1[0,]U0,n]U[0,§+ ] U[n, &l U[n, £+ nUIEE +n). (6.17)
For k € N and ¢ € {¢,n,£ +n,& — n} we introduce the set
ERC = {z e R?: (FC(2) + +9) N J # O} (6.18)

For y € R? we define
TH(y) =i € Z: (@ (y) + £S) N T # 0}, N(y) := HO(TH(y)),
By = | W) 85 ) (6.19)
i€k (y)
By we have the equality
EFS(y) = (Ek<)§ for every y € R? (6.20)
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and by (6.11]) we have
TF(y +1¢) =IF%(y) and N®S(y+t¢) = N¥S(y) for every t € R. (6.21)

Let 2 € R? and let j € Z be the unique index such that (6.14) holds. By (6.11) for
every i € Z we have

2 () = o} C(w+ ) = e+ FLO),
where the last equality follows from , since 33+ i JC € [x; MO la+ JC), Z_H(:U+ = ]C))
by (6.11]). Recalling the definition of Ekc in , the equahtles above imply that
I (a) ={i € Z: (P (x+ 5L + 1S)ﬂj7é®}:{ieZ:x—k%CeEk’C},

which gives

NEC(z) = HO{i € Z: o + 1¢ € E*}). (6.22)
For ¢ € {&,n,&+n,6 —n}, k,m €N, and y € R? we set
ERC .= {x e BEF  NFS(2) <m}, EFC:={xe E" : N*S(z) >m), (6.23)
. EFC if Nk < . Ek< if NS
By =y W BN S gy 2 BRIV W =g )
0] otherwise, %) otherwise.

By (6.20) and - we have
fk, _ (P, =k, _ (Pk,
All these sets are Borel measurable as the following lemma shows.

Lemma 6.2. The sets EF<, EAfr;C, and Eﬁ{c are Borel measurable. Moreover, the function
N*< is Borel measurable on R2.

Proof. For every set B C R? we define
M= {z e R2: (2M(x) + LS) N B # 0},
Fp:={2 €R*: (24 15) N B # 0}.
We begin by proving that for a compact set K C R? the set Ef(’c is Borel measurable.
To this aim we note that the set Fi is closed and that E&® = {z € R? : 2*$(z) € Fg).
Recalling that 2¥¢ is Borel measurable, we conclude that Ef{’c is Borel measurable. By
(5.9) we have J = |J,,cy Kn, where K, are compact sets. This gives that EFC = Unen Ef(i

Since the sets Ef(g are Borel measurable, so is E*<.

To prove that EFC Borel measurable, we observe that by (6.22)) and (6.23)) a point =
belongs to E,I%’C if and only if the number of indices i € Z such that x € E*¢ — %C is less
than or equal to m. This implies that, setting Ef’g = ERC — %’g, we have

£k
EkC = {zeR?:Y, X ke (T) < m},
where x g 18 the characteristic function of Ef ¢, Since the sets Elk ¢ are Borel measurable,

we deduce that Efnc is Borel measurable. The Borel measurability of Evfr;C follows from
the equality ERC = k¢ \ ERS.
To prove that the function N*¢ is Borel measurable, it is enough to observe that by

(6.22) we have N*< = Yoicz X k¢ - O

Remark 6.3. All the sets defined in and depend non-trivially on w € R?,
since by @ every choice of w determines different points $ﬁ ; and thus, by , different
sets in @ and as well. Not to overburden the notation, we do not indicate the
dependence of such objects on w. The measurability issues with respect to w will be dealt
with in the Appendix.
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To use the sets Ef;}c and E’ﬁ{c in our estimates we need the properties proved in the
following two lemmas, whose proofs are postponed. We observe that, since & and n are
linearly independent, given ¢ € {&,n,& +1,& —n}, every point w € R? can be written in a
unique way as -

w = z1( + 22(, (6.26)
for suitable z1, zo0 € R. We set
0 ‘f = = —
IC — ( ,Oé) 1 C € or C 5 7, (627)
(0,8) f¢=nor¢=¢+n,
and we observe that by ([5.2)
U 1= {297€(C) : 29 € IS}, (6.28)
Lemma 6.4. There exist a constant C > 0 such that for every ¢ € {{,n,& +n,§ —n}
and for every € > 0 there exist an infinite set K¢ C N and a Borel set I¢ C IS, with
LI\ Ig) <, such that
H (7S(EES)) < C/m (6.29)
for everym e N, w € Us = UNn{z1{+2(:21 €ER, 2 € IEC}, and k € K¢.

Lemma 6.5. Let m € N and ¢ € {{,n,£ +n,§ —n}. Then we have

lim [DuS|(EES(y) NUS\JS) =0 for H'-ae. y € TI, (6.30)
k——+o0
lim |DUS|(ERS(y) N UG\ JS) dH (y) = 0. (6.31)
k—+o0 ¢

To prove Lemma [6.4] we need the following elementary result.

Lemma 6.6. Let F' C R be a finite set and let a > 0 and b < c. Then

c —

- b’HO(F).

/ HO([at +b,at + ] NF)dt =
R
Proof. By the Fubini Theorem we have that

/R HO(lat + b, at + ] N F) dt = /R ( /F Xt bt (8) AH(s) ) i

:/F(/Rx[tc’s;b](t) dt)d?-{,o(s) :%bH(’(F)

This concludes the proof. [l
Proof of Lemma . We observe that 7$(ERS) = {y € II¢ : N*<(y) > m} by (6.21)

and (6.23). Since N k¢ is Borel measurable by Lemma 7S (EX) is a Borel set. By
Cebysév’s inequality we obtain

H((ERO) = W (e T NS > m)) < o | a@yante) (632)

for every ¢ € {¢,1n,§ +1,§ —n}, k,m € N, w € U. To conclude the proof it is enough to
show that there exist a constant C' > 0 and, for every ¢ > 0 and ¢ € {¢,n,§ + 1, — n},

an infinite set Kg C N and a Borel set Ig C IS, with £1(I€\ Ig) < g, such that
/ NES(y)dH! (y) < C (6.33)
¢

for every w € UaC =UN{zi(+2(:21€ER, 2 € IEC} and k € KgC
We observe that by (6.17]) we can write S = Sy U ---U Sg, where

- S__{51+£ it Cefe—n),
2 1=

=04 Si+n if ¢(e{né&+nl, (6.34)
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while S3,..., Sg are the other four segments of S, which are transversal to ¢. By (6.19) this
implies that

" (y U{yez 3 W)+ SN T # 0}

for every y € II, hence

6
Ny Z ({7 € Z: (2§ (y) + Su) N T # O)).

Thus,

6
N ) <Y [ WG ez @)+ 180N T £ 0D A, (63)
1 Pl
Let us fix ¢ € {{,n,§+n,&—n} and € > 0. We claim that there exist a constant ¢; > 0,

independent of w, k, and ¢, an infinite set K§ C N, independent of w, and a Borel set
IS C IS, with £1(I¢\ I¢) < &, such that

/m HO( €7 (FS(y) + L) N T £ 0)) dH L) < o, (6.36)

for every w € UEC, k€ KEC, and h € {1,...,6}. To prove this claim, we first observe that for
every y € II¢ we have

HO{GeZ: (25 (y) + 180 N T # 0} <D H((@ () + £S0) N ). (6.37)
JEZ

We consider first the case h = 1. We prove that there exists a constant ¢ > 0, indepen-
dent of w, k, &, and j, such that

HO((.%'k

.
FOW) + ES) N AR y) < THOS ) (6.38)
Yj

TI¢

for every k € Nand j € Z. If ”HO(JC_,C,E) = +oo there is nothing to prove. Let us fix k& and
j

j such that ”z'-[O(JC ) < +oo.

We parametrlse I1¢ by y = s7¢(¢) with s € R. and observe that ([6.38) is equivalent to
/ HO((@hC (sm8(C)) + LS1) N ) ds < %HO(JQ 2 (6.39)
R Y5
for a possibly different constant ¢, independent of w, k, ¢, and j. By (5.4)), (5.5), and
we have that 7¢(w + %C) = y’?’c. Therefore by the comments after (6.10))

{25 (y)} = {2 (5790 )= {578 (O) + ¢ t € RIN{y) C1il:teR). (6.40)
This implies that for every s € R there exists a unique TS ’C(s) € R such that yf’c_ +
Tf’c(s)c = :L'k C(s7rc(§)), so that by we have
HO((C (57(0)) + £51) N T) = HO([rH< (), 784 () + L] JE,?f).
Elementary geometric arguments show that there exist a constant ¢ > Oj independent of

w, k, €, and j, and a constant d € R, depending on w, k, and 7, such that

Tf’f(s) _5 +d for every s € R.
c
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Since by assumption H%(J i’ 5) < +00, we may apply Lemma to obtain that

y]
_ _ _ ¢ _
/ HO([T;{’C(S),T]E’C(S) + %] N JCM—) ds < E’HO(JC,C’C—). (6.41)
R Y Y;

As the constant ¢ depends only on £ and 7, this proves (6.39)), which gives (6.38]). Arguing

in a similar way, we prove that

HO((af(y) + £82) N ) Ak (y) < THOCSS, o), (6.42)
¢ Yj+1
where the sign in 1 depends on the specific value of (, according to ((6.34)).

By , , , and we have the equality yf’g = (22 + %)775({) for every
j € Z and for a suitable zo € R. Let f: R — [0, +00] be defined by

— ¢
f(S) T HO(JSWE(C))

Observe that, since J C U, by the function f vanishes outside of I¢. Since by
and we have H(J) = HY(JE N U) and H'(Jl NU) < +oo by Remark the
function f is integrable by Lemma[2.4] Thus, we may apply Lemma [3.1] and we obtain an
infinite set KgC C N and a Borel set Ig C I¢, with El(IC \ Ig) < g, such that

for every s € R.

1 ’ ; 1 = 1
im —S KIS )= [ HOJC . Vds=—— [ HOUJS)dH'(y) < ——H(J
‘HIT?’% Uped = [ ¥ V@) = 2] o W S gt )
keKS

uniformly for zo € Ig . Hence, up to removing a finite number of elements from Kg , We
may assume that

1 0 z¢ 1 1
kj%% (e S gt (D +1 (6.43)

for every k € K& and 2 € IS. Together with (6.37)), (6.38]), and (6.42)), this implies ((6.36))

for h=1and h = 2.
Let us now fix h € {3,...,6}. For every j € Z, let L; be the strip defined by L; :=

{z eR?: nl(x) € [yf’_gl, y;?fl]}, that is to say, the region of the plane between the straight

lines {yf’;1 +sC : s € R} and {yf_fl +sC : s € R}. Since 7¢(S),) is equal to [0,7¢(n)] or
[7€(n), 0] if ¢ = &, while 7¢(Sy,) = [0,77(€)] if ¢ = n, from (5.4) and (5.5) we see that in
every case we have the inclusion

U {y;CC +sC+ 1S} C Ly for every j € Z.

seR

Let ¢ € R?\ {0} a vector in the direction of the segment Sj. Recalling that .%?’C (y) €
{y;-f’C +5C : s € R} for every y € TI¢ by , we deduce from the previous inclusion that
(azfc(y) + 2Sp) N J C JN Lj, hence

HOF W)+ 150 N ) S H(I N L) g ) (6.44)
for every j € Z. As ¢ and ¢ are linearly independent and the same holds for ¢ and (, the
map y — ¢ (zf’c(y)) from II¢ into II¢ is affine and invertible. Moreover, its linear part is
independent of w, k, and j, since it depends only on ¢, ¢, and f . By Lemma we then
have

EHO((J N L;)S) dH (z) < HA(JT N L).
II
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Using the map y — Tr‘?(x?’c(y)) as change of variables, from the previous inequality and

(6.44) it follows that
| W)+ 150 N ) A (y) < AR N L)

for every j € Z, k € N, and w € U, with v > 0, a constant depending only on ¢, ¢, and 5
Observing that every point z € R? belongs at most to three strips of the form L;, from
the previous inequality it follows that

ST HU(@ () + £8n) N ) dH (y) < 3yH!(D).
jez J1e
This inequality, together with (6.37)), yields

| G ez (5w + 15007 £ 0)) @il (p) < 391,

Since H'(J) < +oo0, this proves (6.36) for h € {3,...,6}. Therefore, (6.36) holds for every

h e {1,...,6}. Thanks to (6.35), from (6.36) we obtain ({6.33), which by (6.32)) concludes
the proof. 0

Before proving Lemma we state a result about one-dimensional measures, which
shows that non-atomic measures satisfy a suitable uniform absolute continuity property.

Lemma 6.7. Let I = [a,b] C R be a bounded closed interval and let € M (I) be a
measure such that w({t}) = 0 for every t € I. Then for every m € N and € > 0 there
exists d(e,m) > 0 such that for every 6 € (0,0(e,m)) we have

m

1( U(tg —0,te+8)N1I) <e for every (t1,...,tm) € I

(=1
Proof. We argue by contradiction. Suppose that there exist m € N and € > 0 such that
for a sequence d; > 0 converging to 0 we have

m

1( U(tl; — O, tE 5N I) >& for some (th, .., thyem.
/=1
Given § > 0, this implies that
m
1 U(t? —5,tf4+4)N I) > e for all k € N sufficiently large.
=1
Since [ is compact, there exists a subsequence, not relabelled, and a point (¢1, ...,¢,,) € I™
such that (¢f,...,tF) converges to (t1,...,tm) as k — +oo. Since (t§f — 0,t5 +6) C (t, —
20,t¢ + 20) for k large we deduce that
m
p((Jte—26,t0+20)N 1) > e.
/=1

Since § > 0 is arbitrary, we obtain

m

p(J{t) =&,

(=1
in contradiction with our hypotheses. This concludes the proof. O
Proof of Lemma . We begin by noting that for #'-a.e. y € II¢ we have ug € BV(Ug)
by Remark and, recalling (5.8) and (5.9), by Theorem [2.12| we have also .J ¢ N Uyc C
Y

Jg = (J&)g Let us fix y € II¢ such that these two conditions hold. By standard properties
of BV-functions in dimension one we have Du§({t}) = 0 for every t € (U \ J)§. We recall
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that by definition E,]%C(y) is the union of at most m intervals of length % (see (6.19)).
Hence, Lemma applied to the measure p := |Du§\ L (Ug \ J:g ) defined on the closure
of the interval Uy, implies that holds.

We observe that the integral in is well-defined, since by Lemma the set ER¢
is Borel measurable and Eﬁlg(y) is its slice by (6.25)). Since |Du§\(EA’Tf1<(y) N UyC \ JyC) <
]Dugl(UyC \ ch) for H'-a.e. y € II¢ and the function y ]Dugl(UyC \ JyC) is integrable on
II¢ with respect to H' by , the Dominated Convergence Theorem implies ,
concluding the proof. 0

For technical reasons, instead of a single w € U we have to consider a sequence (wg)r C
U; accordingly, the points y; ’C, introduced in (5.5)), and the sets Eﬁ{c(y) and E’;{C(y) are
defined by taking w = wg.

Lemma 6.8. For every € > 0 there exist m. € N and an infinite set K. C N with the
following property: for every k € K. there exists a Borel set UF C U, with L2>(U\UF) <,
such that for every ¢ € {&,1,& +n,& —n} and for every sequence (wWi)rek., with wy, € UF
for every k € K., the following conditions are simultaneously satisfied:

kZ|Du Ekc( )ﬂUCM\JM) e for every k € K., (6.45)
JEZ
I ¢ N :
i £ SPGB0 U\ IS0 = (6.46)
kek. €L

Proof. Let us fix ( € {{,n,£+n,{—n} and € > 0. Arguing as in Lemmawe see that it
is enough to prove that there exist m. € N and an infinite set K. C N with the following
property: for every k € K. there exists a Borel set U* C U, with £2(U \ UF) < ¢, such
that for every sequence (wg)rek., with wy € ng for every k € K., conditions and

(6.46) hold for this particular (.

We observe that every w € R? can be written in a unique way as w = z( + 220,
where 21,22 € R and ( is defined by (6.8} . By the numbers tf’c(y) depend on w
only through zo, hence the same holds for xk C(y), EES(y), and ENC(y) (see (6.10) and
(6.24)). We also remark that there exists a constant ¢; > 0 such that if w € U then
|z1| < ¢1. Moreover, there exists a constant co > 0 such that, if B C R? is a Borel set and
A={weU:w=2z(+ 2( with (21, 22) € B}, then

L2(A) < e L2(B). (6.47)

Let C' > 0 be the constant of Lemma [6.4, Thanks to Lemma [6.4] we can find an infinite

set HEC C N and a Borel set Ig - IC, with

LI\ IS) < e/ (4ciea), (6.48)

such that holds for every m € N, k € Hg, and w € UEk =Un {z@—i— 22( 1 21, €
R, 20 € Ig} Moreover, let N C II¢ be the H!'-negligible Borel set introduced at the
beginning of the proof of Lemma

For every m € N, k € Hg, y € TI¢, and 2z € R we define

kC |Du§|(E',]%C(y)ﬁU§\J§) if y € IS\ N¢ and 2o eIt
P (Y, 22) 1=

6.49
0 if y € Neor zp ¢ I¢, (6:49)

where E ’C( ) is defined using w of the form 2z + z2¢ with an arbitrary z; € ]R We
observe that the function h _ is Borel measurable on II¢ x R thanks to Lemma We
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also define

(6.50)

£y = { IPGIONDG) iy € AN,
0 lnyNC

Note that for every y € II¢ we have ENS(y)NUS\ J5 C (U \ J)$, hence il (y, z2) < ¢¢(y)
for every y € II¢ and 2z, € R.
We set
M = HY (7S(U)) + 1.
By we have ¢g¢ € L1(II¢,H'), so that by the absolute continuity of the integral there
exists d. > 0 such that

2. C(F)|2
- 2 Q)

/Bg (y) H (y) < 4maX{C¥,B}MCCQ
for every H1!- measurable set B C II¢ with H'(B ) < 0.

Since by (6.25) and (6.49) the inequality hmg(y,ZQ) > 0 implies y € WC(EfﬁC) and
z9 € Ig, we have

<O [ ([, . oW dw(y))dZQ.
6 e (6.52)

Let us fix m. € N such that m. > C6:!, where . is a constant such that (6.51)) holds.
By (6.29) we have H!(7S(ENS)) < 6., for every k € HE and w = 2,C + 23 with 2y € IS.
Since £1(I8) < £1(I¢) < max{a, 8} by (6.27), from (6.51) and (6.52) we infer that

/R ( / WS (217 (0), 22z ) dza < m (6.53)

(6.51)

for every k € HS.
Let P*< = {j € Z: yf’c belongs to 7¢(U)}. Since w = 2¢ + 2o(, by (5.4), (5.5)), and
we have B S
yf’c = 217%(¢) + %WC(C) for j € Z. (6.54)

We set AS := {(z1,22) € R? : w = 2.{ + 22¢ € U}. Setting z = (21, 22), by the Fubini
Theorem we obtain that

/AC (%thﬁ;ﬁ,e( ke )dz—f 3 / BES (21 + 1) (D), 22) dz

JEZ jePkC

< a3 ([ e @, am )z = L ([ 1 e, 2) Yz

ePk <
Since HO(PF<) < kMC|7¢({)|~", this inequality, together with (6.53), implies that

/ P (T z2>)dz < (6.55)

JGZ

for every k € HS.
We now set
vEC = {z e A Z RS (Y, 20) > 5} U FkS, (6.56)
jEZ
where
Fke .= {z € AS: y?’c € N¢ for some j € pk,C}‘
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Since H!(N¢) = 0 by (6.54) we obtain that £2(F*¢) = 0. In light of Cebysév’s inequality
and (6.55)), we infer that
£2 Vk7< < i‘
( 3 ) — 402
We also introduce the set
WhS .= vk y {z € AS 2y e IS \Ig} (6.57)

and observe that, since £2({z € A : zp € I¢\ Ig}) < e LYIS\ IE) < £/(4¢y) by (6.47),
we have

LXwhe) < 2— (6.58)
It follows 1mmed1ately from (/6.49| -, and ((6.57] - ) that

1
- Z ’DU Ek < ) N U;c,c \ Jyl_e,c) % Z hﬁzﬁ,a(% C7 2) <e¢ (6.59)
jGZ J ’ JEZ
for every k € HS and for every z € AS\ wke.
For every k,m € N, y € II¢, and 2, € R we set

0y, 20) = { IDUS|(ENS(y) N U\ J§)  if y € IS\ Ng and zg € I€,

6.60
0 if N¢ or 2o & I°. (6.60)

By Lemma the function gf,f is Borel measurable on II¢ x R. We also observe that by
Lemma, [6.5] for every z3 € R and for H'-a.e. y € 7¢(U) the sequence gr; ’4(
to 0 as k — 400. Arguing as before, we obtain that g, ’C(y, 29) < g%(y) for every y € II¢
and 2, € R, where ¢¢ is the function defined by -

We set

Y, Z2) converges

FEC (21, 20) = gf%f(zwr((f),zQ) (6.61)
for ever}izl, 27) € R? and observe that fg = 0 out of a suitable bounded set. Using

Lemma [3.2| and Remark with N replaced by Hg , we obtain an infinite set Kg - Hg
and a Borel set BS C AS, with £2(BS) < £/(2¢3), such that for every m € N

1
lim — Z (2 4 4 <, | 2) = 0 uniformly for (21, 2) € AS\ BS. (6.62)

We set Cg ={weU:w=2C(+ 2 with (21,22) € Bg} and observe that from (6.47) it
follows that

L2 (CC) < 5 (6.63)

Moreover, from ((6.60) , (6.61]), and we deduce that
lim fZ\DukJ(EkC( )ﬂUCkC\JH)—O uniformly for w € U\ CS.  (6.64)
——4-00 - Yy
kek. ST

We set DY = {w € U : w = 21C + 22¢ with (21, 22) € WE} and observe that by (6.47),

(653), and (6-59) we have

L£3(DF) < for every k € K¢, (6.65)

<<

2

kZ]Du (ERS(y )ﬂUCM\JM) <e forevery k€ K¢ and w e U\ D", (6.66)
JEZ

Let UM = U\(Cgqu’C). Combining (6.63|) and (6.65) we obtain that EZ(U\Uf’C) <e.

Finally, from (6.64) and (6.66] it follows that (6.45) and (6.46|) hold for every sequence
(wk)kng such that wy € Uz for every k € Kg This concludes the proof. O
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We are finally ready to prove Theorem

Proof of Theorem . Recalling (6.1) and (6.17)) for every k € N we have
B ={(i,5) € JF: («F; + £S)nJ # O} (6.67)

Since by (6.15]) we have

() = af; (6.68)
(see also the comments after (6.16])), from (6.18) and (6.67)) we deduce that for every

C € {537775_‘_77’5_77} we have
Bk:{(i?j)ej;: 1] Ek’C}
For every k,m € N and ¢ € {{,n,£ +n,§ — n} we set
By =A(i,j) € T :a w € Eyfy,
Bt = {(i,j) € J5 + af; € By},
and observe that BF = [;’fnc U B,k,{C.

Let us fix 0 < e < £2(U)/2. For every n € N we apply Lemma with e replaced by
£/2™ and obtain an infinite set H,, and a Borel set U, with £L2(U \ U,,) < /2", such that
all conditions of Lemma/5.3|hold with U, and K. replaced by U,, and H,,. In the step n+1
we can replace N in Lemma [5.3| by H,,, obtaining H, 41 C H, for every n € N. Then, we
apply Lemma [6.§] -, with e replaced by £/2" and N replaced by H,,, and we obtain m,, € N,
with myy1 > my,, an infinite set K,, C H,, and for every k € K,, a Borel set U,]f c U,
with £2(U \ UF) < /2", with the following property: for every sequence (wy)rek, such
that wy € UF for every k € K, and for every ¢ € {£,1,£ +n,& —n} we have

(6.69)

fZ\Du [(EEC (y )ﬂUCkC\JH)<2—n for every k € K, (6.70)
JEL
1 R
e ¢ k.G (o, FC ¢ (A
kginoo Z |Duyf,<|(Emn (yj )n Uy;_c,c \ Jy;cc) = 0. (6.71)
ke K, JEL

Replacing U¥ by U¥ N U,, we obtain that U¥ C U,, and £%(U, \ UF) < £/2". Moreover,
repeating the same argument used when we pass from n to n + 1, it is not restrictive to
assume that K, 1 C K,, for every n € N.

By a diagonal argument, we can find an infinite set K C N and a strictly increasing
sequence (ky)n, C N such that K N [k,, +o0) C K, for every n € N. For every k € K we
also define n; € N as the largest integer such that k, < k and observe that ny — 400
as k — +oo. For k € K consider the set U* := ('t U and observe that £2(U*) >
L2(U) — 2¢ for every k € K, hence U¥ # . We fix (wi)rex C U such that wy, € U* for
every k € K. By - we have

kgl}rloo—Z]Du E’CC kc)ﬂUCM \ch) =0 for every n € N. (6.72)
kek  JEL
We now prove ([6.5)) for ¢ = £. Let us fix (4,7) € B* and t € Izkf By (6.67) we have
(zF;+ +8)NJ # 0. (6.73)

Recalling (5 , we also have tk5 <t< tk£ + k, where t is defined in Since
xfj € {wk+ L&+ sn s 6 R}, by and we have tkg( kﬁ) = tlf, so that
fé( kg) <t< tf’g( ks) + 7. From and we deduce that
k k k, k, k, k,
FEYPE 1g) = L YPE 4+ 1] f(yj )E) = Z’“’g(yj Stite) = P (ak
In light of (6.73]), this implies that
k7
(R 1) + 18) N T # O,

7.7
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which, by -7 implies that y Jus t& € EME. Recalling (6.20 , this is equivalent to
t € ERS(yk Y; %). Since (i, ) € JF, th1s shows that

Iit c ER ) n U’SM. (6.74)

If (i,§) € BE® for some m € N, it follows from (6.24) and (6.69) that N*:¢(zk ) <m,

where M%< is defined by (6.19). By (6.21) we have N*¢(z ”) = ng(yj + t€) for every
t € R, so that from (6.74]) we also deduce that

I' C BES( )mUi5 (6.75)

In a similar way we prove that if (7,7) € B¢ for some m € N then

k, = k,
I' C ERE(FS) N in,g. (6.76)
J

For every k,m € N and j € Z we set B¥(j) := {i € Z: (i,7) € B*}, B&(j) = {i € Z
(i,7) € BESY, and BES(G) == {i € Z : (i,§) € BY*}. From (6.75) and (6.76) we deduce
that for every k,m € N and j € Z we have

k7 n y k? k7 I y ka
U I cEE N U;*,?é and U I cEES SN Uj,?yg.
ieBL) : ieBhG) '

Therefore, for every k, m € N we have

. k.
Z |DU k§| \J£ ¢) < |DU§E,§|(E'§7Z§(yj 5) N Uygl_c,g \ij,§)7 (6.77)
i€B4G) ’ ’ ’
k, " k,
Z ]Du k{‘ (Z; jg \ Jgk,g) < ’Dugk,é‘(Eﬁiﬁ(yj g) N ng,s \Jfk,s)- (6.78)
e BEE) Y; Y; Yj Y
From and ( - ) for every n € N we obtain that
— Z Z |Du* M f \ Jgkyg) < 2% for every k € K with k > k,, (6.79)
g s E(;) Y
while ( and 8)) give
klil_’l_l k;z Z ]Dukg\lkg\Jgkg)—O for every n € N. (6.80)
—+o00

kek  I€ZieBRE ()
Combining (6.79) and (6.80)), we deduce that

1
limsup — Z \Du H\( \Jgkg) <5 for every n € N,
k——+o00 k o n

which concludes the proof of for ¢ = £. The proof of for ¢ € {n,§ —n, &+ n},
as well as the proof of and , is analogous.

Equalities — can then be obtained by difference from . This concludes
the proof of Theorem O

7. THE CASE OF DIMENSION d > 2

We now show that Theorem [5.1| can be extended to the general case d > 2. This is done
by means of a Fubini-type argument. To this aim, we present and prove a short lemma
that shows that the measure )\, introduced in does not charge Borel sets that are
o-finite with respect to H%! and do not intersect the jump set.

Lemma 7.1. Let d > 1, let w € GBD(RQ), and let B C 2 be a Borel set that is o-finite
with respect to H4™1. Then \y(B\ Jy,) = 0.
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Proof. Tt is not restrictive to assume that H9~!(B) < +oc. By (2.20) to prove the claim

it is enough to show that for every & € S¢~! the measure A& defined by (2.19)) satisfies

Xo(B \ Ju) = 0. Let us fix £ € S¥~1. Since Je C (Ju)§ for H '-a.e. y € TI¢ by Theorem
Yy

it follows from (2.19)) that
XB\ L) < [ DB T, an ). (7.1)

Recalling that by assumption Hd_l(B) < 400, Lemma implies that for H% -a.e.
y € TI¢ the slice Bf, is a finite set. By well-known properties of BV functions of one variable
(see |7, Corollary 3.33]), this implies that for H%!-a.e. y € TI¢ we have |Du§|(B§\Jug) = 0.

By (7.1)) this equality gives )\g(B \ Ju) = 0, concluding the proof. O
Theorem 7.2. Let d > 2, let w € GBD(Q), and let B C Q be a Borel set. Then the
$

function & — oy (B) is quadratic.

Proof. By Proposition it is enough to show that £ — US(B) is 2-homogeneous, satisfies
the parallelogram identity, and is lower bounded in the sense of (c¢) of Proposition [2.2
Since by Proposition the function £ — O’ﬁ(B) is 2-homogeneous and by Remark
satisfies the correct lower bound, we only need to prove the parallelogram identity.

We decompose o4 (B) as

US(B) = Ug(B \ Ju) + US(B N Ju)

and observe that by Propositions the function £ — ag(B N Jy) is quadratic. Thus, to
conclude we only need to prove that & — O'%(B \ Jy,) satisfies the parallelogram identity.

Let &, € R? be two linearly independent vectors and consider the 2-dimensional vector
space V generated by & and 7. Let 7y : R? — V be the orthogonal projection onto V. For
zeR'and ECRY et BY :={ycV:z+yc E}=VN(E—-2z)andletu): QY =V be
the function defined for every y € QY by uY (y) := 7y (u(z + y)). By (a) of Theorem m
for H4"2-a.e. z € V1 we have u/ € GBD(QY).

We observe that for every ¢ € {£,1,6 +n1,& —n} C V and for every E C R? we have

(E;/)g = E§+y for every z € V+ and y € V N1IS. (7.2)
Moreover, for every z € V+ y € VNIIS, and ¢ € (Qy)g = Qgﬂ/ we have
(ud)5(8) = uSyy (1). (7.3)
This implies that for H% 2-a.e. z € V* and for H'-a.e. y € V NTI¢ we have
D(uY)$ = Du, (7.4)

as Borel measures on (Qy)g = QngZ.

We then apply Theorem to deduce that for H9 2-a.e. z € V- there exists a Borel
set NV, C V such that
H'(N.)=0 and J,y C(J,)} UN.. (7.5)

By Remark the set J, is o-finite with respect to H%~!. Therefore, by [28, Theorem
2.10.25] we have that H!((J,)Y) is o-finite with respect to H! for H% 2-a.e. z € VL.
We can then apply Lemma (7.1, with d = 2, Q replaced by QY u replaced by u!, and

z

B = (J,)Y, and we obtain that )\u\zx((Ju)g \Jyuy) =0 for HI2-a.e. z € V1. By Definition
applied to uY € GBD(QY), and from this equality it follows that
/ 1D )5 1((J)Y \ Ty )g) dH (y) < Ay (Ju)! \ Jyy) =0 (7.6)
VNII¢

for Hi 2.ae. 2z € VL.
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Since for every triple of sets Ay, Ao, A3 we have (A; \ A2) \ (41 \ A3) C A3\ Ag, we
obtain that
(BY\ J)\ (BY\ (Ju)Y) € (Ju)¥ \ Juy,

hence by
D@ )G I((BY\ Ty )5 \ (BY\ (Ju)Y)g) =0 (7.7)

for H?2-a.e. z € V* and for H'-a.e. y € VNIIC.
The inclusion in (7.5)) implies that for H~2-a.e. z € V* and for every y € VNII¢\7¢(N,)

we have (Ju;/)g C ((J)Y)5, and hence (BY \ (J)Y)5 € (BY \ Ju;/)g. Observing that

z z

H(7¢(N,)) = 0 by the equality in (7.5, we deduce from this inclusion and from (7.7)
that
D(u )((BY \ Juy)y) = D(u )g((BY \ (Ju)Y)g)

y Y
for H%2-a.e. z € V* and for H'-a.e. y € VNIIC.
Integrating this equality with respect to y we obtain that

/V DB L)Y ) = / D(Y)5((BY \ Jpw)$) dH(y)

|4l
for H%2- a.e. z € V1, so that, setting 3/ = z 4+ y, by (7.2)-(7.4) and the Fubini Theorem

we have

/ Du,((B\ J,)S,) dH "\ (y)
T1¢

— [ (] DO\ g aH ) a2 o).
v+ VNII¢
Taking into account the definition of ag (see (4.1))), this last equality can be written as
o$(B\ Ju) = /V oS (BY \ ) dHI3 (), (7.8)
We may now apply Theorem to the function u¥ € GBD(QY) to obtain
oSEBY \ J) + 055 (BY \ Jyy) = 205 (BY \ Jyy) + 20", (BY \ )

for H?2-a.e. z € VL. Integrating this equality with respect to z and exploiting (7.8)) we
deduce that

o T(B\ Jy) + 05BN\ Jy,) = 205(B\ Ju) + 201(B\ J,).
This shows that the function £ — JS(B\Ju) satisfies the parallelogram identity, concluding
the proof. O

8. A MATRIX-VALUED MEASURE ASSOCIATED TO A GBD FUNCTION

In this section, for every v € GBD(f2) we introduce a matrix-valued measure f,, that
generalises the distributional symmetric gradient Fu of BD(2) functions. We then analyse
some of its properties and deduce some useful consequences.

Theorem 8.1. Letd > 1 andu € GBD(2). Then there exists a measure ji,, € Mp(£2; Rg;g)
such that for every & € S%1 we have

pu(B)E - € = 05(B) = REToo De(tr(u-&))(B\ Jy)  for every Borel set B C Q, (8.1)

where o5 is the measure defined in (4.1) and Tr are the truncation functions defined in

(4.3). Moreover, the variation |p,| with respect to the operator norm in Rg’;g satisfies
1l (72) =0, (82)
ltu] = M L (Q\ J))  as Borel measures on €, (8.3)

where Xy, is the positive measure defined by ([2.20)).
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Proof. If d = 1 these results follow from Remarks [4.1] [4.2] and Proposition [£.4. We may
thus assume that d > 2. From Theorems and|7.2]it follows that the function £ — ag(B )
is quadratic for every Borel set B C €). Thus, there exists a set function pu,, defined on the

o-algebra of all Borel subsets of {2 and with values in Rg}ﬁg such that

o5(B) = pa(B)§ - € (54)

for every Borel set B C Q and ¢ € R%\ {0}. Observing that o5(B N Ji) =0 by ([{.1)), we
may apply Proposition E to B\ J! and we obtain

o5(B) = lim De(ra(u-€)(B\J})

for every Borel set B C Q and ¢ € ST, As (8.2) is an obvious consequence of (8.3)), we

are left with proving that u, € M;(Q; Rg;nﬁl) and that equality (8.3]) holds.
&

Since B + oy (B) is a bounded scalar-valued Radon measure for every & € R?\ {0},
it follows from that the same property holds for B +— p,(B)£ - €. The polarisation
identity then implies that B + p,(B)E - 1 belongs to My(Q) for every £,1 € R? hence
fhy € Mp(Q; REXD),

To prove (8.3) let us first show that

lta] < AL (Q\ J))  as Borel measures on . (8.5)

To this aim, we observe that, since p, takes values in ngxrff, for every Borel set B C (2 the
operator norm |, (B)| satsfies

a(B)| = sup |(uu(B)E-€)| = sup |o5(B)l,

£€Sd_1 fGSd_l
so that by (2.20])) and ( we have
|| (B —supZ\afZ D <sup Y A (Bi\ Jy) = M(B\ ),

where the supremum is taken over all finite Borel partitions (B;); of B and all finite
collections of vectors (£;); C S?~1. This shows (8.5).
To prove the inequality

lta] > A L (Q\ J})  as Borel measures on €, (8.6)
we argue as follows. Consider the measure A\ € M;(Q) defined for Borel set B C 2 by

A(B) = |l (B) + HTHB O T,).
Thanks to (8.5, Lemma Remark and Theorem it follows that A satisfies
2.10

(2.10]). Since A, is the minimal measure that satisfies (2.10) it follows that A\, (B) < A(B)
for every Borel set B C €2, which implies . O

Remark 8.2. By Remark it follows immediately from (8.4]) that if u € BD(£2), then
p = (Bu)L (2 \ J}) as Borel measures on 2.

Given u € GBD(), the Lebesgue Decomposition Theorem allows us to decompose the
measure /i, as the sum of a measure 2, which is absolutely continuous with respect to £¢,
and a measure p2, which is singular with respect to £. In the following definition, we in-
troduce a further decomposition of u,,, which closely resembles the classical decomposition
of Eu for a function u € BD(Q2).

Definition 8.3. For u € GBD(Q) we introduce the measures ué, i, € My(Q; REXd),

sym

called the Cantor part and the jump part of u,, defined for every Borel set B C ) by

fo(B) := pio(B\ Ju),
,U/{L(B) = MZ(B N ']u) - ,U/u(B N Ju)

Since p, = pl + pd, we have p, = pd + ps + ,u{; as Borel measures on ).
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Remark 8.4. It follows from Remark [8.2| that if u € BD(2) then the measure pf of Def-
inition [8.3| coincides with the Cantor part Eu (see |6, Definition 4.1]) of the symmetrised
gradient Eu.

We recall that for every ¢ € R?\ {0} and every y € II¢ such that ug € BVlOC(Qg) and
DuS, € My(95) we can consider the measures D € My(Q5) and Du§ € M,(€5),
defined as the absolutely continuous and the singular part of Dug with respect to the one-
dimensional Lebesgue measure, and the measures DuS € My(€05) and Dius, € My (Q5),
defined for every Borel set B C Qg by

£ - 3
Dfuy(B) := D*uy(B \ Jug),
D'uS(B) := D*u(B N Jye) = Du(B N L
Since Dug = D“ug + Dsug, we have Du§ = D“ug + Dcug + Djug as Borel measures on
Q5.

We now show that the measures p and ,u{t can be expressed as suitable integrals depend-
ing on the approximate symmetric gradient Eu (see Theorem [2.12)) and [u], respectively,

and that uS an be expressed by means of Dcug.

Proposition 8.5. Let u € GBD(RY). Then
wy(B) = / Eudz, (8.7)
B

4 (B) = / ] © vy dHO, (8.8)
(Ju\JL)NB

for every Borel set B C Q). Moreover, for every & € R\ {0} and every Borel set B C
we have

peBIE €= 6l [ DB ant ). (5.9)

Proof. Let us fix a Borel set B C ). By definition of p{ and of ,u{t, it follows from the
polarisation identity and from (8.4) that

HBIE - = (057 (B) — (o5 (B)), (810
WBYE 1= (05BN 1) — 0§ (BN L), (8.11)

for every &, 1 € R?\ {0}, where for a vector ¢ € R%\ {0} the measure (c§)® is the absolutely
continuous part of o with respect to £, By Lemma for every ¢ € R%\ {0} we have

(@9 (B) =[] [ Dm(5) ant ), (5.12)
@(B) = [l [ Do uS((B\ IS aH ), (8.13)
T1¢

where (05)5 is the singular part of o$ with respect to £%. In light of Theorem using
(8.12) and the Fubini Theorem, we deduce that

(09'(B) = [ £u¢-¢da
Q
for every ¢ € R?\ {0}. Combining this equality with (8.10), we obtain that
ni(B)E = [ eugendo=( [ euda)gon

for every &, € R?\ {0}, which proves (8.7).
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To prove (8.8)), we observe that by Proposition for every ¢ € R%\ {0} we have

o$(BNJ,)z = / (4] © va)C - ¢ M.
(Ju\JZ)NB
Together with (8.11)), this equality shows that
pl(B)E - = / ([u] © vu)é - pdH" ! = (/ ([u] ® vy) dHT1)E 1
(Ju\JE)NB (Ju\J1)NB

for every &, € R?\ {0}. This proves (8.8).
To conclude, we fix ¢ € R?\ {0} and a Borel set B C 2 and show that (8.9]) holds. We

observe that for every y € II¢ such that (2.21)) holds we have | D’ ug\((B \ Ju)g) = 0, hence
Dug((B\ Ju)j) = Dug((B\ Ju);).

Since (2.21)) holds for H4 -a.e. y € II¢, from this equality, (8.4), , and Definition
R.3lit follows that

HBIE€ = @B\ L) = €l | Du((BALE AR ). (314)

Recalling Lemma by Remark for H% 1-a.e. y € TI¢ the set (Ju)g is finite or
countable. Recalling the properties of the derivatives of BV functions in dimension one,

this implies that Dcuf/((Ju)g) = 0 for H9 1-a.e. y € I15. Therefore (8.14) implies (8.9). O

The following corollary shows that in the previous results we can replace J} by J (see
(2.4)) for an arbitrary r» > 0 and that the absolutely continuous and the Cantor part of
the corresponding measure i, , do not depend on 7.

Corollary 8.6. Let d > 1, u € GBD(R), and r > 0. Then there erists a measure
i € My(QREXD) such that for every € € ST1 we have

sym

pur(B)E - € = RETOO De(tr(u-£))(B\ J,,)  for every Borel set B C , (8.15)

where TR are the truncation functions defined in (4.3]). Moreover, setting ,u?w = Ly Ty,
we have

pl (B) = / [u] © vy dHI™Y  for every Borel set B C . (8.16)
' (Ju\J5)NB

Finally, we have py, = pu® + ué + {M as Borel measures on €.
Y Mo, Hay T Hooy T Mo,

Proof. Let v :=u/r and piy, = rp,. Using the equalities
1
TR(v-§) = TRy (u-€) and Jy =T, (8.17)

from e obtain . Using the equalities J! = J" and J, = J,, from we
deduce (8.16]).

Let uy, , and py, , be the absolutely continuous and the singular part of p,, with respect
to L. By and (8.15)), with B replaced by B\ J,, we obtain p,,(B\ Ju) = pu(B\Ju).
This implies that 5 ,.(B) = pg,(B) and w3, ,.(B\ Ju) = py,(B\ Ju) = p;,(B) for every Borel
set B C Q. Hence, pu,(B) = pfy (B)+1g, (B\Ju)+15,(BNJu) = pig(B) 445, (B)+ i (B)
for every Borel set B C 2. O

Remark 8.7. Using the function v := u/r, it follows from Remarkthat, ifu e BD(Q),
then g, = (Eu) L (©\ J),) as Borel measures on €.

The following result shows that, in analogy with E“u, the measure pf does not charge
Borel sets which are o-finite with respect to H4 1.

Proposition 8.8. Let u € GBD(Q) and let B be a Borel set that is o-finite with respect
to H4=L. Then |uS|(B) = 0.
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Proof. Tt is not restrictive to assume that H?~1(B) < 4oco. Let us fix £ € S¥"1. Thanks
to Lemma we have HO(Bg) < 4o for Hé la.e. y € TI5. By the properites of one-
dimensional BV functions this implies that Dcug(Bg) =0 for H? t-a.e. y € 1%, Hence,
by we have ¢ (B)¢-€ = 0. Since this is true for every £ € S9!, we obtain ul(B) = 0.
As this property holds also for every Borel subset of B, we deduce that |u|(B) =0. O

The definition and properties of p,, allow us to give a new characterisation of the space
GSBD((Q), originally defined by slicing. We recall that GSBD(2) (see [20, Definition
4.2]) is the space of all u € GBD(f2) such that for every £ € S¥~! and for H? l-a.e. y € II¢
we have

u§ € SBVige(€). (8.18)
Theorem 8.9. Let w € GBD(RY). Then u € GSBD(R) if and only if S, = 0.

Proof. Assume that puf = 0 as a Borel measure on 2. Recalling the uniqueness of the
disintegration of measures (see |7, Theorem 2.28]), it follows from that for every
¢ € S%1 and for H4 1-a.e. y € IS we have Dcug = 0 as a Borel measure on Qg, ie.,
holds. By definition this implies that © € GSBD(Q).

Conversely, if u € GSBD(R) it follows from that ¢ (B)¢-€ = 0 for every € € S41
and every Borel set B C ). This implies that u = 0. g

Combining this result with recent results of [13|, where new characterisations of the
spaces GBD(Q2) and GSBDP(Q2), for p > 1, are obtained, we can give an analogous
characterisation for GSBD(£2). More precisely, we show that an £%measurable function

u: Q — R? belongs to GSBD(RQ) if and only if (2.10) and (8.18) hold for a suitable finite
number of directions & € S?1.

Theorem 8.10. Let u: Q — R? be an L%-measurable function. Assume that there exists
an orthonormal basis {& : i = 1,...,d} such that for every § € 2 :={& :i=1,...,d} U
{&+¢&:1<i<j<d} the two following conditions hold:

u§ € SBVioe(5)  for H -ae. y € TI¢, (8.19)
A = /H5 | Dus| (925 \ Jig) + HO(Jig)de’l(y) < +o0.

Thenu € GSBD(Q) and, setting A := dez AS,, there exists a constant Cy > 0, depending
only on d, such that

A () < Cy4A, (8.20)
where Ay is the measure defined by .

Proof. Since the inclusion v € GBD(Q)) and inequality (8.20]) follow directly from [13,
Theorem 1, Corollary 1], to conclude we only need to show that u € GSBD(f).

To prove this, we observe that from it follows that given a Borel set B C ) we
have that

piB)E €= el [ D55 anty) =0

for every £ € Z. By this equality implies that uS (B)¢ - £ = 0 for every £ € E. From
the polarisation identity we obtain uf,(B)&; -§; = 0 for every i,j = 1,...,d . Recalling that
{&;}; is a basis of R?, we deduce that u¢(B) = 0. Since this property holds for every Borel
set B C ), from Theorem we obtain that u € GSBD(), concluding the proof. O
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A. AUXILIARY RESULTS

The purpose of this section is to show that the functions gff and hf,fg defined in
and are Borel measurable, and prove some general properties of measures defined
by integration. Results similar to those we present here are already well-established in the
existing literature. However, given the specific form of the functions we study, it is not
easy to apply them directly to our case. For this reason, we give here a precise statement
and a complete proof of the results we need.

A.1. Lebesgue decomposition of measures defined by integration. In this subsec-
tion we consider measures defined on the slices of a set, depending on a parameter w € R¥,
and the measures that can be obtained by integrating with respect to the parameters cor-
responding to the slices. We are interested in a formula for the Lebesgue decomposition
of these measures.

We begin by a lemma concerning measurability conditions with respect to these param-
eters. Given h,k € N, a Borel set B € R" x R, and w € R* we set

B(w) :={z e R": (z,w) € B}. (A.1)

Lemma A.1. Let k € N and let ¢ € R?\ {0}. For every y € 1I¢ and w € R¥ let Ly €
My(R) be a signed measure. The following three measurability conditions are equivalent:
(a) for every ¢ € CO(R x RF)
+oo
the function (y,w) Y(t,w) du,/ (t) is Borel measurable on ¢ x R*;

— 00

(b) for every p € CO(R? x RF)
+o0o

the function (y,w) — / @(y +t¢,w) duy (t) is Borel measurable on ¢ x R¥;
—0o0

(c) for every Borel set B C R% x R¥ the function (y,w) ug(B(w)g) is Borel mea-
surable on TI¢ x R¥,

Moreover, if the previous conditions are satisfied, then for every Borel set B C R? x RF

the function (y,w) |,u°yJ|(B(w)§) is Borel measurable on II¢ x RF.

Proof. For simplicity of notation we consider only the case { = eg4, the d-th vector of
the canonical basis, the proof in the other cases being analogous. For z € R% we set
r = (2/,14), where 2’ := (x1,...,24_1), and we identify IT® = R4 x {0} with R4,
Therefore the measure “‘{Jx',o) is denoted simply by p%, and for the slicing of sets we use

the notation B, instead of B(ez, 0)"
Assume (a). For every pair of functions w € CY(R4~! x R¥) and ¢ € CO(R x R¥) it

follows from (a) that the function
+00
@) [ el (o) du (o)

is Borel measurable on R%~1 x RF.

By an argument based on partition of unities corresponding to coverings by open sets
with small diameter we can prove that the class of linear combinations of functions ¢ €
CO(R? x R¥) of the form ¢(z,w) = w(2/,w)Y(zq,w) is dense in C?(R? x R¥) with respect
to the uniform convergence. This implies that the function

+o0
(', w) s / (& 20), ) dpi ()

is Borel measurable on R4~! x R* for every ¢ € CO(RY x R¥), which is condition (b) in
the case ( = ey.
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Assume (b) and consider the class F of bounded Borel functions f: R? x R¥ — R such
that

+oo
(2, w) — / (', xq),w) du® (x4) is Borel measurable on R7! x R¥,

It is easy to check that F is a monotone class, that is,
(i) if (fu)n C F, with f,, < g, for some g € F, and f,, 7 f, then f € F;
(ii) if (fn)n C F, with f,, > g, for some g € F, and f,, \, f, then f € F.
Moreover, thanks to (b), we have that C?(R? x R¥) ¢ F. Hence, from the Monotone
Class Theorem (see [42, Section 3.14]) we deduce that for every bounded Borel function
f:R%x RF — R the function
+oo
(', w) — F(2' 2q),w) dps (zq)
—0o0
is Borel measurable on R%~! x R*. By taking as f the characteristic function of a Borel
set B C R? x R* we obtain that the function

(@', w) = 1 (B(w)a)
is Borel measurable on R4! x R* which is condition (c) in the case ¢ = eq.
Assume now (c¢). Let E C R x R¥ be a Borel set and let B := R“! x E c R? x RF,
Clearly, B(w),» = E(w) for every 2/ € R%"!, so that by (c) the function (2/,w) — p&,(E(w))
is R%~1 x R* measurable. Hence,

+oo
(', w) — / XE(zq,w) dps (xq)
—0o0
is Borel measurable on R%~! x R¥. By linearity we obtain that
+00
@) [ gl dus (a)
—0o0

is Borel measurable on R%! x R¥ for every simple function g: R x R¥ — R. Since every
function 1) € C?(R x R¥) can be approximated by a uniformly bounded sequence of simple
functions, an application of the Dominated Convergence Theorem yields (a).

We now show that, if (a)-(c) hold, then the last part of the statement holds. By the
equivalence of (a)-(c) for |p% |, to conclude the proof it is enough to show that for every
function ¢ € CY(R x R¥) the function

+o0
(', w) = b(za,w) dlpgr|(za) (A.2)

—0o0

is Borel measurable on R4~ x R¥. Assume for a moment that ¢» > 0. By definition of
total variation of a measure we have

+00 +oo
vlanw) Al = s [ plasw) o)
-0 PECI(RxRF) J —c0
lp| <9

Since the supremum above can be reduced to a countable dense subset of C?(R x R¥), this
equality, together with (a) for 4%, implies that the function in is Borel measurable
on R?¥1 x R¥ when ¢ > 0. In the general case, one can split 1 into its positive and
negative part. ]

Let ¢ € RY\ {0} and for every y € II¢ let u, € ./\/lb(Qg). For every y € II¢ let
and py be the absolutely continuous part and the singular part of p, with respect to
the one dimensional Lebesgue measure. In the following lemma we consider some general
conditions on (j),er¢ which allow us to define a measure y on Q by integrating p, with
respect to y. We then show that the absolutely continuous part u® and its singular part
w® of i with respect to £¢ can be obtained by integrating py, and py, with respect to y.
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Lemma A.2. Let ¢ € R\ {0} and for every y € TI¢ let u, € Mb(Qg). Assume that for
every Borel set B C §2

the function y — ,uy(BZS) is Borel measurable on TI¢ (A.3)
and that there exists g € L*(TI¢, H?™1) such that
|yl () < gly) for H' ' -a.e. y € TIC. (A.4)
Consider the measure defined for every Borel set B C ) by
u(B) = [ B ant ). (A.5)

Le p® and p® be the absolutely continuous part and the singular part of p with respect to
the Lebesgue measure L. Then for every Borel set B C Q the functions

Yy ,ufyl(Bg) and y MZ(Bg) are Borel measurable and H*™'-integrable on TI (A.6)

and we have
pB) = | B ad @B = [ BT (A
for every Borel set B C Q.

Proof. As in the previous lemma we consider only the case { = e4 and use the notation
of the proof of the previous lemma. We also drop the hypothesis that 2 is bounded and
assume that Q = R?, as the result for a general Q then easily follows.

We now prove . To this aim let

S = {:L’ eR?:z=(2/,24) and limsup e |((za = p, 2+ p) = —I—OO} (A.8)
p—0t 2p
and, for every 2’ € Rdil, let S, be the corresponding slice. By the Besicovitch Derivation
Theorem (see |7, Theorem 2.22]) for every 2’ € R%~! we have

far (Bar) = pror (B N Ser) and  pgi(Byr) = pigr (Byr \ Sa) (A.9)

for every Borel set B C R%.

Therefore, by to prove it is enough to show that the set S is Borel measur-
able. To this end, we note that, as the function p — | |((xg—p, x4+p)) is left-continuous,
in the limsup in we can reduce to considering p varying in a countable dense set.
Hence, to conclude that S is Borel measurable we only need to prove that for every p > 0
the function

(', 24) > 1ot (@ — pra + p)) = /R Xp) (@ — ) dlpiar|(2) (A.10)

is Borel measurable on R x R, where X(—p,p) denotes the characteristic function of
(—=p,p). Let (1n)n C CO(R) be a sequence of functions with 1, < 1,.1 for every n € N
and converging pointwise to x(_,,,) asn — +oo. By the Monotone Convergence Theorem
for every 2/ € R%~! we have

[ xCon (a0 dlurl(®) = Jim [ onaa = dlnl0: (A11)

For every n € N the function
@a) o> [ dnla = 1) del(0)
R

is Borel measurable in 2’ for z4 fixed, thanks to (A.3)) and Lemma and continuous in
x4 for 2’ fixed. Thus, it is Borel measurable in the product space R®™! x R. Thanks to
, this implies that the function is Borel measurable, which proves that the
set S is Borel measurable and concludes the proof of the measurability property in .
The integrability follows from .
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Thanks to (A.6) we can define two bounded Radon measures on R? by setting
n(B) = / 1O (By) M () and  va(B) = / 1, (By) M ()
Rd-1 Rd-1

for every Borel set B C R%. It follows from the Fubini Theorem that v is absolutely
continuous with respect to £¢ and that £%(S) = 0. By we also deduce that
po(Byr) = pi/(By N Syr), hence vo(B) = v9(B N S) for every Borel set B C €. This
shows that 1o is singular with respect to the Lebesgue measure. Since pu = v1 + v», the
equalities in follow from the uniqueness of the Lebesgue decomposition. O

A.2. Measurability of the auxiliary functions used in Section[6] In this subsection
we prove the the measurability of the functions gﬁl’c and hﬁfg defined in and .

As in the proof of Theorem Q) is a bounded open set of R?, u is a function in
GBD(Q) with J! = J,, £ and 7 are two linearly independent vectors in R? and U is the
parallelogram defined by . We keep u, £,m, and U fixed throughout the rest of the
subsection.

We also recall that J C U is the set defined in , and that the sets EF¢, Eﬁ{c,
and B¢ are defined in (6.18) and (6.23). Since it will be important to keep track of the
dependence of such sets on w, in the following we underline their dependence on w by
writing EF¢ Eﬁ;c’w, and ENS.

We introduce some sets which will play a crucial role in our arguments. For every k € N,
m €N, and ¢ € {&,n,§+ 1, —n} we set

¢h¢ = {(z,w) e RZ x R? : z € EMS¥} C R?,

ekl .= {(z,w) e R? x R? : z € BN} C RY,

¢he .= {(z,w) e RZ x R? : 2 € EFO¥} Cc R?,
J={(z,w) eRZxR?:z € J} CR%

The following lemma addresses the Borel measurability of these sets. The proof is very
similar to that of Lemma but for the sake of completeness we give here all details.

(A.12)

Lemma A.3. The sets €<, éff’;f, (}37]324, and J are Borel measurable subsets of R%.

Proof. The property for J is trivial. To prove the result for the other sets we consider the
map 2"¢: R?2 x R? — R? defined by (see Figure [3)), where the dependence on the
variable w is made clear by . By elementary geometrical arguments, it follows that
(z,w) > 2M¢(z,w) is Borel measurable.

For every set B C R? we define

eh = {(z,w) € R2 x R?: (z"¢(z,w) + 1S) N B # 0},
Fp = {ZGRQ:(Z—F%S)QB%@},

where S is defined by . For a compact set K C R? the set Fi is closed, so that,
observing that Qflff = {(z,w) € R? x R? : 2¢(x,w) € Fik} and recalling that z%¢ is Borel
measurable, we conclude that 6’;&4 is Borel measurable. By definition, &< = 6’3’4. Since
J = Upen Kn with K, compact, this gives that &%¢ =], _y (‘El;{i Since the sets (’31;(5 are
Borel measurable, so is &*:<.

To prove that ¢*:¢ is Borel measurable, we observe that by a pair (z,w) belongs
to ¢ if and only if the number of indices i € Z such that x € EF¢« — %C is less than or
equal to m. Hence, setting (’Ef’c = {(z,w) € R x R? : z € EM** — £(}, we have that

EhC = {(2,w) € RZ X R2: Y, y e (w,w) < m},
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where X gho¢ is the characteristic function of E‘Ef’c. Since the sets (‘Ef’c are Borel measurable,

we deduce that éﬁf is a Borel set as well. From the equality éfﬁc = ¢h< \ @,]f,f, we deduce
that é,’if is Borel measurable too, concluding the proof. ]

We are now ready to state and prove the final result of this subsection.

Lemma A.4. Let k,m € N, let ¢ € {£,n,& +n,& —n}, and let N; C II¢ be a Borel set
such that H¥"*(N¢) = 0 and ug € BV(Ug) for every y € IS \ N¢. Then the functions
gEC IS x R? =5 [0, 4+00) and h%¢: TIS x R2 — [0, +00) defined by

ke JIDUSI(ERSC ) n UG\ Jg)  ify € TE\ NG,

Im- (Y, w) = : (A.13)
0 ifye N,
Dug|(ERS C\J§)  ifyeTIS\ N

hlf,;c(y,w) — | Dug|( (y) NUG \ Jy) z.fy € 115\ N, (A.14)
0 if y € N¢,

are Borel measurable on TI¢ x R2.

Proof. We begin by observing that by (A.1)) and (A.12) for every y € II¢ and w € R? we

have
ENS“(y) NUS\ Iy = €(w)§ N U\ J()S, (A-15)
BN (y) N U\ J§ = €@)§ N U\ J(w)S. (A.16)

By Lemma the sets éﬁ;c, C;:’Zf, and J are Borel measurable subsets of R? x R2, so that
the same property holds for &%\ J and E5°\ 3.
We want to apply Lemma with the measure py € M,(R) defined for every Borel
set B C R by
Duy(BNUS)  ify eI\ N,

py (B) := {0 ye N (A.17)

To show that condition (b) of Lemma holds we fix a function ¢ € C°(R? x R?) and
observe that
400
| et = [ et cwapug
oo ¢

for every y € II¢ \ N¢. Let us consider a bounded sequence (p,) C C(U) converging to
1on Q asn — +o0o and set ¢, := p,p € C(U x R?). For every y € II \ N¢ by the
Dominated Convergence Theorem we have

+oo
Wi T ¢
/Oo oy +t¢,w) dug (t) = ngrfoo ” en(y + t¢,w) dDuy (t). (A.18)
Moreover, integrating by parts, we have
/C on(y + t¢,w) dDug(t) = —/Cugg/(t)van(yﬂ(,w ¢ dt, (A.19)
Uy Uy

where for a given w € R? we denote by V.o, (y + t(,w) € R? the vector whose two
components are the partial derivatives of ,, with respect to x at the point (y +¢¢,w). By
the Fubini Theorem, it follows from (A.19)) that

(y,w) — /UC on(y +t¢,w) dDug(t)

is Borel measurable on (II° \ N¢) x R% It follows from (A.I8) that the same property
holds for

+00
(v, 0) > / oy + 1¢,w) dpa (1), (A.20)
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Since by definition yy/(B) = 0 for y € N¢, it follows that the function (A.20)) is Borel

measurable on IT¢ x R2. As every function in CY(R? x R?) can be approximated uniformly
by a sequence of functions in C2°(R? x R?), the function (A.20)) is Borel measurable on
I1¢ x R? for every ¢ € CY(R? x R?). Hence, py satisfies condition (b) of Lemma

By Lemma applied to the measure y; defined by and with B = (’wa \J
and B = €8¢\ J we obtain that the functions (y,w) \Dug\(@(w)g N Uyc \ﬁ(w)g) and
(y,w) — |Du§,|(é§(w)§ N UyC \3(w)§) are Borel measurable on (II¢ \ N¢) x R?. By (A.13)-
this implies that the functions gﬁf and hf,f are Borel measurable on II¢ x R2. [
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