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Abstract. We associate to every function u ∈ GBD(Ω) a measure µu with values in
the space of symmetric matrices, which generalises the distributional symmetric gradient
Eu defined for functions of bounded deformation. We show that this measure µu admits
a decomposition as the sum of three mutually singular matrix-valued measures µa

u, µ
c
u,

and µj
u, the absolutely continuous part, the Cantor part, and the jump part, as in the

case of BD(Ω) functions. We then characterise the space GSBD(Ω), originally defined
only by slicing, as the space of functions u ∈ GBD(Ω) such that µc

u = 0.
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1. Introduction

Given a bounded open set Ω ⊂ Rd, with d ≥ 1, the spaces GBD(Ω) of functions of
generalised bounded deformation and GSBD(Ω) of special functions of generalised bounded
deformation were introduced in [20] to provide a functional framework for variational
problems related to Griffith’s energy in fracture mechanics (see [9,30]). The main feature
of these spaces is that they avoid the unnatural L∞ a priori bounds typically required for
compactness in the space SBD(Ω) (see [8]).

Thanks to the very weak requirements appearing in the definitions of GBD(Ω) and
GSBD(Ω), it was shown in [20] that compactness in these spaces is achieved under very
mild assumptions (see also [4, 14]). For the space GSBD(Ω) compactness results under
even weaker conditions have later been obtained by Friedrich and Solombrino [33] in the
planar case, and Chambolle and Crismale in the general case [12]. These results are
similar to those available in the more restrictive setting of functions of bounded variation
(see [5, 29, 31]). These advancements allow one to solve, in a weak sense, minimisation
problems concerning Griffith’s functional, thereby justifying the use of GSBD(Ω) for
brittle models in fracture mechanics. Many more applications of the space GSBD(Ω)
were also considered in the recent literature, see, for instance, [1–3,11,16–18,32,39].

The study of cohesive models for fracture mechanics in the anti-plane case carried
out in [24, 25] suggests that GBD(Ω) should be the appropriate space for the study of
minimisation problems connected with these models, when the anti-plane hypothesis is
dropped. This requires to extend to GBD(Ω) the structure theorems proved in [6] for the
space BD(Ω) of functions of bounded deformation (see [6,37,40,41]), in analogy with what
was done in [23] in the setting of functions of bounded variation.

The analysis of the fine properties of functions in GBD(Ω) carried out in [20] reveales
that many of the key structural features of the space BD(Ω) of functions of bounded defor-
mation (see [6,37,40,41]) naturally extend to GBD(Ω), albeit with suitable modifications
to account for the weaker regularity of these functions. The fine properties of BD(Ω) were
thoroughly examined in [6], where the authors show for a function u : Ω → Rd in BD(Ω)
that the following conditions hold:
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(a) u admits an approximate gradient ∇u ∈ L1(Ω;Rd×d), where Rd×d is the space of
d× d matrices with real entries, and Eu := (∇u+∇uT )/2 defines an approximate
symmetric gradient of u (see also [35]); moreover, if Hd−1 is the (d−1)-dimensional
Hausdorff measure, for every ξ ∈ Sd−1 := {ξ ∈ Rd : |ξ| = 1} and for Hd−1-a.e

y ∈ Πξ := {y ∈ Rd : y · ξ = 0}, the one-dimensional scalar function t 7→ uξy(t) :=
u(y + tξ) · ξ has bounded variation and

Eu(y + tξ)ξ · ξ = ∇uξy(t) for L1-a.e. t ∈ {s ∈ R : y + sξ ∈ Ω}, (1.1)

where L1 is the one-dimensional Lebesgue measure and ∇uξy denotes the absolutely
continuous part of the distributional derivative Duξy of uξy;

(b) the jump set Ju (see Definition 2.3) is (Hd−1, d − 1)-rectifiable (see (2.1) and
also [26]), with measure theoretical unit normal νu; in addition, for every ξ ∈ Sd−1

and forHd−1-a.e. y ∈ Πξ, setting [u] := u+−u−, where u+ and u− are the unilateral

traces of u on Ju, and (Jξu)
ξ
y := {t ∈ R : x = y + tξ ∈ Ju and [u](x) · ξ ̸= 0}, we

have

J
uξy

= (Jξu)
ξ
y and [u](y + tξ) · ξ = [uξy](t) for every t ∈ (Jξu)

ξ
y;

(c) the distributional symmetric gradient Eu := (Du + DuT )/2, which by definition
is a bounded Radon measure taking values in the space Rd×dsym of d × d symmetric
matrices, can be decomposed as the sum of three mutually singular measures:

Eu = (Eu)Ld + Ecu+ ([u]⊙ νu)Hd−1 Ju, (1.2)

where Ld is the Lebesgue measure in Rd, Ecu is called the Cantor part of Eu, ⊙
is the symmetric tensor product, and Hd−1 Ju is the restriction of Hd−1 to Ju;
the Cantor part Ecu is singular with respect to Ld and vanishes on all Borel sets
that are σ-finite with respect to Hd−1.

In GBD(Ω) property (c) would not make sense, since, in general, the symmetrised
gradient Eu cannot be defined in the sense of distributions. In particular, it is not clear
what is the analogue of Ecu for a function u ∈ GBD(Ω). Understanding how to generalise
this term is crucial for possible applications to cohesive fracture mechanics, as shown in
the corresponding problems for the anti-plane case (see [24,25]).

However, for u ∈ GBD(Ω) it is shown in [20] that property (b) still holds and also that
u admits an approximate symmetric gradient Eu that enjoys the slicing property (1.1). It
is still an open question whether every GBD(Ω) function admits an approximate gradient.

In this paper we extend the analysis of the fine properties of functions in GBD(Ω)
by introducing two matrix-valued measures µu and µcu, which are closely related to the
measures Eu and Ecu when u ∈ BD(Ω). To describe this result, we fix some notation.
Given R > 0, let τR : R → R be the 1-Lipschitz function defined by

τR(s) :=


−R

2 if s ≤ −R
2 ,

s if −R
2 ≤ s ≤ R

2 ,
R
2 if s ≥ R

2 .

It follows from the definition of GBD(Ω) (see Definition 2.5 and Remark 2.8) that for
every ξ ∈ Sd−1 and R > 0 the distributional derivative of τR(u · ξ) in direction ξ, denoted
by Dξ(τR(u · ξ)), is a scalar-valued bounded Radon measure on Ω.

The main result of our paper is that (see Corollary 8.6) for every u ∈ GBD(Ω) and
r > 0, there exists a bounded Radon measure µu,r on Ω with values in Rd×dsym such that for

every ξ ∈ Sd−1 we have

µu,r(B)ξ · ξ = lim
R→+∞

Dξ(τR(u · ξ))(B) (1.3)

for every Borel set B ⊂ Ω such that B ∩ Jru = Ø, where Jru := {x ∈ Ju : |[u](x)| ≥ r}.



A MEASURE ASSOCIATED TO GBD 3

If u ∈ BD(Ω) we can see that µu,r(B) = (Eu)(B) for every Borel set B ⊂ Ω with B ∩
Jru = Ø (see Remark 8.7). In the general case u ∈ GBD(Ω), the measure µu,r is not always
the symmetrised distributional gradient Eu, and its connection with the distributional
derivatives of u is given only by (1.3), which takes into account the directional derivatives
of suitable truncations of the scalar components of u. However, the measure µu,r enjoys
many of the formal properties of Eu and in particular an analogue of property (c) above
holds for µu,r.

More precisely, in Corollary 8.6, we prove that for every u ∈ GBD(Ω) the measure µu,r
can be decomposed as the sum of three mutually singular measures:

µu,r = µau + µcu + µju,r, (1.4)

where for every Borel set B ⊂ Ω

µau(B) =

ˆ
B
Eudx, µju,r(B) =

ˆ
(Ju\Jr

u)∩B
([u]⊙ νu) dHd−1,

and µcu is a singular measure (with respect to the d-dimensional Lebesgue measure) with
values in Rd×dsym that vanishes on all σ-finite Borel sets with respect toHd−1 (see Proposition
8.8). We remark that both µau and µcu do not depend on r.

A slicing property of the measure µcu, obtained in Proposition 8.5, allows us to charac-
terise the space GSBD(Ω), introduced in [20, Definition 4.2] using slicing arguments, as
the set of functions u ∈ GBD(Ω) such that µcu = 0, in analogy with what happens for
SBD(Ω) (see [6, Definition 4.6]). Combining this result with the recent characterisation
of the space GBD(Ω), proved by Chambolle and Crismale in [13], we obtain, in Theorem
8.10, an analogous characterisation for the space GSBD(Ω).

We now give a brief sketch of how we prove the existence of a measure µu = µu,1 which
satisfies (1.3) with r = 1. Straightforward arguments show that the limit in the right-hand
side of (1.3) exists for every ξ ∈ Rd \ {0} (see Proposition 4.3) and that this limit is equal
to

σξu(B) := |ξ|
ˆ
Πξ

Duξy((B \ J1
u)
ξ
y) dHd−1(y), (1.5)

where for every E ⊂ Rd and for every y ∈ Πξ we set Eξy := {t ∈ R : y + tξ ∈ E}. By the
definition of GBD(Ω) (see Definition 2.5) the expression above defines a bounded Radon
measure for every ξ ∈ Rd. To conclude, one needs to show that for every Borel set B ⊂ Ω
there exists µu(B) ∈ Rd×dsym such that

µu(B)ξ · ξ = σξu(B) (1.6)

for every ξ ∈ Rd \ {0}. To prove this fact, we will show that for every Borel set B ⊂ Ω
the function ξ 7→ σξ(B) is 2-homogeneous, lower bounded, and satisfies the parallelogram
identity, i.e.,

σξ+ηu (B) + σξ−ηu (B) = 2σξu(B) + 2σηu(B) (1.7)

for every ξ, η ∈ Rd. Indeed, these three conditions imply (see Proposition 2.2) the existence
of a symmetric matrix µu(B) such that (1.6) holds. It is then easy to check thatB 7→ µu(B)
is a bounded Radon measure. Since the 2-homogeneity and the lower boundedness are
easily obtained, to conclude we only need to show that (1.7) holds.

This is done first in dimension d = 2 by means of a discretisation argument. We fix two
linearly independent vectors ξ, η ∈ R2 and assume that B is a parallelogram with sides

parallel to ξ and η. For every ζ ∈ {ξ, η, ξ + η, ξ − η} we approximate the integral σζu(B)
given by (1.5) by means of Riemann sums corresponding to a well-chosen grid of points

yj of Π
ζ and write each term Duζyj ((B \J1

u)
ζ
yj ) = Duζyj (B

ζ
yj \ (J1

u)
ζ
yj ) as a sum over i of the

numbers Duζyj (I
j
i \ (J1

u)
ζ
yj ), where I

j
i = [aji , a

j
i+1) are well-chosen disjoint small intervals,

whose union is the interval Bζ
yj . The points yj and a

j
i can be chosen by projecting onto the

straight lines Πζ and {yj+tζ : t ∈ R} the points xi,j of a two-dimensional grid, constructed
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using discrete linear combinations of ξ and η, and translated by a small vector ω to be

chosen carefully. We observe that if Iji ∩ (J1
u)
ζ
yj = Ø, then

Duζyj (I
j
i \ (J

1
u)
ζ
yj ) = u(yj + aji+1ζ) · ζ − u(yj + aji ζ) · ζ.

This leads to an approximation of σζu(B) based on the difference of the values of u on

neighbouring grid-points xi,j . Hence, if I
j
i ∩ (J1

u)
ζ
yj = Ø, writing carefully this approxi-

mation for every ζ ∈ {ξ, η, ξ + η, ξ − η} we obtain a discrete version of the parallelogram
identity (1.7). To conclude, we have to show that in this approximation we can neglect

all terms that correspond to pairs i, j such that Iji ∩ (J1
u)
ζ
yj ̸= Ø. This step constitutes the

main difficulty of the proof and will be the content of Section 6. This result is obtained
by regarding the sum of the contribution of these ill-behaved indices as sort of Riemann
sum of arbitrarily small integrals.

Once the planar case d = 2 is settled, the general case d > 2 can be obtained by a
Fubini-type argument, considering a sort of two dimensional slicing in the spirit of [6].
In our case, this is based on the properties of the restrictions of GBD functions to two
dimensional slices proved in [20] (see Theorem 2.14 below).

The paper is structured as follows. In Section 2 we introduce the basic notions and
the necessary tools we will use throughout the paper, while in Section 3 we present some
technical results concerning approximation of Lebesgue integrals by means of Riemann

sums. Then, we introduce in Section 4 the measures σξu, which will be the main focus of
the rest of the paper, and prove several properties of these measures. Section 5 is devoted

to the proof of the quadraticity of the function ξ 7→ σξu(B) in the planar case d = 2. In
Section 6 we complete this proof by means of some technical arguments. This result is
then extended to every dimension in Section 7. In Section 8, we prove the decomposition
(1.4) and deduce from it several consequences. The Appendix is devoted to proving the
measurability of several auxiliary functions appearing in the arguments of Section 6.

2. Notation and preliminary results

In this section we fix the notation and lay down the basic tools used in this paper.
Ω is a bounded open set of Rd with d ≥ 1. The scalar product in Rd is denoted by · ,
while the Euclidean norm of Rd is denoted by | |. For every ρ > 0 and x ∈ Rd the open
ball of centre x and radius ρ is denoted by Bρ(x). The unit sphere of Rd is denoted by

Sd−1 := {ξ ∈ Rd : |ξ| = 1}. The vector space Rd×d is identified with the space of d × d
matrices. Given A ∈ Rd×d, its ij-th component is denoted by Aij . For A ∈ Rd×d and

ξ ∈ Rd, Aξ ∈ Rd is defined via the standard rules of matrix multiplication. The symbol
Rd×dsym denotes the space of all d×d symmetric matrices, that is, the space of those matrices

A ∈ Rd×d such that A = AT , where AT is the transpose of A. We recall that all matrices
A ∈ Rd×dsym satisfy the polarisation identity, i.e.,

Aξ · η =
1

4

(
A(ξ + η) · (ξ + η)−A(ξ − η) · (ξ − η)

)
for every ξ, η ∈ Rd.

We recall the definition of quadratic function.

Definition 2.1. A function f : Rd → R is quadratic if there exists a matrix A ∈ Rd×dsym

such that f(ξ) = Aξ · ξ for every ξ ∈ Rd.
We recall the following characterisation of quadratic functions.

Proposition 2.2. A function f : Rd → R is quadratic if and only if the following condi-
tions are satisfied:

(a) 2-homogeneity: f(tξ) = t2f(ξ) for every ξ ∈ Rd and every t ∈ R;
(b) parallelogram identity: for every ξ, η ∈ Rd we have

f(ξ + η) + f(ξ − η) = 2f(ξ) + 2f(η);
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(c) lower bound: there exists a constant c > 0 such that

f(ξ) ≥ −c|ξ|2 for every ξ ∈ Rd.

Proof. Assume that (a)-(c) hold. By applying [19, Proposition 11.9] to the function g(ξ) =
f(ξ)+ c|ξ|2 we obtain a matrix B ∈ Rd×dsym such that g(ξ) = Bξ · ξ for every ξ ∈ Rd. Setting
A := B − cI, where I is the identity matrix, we obtain f(ξ) = Aξ · ξ for every ξ ∈ Rd.

The converse implication is trivial. □

Given two vectors ξ, η ∈ Rd, the symmetric tensor product ξ ⊙ η ∈ Rd×dsym is defined by

(ξ ⊙ η)ij :=
1
2(ξiηj + ξjηi). Given two distinct points x1, x2 ∈ Rd we set

[x1, x2] := {tx1 + (1− t)x2 : t ∈ [0, 1]}.
The notation naturally extends to [x1, x2), (x1, x2], and (x1, x2) replacing [0, 1] by [0, 1),
(0, 1], and (0, 1), respectively. Given a set A ⊂ Ω, we say that A is relatively compact in
Ω and write A ⊂⊂ Ω if there exists a compact set K ⊂ Ω such that A ⊂ K. Given k ∈ N
and E ⊂ Rk the characteristic function of E is the function χE : Rk → {0, 1} such that
χE(x) = 1 if x ∈ E and 0 otherwise.

Given a finite dimensional real normed vector space X, Mb(Ω;X) is the space of all
bounded Radon measures with values in X; the indication of X is omitted if X = R.
The symbol M+

b (Ω) denotes the space of all positive bounded Radon measures. Given

µ ∈ Mb(Ω;X) and λ ∈ M+
b (Ω), dµ/dλ is the Radon-Nikodým derivative of µ with respect

to λ. Given a measure µ ∈ Mb(Ω;X), the total variation measure of µ with respect to
the norm | | on X, is the Borel measure defined for Borel set B ⊂ Ω by

|µ|(B) := sup
∑
i∈I

|µ(Bi)|,

where the supremum is taken over all finite sets I ⊂ N and all Borel partitions (Bi)i∈I of
B. Given a measure λ ∈ M+

b (Ω) and a Borel measurable function f : Ω → X, the symbol
fλ denotes the X-valued measure defined for every Borel set B ⊂ Ω by

fµ(B) :=

ˆ
B
f dλ.

The k-dimensional Lebesgue measure and the k-dimensional Hausdorff measure are
denoted by Lk and Hk, respectively. Given a measure µ on Ω and a µ-measurable set
B ⊂ Ω, we introduce the measure µ B defined by (µ B)(E) := µ(B∩E) for every Borel
set E ⊂ Ω.

We say that E ⊂ Rd is (Hd−1, d − 1)-rectifiable if there exist a collection of compact
sets (Ki)i∈N, a collection of (d−1)-dimensional C1 manifolds Mi ⊂ Rd, with Ki ⊂Mi and
Hd−1(Mi) < +∞ for every i ∈ N, and a set N0 with Hd−1(N0) = 0 such that

E = N0 ∪
( ⋃
i∈N

Ki

)
. (2.1)

We refer the reader to [7, Chapter 2] and to [28, Chapter 3] for the properties of these
sets.
Approximate limits. Let E be a Lebesgue measurable subset of Rd and let x ∈ Rd be
such that

lim sup
ρ→0

Ld(E ∩Bρ(x))
ρd

> 0. (2.2)

We say that an Ld-measurable function u : E → Rm has approximate limit ũ(x) ∈ Rm at
x, in symbols

aplim
y→x
y∈E

u(y) = ũ(x), (2.3)
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if for every ε > 0 we have

lim
ρ→0

Ld({y ∈ E : |u(y)− ũ(x)| > ε} ∩Bρ(x))
ρd

= 0.

Throughout the paper the symbol ũ(x) is always used to denote the approximate limit of
u considered in (2.3). By (2.2) the vector ũ(x) is uniquely defined. The set Su is defined
as the complement of the points where the approximate limit exists. It is well-known that
for an Ld-measurable function u : Rd → Rm it holds Ld(Su) = 0.

Jump set. We now give the definition of jump set of a measurable function.

Definition 2.3. Let U be an open set of Rd and u : U → Rm an Ld-measurable function.
The jump set Ju is the set of all points x ∈ U such that there exists (u+(x), u−(x), νu(x)) ∈
Rm × Rm × Sd−1, with u+(x) ̸= u−(x), such that

ap lim
y→x

y∈H±(x)∩U

u(y) = u±(x),

where H±(x) := {y ∈ Rd : ±(y − x) · νu(x) > 0}. The triple (u+(x), u−(x), νu(x)) is
uniquely defined up to swapping u+(x) and u−(x) and changing the sign of νu(x). Given
x ∈ Ju, we set [u](x) := u+(x)− u−(x). For r > 0 we also introduce Jru as the set defined
by

Jru := {x ∈ Ju : |[u](x)| ≥ r}. (2.4)

Slicing. For every ξ ∈ Rd \ {0}, y ∈ Rd, and A ⊂ Ω we define

Aξy := {t ∈ R : y + tξ ∈ A}.

Given a function u : A→ Rd, we define the slice in direction ξ of the ξ-component of u as

the function uξy : R → Rd defined by

uξy(t) :=

{
u(y + tξ) · ξ if t ∈ Aξy,

0 otherwise.

Πξ denotes the hyperplane orthogonal to ξ and passing through 0, that is,

Πξ := {y ∈ Rd : y · ξ = 0}.
The projection map onto Πξ is denoted by πξ : Rd → Πξ. We shall use the following
estimate.

Lemma 2.4. Let ξ ∈ Rd \ {0} and let B ⊂ Rd be a Borel set. Then the function y 7→
H0(Bξ

y) is Hd−1-measurable on Πξ andˆ
Πξ

H0(Bξ
y) dHd−1(y) ≤ Hd−1(B). (2.5)

Proof. For every k ∈ N and i ∈ Z we set Bk,i := {x ∈ B : i/2k ≤ x · ξ < (i + 1)/2k} and

we consider the function fk : Π
ξ → [0,+∞] defined by

fk(y) :=
∑
i∈Z

χπξ(Bk,i)
(y), (2.6)

where χπξ(Bk,i)
is the characteristic function of the projection of Bk,i onto Πξ. We observe

that fk ≤ fk+1 for every k ∈ N.
It follows from the definition of Bξ

y that

H0(Bξ
y) = lim

k→+∞
fk(y) for every y ∈ Πξ. (2.7)

By the Projection Theorem (see, e.g., [15, Proposition 8.4.4]) for every k ∈ N and i ∈ Z
the set πξ(Bk,i) is Hd−1-measurable on Πξ. By (2.6) and (2.7) this implies that the same
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is true for the function y 7→ H0(Bξ
y). By the Monotone Convergence Theorem we obtain

from (2.7) that ˆ
Πξ

H0(Bξ
y) dHd−1(y) = lim

k→+∞

ˆ
Πξ

fk(y) dHd−1(y). (2.8)

By (2.6) we haveˆ
Πξ

fk(y) dHd−1(y) =
∑
i∈Z

Hd−1(πξ(Bk,i)) ≤
∑
i∈Z

Hd−1(Bk,i) = Hd−1(B),

which, together with (2.8), gives (2.5). □

Functions of generalised bounded deformation. We recall the definition of the space
of functions of generalised bounded deformation, introduced in [20, Definition 4.1]. This
definition uses the collection T of regular truncation functions defined by

T := {τ ∈ C1(R) : −1/2 ≤ τ ≤ 1/2 and 0 ≤ τ ′ ≤ 1}.

Definition 2.5. The spaceGBD(Ω) is the space of all Ld-measurable functions u : Ω → Rd
for which there exists a measure λ ∈ M+

b (Ω) such that the following equivalent conditions

are satisfied for every ξ ∈ Sd−1:

(a) for every τ ∈ T we have Dξ(τ(u · ξ)) ∈ Mb(Ω) and

|Dξ(τ(u · ξ))|(B) ≤ λ(B) for every Borel set B ⊂ Ω; (2.9)

(b) for Hd−1-a.e. y ∈ Πξ we have uξy ∈ BVloc(Ω
ξ
y) andˆ

Πξ

(
|Duξy|(Bξ

y \J1
uξy
)+H0(Bξ

y∩J1
uξy
)
)
dHd−1(y) ≤ λ(B) for every Borel set B ⊂ Ω. (2.10)

Remark 2.6. If u ∈ GBD(Ω) it follows from (b) of Definition 2.5 that for every ξ ∈ Sd−1

there exists a Borel set Nξ ⊂ Πξ, with Hd−1(Nξ) = 0, such that uξy ∈ BVloc(Ω
ξ
y) and

|Duξy|(Ωξy) < +∞ for every y ∈ Πξ \Nξ. In particular, if Ωξy is an interval and y ∈ Πξ \Nξ,

then uξy ∈ BV (Ωξy).

Remark 2.7. The previous remark implies that, if d = 1, then GBD(Ω) := {u ∈
BVloc(Ω) : |Du|(Ω) < +∞}.

Remark 2.8. Condition (a) of Definition 2.5 can be strengthened by requiring that (2.9)
holds also for every τ ∈ TLip, where

TLip := {τ ∈ Lip(R) : −1/2 ≤ τ ≤ 1/2, 0 ≤ τ ′ ≤ 1, τ ′ has compact support}.
Indeed, every function τ ∈ TLip can be approximated uniformly on R by a sequence
(τn)n ⊂ T , so that τn(u · ξ) → τ(u · ξ) in L1(Ω). Since for every U ⊂ Ω open, the function
v 7→ |Dξv|(U) is lower semicontinuous with respect to the L1(Ω) convergence, by (2.9) we
obtain that Dξ(τ(u · ξ)) ∈ Mb(Ω) and that

|Dξ(τ(u · ξ))|(U) ≤ lim inf
n→+∞

|Dξ(τn(u · ξ))|(U) ≤ λ(U)

for every U ⊂ Ω open. Inequality (2.9) for a general Borel set B ⊂ Ω follows by approxi-
mation with open sets.

Remark 2.9. Inequality (2.10) can be extended to non-unitary vectors. Elementary
arguments show that for every t ̸= 0, ξ ∈ Rd \ {0}, y ∈ Πξ, and A ⊂ Rd

Aξy = tAtξy . (2.11)

Since utξy (s) = tuξy(st) for every s ∈ R, we have

Dutξy (S) = |t|Duξy(tS) and |Dutξy |(S) = |t||Duξy|(tS),

tJ
utξy

= J
uξy

and tJ
|t|
utξy

= J1
uξy

(2.12)
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for every Borel set S ⊂ Ωtξy . In particular, if B ⊂ Ω is a Borel set, taking S = Btξ
y \ J |t|

utξy

and using (2.11) and (2.12) we get

|Dutξy |(Btξ
y \ J |t|

utξy
) = |t||Duξy|(Bξ

y \ J1
uξy
), (2.13)

while, taking S = Btξ
y and using (2.11)

Dutξy (B
tξ
y ) = |t|Duξy(Bξ

y), (2.14)

which will be used later in the proof of Proposition 4.4. Applying (2.12) and (2.13) with
t = |ξ| and ξ replaced by ξ/|ξ|, from (2.10) we obtainˆ

Πξ

|ξ||Duξy|(Bξ
y \ J

|ξ|
uξy
)dHd−1(y) ≤ |ξ|2λ(B), (2.15)

ˆ
Πξ

H0(Bξ
y ∩ J

|ξ|
uξy
)dHd−1(y) ≤ λ(B),

for every ξ ∈ Rd \ {0} and every Borel set B ⊂ Ω.

Remark 2.10. It follows from [4, Remark 3.6] that, if u ∈ GBD(Ω), then Hd−1(J1
u) <

+∞. More precisely, it is shown that, if λ ∈ M+
b (Ω) satisfies (2.10), then for every Borel

set B ⊂ Ω we have the inequality

Hd−1(J1
u ∩B) ≤ 4dλ(B). (2.16)

Since by Theorem 2.12 below for Hd−1-a.e. y ∈ Πξ we have

J
|ξ|
uξy

⊂ (J1
u)
ξ
y,

it follows from (2.5), (2.15), and (2.16) thatˆ
Πξ

|ξ||Duξy|((B \ J1
u)
ξ
y)dHd−1(y) ≤ |ξ|2λ(B), (2.17)

ˆ
Πξ

H0((B ∩ J1
u)
ξ
y)dHd−1(y) ≤ 4dλ(B).

Given 0 < r ≤ 1, we can consider the function v = u/r, which by [20, Remark 4.6] satisfies
(2.10) with λ/r. Applying (2.16) to this function, we obtain

Hd−1(Jru ∩B) ≤ 4d

r
λ(B) (2.18)

for every Borel setB ⊂ Ω. In particular, this implies that [u] ∈ L1
weak(Ju,Hd−1). Moreover,

since Ju =
⋃

0<r≤1 J
r
u, we have that Ju is σ-finite with respect to Hd−1.

Definition 2.11. For every u ∈ GBD(Ω) and ξ ∈ Rd \ {0} we introduce the bounded

Radon measure λξu defined for every ξ ∈ Rd \ {0} and every Borel set B ⊂ Ω by

λξu(B) :=

ˆ
Πξ

(
|ξ||Duξy|(Bξ

y \ J
|ξ|
uξy
) +H0(Bξ

y ∩ J
|ξ|
uξy
)
)
dHd−1(y). (2.19)

Given u ∈ GBD(Ω), let λu be the smallest measure λ for which (a) and (b) of Definition
2.5 hold true. It can be shown (see [20, Proposition 4.17]) that

λu(B) = sup
k∑
i=1

λξiu (Bi) for every Borel set B ⊂ Ω, (2.20)

where the supremum is taken over all k ∈ N, all families (ξi)
k
i=1 of vectors of Sd−1, and all

Borel partitions (Bi)
k
i=1 of B.

The following theorem collects some of the fine properties of GBD(Ω) functions, proved
in [20, Proposition 6.1 and Theorems 6.2, 8.1, 9.1].
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Theorem 2.12. Let u ∈ GBD(Ω). Then the following properties hold:
(a) existence of the approximate symmetric gradient: there exists Eu ∈ L1(Ω;Rd×dsym)

such that for Ld-a.e. x ∈ Ω we have

aplim
y→x

(u(y)− u(x)− Eu(x)(y − x)) · (y − x)

|x− y|2
= 0;

moreover, for every ξ ∈ Rd \ {0} and for Hd−1-a.e. y ∈ Πξ we have

Eu(y + tξ)ξ · ξ = ∇uξy(t)

for L1-a.e. t ∈ Ωξy, where ∇uξy denotes the density of the absolutely continuous part of Duξy
with respect to L1;

(b) Ju and its slices: the jump set Ju is (Hd−1, d− 1)-rectifiable; for every ξ ∈ Rd \ {0}
and for Hd−1-a.e. y ∈ Πξ we have

J
uξy

= {x ∈ Ju : [u](x) · ξ ̸= 0}ξy ⊂ (Ju)
ξ
y, (2.21)

(uξy)
±(t) = u±(y + tξ) · ξ for every t ∈ (Ju)

ξ
y, (2.22)

J
|ξ|
uξy

⊂ (J1
u)
ξ
y, (2.23)

where the normals at Ju and J
uξy

are oriented in such a way that νu · ξ ≥ 0 and ν
uξy

= 1;

moreover, setting

Θu :=
{
x ∈ Ω : lim sup

ρ→0

λu(Bρ(x))

ρd−1
> 0

}
, (2.24)

we have that Θu is (Hd−1, d− 1)-rectifiable, Ju ⊂ Θu, and that Hd−1(Θu \ Ju) = 0.

It is easy to see that for a function u ∈ GBD(Ω) \ BD(Ω) its jump [u] may be not
integrable on Ju with respect to Hd−1 (see, for instance, [20, Example 12.3]). More pre-
cisely, one can show (see, for instance, [6, Proposition 3.2] or [38, Remark 2.17]) that, if
u ∈ GBD(Ω)∩L1(Ω;Rd) and [u] ∈ L1(Ju,Hd−1), then u belongs to BD(Ω). Nonetheless,
we now show that [u] is integrable on Ju \ J1

u with respect to Hd−1. This is the content of
the following proposition.

Proposition 2.13. Let u ∈ GBD(Ω). Thenˆ
Ju\J1

u

|([u]⊙ νu)ξ · ξ|dHd−1 < +∞ (2.25)

for every ξ ∈ Rd. This is equivalent to [u] ∈ L1(Ju \ J1
u,Hd−1).

Proof. By homogeneity it is enough to show (2.25) for a fixed ξ ∈ Sd−1. By definition of
⊙ we have ([u] ⊙ νu)ξ · ξ = ([u] · ξ)(ν · ξ). Therefore, by the Area Formula [36, 12.4], we
can write ˆ

Ju\J1
u

|([u]⊙ νu)ξ · ξ| dHd−1 =

ˆ
Ju\J1

u

|([u] · ξ)(νu · ξ)|dHd−1

=

ˆ
Πξ

( ˆ
(Ju\J1

u)
ξ
y

|[u](y + tξ) · ξ| dH0(t)
)
dHd−1(y)

≤
ˆ
Πξ

( ˆ
J
u
ξ
y
\J1

u
ξ
y

|[uξy](t)|dH0(t)
)
dHd−1(y),

(2.26)

where in the inequality we have used (2.21)-(2.23). By (b) of Definition 2.5, for Hd−1-a.e.

y ∈ Πξ we have uξy ∈ BVloc(Ω
ξ
y), so thatˆ

Πξ

(ˆ
J
u
ξ
y
\J1

u
ξ
y

|[uξy](t)| dH0(t)
)
dHd−1(y) =

ˆ
Πξ

|Duξy|(Juξy \ J
1
uξy
)dHd−1(y)

≤
ˆ
Πξ

|Duξy|(Ωξy \ J1
uξy
)dHd−1(y) ≤ λ(Ω) < +∞,
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which, together with (2.26), concludes the proof of (2.25).
From the polarisation identity it follows that for every ξ, η ∈ Rd \ {0} one has

|([u]⊙ νu)ξ · η| ≤
1

4

(
|([u]⊙ νu)(ξ + η) · (ξ + η)|+ |([u]⊙ νu)(ξ − η) · (ξ − η)|

)
on Ju. Hence, by (2.25) we deduce that [u] ⊙ νu ∈ L1(Ju \ J1

u,Hd−1). Since for every
a, b ∈ Rd we have |a||b| ≤

√
2|a⊙ b|, the proof is concluded. □

The space GBD(Ω) behaves nicely with respect to restriction to affine subspaces of the
domain Ω. This fact is made rigorous by the following result.

Theorem 2.14. Assume d ≥ 2. Let u ∈ GBD(Ω), let V be a vector subspace of Rd of
dimension k, with 1 ≤ k ≤ d− 1, let V ⊥ be its orthogonal subspace, and let πV : Rd → V
be the orthogonal projection onto V . For every z ∈ V ⊥ and E ⊂ Ω we set EVz := {x ∈
V : z + x ∈ E} = V ∩ (E − z) and consider the function uVz : ΩVz → V defined by
uVz (x) := πV (u(z + x)). Then the following properties hold:

(a) for Hd−k-a.e. z ∈ V ⊥ we have uVz ∈ GBD(ΩVz );
(b) for Hd−k-a.e. z ∈ V ⊥ we have JuVz ⊂ (Ju)

V
z ∪ Nz for a Borel set Nz ⊂ V with

Hk−1(Nz) = 0.

To prove property (b) we need the following result concerning the relation between
the jump points of a function u ∈ GBD(Ω) and the jump points of its restriction to a
hyperplane that does not intersect the set Su of approximate discontinuity points.

Proposition 2.15. Assume d ≥ 2. Let u ∈ GBD(Ω), x0 ∈ Ω, and ξ ∈ Sd−1. Assume
that

Hd−1(Su ∩ (x0 +Πξ)) = 0. (2.27)

Let v : (Ω− x0) ∩Πξ → Πξ be the function defined by v(y) := πξ(ũ(x0 + y)) for Hd−1-a.e.
y ∈ (Ω − x0) ∩ Πξ. Assume that there exist a direction ν ∈ Sd−1 ∩ Πξ and two vectors
b± ∈ Πξ, with b+ ̸= b−, such that for every ε > 0 we have

lim sup
ρ→0+

Hd−1({y ∈ Bρ(0) ∩Πξ : ±y · ν > 0, |v(y)− b±| > ε})
ρd−1

= 0. (2.28)

Then x0 ∈ Θu.

Proof. See [20, Theorem 7.1]. □

Proof of Theorem 2.14. The proof of (a) can be found in [20, Theorem 4.19].
We divide the proof of (b) into two steps.

Step 1. Assume that k = d− 1 and let ξ ∈ Sd−1 be such that V = Πξ. We claim that for
L1-a.e. s ∈ R there exists a Borel set Ns ⊂ V , with Hd−2(Ns) = 0, such that

JuVsξ
⊂ (Ju)

V
sξ +Ns.

To prove this property, we observe that by the Fubini Theorem the equality Ld(Su) = 0
implies that for L1-a.e. s ∈ R and for every y0 ∈ Πξ = V condition (2.27) holds with
x0 = sξ+ y0 , while the equality ũ = u Ld-a.e. in Ω implies that for L1-a.e. s ∈ R we have

ũ(sξ + y) = u(sξ + y) for Hd−1-a.e. y ∈ Πξ. (2.29)

Let us fix s ∈ R with these properties. Given y0 ∈ JuVsξ
, we consider the function v(y) :=

πξ(ũ(sξ + y0 + y)) for y ∈ Πξ and observe that by (2.29) we have

v(y) = uVsξ(y0 + y) for Hd−1-a.e. y ∈ Πξ.

Since y0 ∈ JuVsξ
, v satisfies (2.28). We can then apply Proposition 2.15 to obtain that

sξ+y0 ∈ Θu, which gives y0 ∈ (Θu)
V
sξ. Setting Ns := (Θu \Ju)Vsξ, we have y0 ∈ (Ju)

V
sξ∪Ns,

hence JuVsξ
⊂ (Ju)

V
sξ ∪ Ns. Since by Theorem 2.12 we have Hd−1(Θu \ Ju) = 0, it follows
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from [28, Theorem 2.10.25] that Hd−2(Ns) = 0 for L1-a.e. s ∈ R. This concludes the proof
of the claim. Of course, if d = 2 this Step also completes the proof of (b).

Step 2. Assume d > 2. We now prove (b) by induction on the codimension of V . Step 1
gives (b) when the dimension of V is d − 1. Given 1 ≤ k ≤ d − 2, we assume now that
(b) holds for every subspace of dimension k + 1 and we want to prove that it holds in
dimension k. Let us fix a subspace V of dimension k and ξ ∈ V ⊥ ∩ Sd−1. We consider

the vector space Ṽ generated by V and ξ. By (a) for Hd−k−1-a.e. z ∈ Ṽ ⊥ we have that

uṼz ∈ GBD(ΩṼz ). Using the inductive hypothesis, we deduce that for Hd−k−1-a.e. z ∈ Ṽ ⊥

there exists a Borel set Ñz ⊂ Ṽ , with Hk(Ñz)=0, such that

J
uṼz

⊂ (Ju)
Ṽ
z ∪ Ñz. (2.30)

Let us fix z ∈ Ṽ ⊥ satisfying both these properties. We observe that for every s ∈ R and
E ⊂ Ω we have

EVz+sξ = (EṼz )
V
sξ and uVz+sξ = (uṼz )

V
sξ on ∈ ΩVz+sξ. (2.31)

Applying Step 1 with Rd replaced by Ṽ and with u replaced by uṼz , we have that for
L1-a.e. s ∈ R there exists a Borel set Ns ⊂ V , with Hk−1(Ns) = 0, such that

J
(uṼz )Vsξ

⊂ (J
uṼz

)Vsξ ∪Ns.

By (2.30) this implies that

J
(uṼz )Vsξ

⊂ ((Ju)
Ṽ
z )

V
sξ ∪ (Ñz)

V
sξ ∪Ns.

By (2.31) this gives

JuVz+sξ
⊂ (Ju)

V
z+sξ ∪ (Ñz)

V
sξ ∪Ns. (2.32)

By [28, Theorem 2.10.25] we deduce that for L1-a.e. s ∈ R we have Hk−1((Ñz)
V
sξ) = 0.

Setting Nz+sξ := Ns ∪ (Ñz)
V
sξ, it follows that Hk−1(Nz+sξ) = 0 for L1-a.e. s ∈ R. Finally,

from (2.32) we deduce that

JuVz+sξ
⊂ (Ju)

V
z+sξ ∪Nz+sξ. (2.33)

Since V ⊥ is the space generated by Ṽ ⊥ and ξ and (2.33) holds for L1-a.e. s ∈ R and for

Hd−k−1-a.e. z ∈ Ṽ ⊥, property (b) for V follows from the Fubini Theorem. This concludes
the proof of the inductive step and hence of the theorem. □

3. Approximations by Riemann sums

In the proof of the main result of this paper, we will approximate various integrals with
well-chosen Riemann sums, using a suitable version of a result that goes back to Hahn
(see [34]). Similar results are proved also in [10, Lemma A.1]. For technical reasons, we
use a construction described in [27, Page 63] and further developed in [21, Lemma 4.12].
Since this result is crucial for our arguments, we give here the precise statement and a
detailed proof.

Lemma 3.1. Let I = [a, b] ⊂ R be a bounded closed interval. For every z ∈ I, k ∈ N, and
i ∈ Z let tki := z + i/k. Let (X, ∥ · ∥) be a Banach space and let f : R → X be a Bochner
integrable function such that f = 0 on R \ I. Then there exist an infinite subset K ⊂ N
and an L1-negligible set N ⊂ I such that

lim
k→+∞
k∈K

∑
i∈Z

ˆ tki+1

tki

∥f(tki )− f(t)∥dt = 0, (3.1)
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for every z ∈ I \ N . Moreover, given h ∈ N and setting Ikh := {i ∈ Z : [tki−h, t
k
i+h] ⊂ I}

and Fk
h := {i ∈ Z : tki ∈ I} \ Ikh , for every ε > 0 there exists a Borel set Iε ⊂ I, with

L1(I \ Iε) ≤ ε, such that

lim
k→+∞
k∈K

∑
i∈Z

ˆ tki+1

tki

∥f(tki )− f(t)∥dt = 0 uniformly for z ∈ Iε, (3.2)

lim
k→+∞
k∈K

1

k

∑
i∈Ik

h

f(tki ) =

ˆ
I
f(t) dt uniformly for z ∈ Iε, (3.3)

lim
k→+∞
k∈K

1

k

∑
i∈Fk

h

∥f(tki )∥= 0 uniformly for z ∈ Iε. (3.4)

Proof. We follow closely the proof of [21, Lemma 4.12]. Given k ∈ N, we consider the set

J k := {i ∈ Z : k(a− b)− 1 ≤ i ≤ k(b− a)}. (3.5)

Note that for every z ∈ I we have

[tki , t
k
i+1] ∩ I ̸= Ø =⇒ i ∈ J k.

Integrating with respect to z the sum on the left-hand side of (3.1) and using Fubini’s
theorem we obtainˆ

I

(∑
i∈Z

ˆ tki+1

tki

∥f(tki )−f(t)∥dt
)
dz =

ˆ
I

( ∑
i∈J k

ˆ tki+1

tki

∥f(tki )− f(t)∥dt
)
dz

=

ˆ
I

( ∑
i∈J k

ˆ 1
k

0
∥f(z + i

k )− f(z + i
k + s)∥ ds

)
dz

≤
∑
i∈J k

ˆ 1
k

0

(ˆ +∞

−∞
∥f(z + i

k )− f(z + i
k + s)∥ dz

)
ds

=
∑
i∈J k

ˆ 1
k

0

(ˆ +∞

−∞
∥f(z)− f(z + s)∥ dz

)
ds. (3.6)

By the L1-continuity of translations for every ε > 0 there exists δ > 0 such thatˆ +∞

−∞
∥f(z)− f(z + s)∥ dz < ε

whenever 0 ≤ s < δ. Hence,ˆ 1
k

0

(ˆ +∞

−∞
∥f(z)− f(z + s)∥ dz

)
ds <

ε

k

for k > 1/δ. Observing that the number of elements of J k satisfies H0(J k) ≤ 2k(b−a)+2,
from the previous inequality and (3.6) we deduce that

lim
k→+∞

ˆ
I

(∑
i∈Z

ˆ tki+1

tki

∥f(tki )− f(t)∥dt
)
dz = 0.

Hence, there exists an infinite set K ⊂ N and an L1-negligible set N ⊂ I such that (3.1)
holds.

To prove the second part of the statement, we first observe that by Egorov’s theorem
there exists a Borel set Iε ⊂ I, with L1(I \ Iε) ≤ ε, such that (3.2) holds.

To prove (3.3) and (3.4), we first observe that, since the number of elements of

F̂k
h := {i ∈ Z : [tki , t

k
i+1] ∩ I ̸= Ø} \ Ikh
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is less than 2h+ 2, by the absolute continuity of the integral we have

lim
k→+∞

∑
i∈F̂k

h

ˆ tki+1

tki

∥f(t)∥ dt = 0 uniformly for z ∈ Iε. (3.7)

Since
1

k

∑
i∈Fk

h

∥f(tki )∥≤
∑
i∈Z

ˆ tki+1

tki

∥f(tki )− f(t)∥ dt+
∑
i∈Fk

h

ˆ tki+1

tki

∥f(t)∥ dt,

(3.4) follows from (3.2), (3.7), and from the inclusion Fk
h ⊂ F̂k

h . Similarly, the inequality∥∥∥1
k

∑
i∈Ik

h

f(tki )−
ˆ
I
f(t) dt

∥∥∥ ≤
∑
i∈Ik

h

ˆ tki+1

tki

∥f(tki )− f(t)∥dt+
∑
i∈F̂k

h

ˆ tki+1

tki

∥f(t)∥ dt,

together with (3.2) and (3.7), gives (3.3). □

In the next technical result we will consider the Riemann sums associated with functions
converging to 0 in L1 and depending on an additional parameter. This result will be crucial
in Section 6.

Lemma 3.2. Let I := [a, b] and J := [c, d] be bounded closed intervals. For every z1 ∈ I,
k ∈ N, and i ∈ Z let tki := z1 +

i
k . Let (X, ∥ · ∥) be a Banach space and let fk : R×R → X

be a sequence of Bochner integrable functions, with fk = 0 on (R×R) \ (I × J), such that

lim
k→+∞

fk(t, z2) = 0 for L1-a.e. t ∈ I and L1 -a.e. z2 ∈ J. (3.8)

Assume also that there exists an integrable function g : R → [0,+∞) such that

∥fk(t, z2)∥ ≤ g(t) for L1-a.e. t ∈ I, L1-a.e. z2 ∈ J , and every k ∈ N. (3.9)

Then there exists an L2-negligible set N ⊂ I × J and a infinite set K ⊂ N such that for
every (z1, z2) ∈ (I × J) \N we have

lim
k→+∞
k∈K

1

k

∑
i∈Z

∥fk(tki , z2)∥ = 0. (3.10)

Moreover, for every ε > 0 there exists a Borel set Aε ⊂ I × J , with L2((I × J) \Aε) ≤ ε,
such that

lim
k→+∞
k∈K

1

k

∑
i∈Z

∥fk(tki , z2)∥ = 0 uniformly for (z1, z2) ∈ Aε. (3.11)

Proof. For k ∈ N let J k be given by (3.5). Integrating the sum on the left-hand side of
(3.10) with respect to z = (z1, z2) ∈ I × Jˆ

J

( ˆ
I

(1
k

∑
i∈Z

∥fk(tki , z2)∥
)
dz1

)
dz2 =

ˆ
J

(ˆ
I

(1
k

∑
i∈Z

∥fk(z1 + i
k , z2)∥

)
dz1

)
dz2

≤ 1

k

∑
i∈J k

ˆ
R

(ˆ
R
∥fk(z1 + i

k , z2)∥ dz1
)
dz2 =

H0(J k)

k

ˆ
R

(ˆ
R
∥fk(z1, z2)∥ dz1

)
dz2, (3.12)

where in the inequality we have used the hypothesis on the supports of fk. By (3.8) for
L2-a.e. every z ∈ I × J the sequence ∥fk(z1, z2)∥ converges to 0 as k → +∞. Thanks to
(3.9), by the Dominated Convergence Theorem we have limk ∥fk∥L1(R2;X) = 0. This fact,

together with (3.12) and the boundedness of H0(J k)/k, implies that

lim
k→+∞

ˆ
I×J

(1
k

∑
i∈Z

∥fk(tki , z2)∥
)
dz = 0,

which gives (3.10). By Egorov’s Theorem we obtain also (3.11), concluding the proof. □
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Remark 3.3. Suppose that for every n ∈ N we have a function (fn) that satisfies the
hypotheses of Lemma 3.1. Arguing as in [21, Remark 4.13], one can find sets K and Iε
as in the statement of Lemma 3.2 for which (3.2)-(3.4) and (3.11) hold with f = fn for
every n ∈ N.

Similarly, if for every n ∈ N we have a sequence of functions (fnk )k that satisfies the
hypotheses of Lemma 3.2, the same argument shows that one can find sets K and Uε as
in the statement of Lemma 3.2 for which (3.10) and (3.11) hold with fk = fnk for every
n ∈ N.

4. An auxiliary family of measures

Given u ∈ GBD(Ω), we associate to it a family of measures, closely related to the

measures λξu introduced in (2.19). For every ξ ∈ Rd \ {0} and every Borel set B ⊂ Ω we
set

σξu(B) := |ξ|
ˆ
Πξ

Duξy((B \ J1
u)
ξ
y) dHd−1(y). (4.1)

For ξ = 0, we set σξu(B) = 0 for every Borel set B ⊂ Ω .

Remark 4.1. Suppose that u ∈ BD(Ω), the space of functions of bounded deformation,
and let Eu the distributional symmetric gradient of u, which by definition belongs to the
space Mb(Ω;Rd×dsym). From the Structure Theorem for BD(Ω) functions [6, Theorem 4.5]
it follows that

σξu(B) = Eu(B \ J1
u)ξ · ξ

for every Borel set B ⊂ Ω and ξ ∈ Rd. Since σξu is a measure, this equality can be extended
to all functions u ∈ BDloc(Ω) such that Eu ∈ Mb(Ω;Rd×dsym). This implies that in this case

the function ξ 7→ σξu(B) is quadratic in the sense of Definition 2.1. In particular, if d = 1
this happens for every u ∈ GBD(Ω) thanks to Remark 2.7.

Remark 4.2. Let λξu be the measure introduced in (2.19). One can see that for every

ξ ∈ Sd−1, we have the equality |σξu| = λξu (Ω \ J1
u) as Borel measures on Ω. In light

of [7, Theorem 3.103], this is an easy consequence of (4.1) and of the fact that, by Theorem

2.12, for Hd−1-a.e. y ∈ Πξ we have the inclusion J1
uξy

⊂ (J1
u)
ξ
y. This fact, together with

(2.20) and the 2-homogeneity of the function ξ 7→ σξu(Ω) proved in Proposition 4.4 below,
implies that

|σξu|(Ω) ≤ |ξ|2λu(Ω \ J1
u). (4.2)

For R > 0 let τR : R → R be the 1-Lipschitz functions defined by

τR(s) :=


−R

2 if s ≤ −R
2 ,

s if −R
2 ≤ s ≤ R

2 ,
R
2 if s ≥ R

2 .

(4.3)

Thanks to Remark 2.8, we have that Dξ(τR(u · ξ)) ∈ Mb(Ω;R) for every u ∈ GBD(Ω),

ξ ∈ Sd−1, and R > 0. The following result shows that for Borel sets that do not intersect J1
u

we can obtain the value of σξu(B) by considering the limit of Dξ(τR(u ·ξ))(B) as R→ +∞.

Proposition 4.3. Let u ∈ GBD(Ω). Then for every ξ ∈ Sd−1 we have

σξu(B) = lim
R→+∞

Dξ(τR(u · ξ))(B), (4.4)

λξu(B) = lim
R→+∞

|Dξ(τR(u · ξ))|(B), (4.5)

for every Borel set B ⊂ Ω with Hd−1(B ∩ J1
u) = 0.
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Proof. Let us fix ξ ∈ Sd−1 and a Borel set B ⊂ Ω as in the statement. SinceHd−1(B∩J1
u) =

0, it follows that Hd−1(πξ(B ∩ J1
u)) = 0 and hence Bξ

y ∩ (J1
u)
ξ
y = Ø for Hd−1-a.e. y ∈ Πξ.

Recalling that by Theorem 2.12 for Hd−1-a.e. y ∈ Πξ the inclusion in (2.23) holds, we also
have that

Bξ
y ∩ J1

uξy
= Ø for Hd−1-a.e. y ∈ Πξ. (4.6)

Thus, by (2.19) and (4.1) we have

σξu(B) =

ˆ
Πξ

Duξy((B \ J1
u)
ξ
y) dHd−1(y) =

ˆ
Πξ

Duξy(B
ξ
y) dHd−1(y), (4.7)

λξu(B) =

ˆ
Πξ

|Duξy|(Bξ
y \ J1

uξy
) dHd−1(y) =

ˆ
Πξ

|Duξy|(Bξ
y) dHd−1(y). (4.8)

In particular, since λξu ∈ M+
b (Ω), we haveˆ

Πξ

|Duξy|(Bξ
y) dHd−1(y) < +∞. (4.9)

We then remark that from (b) of Definition 2.5 and the chain rule for BV-functions

(see [7, Theorem 3.99]) it follows that for Hd−1-a.e. y ∈ Πξ we have τR(u
ξ
y) ∈ BVloc(Ω

ξ
y)

and
D(τR(u

ξ
y)) = τ ′R(v

ξ
y)∇uξyL1 + τ ′R(v

ξ
y)D

cuξy + [τR(u
ξ
y)]H0 J

τR(uξy)
, (4.10)

where for every t ∈ Ωξy \ Juξy the function vξy is defined by

vξy(t) := lim
ε→0+

1

2ε

ˆ ε

−ε
uξy(t+ s) ds,

and we set τ ′R(±
R
2 ) = 0. Since the measures on the right-hand side of (4.10) are mutually

singular, we have also

|D(τR(u
ξ
y))| = |τ ′R(vξy)∇uξy|L1 + |τ ′R(vξy)||Dcuξy|+ |[τR(uξy)]|H0 J

τR(uξy)
. (4.11)

Moreover, we observe that for every y ∈ Πξ such that uξy ∈ BVloc(Ω
ξ
y) we have

|Dcuξy|(Ωξy \ Juξy) = |Dcuξy|(Ωξy),

lim
R→+∞

τ ′R(v
ξ
y)(t) = 1 for L1-a.e. t ∈ Ωξy, (4.12)

lim
R→+∞

τ ′R(v
ξ
y)(t) = 1 for |Dcuξy|-a.e. t ∈ Ωξy, (4.13)

J
uξy

=
⋃
R>0

J
τR(uξy)

and lim
R→+∞

[τR(u
ξ
y)](t) = [uξy](t) for every t ∈ J

uξy
. (4.14)

Additionally, from (4.3) and (4.11) it follows that

|D(τR(u
ξ
y))|(Bξ

y) ≤
ˆ
Bξ

y

|∇uξy|dt + |Dcuξy|(Bξ
y) +

ˆ
Bξ

y∩J
u
ξ
y

|[uξy]|dH0 = |Duξy|(Bξ
y). (4.15)

Recalling that by Remark 2.6 for Hd−1-a.e. y ∈ Πξ we have |Duξy|(Bξ
y) < +∞, from

(4.10)-(4.14) and the Dominated Convergence Theorem we deduce for Hd−1-a.e y ∈ Πξ

that

lim
R→+∞

D(τR(u
ξ
y))(B

ξ
y) = Duξy(B

ξ
y), (4.16)

lim
R→+∞

|D(τR(u
ξ
y))|(Bξ

y) = |Duξy|(Bξ
y). (4.17)
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Thanks to the general theory of slicing (see [7, Theorem 3.107]) and [20, Proposition 3.1])
for every R > 0 we have that

Dξ(τR(u · ξ))(B) =

ˆ
Πξ

D(τR(u
ξ
y))(B

ξ
y) dHd−1(y), (4.18)

|Dξ(τR(u · ξ))|(B) =

ˆ
Πξ

|D(τR(u
ξ
y))|(Bξ

y) dHd−1(y), (4.19)

so that by (4.10) and (4.11) we have

Dξ(τR(u · ξ))(B) =

ˆ
Πξ

( ˆ
Bξ

y

τ ′R(v
ξ
y)∇uξy dt

+

ˆ
Bξ

y

τ ′R(v
ξ
y)

dDcuξy

d|Dcuξy|
d|Dcuξy|+

ˆ
Bξ

y∩J
τR(u

ξ
y)

[τR(u
ξ
y)] dH0

)
dHd−1(y),

|Dξ(τR(u · ξ))|(B) =

ˆ
Πξ

(ˆ
Bξ

y

|τ ′R(vξy)∇uξy| dt

+

ˆ
Bξ

y

τ ′R(v
ξ
y) d|Dcuξy|+

ˆ
Bξ

y∩J
τR(u

ξ
y)

|[τR(uξy)]| dH0
)
dHd−1(y),

Finally, recalling (2.10), (4.6), and (4.15), we can apply the Dominated Convergence The-
orem and from (4.7), (4.8), and (4.16)-(4.19) we obtain (4.4) and (4.5). □

The main goal of Sections 5-7 will be proving that for every u ∈ GBD(Ω) and every

Borel set B ⊂ Ω the function ξ 7→ σξu(B) is quadratic. Toward this end, in the rest of this
section we investigate some of the properties of the measure defined by (4.1). We first

show that the function ξ 7→ σξu(B) is 2-homogeneous.

Proposition 4.4. Let u ∈ GBD(Ω) and let B ⊂ Ω be a Borel set. Then the function

ξ 7→ σξu(B) is 2-homogeneous.

Proof. Let us fix t ̸= 0 and ξ ∈ Rd \ {0}. By (2.14), with B replaced by B \ J1
u, we have

Dutξy ((B \ J1
u)
tξ
y ) = |t|Duξy((B \ J1

u)
ξ
y).

Hence,

σtξu (B) = |tξ|
ˆ
Πξ

Dutξy ((B \ J1
u)
tξ
y ) dH1(y) = t2|ξ|

ˆ
Πξ

Duξy
(
(B \ J1

u)
ξ
y

)
dH1(y) = t2σξu(B).

This shows that ξ 7→ σξu(B) is 2-homogeneous, concluding the proof. □

In the next proposition we give an explicit formula for σξu(B) when the Borel set B is

contained in Ju. This shows in particular that in this case the function ξ 7→ σξu(B) is
quadratic in the sense of Definition 2.1.

Proposition 4.5. Let u ∈ GBD(Ω) and let B ⊂ Ju be a Borel set. Then for every
ξ ∈ Rd \ {0} we have

σξu(B) =

ˆ
B\J1

u

(([u]⊙ νu)ξ · ξ) dHd−1(y). (4.20)

Proof. Let us fix ξ ∈ Rd \ {0}. Since a change of sign of νu implies a change of sign of
[u], we may assume without loss of generality that νu · ξ ≥ 0. Thanks to Proposition 2.13
the integral in the right-hand side of (4.20) is well-defined. Hence, by (2.22) and the Area
Formula [36, 12.4] we infer

σξu(B) = |ξ|
ˆ
Πξ

Duξy((B \ J1
u)
ξ
y) dHd−1(y) = |ξ|

ˆ
Πξ

(ˆ
(B\J1

u)
ξ
y

[uξy](t) dH0(t)
)
dHd−1(y)

=

ˆ
B\J1

u

([u] · ξ)(νu · ξ) dHd−1(y) =

ˆ
B\J1

u

(([u]⊙ νu)ξ · ξ) dHd−1(y),
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which concludes the proof of (4.20). □

Given two Hd−1-measurable sets A,B ⊂ Rd, we write A ≃ B when Hd−1(A△B) = 0,
where △ denotes the symmetric difference. We now present a decomposition result for
GBD(Ω) functions, which states that any function u ∈ GBD(Ω) can be written as the
sum of two functions v and w, with v ∈ SBV (Ω;Rd), w ∈ GBD(Ω), Jv ≃ Ju \ J1

u, and
Jw ≃ J1

u. We refer to [7] for the definition and properties of the space SBV of special
functions of bounded variation.

Proposition 4.6. Let u ∈ GBD(Ω). Then there exists v ∈ SBV (Ω;Rd) such that

Jv ≃ Ju \ J1
u, (4.21)

[v] = [u] and νv = νu Hd−1-a.e. on Ju \ J1
u. (4.22)

In particular, setting w := u− v, we have w ∈ GBD(Ω), u = w + v,

Jw ≃ J1
w ≃ J1

u, (4.23)

[w] = [u] Hd−1-a.e. J1
u. (4.24)

Proof. Since Ju\J1
u is (Hd−1, d−1)-rectifiable and [u] is integrable on Ju\J1

u by Proposition
2.13, the proof of the statements concerning v can be obtained arguing as in [22, Theorems
3.1 and 4.1].

The inclusion w ∈ GBD(Ω) is due to the vector space properties of GBD(Ω). Equalities
(4.23) and (4.24) follow from (4.21) and (4.22). □

From this result, we derive the following useful consequence.

Lemma 4.7. Let u ∈ GBD(Ω) and v ∈ SBV (Ω;Rd) be as in Proposition 4.6 and let

w := u − v. Assume that for a Borel set B ⊂ Ω the function ξ 7→ σξw(B) is quadratic.

Then the function ξ 7→ σξu(B) is quadratic as well.

Proof. As v ∈ SBV (Ω;Rd), from Remark 4.1 it follows immediately that ξ 7→ σξv(B) is

quadratic, so that the function ξ 7→ σξw(B) + σξv(B) is also quadratic. We claim that for
every ξ ∈ Rd \ {0} we have

σξu(B) = σξw(B) + σξv(B). (4.25)

To prove this, let us fix ξ ∈ Rd \{0}. By definition we have u = w+v. Thus, for Hd−1-a.e.
y ∈ Πξ it holds

Duξy = Dwξy +Dvξy (4.26)

as Borel measures on Ωξy. Moreover, by construction we have J1
v ≃ Ø and Jw ≃ J1

w ≃ J1
u.

This implies that

Dwξy((B \ J1
w)
ξ
y)) = Dwξy((B \ J1

u)
ξ
y) for Hd−1-a.e. y ∈ Πξ.

Since v ∈ SBV (Ω;Rd), from (4.21) we deduce that |Dv|(J1
u) = 0. By slicing we obtain

that
|Dvξy|((J1

u)
ξ
y) = 0 for Hd−1-a.e. y ∈ Πξ.

for Hd−1-a.e. y ∈ Πξ. Recalling that J1
v ≃ Ø by (4.21) and (4.22), this implies that

Dvξy((B \ J1
v )
ξ
y) = Dvξy(B

ξ
y) = Dvξy((B \ J1

u)
ξ
y).

These remarks, together with (4.26), imply that for Hd−1-a.e. y ∈ Πξ it holds

Dwξy((B \ J1
w)
ξ
y) +Dvξy((B \ J1

v )
ξ
y) = D(wξy + vξy)((B \ J1

u)
ξ
y) = Duξy((B \ J1

u)
ξ
y).

Integrating this equality, by (4.1) we obtain (4.25), concluding the proof. □
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5. The case of dimension d = 2

In this and the next section we assume that Ω ⊂ R2. Our aim is to prove the following
result.

Theorem 5.1. Let u ∈ GBD(Ω) and let B ⊂ Ω be a Borel set. Then the function

ξ 7→ σξu(B) is quadratic.

Proof. Thanks to Proposition 4.6 and Lemma 4.7, it is not restrictive to assume that
Ju ≃ J1

u. Moreover, it is enough to prove the result when B is an open set, which will be
denoted by U .

To prove that ξ 7→ σξu(U) is quadratic we use Proposition 2.2. Since by Proposition 4.4

the function ξ 7→ σξu(U) is 2-homogeneous and by Remark 4.2 it satisfies the lower bound
(c) of Proposition 4.4, we are left with proving the parallelogram identity

σξ+ηu (U) + σξ−ηu (U) = 2σξu(U) + 2σηu(U), (5.1)

for every ξ, η ∈ R2 \ {0}.
To this aim, we fix ξ, η ∈ R2 \ {0}. Note that, if ξ and η are not linearly independent,

then the parallelogram identity follows from 2-homogeneity, so we may assume ξ and η
to be linearly independent. We also note that it is not restrictive to assume that U is a
parallelogram of the form

U = {sξ + tη : s ∈ (0, α) and t ∈ (0, β)}, (5.2)

for suitable constants α, β > 0 and with U ⊂⊂ Ω. Indeed, every open set U contained in
Ω can be approximated by a sequence (Uk)k of disjoint unions of such parallelograms for

which σζu(U) = limk σ
ζ
u(Uk) for every ζ ∈ {ξ, η, ξ + η, ξ − η}.

The vectors ξ and η, as well as the parallelogram U , are kept fixed throughout the rest
of the proof.

To prove the parallelogram identity (5.1), we will use Lemma 3.1 to approximate, by
means of Riemann sums, each integral appearing in the definition of the terms occurring
in (5.1). This will allow us to prove that the obtained approximations satisfy, up to an
arbitrarily small error, the parallelogram identity.

In order to construct these approximations, we need to introduce some notation first.
Given a point ω ∈ R2, for every k ∈ N and for every i, j ∈ Z we set (see Figure 1)

xki,j := ω + i
kξ +

j
kη. (5.3)

x32,0

x33,0

x33,1
x33,2

x33,−1

x32,−1

x32,−2

x32,1

x32,2

x32,3

x31,3

x31,4

x31,2
x31,1

x31,0
x31,−1

x31,−2
x31,−3

ω
x30,−1

x30,−2

x30,1

x30,2

x30,3

x32,0

x3−1,0

x3−2,0

x3−2,1

x3−1,1

x3−1,2

x3−1,−1

Figure 1. The parallelogram U and the grid of points xki,j associated to
ω ∈ U and k = 3

Since the points xki,j will be instrumental to the discretisation of the summands in (5.1),

which are integrals over the straight lines Πζ for ζ ∈ {ξ, η, ξ + η, ξ − η}, we consider
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also the projections of the points xki,j onto these lines. For every k ∈ N, i, j ∈ Z, and
ζ ∈ {ξ, η, ξ + η, ξ − η} we set

yk,ζi,j := πζ(xki,j) = πζ(ω) + i
kπ

ζ(ξ) + j
kπ

ζ(η) ∈ Πζ . (5.4)

We observe that yk,ξi,j depends only on j and yk,ηi,j depends only on i, while yk,ξ+ηi,j de-

pends only on i − j and yk,ξ−ηi,j depends only on i + j. When we want to underline the
dependence of these families on a single index, we set

yk,ξj = yk,ξ0,j , yk,ηi = yk,ηi,0 ,

yk,ξ+ηj = yk,ξ+ηj,0 = yk,ξ+η0,−j , yk,ξ−ηj = yk,ξ−ηj,0 = yk,ξ−η0,j ,
(5.5)

see Figure 2.

Πξ+η

x32,0
x31,0

y3,ξ+η1 y3,ξ+η2

Figure 2. Projections of the points xki,j onto the straight line Πξ+η

It is clear from these definitions that for every ζ ∈ {ξ, η, ξ + η, ξ − η} and i, j ∈ Z there

exists a unique real number tk,ζi,j such that

xki,j = yk,ζi,j + tk,ζi,j ζ. (5.6)

Let Cξ,η :=
(
|ξ|2|η|2 − (ξ · η)2

)1/2
> 0. We observe that for i, j ∈ Z we have

k|yk,ξi,j+1 − yk,ξi,j | = |πξ(η)| = 1

|ξ|
Cξ,η,

k|yk,ηi+1,j − yk,ηi,j | = |πη(ξ)| = 1

|η|
Cξ,η

k|yk,ξ+ηi,j − yk,ξ+ηi,j+1 | = k|yk,ξ+ηi,j − yk,ξ+ηi+1,j | = |πξ+η(ξ)| = |πξ+η(η)| = 1

|ξ + η|
Cξ,η,

k|yk,ξ−ηi,j − yk,ξ−ηi,j+1 | = k|yk,ξ−ηi,j − yk,ξ−ηi−1,j | = |πξ−η(ξ)| = |πξ−η(η)| = 1

|ξ − η|
Cξ,η.

(5.7)

For technical reasons, which will appear in Lemmas 6.2 and A.2, it is convenient to
replace the set Ju = J1

u by a set J ⊂ U that can be written as countable union of compact
sets. Since H1(J1

u) < +∞ by Remark 2.10, there exist a countable family of compact sets
Kn ⊂ J1

u ∩ U and two Borel sets N1 ⊂ N ⊂ U with H1(N1) = H1(N) = 0 such that

J1
u ∩ U =

( ⋃
n∈N

Kn

)
∪N1 and Ju ∩ U =

( ⋃
n∈N

Kn

)
∪N. (5.8)

We set
J :=

⋃
n∈N

Kn (5.9)

and observe that for every ζ ∈ {ξ, η, ξ + η, ξ − η} and for H1-a.e. y ∈ Πζ we have the

equality (J1
u ∩ U)ζy = (Ju ∩ U)ζy = Jζy . In particular, by (4.1) we have that

σζu(B) := |ζ|
ˆ
Πζ

Duζy((B \ J)ζy) dH1(y) (5.10)
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for every ζ ∈ {ξ, η, ξ + η, ξ − η} and every Borel set B ⊂ U .
The following two lemmas will be used in the choice of ω to obtain an approximation

of σζu(U) by means of suitable Riemann sums.

Lemma 5.2. Let ζ ∈ {ξ, η, ξ+ η, ξ− η}. Then for L2-a.e. ω ∈ U the following conditions
are simultaneously satisfied:

(a) properties of the slices: for every k ∈ N and i, j ∈ Z we have

uζ
yk,ζi,j

∈ BV (U ζ
yk,ζi,j

) and (J1
u ∩ U)ζ

yk,ζi,j

= Jζ
yk,ζi,j

;

(b) the points xki,j are directional Lebesgue points: for every k ∈ N and i, j ∈ Z, with
xki,j ∈ U , we have

lim
ε→0+

1

2ε

ˆ ε

−ε
|u(xki,j + sζ) · ζ − u(xki,j) · ζ|ds = 0. (5.11)

Proof. Taking into account that U ⊂⊂ Ω and recalling the definition of GBD(Ω) and
Remark 2.6, from (5.8) and (5.9) it follows that there exists a Borel set Nζ ⊂ Πζ , with

H1(Nζ) = 0, such that for every y ∈ Πζ \Nζ we have uζy ∈ BV (U ζy ) and (J1
u ∩ U)ζy = Jζy .

Let N∞
ζ :=

⋃
(i,j)∈Z2

(
Nζ − i

kπ
ζ(ξ)− j

kπ
ζ(η)

)
. It is immediate to check that H1(N∞

ζ ) = 0.

By (5.4) we have

yk,ζi,j = πζ(ω) + i
kπ

ζ(ξ) + j
kπ

ζ(η),

so that if πζ(ω) /∈ N∞
ζ , we have uζ

yk,ζi,j

∈ BV (U ζ
yk,ζi,j

) and that (J1
u ∩ U)ζ

yk,ζi,j

= Jζ
yk,ζi,j

. This

proves that for L2-a.e ω ∈ U condition (a).
Let us prove (b). Let B be the L2-measurable set defined by

B :=
{
x ∈ U : lim sup

ε→0+

1

2ε

ˆ ε

−ε
|u(x+ sζ) · ζ − u(x) · ζ|ds > 0

}
.

For every y ∈ Πζ \Nζ we have uζy ∈ BV (U ζy ) and the slices Bζ
y satisfy

Bζ
y =

{
t ∈ U ζy : lim sup

ε→0+

1

2ε

ˆ ε

−ε
|uζy(s+ t)− uζy(t)| ds > 0

}
.

Therefore, by the Lebesgue Differentiation Theorem L1(Bζ
y) = 0 for every y ∈ Πζ \ Nζ

and by the Fubini Theorem this implies that L2(B) = 0. We observe that

lim
ε→0+

1

2ε

ˆ ε

−ε
|uζy(t+ s)− uζy(t)|ds = 0 (5.12)

for every t ∈ Πζy \Bζ
y .

Recalling that by (5.6) we have that

xki,j = yk,ζi,j + tk,ζi,j ζ, (5.13)

and that yk,ζi,j /∈ Nζ by the first step, from (5.12) we deduce that (5.11) holds whenever

tk,ζi,j /∈ N ζ

yk,ζi,j

. (5.14)

Thus, to prove (b) it is enough to show that, for given i, j, and ζ, condition (5.14) holds

for L2-a.e. ω ∈ U . Observing that yk,ζi,j · ζ = 0 and recalling (5.3), if we multiply (5.13) by

ζ/|ζ|2 we obtain that

tk,ζi,j =
xki,j ·ζ
|ζ|2 = ω·ζ

|ζ|2 + i
k
ξ·ζ
|ζ|2 + j

k
η·ζ
|ζ|2 .

Hence, (5.14) holds whenever

ω·ζ
|ζ|2 /∈ N ζ

yk,ζi,j

− i
k
ξ·ζ
|ζ|2 − j

k
η·ζ
|ζ|2 . (5.15)
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Recalling that by (5.4) yk,ζi,j has the form πζ(ω) + z for some z ∈ Πζ , depending on k, ζ,

i, and j, we deduce that (5.15) holds for L2-a.e. ω ∈ U . This proves that (5.14) holds for
L2-a.e. ω ∈ U , concluding the proof. □

Proof of Theorem 5.1 (continuation). Given i, j ∈ Z and ζ ∈ {ξ, η, ξ + η, ξ − η} we set

Ik,ζi,j := [tk,ζi,j , t
k,ζ
i,j + 1

k ), (5.16)

where tk,ζi,j are defined in (5.6). We note that

[xki,j , x
k
i,j +

1
kζ) = {yk,ζi,j + tζ : t ∈ Ik,ζi,j }. (5.17)

For h ∈ N we set

J k
h := {(i, j) ∈ Z2 : xki,j ± h

k ζ ∈ U for every ζ ∈ {ξ, η, ξ + η, ξ − η}}. (5.18)

Since every ω ∈ R2 can be written in a unique way as ω = sξ + tη with s, t ∈ R, by (5.2)
and (5.3) we have

J k
h := {(i, j) ∈ Z2 : 0 < s+ i±h

k < α and 0 < t+ j±h
k < β}. (5.19)

In the following lemma, given a sequence (ωk)k of elements of U , we consider the points

xki,j and yk,ζi,j defined by (5.3) and (5.4) with ω = ωk. We recall that Cξ,η > 0 is the

constant which appears in (5.7).

Lemma 5.3. There exists an infinite set K ⊂ N and, for every ε > 0, a Borel set
Uε ⊂ U , with L2(U \ Uε) ≤ ε, such that for every sequence (ωk)k∈N in Uε and for every
ζ ∈ {ξ, η, ξ + η, ξ − η} conditions (a) and (b) of Lemma 5.2 are satisfied and

lim
k→+∞
k∈K

Cξ,η
k

∑
(i,j)∈J k

Duζ
yk,ζi,j

(Ik,ζi,j \ Jζ
yk,ζi,j

) = σζu(U) (5.20)

for every sequence (J k) in Z2 for which there exists h ∈ N such that J k
h ⊂ J k ⊂ J k

1 for
every k ∈ N.

Proof. Thanks to Lemma 5.2, there exists a Borel set U0 ⊂ U , with L2(U0) = L2(U), such
that (a) and (b) hold for every ω ∈ U0, so that we only need to show that there exist an
infinite set K ⊂ N and for every ε > 0, a Borel set Uε ⊂ U0, with L2(U \ Uε) ≤ ε, such
that (5.20) holds. The proof for every ζ ∈ {ξ, η, ξ + η, ξ − η} will be carried out in four
steps, first for ζ = ξ, then for ζ = η, next for ζ = ξ+ η, and finally for ζ = ξ− η. Starting
from the second step, N is replaced by the set K of the previous step and we may assume
that Uε is contained in the corresponding set of the previous step, so that the sets K and
Uε obtained at the end satisfy (5.20) for every ζ ∈ {ξ, η, ξ + η, ξ − η}.

We begin by proving the result for ζ = ξ. We observe that every ω ∈ R2 can be written
in a unique way as

ω = z1η + z2ξ,

with z1, z2 ∈ R. For every k ∈ N and i, j ∈ Z by (5.4) we have

yk,ξi,j =
(
z1 +

j
k

)
πξ(η). (5.21)

We set I := (0, β) = {t ∈ R : tπξ(η) ∈ πξ(U)}. For every h, k ∈ N and z1 ∈ I we define

Ikh(z1) :=
{
j ∈ Z : z1 +

j±h
k ∈ I

}
=

{
j ∈ Z : yk,ξ0,j ±

h
kπ

ξ(η) ∈ πξ(U)
}
,

Fk
h (z1) :=

{
j ∈ Z : z1 +

j
k ∈ I

}
\ Ikh(z1).

Let Nξ ⊂ Πξ be the H1-negligible Borel set introduced at the beginning of the proof of

Lemma 5.2 for ζ = ξ and consider the Borel set Mξ := {t ∈ R : tπξ(η) ∈ Nξ}. Applying
Lemma 3.1 to the function defined for t ∈ R by

f(t) :=

{
Duξ

tπξ(η)
((U \ J)ξ

tπξ(η)
) if t ∈ R \Mξ,

0 if t ∈Mξ,
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which vanishes out of I, and recalling (5.7), (5.10), and (5.21), we obtain an infinite set
H ⊂ N and, for every ε > 0, a Borel set Iε ⊂ I, with L1(I \ Iε) ≤ ε and Iε ∩Mξ = Ø, such
that for every h ∈ N we have

lim
k→+∞
k∈H

Cξ,η
k

∑
j∈Ik

h(z1)

Duξ
yk,ξ0,j

((U \ J)ξ
yk,ξ0,j

) = |ξ||πξ(η)|
ˆ
I
Duξ

sπξ(η)
((U \ J)ξ

sπξ(η)
) ds

= |ξ|
ˆ
Πξ

Duξy((U \ J)ξy) dH1(y) = σξu(U) uniformly for z1 ∈ Iε, (5.22)

lim
k→+∞
k∈H

1

k

∑
j∈Fk

h (z1)

Duξ
yk,ξ0,j

((U \ J)ξ
yk,ξ0,j

) = 0 uniformly for z1 ∈ Iε. (5.23)

We set

Vε := {ω ∈ U : ω = z1η + z2ξ, z1 ∈ Iε, z2 ∈ R} (5.24)

and observe that L2(U \ Vε) ≤ cε for a constant c > 0 depending only on ξ, η, α, and β.
For every h, k ∈ N we set

W k
h := {x ∈ U : either x+ h

k ξ or x− h
k ξ does not belong to U}, (5.25)

fkh (t, z2) :=

{
|Duξ

tπξ(η)
|((W k

h \ J)ξ
tπξ(η)

) if t ∈ I \Mξ and z2 ∈ (0, α+ β),

0 otherwise,
(5.26)

g(t) :=

{
|Duξ

tπξ(η)
|((U \ J)ξ

tπξ(η)
) for t ∈ I \Mξ,

0 otherwise.
(5.27)

We observe that 0 ≤ fkh (t, z2) ≤ g(t) for L1-a.e. t ∈ I and L1-a.e. z2 ∈ R. Let λ be a

measure as in Definition 2.5. Since λ(W k
h ) converges to 0 as k → +∞, from (2.15) and

(2.23) we deduce that the sequence (fkh ) converges to 0 in L1(I ×R) as k → +∞. Thanks
to Lemma 3.2 and Remark 3.3, applied with N replaced by H, we can find an infinite set
K ⊂ H ⊂ N and a Borel set Uε ⊂ Vε ⊂ U , with L2(U \ Uε) ≤ cε for a constant c > 0
depending only on ξ, η, α, and β, such that for every h ∈ N

lim
k→+∞
k∈K

1

k

∑
j∈Ik

h(z1)

|Duξ
yk,ξ0,j

|((W k
h \ J)ξ

yk,ξ0,j

) = lim
k→+∞
k∈K

1

k

∑
j∈Ik

h(z1)

fkh (z1 +
j
k , z2) = 0 (5.28)

uniformly for ω = z1η + z2ξ ∈ Uε, where the first equality follows from (5.21).
For every j ∈ Z let J k(j) := {i ∈ Z : (i, j) ∈ J k}. Since J k

h ⊂ J k ⊂ J k
1 , by (5.16) and

(5.25) for every j ∈ Ikh(z1) it holds

(U \ J)ξ
yk,ξ0,j

= (W k
h \ J)ξ

yk,ξ0,j

∪
⋃

i∈J k(j)

(
Ik,ξi,j \ Jξ

yk,ξ0,j

)
.

Hence, ∣∣∣Duξ
yk,ξ0,j

(
(U \ J)ξ

yk,ξ0,j

)
−

∑
i∈J k(j)

Duξ
yk,ξ0,j

(
Ik,ξi,j \ Jξ

yk,ξ0,j

)∣∣∣ ≤ ∣∣Duξ
yk,ξ0,j

∣∣((W k
h \ J)ξ

yk,ξ0,j

)
.

Recalling that yk,ξi,j = yk,ξ0,j , the previous inequality gives∣∣∣ ∑
j∈Ik

h(z1)

Duξ
yk,ξ0,j

(
(U \ J)ξ

yk,ξ0,j

)
−

∑
(i,j)∈J k

Duξ
yk,ξ0,j

(
Ik,ξi,j \ Jξ

yk,ξ0,j

)∣∣∣
≤

∣∣Duξ
yk,ξ0,j

∣∣((W k
h \ J)ξ

yk,ξ0,j

)
+

∑
j∈Fk

h (z1)

∣∣Duξ
yk,ξ0,j

(
(U \ J)ξ

yk,ξ0,j

)∣∣.
Combining (5.22), (5.23), and (5.28), we obtain (5.20) for ζ = ξ. The proof for the case
ζ = η can be obtained by arguing as above, exchanging the roles of ξ and η.
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In the case ζ = ξ + η we argue as follows. First, we write every ω ∈ R2 as

ω = z1η + z2(ξ + η),

with z1, z2 ∈ R, so that by (5.4)

yk,ξ+ηi,j = (z1 +
j
k )π

ξ+η(η) + i
kπ

ξ+η(ξ) = (z1 +
j−i
k )πξ+η(η).

Setting m := j − i, we have

yk,ξ+ηi,j = (z1 +
m
k )π

ξ+η(η). (5.29)

We now set I := {t ∈ R : tπξ+η(η) ∈ πξ+η(U)} and for every k ∈ N and z1 ∈ I we define

Ik(z1) := {m ∈ Z : z1 +
m
k ∈ I}. (5.30)

Let Nξ+η be the H1-negligible Borel introduced at the beginning of the proof of Lemma

5.2 for ζ = ξ + η and consider the Borel set Mξ+η := {t ∈ R : tπξ+η(η) ∈ Nξ+η}. We can
apply Lemma 3.1 to the function defined for t ∈ R by

h(t) :=

{
Duξ+η

tπξ+η(η)
((U \ J)ξ+η

tπξ+η(η)
) if t ∈ R \Mξ+η,

0 if t ∈Mξ+η.

and arguing as in the previous part of the proof we obtain an infinite set H contained in
the set K obtained in the previous steps and, for every ε > 0, a Borel set Iε ⊂ I, with
L1(I \ Iε) ≤ ε and Iε ∩Mξ+η = Ø, such that

lim
k→+∞
k∈H

Cξ,η
k

∑
m∈Ik(z1)

Duξ+η
yk,ξ+η
0,m

((U \ J)ξ
yk,ξ0,m

) = σξ+ηu (U) uniformly for z1 ∈ Iε. (5.31)

For every h, k ∈ N now define

W k
h := {x ∈ U : there exists ζ ∈ {±ξ,±η,±(ξ + η),±(ξ − η)} such that x+ h

k ζ /∈ U}

and we observe that (5.19) and the inclusions J k
h ⊂ J k ⊂ J k

1 imply that

{(i, j) ∈ Z2 : xki,j ∈ U \W k
h } ⊂ J k,

J k ⊂ {(i, j) ∈ Z2 : [xki,j , x
k
i,j ± 1

kζ] ⊂ U for every ζ ∈ {ξ, η, ξ + η, ξ − η}}.
It follows from (5.16) and (5.17) that

(U \ J)ξ+η
yk,ξ+η
0,m

= (W k
h \ J)ξ+η

yk,ξ+η
0,m

∪
⋃

(i,j)∈J k

j−i=m

(Ik,ξ+ηi,j \ Jξ+η
yk,ξ+η
0,m

). (5.32)

For every k ∈ N we now define Vε , W k
h , f

k
h , and g as in (5.24)-(5.27), with ξ replaced

by ξ + η. Arguing as in the first part of the proof, we obtain that (fkh ) converges to 0
in L1(I × R) as k → +∞. Hence, recalling (5.19), we may apply Lemma 3.2, with N
replaced by H, to obtain an infinite set K ⊂ H ⊂ N and a Borel set Uε ⊂ Vε ⊂ U , with
L2(U \ Uε) ≤ cε for a constant c > 0 depending only on ξ, η, α, and β, such that

lim
k→+∞
k∈K

1

k

∑
m∈Ik(z1)

|Duξ+η
yk,ξ+η
0,m

|((W k
h \ J)ξ+η

yk,ξ+η
0,m

) = lim
k→+∞
k∈K

1

k

∑
m∈Ik(z1)

fkh (z1 +
m
k , z2) = 0 (5.33)

uniformly for ω = z1η+z2(ξ+η) ∈ Uε. Recalling the equality yk,ξ+ηi,j = yk,ξ+η0,m for j−i = m,

from (5.32) it follows that

|Duξ+η
yk,ξ+η
0,m

((U \ J)ξ+η
yk,ξ+η
0,m

)−
∑

(i,j)∈J k

j−i=m

Duξ+η
yk,ξ+η
0,m

(Ik,ξ+ηi,j \ Jξ+η
yk,ξ+η
0,m

)| ≤ |Duξ+η
yk,ξ+η
0,m

|((W k
h \ J)ξ+η

yk,ξ+η
0,m

).

Since by (5.29) and (5.30) we have∑
m∈Ik(z1)

∑
(i,j)∈J k

j−i=m

=
∑

(i,j)∈J k

,
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combining (5.31) and (5.33) with the previous inequality, we obtain (5.20) for ζ = ξ + η.
The proof for ζ = ξ − η is similar. □

Proof of Theorem 5.1 (continuation). By Lemma 5.3 we may choose a sequence (ωk)k ⊂ U
and an infinite set K ⊂ N such that for every ζ ∈ {ξ, η, ξ + η, ξ − η} conditions (a) and
(b) of Lemma 5.2 hold and

lim
k→+∞
k∈K

Cξ,η
k

∑
(i,j)∈J k

Duζ
yk,ζi,j

(Ik,ζi,j \ Jζ
yk,ζi,j

) = σζu(U),

for every J k such that J k
3 ⊂ J k ⊂ J k

1 (see (5.18)), where the projections yk,ζi,j are defined

taking ω = ωk in (5.4).
To present the technique we will employ in the sequel, let us assume for a moment that

for every (i, j) ∈ J k
1 the segments [xki,j , x

k
i+1,j ], [x

k
i,j , x

k
i,j+1], [x

k
i,j , x

k
i+1,j+1], [x

k
i+1,j , x

k
i+1,j+1],

[xki,j+1, x
k
i+1,j+1], and [xki+1,j , x

k
i,j+1] do not intersect the set J , which implies Ik,ζi,j \ Jζ

yk,ζi,j

=

Ik,ζi,j , hence

lim
k→+∞
k∈K

Cξ,η
k

∑
(i,j)∈J k

Duζ
yk,ζi,j

(Ik,ζi,j ) = σζu(U), (5.34)

whenever J k
3 ⊂ J k ⊂ J k

1 . By (a) and (b) of Lemma 5.2 and (5.17), for every k ∈ N and

(i, j) ∈ J k
1 we have that uζ

yk,ζi,j

∈ BV (U ζ
yk,ζi,j

) and

Duζ
yk,ζi,j

(Ik,ζi,j ) = (u(xk,ζi,j + 1
kζ)− u(xk,ζi,j )) · ζ for every ζ ∈ {ξ, η, ξ + η, ξ − η}. (5.35)

Let e1 := (1, 0) and e2 := (0, 1) and set

J k
2 + e1 := {(i+ 1, j) : (i, j) ∈ J k

2 } and J k
2 + e2 := {(i, j + 1) : (i, j) ∈ J k

2 },
and observe that by (5.19) we have J k

3 ⊂ J k
2 + e1 ⊂ J k

1 and J k
3 ⊂ J k

2 + e2 ⊂ J k
1 . From

(5.3) and (5.35) it follows that∑
(i,j)∈J k

2

Duξ
yk,ξi,j

(Ik,ξi,j ) =
∑

(i,j)∈J k
2

(
u(xki+1,j)− u(xki,j)

)
· ξ,

∑
(i,j)∈J k

2 +e2

Duξ
yk,ξi,j

(Ik,ξi,j ) =
∑

(i,j)∈J k
2 +e2

(
u(xki+1,j)− u(xki,j)

)
· ξ,

∑
(i,j)∈J k

2

Duη
yk,ηi,j

(Ik,ηi,j ) =
∑

(i,j)∈J k
2

(
u(xki,j+1)− u(xki,j)

)
· η,

∑
(i,j)∈J k

2 +e1

Duη
yk,ηi,j

(Ik,ηi,j ) =
∑

(i,j)∈J k
2 +e1

(
u(xki,j+1)− u(xki,j)

)
· η,

∑
(i,j)∈J k

2

Duξ+η
yk,ξ+η
i,j

(Ik,ξ+ηi,j ) =
∑

(i,j)∈J k
2

(
u(xki+1,j+1)− u(xki,j)

)
· (ξ + η),

∑
(i,j)∈J k

2

Duξ−η
yk,ξ−η
i,j

(Ik,ξ−ηi,j ) =
∑

(i,j)∈J k
2

(
u(xki+1,j)− u(xki,j+1)

)
· (ξ − η).

Thus, ∑
(i,j)∈J k

2

Duξ+η
yk,ξ+η
i,j

(Ik,ξ+ηi,j ) +
∑

(i,j)∈J k
2

Duξ−η
yk,ξ−η
i,j

(Ik,ξ−ηi,j )

=
∑

(i,j)∈J k
2

(
u(xki+1,j+1)− u(xki,j)

)
· (ξ + η) +

∑
(i,j)∈J k

2

(
u(xki+1,j)− u(xki,j+1)

)
· (ξ − η)
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=
∑

(i,j)∈J k
2

(u(xki+1,j+1)− u(xki,j+1)) · ξ +
∑

(i,j)∈J k
2

(u(xki+1,j)− u(xki,j)) · ξ (5.36)

+
∑

(i,j)∈J k
2

(u(xki+1,j+1)− u(xki+1,j)) · η +
∑

(i,j)∈J k
2

(u(xki,j+1)− u(xki,j)) · η

=
∑

(i,j)∈J k
2

Duξ
yk,ξi,j

(Ik,ξi,j ) +
∑

(i,j)∈J k
2 +e2

Duξ
yk,ξi,j

(Ik,ξi,j ) +
∑

(i,j)∈J k
2 +e1

Duη
yk,ηi,j

(Ik,ηi,j ) +
∑

(i,j)∈J k
2

Duη
yk,ηi,j

(Ik,ηi,j ).

Thanks to (5.34) we obtain

σξ+ηu (U) + σξ−ηu (U) = 2σξu(U) + 2σηu(U),

which implies that ξ 7→ σξu(U) is quadratic.
Unfortunately, the hypothesis that for every k ∈ N and (i, j) ∈ J k

1 the every one of the
six segments [xki,j , x

k
i+1,j ], [xki,j , x

k
i,j+1], [xki,j , x

k
i+1,j+1], [xki+1,j , x

k
i+1,j+1], [xki,j+1, x

k
i+1,j+1],

and [xki+1,j , x
k
i,j+1] do not intersect the set J is almost never satisfied. Therefore, for every

k ∈ N we introduce the set Gk ⊂ Z2 of good indices, defined as

Gk :=
{
(i, j)∈ J k

2 : none of the segments [xki,j , x
k
i+1,j ], [x

k
i,j , x

k
i,j+1] , [x

k
i,j , x

k
i+1,j+1],

[xki+1,j , x
k
i+1,j+1], [x

k
i,j+1, x

k
i+1,j+1], [x

k
i+1,j , x

k
i,j+1] intersects J

}
,

(5.37)

Note that by (5.17) we have

Ik,ζi,j ∩ Jζ
yk,ζi,j

= Ø for every (i, j) ∈ Gk,

Ik,ξi,j ∩ Jξ
yk,ξi,j

= Ø for every (i, j) ∈ Gk + e2,

Ik,ηi,j ∩ Jη
yk,ηi,j

= Ø for every (i, j) ∈ Gk + e1,

(5.38)

where

Gk + e1 := {(i+ 1, j) ∈ Z2 : (i, j) ∈ Gk} and Gk + e2 := {(i, j + 1) : (i, j) ∈ Gk}.
To prove the result in the general case, in the next section (see Theorem 6.1) we shall show
that the sequence (ωk)k ⊂ U and the infinite set K ⊂ N can be chosen in such a way that
conditions (a) and (b) of Lemma 5.2 hold and, in addition, for every ζ ∈ {ξ, η, ξ+η, ξ−η},

lim
k→+∞
k∈K

Cξ,η
k

∑
(i,j)∈Gk

Duζ
yk,ζi,j

(Ik,ζi,j ) = σζu(U),

lim
k→+∞
k∈K

Cξ,η
k

∑
(i,j)∈Gk+e2

Duξ
yk,ξi,j

(Ik,ξi,j ) = σξu(U),

lim
k→+∞
k∈K

Cξ,η
k

∑
(i,j)∈Gk+e1

Duη
yk,ηi,j

(Ik,ηi,j ) = σηu(U).

(5.39)

Assuming that these equalities hold, we now conclude the proof in the general case.
Observing that (5.35) still holds for (i, j) ∈ Gk, and also for (i, j) ∈ Gk + e1 when ζ = η
and for (i, j) ∈ Gk + e2 when ζ = ξ, repeating the arguments that led to (5.36) we obtain∑

(i,j)∈Gk

Duξ+η
yk,ξ+η
i,j

(Ik,ξ+ηi,j ) +
∑

(i,j)∈Gk

Duξ−η
yk,ξ−η
i,j

(Ik,ξ−ηi,j )

=
∑

(i,j)∈Gk

Duξ
yk,ξi,j

(Ik,ξi,j ) +
∑

(i,j)∈Gk+e2

Duξ
yk,ξi,j

(Ik,ξi,j )

+
∑

(i,j)∈Gk+e1

Duη
yk,ηi,j

(Ik,ηi,j ) +
∑

(i,j)∈Gk

Duη
yk,ηi,j

(Ik,ηi,j ).
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Multiplying the previous equality by Cξ,η/k and using (5.39) we obtain (5.1). This con-
cludes the proof. □

6. Conclusion of the proof in dimension d = 2

In this section we prove a technical result, which concludes the proof of Theorem 5.1.
Throughout this section u, ξ, η, and U are as in Section 5 and we use the notation
introduced in the proof of Theorem 5.1. In particular, we recall that Gk is defined by
(5.37). Before stating the main result of this section we introduce the set of bad indices
Bk ⊂ Z2, defined as

Bk :=
{
(i, j) ∈ J k

2 : one of the segments [xki,j , x
k
i+1,j ], [x

k
i,j , x

k
i,j+1] , [x

k
i,j , x

k
i+1,j+1],

[xki+1,j , x
k
i+1,j+1], [x

k
i,j+1, x

k
i+1,j+1], [x

k
i+1,j , x

k
i,j+1] intersects J

}
,

(6.1)

Theorem 6.1. There exist an infinite set K ⊂ N and a sequence (ωk)k∈N ⊂ U such that
for every ζ ∈ {ξ, η, ξ + η, ξ − η} conditions (a), (b) of Lemma 5.2 and (5.20) of Lemma
5.3 hold and the following equalities are satisfied:

lim
k→+∞
k∈K

Cξ,η
k

∑
(i,j)∈Gk

Duζ
yk,ζi,j

(Ik,ζi,j ) = σζu(U), (6.2)

lim
k→+∞
k∈K

Cξ,η
k

∑
(i,j)∈Gk

2+e2

Duξ
yk,ξi,j

(Ik,ξi,j ) = σξu(U), (6.3)

lim
k→+∞
k∈K

Cξ,η
k

∑
(i,j)∈Gk

2+e1

Duη
yk,ηi,j

(Ik,ηi,j ) = σηu(U), (6.4)

lim
k→+∞
k∈K

1

k

∑
(i,j)∈Bk

|Duζ
yk,ζi,j

|(Ik,ζi,j \ Jζ
yk,ζi,j

) = 0, (6.5)

lim
k→+∞
k∈K

1

k

∑
(i,j)∈Bk+e2

|Duξ
yk,ξi,j

|(Ik,ξi,j \ Jξ
yk,ξi,j

) = 0, (6.6)

lim
k→+∞
k∈K

1

k

∑
(i,j)∈Bk+e1

|Duη
yk,ηi,j

|(Ik,ηi,j \ Jη
yk,ηi,j

) = 0, (6.7)

where the points yk,ζi,j introduced in (5.5) are defined by taking ω = ωk.

The crucial part in the proof of this result is proving (6.5)-(6.7), as (6.2)-(6.4) can then
be obtained from (5.20) by difference, using (5.38). We only prove (6.5), as the proof of
(6.6) and (6.7) are similar. This proof is extremely technical. The arguments we are going
to use require some additional notation.

Given ζ ∈ {ξ, η, ξ − η, ξ + η}, we set

ζ̄ := ξ if ζ ∈ {η, ξ + η} and ζ̄ := η if ζ ∈ {ξ, ξ − η}. (6.8)

We observe that ζ and ζ̄ are linearly independent. For y ∈ R2, k ∈ N, j ∈ Z, and

ζ ∈ {ξ, η, ξ + η, ξ − η} let tk,ζj (y) be the real number characterised by

y + tk,ζj (y)ζ ∈ {ω + j
kζ + sζ̄ : s ∈ R}. (6.9)

We also set
xk,ζj (y) := y + tk,ζj (y)ζ. (6.10)

In other words, xk,ζj (y) is the intersection of the straight lines {y + tζ : t ∈ R} and

{ω + j
kζ + sζ̄ : s ∈ R}. Note that the family of straight lines ({ω + j

kζ + sζ̄ : s ∈ R})j∈Z
coincides with the family of the straight lines parallel to ζ̄ passing through one of the
points xki,j for i, j ∈ Z.
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Note that for every j ∈ Z and t ∈ R we have

tk,ζj+1(y) = tk,ζj (y) + 1
k and tk,ζj (y + tζ) = tk,ζj (y)− t,

which give

xk,ζj+1(y) = xk,ζj (y) + 1
kζ and xk,ζj (y + tζ) = xk,ζj (y). (6.11)

Moreover,

[xk,ζj (y), xk,ζj+1(y)) = {y + tζ : t ∈ [tk,ζj (y), tk,ζj+1(y))}. (6.12)

Therefore for every y ∈ R2 each straight line {y + tζ : t ∈ R} can be written as disjoint
union of segments in the following way

{y + tζ : t ∈ R} =
⋃
j∈Z

[xk,ζj (y), xk,ζj+1(y)). (6.13)

We need to introduce some sets which are useful to establish (6.5) and whose definition
requires some additional notation. Let us fix ζ ∈ {ξ, η, ξ + η, ξ − η} and k ∈ N. In view of
(6.13), for every x ∈ R2 there exists a unique j ∈ Z such that

x ∈ [xk,ζj (x), xk,ζj+1(x)). (6.14)

We define the map zk,ζ : R2 → R2 (see Figure 3) as

zk,ζ(x) = xk,ζj (x), (6.15)

where j ∈ Z is the unique index such that (6.14) holds.

x

zk,ξ(x)

{xki,j + sη : s ∈ R}
{xki+1,j + sη : s ∈ R}

Figure 3. The map x 7→ zk,ξ(x).

By (6.11) and (6.12) for every y ∈ R2

zk,ζ(y + tζ) = xk,ζj (y) for every t ∈ [tk,ζj (y), tk,ζj+1(y)). (6.16)

Geometrically (see Figure 3), zk,ζ(x) is given by x − tζ where t ≥ 0 is the smallest
number such that x− tζ belongs to one of the straight lines parallel to ζ̄ passing through
one of the points xki,j . By this geometric characterisation, zk,ζ is a Borel function.

We consider the union S of the sides and the diagonals of the parallelogram of vertices
at 0, ξ, ξ + η, η, i.e.,

S := [0, ξ] ∪ [0, η] ∪ [0, ξ + η] ∪ [η, ξ] ∪ [η, ξ + η] ∪ [ξ, ξ + η]. (6.17)

For k ∈ N and ζ ∈ {ξ, η, ξ + η, ξ − η} we introduce the set

Ek,ζ := {x ∈ R2 : (zk,ζ(x) + 1
kS) ∩ J ̸= Ø}. (6.18)

For y ∈ R2 we define

Ik,ζ(y) := {i ∈ Z : (xk,ζi (y) + 1
kS) ∩ J ̸= Ø}, N k,ζ(y) := H0(Ik,ζ(y)),

Ek,ζ(y) :=
⋃

i∈Ik,ζ(y)

[tk,ζi (y), tk,ζi+1(y)).
(6.19)

By (6.16) we have the equality

Ek,ζ(y) = (Ek,ζ)ζy for every y ∈ R2 (6.20)
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and by (6.11) we have

Ik,ζ(y + tζ) = Ik,ζ(y) and N k,ζ(y + tζ) = N k,ζ(y) for every t ∈ R. (6.21)

Let x ∈ R2 and let j ∈ Z be the unique index such that (6.14) holds. By (6.11) for
every i ∈ Z we have

xk,ζi (x) = xk,ζi (x+ i−j
k ζ) = zk,ζ(x+ i−j

k ζ),

where the last equality follows from (6.15), since x+ i−j
k ζ ∈ [xk,ζi (x+ i−j

k ζ), x
k,ζ
i+1(x+

i−j
k ζ))

by (6.11). Recalling the definition of Ek,ζ in (6.18), the equalities above imply that

Ik,ζ(x) = {i ∈ Z : (zk,ζ(x+ i−j
k ζ) +

1
kS) ∩ J ̸= Ø} = {i ∈ Z : x+ i−j

k ζ ∈ Ek,ζ},
which gives

N k,ζ(x) = H0({i ∈ Z : x+ i
kζ ∈ Ek,ζ}). (6.22)

For ζ ∈ {ξ, η, ξ + η, ξ − η}, k,m ∈ N, and y ∈ R2 we set

Êk,ζm := {x ∈ Ek,ζ : N k,ζ(x) ≤ m}, Ěk,ζm := {x ∈ Ek,ζ : N k,ζ(x) > m}, (6.23)

Êk,ζm (y) :=

{
Ek,ζ(y) if N k,ζ(y) ≤ m,

Ø otherwise,
Ěk,ζm (y) :=

{
Ek,ζ(y) if N k,ζ(y) > m,

Ø otherwise.
(6.24)

By (6.20) and (6.21) we have

Êk,ζm (y) = (Êk,ζm )ζy and Ěk,ζm (y) = (Ěk,ζm )ζy. (6.25)

All these sets are Borel measurable as the following lemma shows.

Lemma 6.2. The sets Ek,ζ , Êk,ζm , and Ěk,ζm are Borel measurable. Moreover, the function
N k,ζ is Borel measurable on R2.

Proof. For every set B ⊂ R2 we define

Ek,ζB := {x ∈ R2 : (zk,ζ(x) + 1
kS) ∩B ̸= Ø},

FB := {z ∈ R2 : (z + 1
kS) ∩B ̸= Ø}.

We begin by proving that for a compact set K ⊂ R2 the set Ek,ζK is Borel measurable.

To this aim we note that the set FK is closed and that Ek,ζK = {x ∈ R2 : zk,ζ(x) ∈ FK}.
Recalling that zk,ζ is Borel measurable, we conclude that Ek,ζK is Borel measurable. By

(5.9) we have J =
⋃
n∈NKn, whereKn are compact sets. This gives that Ek,ζ =

⋃
n∈NE

k,ζ
Kn

.

Since the sets Ek,ζKn
are Borel measurable, so is Ek,ζ .

To prove that Êk,ζm Borel measurable, we observe that by (6.22) and (6.23) a point x

belongs to Êk,ζm if and only if the number of indices i ∈ Z such that x ∈ Ek,ζ − i
kζ is less

than or equal to m. This implies that, setting Ek,ζi := Ek,ζ − i
kζ, we have

Êk,ζm =
{
x ∈ R2 :

∑
i χEk,ζ

i
(x) ≤ m

}
,

where χ
Ek,ζ

i
is the characteristic function of Ek,ζi . Since the sets Ek,ζi are Borel measurable,

we deduce that Êk,ζm is Borel measurable. The Borel measurability of Ěk,ζm follows from

the equality Ěk,ζm = Ek,ζ \ Êk,ζm .
To prove that the function N k,ζ is Borel measurable, it is enough to observe that by

(6.22) we have N k,ζ =
∑

i∈Z χEk,ζ
i

. □

Remark 6.3. All the sets defined in (6.18) and (6.23) depend non-trivially on ω ∈ R2,
since by (5.3) every choice of ω determines different points xki,j and thus, by (6.10), different

sets in (6.18) and (6.23) as well. Not to overburden the notation, we do not indicate the
dependence of such objects on ω. The measurability issues with respect to ω will be dealt
with in the Appendix.



A MEASURE ASSOCIATED TO GBD 29

To use the sets Êk,ζm and Ěk,ζm in our estimates we need the properties proved in the
following two lemmas, whose proofs are postponed. We observe that, since ξ and η are
linearly independent, given ζ ∈ {ξ, η, ξ + η, ξ− η}, every point ω ∈ R2 can be written in a
unique way as

ω = z1ζ̄ + z2ζ, (6.26)

for suitable z1, z2 ∈ R. We set

Iζ :=

{
(0, α) if ζ = ξ or ζ = ξ − η,

(0, β) if ζ = η or ζ = ξ + η,
(6.27)

and we observe that by (5.2)

πζ̄(U) := {z2πζ̄(ζ) : z2 ∈ Iζ}. (6.28)

Lemma 6.4. There exist a constant C > 0 such that for every ζ ∈ {ξ, η, ξ + η, ξ − η}
and for every ε > 0 there exist an infinite set Kζ

ε ⊂ N and a Borel set Iζε ⊂ Iζ , with

L1(Iζ \ Iζε ) ≤ ε, such that

H1
(
πζ(Ěk,ζm )

)
≤ C/m (6.29)

for every m ∈ N, ω ∈ U ζε := U ∩ {z1ζ̄ + z2ζ : z1 ∈ R, z2 ∈ Iζε }, and k ∈ Kζ
ε .

Lemma 6.5. Let m ∈ N and ζ ∈ {ξ, η, ξ + η, ξ − η}. Then we have

lim
k→+∞

|Duζy|(Êk,ζm (y) ∩ U ζy \ Jζy ) = 0 for H1-a.e. y ∈ Πζ , (6.30)

lim
k→+∞

ˆ
Πζ

|Duζy|(Êk,ζm (y) ∩ U ζy \ Jζy ) dH1(y) = 0. (6.31)

To prove Lemma 6.4 we need the following elementary result.

Lemma 6.6. Let F ⊂ R be a finite set and let a > 0 and b < c. Thenˆ
R
H0([at+ b, at+ c] ∩ F ) dt = c− b

a
H0(F ).

Proof. By the Fubini Theorem we have thatˆ
R
H0([at+ b, at+ c] ∩ F ) dt =

ˆ
R

( ˆ
F
χ[at+b,at+c](s) dH0(s)

)
dt

=

ˆ
F

( ˆ
R
χ[ s−c

a
, s−b

a
](t) dt

)
dH0(s) =

c− b

a
H0(F ).

This concludes the proof. □

Proof of Lemma 6.4. We observe that πζ(Ěk,ζm ) = {y ∈ Πζ : N k,ζ(y) > m} by (6.21)

and (6.23). Since N k,ζ is Borel measurable by Lemma 6.2, πζ(Ěk,ζm ) is a Borel set. By
Čebyšëv’s inequality we obtain

H1
(
πζ(Ěk,ζm )

)
= H1

(
{y ∈ Πζ : N k,ζ(y) > m}

)
≤ 1

m

ˆ
Πζ

N k,ζ(y) dH1(y) (6.32)

for every ζ ∈ {ξ, η, ξ + η, ξ − η}, k,m ∈ N, ω ∈ U . To conclude the proof it is enough to
show that there exist a constant C > 0 and, for every ε > 0 and ζ ∈ {ξ, η, ξ + η, ξ − η},
an infinite set Kζ

ε ⊂ N and a Borel set Iζε ⊂ Iζ , with L1(Iζ \ Iζε ) ≤ ε, such thatˆ
Πζ

N k,ζ(y) dH1(y) ≤ C (6.33)

for every ω ∈ U ζε := U ∩ {z1ζ̄ + z2ζ : z1 ∈ R, z2 ∈ Iζε } and k ∈ Kζ
ε .

We observe that by (6.17) we can write S = S1 ∪ · · · ∪ S6, where

S1 := [0, ζ̄], S2 :=

{
S1 + ξ if ζ ∈ {ξ, ξ − η},
S1 + η if ζ ∈ {η, ξ + η},

(6.34)
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while S3,..., S6 are the other four segments of S, which are transversal to ζ̄. By (6.19) this
implies that

Ik,ζ(y) =
6⋃

h=1

{j ∈ Z : (xk,ζj (y) + Sh) ∩ J ̸= Ø}

for every y ∈ Πζ , hence

N k,ζ(y) ≤
6∑

h=1

H0({j ∈ Z : (xk,ζj (y) + Sh) ∩ J ̸= Ø}).

Thus,
ˆ
Πζ

N k,ζ(y) dH1(y) ≤
6∑

h=1

ˆ
Πζ

H0({j ∈ Z : (xk,ζj (y) + 1
kSh) ∩ J ̸= Ø}) dH1(y). (6.35)

Let us fix ζ ∈ {ξ, η, ξ+η, ξ−η} and ε > 0. We claim that there exist a constant c1 > 0,

independent of ω, k, and ε, an infinite set Kζ
ε ⊂ N, independent of ω, and a Borel set

Iζε ⊂ Iζ , with L1(Iζ \ Iζε ) ≤ ε, such thatˆ
Πζ

H0({j ∈ Z : (xk,ζj (y) + 1
kSh) ∩ J ̸= Ø}) dH1(y) ≤ c1, (6.36)

for every ω ∈ U ζε , k ∈ Kζ
ε , and h ∈ {1, ..., 6}. To prove this claim, we first observe that for

every y ∈ Πζ we have

H0({j ∈ Z : (xk,ζj (y) + 1
kSh) ∩ J ̸= Ø}) ≤

∑
j∈Z

H0((xk,ζj (y) + 1
kSh) ∩ J). (6.37)

We consider first the case h = 1. We prove that there exists a constant c > 0, indepen-
dent of ω, k, ε, and j, such thatˆ

Πζ

H0((xk,ζj (y) + 1
kS1) ∩ J) dH

1(y) ≤ c

k
H0(J ζ̄

yk,ζ̄j

) (6.38)

for every k ∈ N and j ∈ Z. If H0(J ζ̄
yk,ζ̄j

) = +∞ there is nothing to prove. Let us fix k and

j such that H0(J ζ̄
yk,ζ̄j

) < +∞.

We parametrise Πζ by y = sπζ(ζ̄) with s ∈ R. and observe that (6.38) is equivalent toˆ
R
H0((xk,ζj (sπζ(ζ̄)) + 1

kS1) ∩ J) ds ≤
c

k
H0(J ζ̄

yk,ζ̄j

) (6.39)

for a possibly different constant c, independent of ω, k , ε, and j. By (5.4), (5.5), and (6.8)

we have that πζ̄(ω + j
kζ) = yk,ζ̄j . Therefore by the comments after (6.10)

{xk,ζj (y)} = {xk,ζj (sπζ(ζ̄))}={sπζ(ζ̄) + tζ : t ∈ R}∩{yk,ζ̄j + tζ̄ : t ∈ R}. (6.40)

This implies that for every s ∈ R there exists a unique τk,ζ̄j (s) ∈ R such that yk,ζ̄j +

τk,ζ̄j (s)ζ̄ = xk,ζj (sπζ(ζ̄)), so that by (6.34) we have

H0((xk,ζj (sπζ(ζ̄)) + 1
kS1) ∩ J) = H0([τk,ζ̄j (s), τk,ζ̄j (s) + 1

k ] ∩ J
ζ̄

yk,ζ̄j

).

Elementary geometric arguments show that there exist a constant c > 0, independent of
ω, k, ε, and j, and a constant d ∈ R, depending on ω, k, and j, such that

τk,ζ̄j (s) =
s

c
+ d for every s ∈ R.
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Since by assumption H0(J ζ̄
yk,ζ̄j

) < +∞, we may apply Lemma 6.6 to obtain that

ˆ
R
H0([τk,ζ̄j (s), τk,ζ̄j (s) + 1

k ] ∩ J
ζ̄

yk,ζ̄j

) ds ≤ c

k
H0(J ζ̄

yk,ζ̄j

). (6.41)

As the constant c depends only on ξ and η, this proves (6.39), which gives (6.38). Arguing
in a similar way, we prove thatˆ

Πζ

H0((xk,ζj (y) + 1
kS2) ∩ J) dH

1(y) ≤ c

k
H0(J ζ̄

yk,ζ̄j±1

), (6.42)

where the sign in ±1 depends on the specific value of ζ, according to (6.34).

By (5.4), (5.5), (6.8), and (6.26) we have the equality yk,ζ̄j = (z2 +
j
k )π

ζ̄(ζ) for every

j ∈ Z and for a suitable z2 ∈ R. Let f : R → [0,+∞] be defined by

f(s) := H0(J ζ̄
sπζ̄(ζ)

) for every s ∈ R.

Observe that, since J ⊂ U , by (6.28) the function f vanishes outside of Iζ . Since by (5.8)
and (5.9) we have H1(J) = H1(J1

u ∩ U) and H1(J1
u ∩ U) < +∞ by Remark 2.10, the

function f is integrable by Lemma 2.4. Thus, we may apply Lemma 3.1 and we obtain an

infinite set Kζ
ε ⊂ N and a Borel set Iζε ⊂ Iζ , with L1(Iζ \ Iζε ) ≤ ε, such that

lim
k→+∞
k∈Kζ

ε

1

k

∑
j∈Z

H0(J ζ̄
yk,ζ̄j

) =

ˆ
Iζ
H0(J ζ̄

sπζ̄(ζ)
) ds =

1

|πζ̄(ζ)|

ˆ
Πζ̄

H0(J ζ̄y ) dH1(y) ≤ 1

|πζ̄(ζ)|
H1(J)

uniformly for z2 ∈ Iζε . Hence, up to removing a finite number of elements from Kζ
ε , we

may assume that
1

k

∑
j∈Z

H0(J ζ̄
yk,ζ̄j

) ≤ 1

|πζ̄(ζ)|
H1(J) + 1 (6.43)

for every k ∈ Kζ
ε and z2 ∈ Iζε . Together with (6.37), (6.38), and (6.42), this implies (6.36)

for h = 1 and h = 2.
Let us now fix h ∈ {3, . . . , 6}. For every j ∈ Z, let Lj be the strip defined by Lj :=

{x ∈ R2 : πζ̄(x) ∈ [yk,ζ̄j−1, y
k,ζ̄
j+1]}, that is to say, the region of the plane between the straight

lines {yk,ζ̄j−1 + sζ̄ : s ∈ R} and {yk,ζ̄j+1 + sζ̄ : s ∈ R}. Since πζ̄(Sh) is equal to [0, πξ(η)] or

[πξ(η), 0] if ζ̄ = ξ, while πζ̄(Sh) = [0, πη(ξ)] if ζ̄ = η, from (5.4) and (5.5) we see that in
every case we have the inclusion⋃

s∈R
{yk,ζ̄j + sζ̄ + 1

kSh} ⊂ Lj for every j ∈ Z.

Let ζ̃ ∈ R2 \ {0} a vector in the direction of the segment Sh. Recalling that xk,ζj (y) ∈
{yk,ζ̄j + sζ̄ : s ∈ R} for every y ∈ Πζ by (6.40), we deduce from the previous inclusion that

(xk,ζj (y) + 1
kSh) ∩ J ⊂ J ∩ Lj , hence

H0((xk,ζj (y) + 1
kSh) ∩ J) ≤ H0((J ∩ Lj)ζ̃

πζ̃(xk,ζj (y))
) (6.44)

for every j ∈ Z. As ζ and ζ̄ are linearly independent and the same holds for ζ̃ and ζ̄, the

map y 7→ πζ̃(xk,ζj (y)) from Πζ into Πζ̃ is affine and invertible. Moreover, its linear part is

independent of ω, k, and j, since it depends only on ζ, ζ̄, and ζ̃. By Lemma 2.4 we then
have ˆ

Πζ̃

H0((J ∩ Lj)ζ̃z) dH1(z) ≤ H1(J ∩ Lj).
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Using the map y 7→ πζ̃(xk,ζj (y)) as change of variables, from the previous inequality and

(6.44) it follows thatˆ
Πζ

H0((xk,ζj (y) + 1
kSh) ∩ J) dH

1(y) ≤ γH1(J ∩ Lj)

for every j ∈ Z, k ∈ N, and ω ∈ U , with γ > 0, a constant depending only on ζ, ζ̄, and ζ̃.
Observing that every point x ∈ R2 belongs at most to three strips of the form Lj , from
the previous inequality it follows that∑

j∈Z

ˆ
Πζ

H0((xk,ζj (y) + 1
kSh) ∩ J) dH

1(y) ≤ 3γH1(J).

This inequality, together with (6.37), yieldsˆ
Πζ

H0({j ∈ Z : (xk,ζj (y) + 1
kSh) ∩ J ̸= Ø}) dH1(y) ≤ 3γH1(J).

Since H1(J) < +∞, this proves (6.36) for h ∈ {3, . . . , 6}. Therefore, (6.36) holds for every
h ∈ {1, . . . , 6}. Thanks to (6.35), from (6.36) we obtain (6.33), which by (6.32) concludes
the proof. □

Before proving Lemma 6.5, we state a result about one-dimensional measures, which
shows that non-atomic measures satisfy a suitable uniform absolute continuity property.

Lemma 6.7. Let I = [a, b] ⊂ R be a bounded closed interval and let µ ∈ M+
b (I) be a

measure such that µ({t}) = 0 for every t ∈ I. Then for every m ∈ N and ε > 0 there
exists δ(ε,m) > 0 such that for every δ ∈ (0, δ(ε,m)) we have

µ
( m⋃
ℓ=1

(tℓ − δ, tℓ + δ) ∩ I
)
≤ ε for every (t1, ..., tm) ∈ Im.

Proof. We argue by contradiction. Suppose that there exist m ∈ N and ε > 0 such that
for a sequence δk > 0 converging to 0 we have

µ
( m⋃
ℓ=1

(tkℓ − δk, t
k
ℓ + δk) ∩ I

)
> ε for some (tk1, ..., t

k
m) ∈ Im.

Given δ > 0, this implies that

µ
( m⋃
ℓ=1

(tkℓ − δ, tkℓ + δ) ∩ I
)
> ε for all k ∈ N sufficiently large.

Since I is compact, there exists a subsequence, not relabelled, and a point (t1, ..., tm) ∈ Im

such that (tk1, ..., t
k
m) converges to (t1, ..., tm) as k → +∞. Since (tkℓ − δ, tkℓ + δ) ⊂ (tℓ −

2δ, tℓ + 2δ) for k large we deduce that

µ
( m⋃
ℓ=1

(tℓ − 2δ, tℓ + 2δ) ∩ I
)
> ε.

Since δ > 0 is arbitrary, we obtain

µ
( m⋃
ℓ=1

{tℓ}
)
≥ ε,

in contradiction with our hypotheses. This concludes the proof. □

Proof of Lemma 6.5. We begin by noting that for H1-a.e. y ∈ Πζ we have uζy ∈ BV (U ζy )

by Remark 2.6 and, recalling (5.8) and (5.9), by Theorem 2.12 we have also J
uζy

∩ U ζy ⊂
Jζy = (J1

u)
ζ
y. Let us fix y ∈ Πζ such that these two conditions hold. By standard properties

of BV -functions in dimension one we have Duξy({t}) = 0 for every t ∈ (U \ J)ζy. We recall
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that by definition Êk,ζm (y) is the union of at most m intervals of length 1
k (see (6.19)).

Hence, Lemma 6.7, applied to the measure µ := |Duξy| (U ζy \ Jζy ) defined on the closure

of the interval U ζy , implies that (6.30) holds.

We observe that the integral in (6.31) is well-defined, since by Lemma 6.2 the set Êk,ζm
is Borel measurable and Êk,ζm (y) is its slice by (6.25). Since |Duζy|(Êk,ζm (y) ∩ U ζy \ Jζy ) ≤
|Duζy|(U ζy \ Jζy ) for H1-a.e. y ∈ Πζ and the function y 7→ |Duζy|(U ζy \ Jζy ) is integrable on
Πζ with respect to H1 by (2.17), the Dominated Convergence Theorem implies (6.31),
concluding the proof. □

For technical reasons, instead of a single ω ∈ U we have to consider a sequence (ωk)k ⊂
U ; accordingly, the points yk,ζj , introduced in (5.5), and the sets Êk,ζm (y) and Ěk,ζm (y) are
defined by taking ω = ωk.

Lemma 6.8. For every ε > 0 there exist mε ∈ N and an infinite set Kε ⊂ N with the
following property: for every k ∈ Kε there exists a Borel set Ukε ⊂ U , with L2(U \Ukε ) ≤ ε,
such that for every ζ ∈ {ξ, η, ξ + η, ξ − η} and for every sequence (ωk)k∈Kε, with ωk ∈ Ukε
for every k ∈ Kε, the following conditions are simultaneously satisfied:

1

k

∑
j∈Z

|Duζ
yk,ζj

|(Ěk,ζmε
(yk,ζj ) ∩ U ζ

yk,ζj

\ Jζ
yk,ζj

) ≤ ε for every k ∈ Kε, (6.45)

lim
k→+∞
k∈Kε

1

k

∑
j∈Z

|Duζ
yk,ζj

|(Êk,ζmε
(yk,ζj ) ∩ U ζ

yk,ζj

\ Jζ
yk,ζj

) = 0. (6.46)

Proof. Let us fix ζ ∈ {ξ, η, ξ+η, ξ−η} and ε > 0. Arguing as in Lemma 5.3 we see that it
is enough to prove that there exist mε ∈ N and an infinite set Kε ⊂ N with the following
property: for every k ∈ Kε there exists a Borel set Ukε ⊂ U , with L2(U \ Ukε ) ≤ ε, such
that for every sequence (ωk)k∈Kε , with ωk ∈ Ukε for every k ∈ Kε, conditions (6.45) and
(6.46) hold for this particular ζ.

We observe that every ω ∈ R2 can be written in a unique way as ω = z1ζ̄ + z2ζ,

where z1, z2 ∈ R and ζ̄ is defined by (6.8). By (6.9) the numbers tk,ζi (y) depend on ω

only through z2, hence the same holds for xk,ζj (y), Êk,ζm (y), and Ěk,ζm (y) (see (6.10) and

(6.24)). We also remark that there exists a constant c1 > 0 such that if ω ∈ U then
|z1| ≤ c1. Moreover, there exists a constant c2 > 0 such that, if B ⊂ R2 is a Borel set and
A = {ω ∈ U : ω = z1ζ̄ + z2ζ with (z1, z2) ∈ B}, then

L2(A) ≤ c2L2(B). (6.47)

Let C > 0 be the constant of Lemma 6.4. Thanks to Lemma 6.4, we can find an infinite

set Hζ
ε ⊂ N and a Borel set Iζε ⊂ Iζ , with

L1(Iζ \ Iζε ) ≤ ε/(4c1c2), (6.48)

such that (6.29) holds for every m ∈ N, k ∈ Hζ
ε , and ω ∈ Ukε := U ∩ {z1ζ̄ + z2ζ : z1,∈

R, z2 ∈ Iζε }. Moreover, let Nζ ⊂ Πζ be the H1-negligible Borel set introduced at the
beginning of the proof of Lemma 5.2.

For every m ∈ N, k ∈ Hζ
ε , y ∈ Πζ , and z2 ∈ R we define

hk,ζm,ε(y, z2) :=

{
|Duζy|(Ěk,ζm (y) ∩ U ζy \ Jζy ) if y ∈ Πζ \Nζ and z2 ∈ Iζε ,

0 if y ∈ Nζ or z2 /∈ Iζε ,
(6.49)

where Ěk,ζm (y) is defined using ω of the form z1ζ̄ + z2ζ with an arbitrary z1 ∈ R. We

observe that the function hk,ζm,ε is Borel measurable on Πζ × R thanks to Lemma A.4. We
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also define

gζ(y) :=

{
|Duζy|((U \ J)ζy) if y ∈ Πζ \Nζ ,

0 if y ∈ Nζ .
(6.50)

Note that for every y ∈ Πζ we have Ěk,ζm (y)∩U ζy \Jζy ⊂ (U \J)ζy, hence hk,ζm,ε(y, z2) ≤ gζ(y)
for every y ∈ Πζ and z2 ∈ R.

We set
M ζ := H1(πζ(U)) + 1.

By (2.17) we have gζ ∈ L1(Πζ ,H1), so that by the absolute continuity of the integral there
exists δε > 0 such that ˆ

B
gζ(y) dH1(y) <

ε2|πζ(ζ̄)|2

4max{α, β}M ζc2
(6.51)

for every H1-measurable set B ⊂ Πζ with H1(B) < δε.

Since by (6.25) and (6.49) the inequality hk,ζm,ε(y, z2) > 0 implies y ∈ πζ(Ěk,ζm ) and

z2 ∈ Iζε , we haveˆ
R

(ˆ
R
hk,ζm,ε(z1π

ζ(ζ̄), z2) dz1

)
dz2 = |πζ(ζ̄)|−1

ˆ
Iζε

( ˆ
πζ(Ěk,ζ

m )
hk,ζm,ε(y, z2) dH1(y)

)
dz2

≤ |πζ(ζ̄)|−1

ˆ
Iζε

(ˆ
πζ(Ěk,ζ

m )
gζ(y) dH1(y)

)
dz2.

(6.52)
Let us fix mε ∈ N such that mε > Cδ−1

ε , where δε is a constant such that (6.51) holds.

By (6.29) we have H1(πζ(Ěk,ζmε )) < δε, for every k ∈ Hζ
ε and ω = z1ζ̄ + z2ζ with z2 ∈ Iζε .

Since L1(Iζε ) ≤ L1(Iζ) ≤ max{α, β} by (6.27), from (6.51) and (6.52) we infer thatˆ
R

(ˆ
R
hk,ζmε,ε(z1π

ζ(ζ̄), z2)dz1

)
dz2 <

ε2|πζ(ζ̄)|
4M ζc2

(6.53)

for every k ∈ Hζ
ε .

Let Pk,ζ := {j ∈ Z : yk,ζj belongs to πζ(U)}. Since ω = z1ζ̄ + z2ζ, by (5.4), (5.5), and

(6.8) we have

yk,ζj = z1π
ζ(ζ̄) + j

kπ
ζ(ζ̄) for j ∈ Z. (6.54)

We set Aζ := {(z1, z2) ∈ R2 : ω = z1ζ̄ + z2ζ ∈ U}. Setting z = (z1, z2), by the Fubini
Theorem we obtain thatˆ

Aζ

(1
k

∑
j∈Z

hk,ζmε,ε(y
k,ζ
j , z2)

)
dz =

1

k

∑
j∈Pk,ζ

ˆ
Aζ

hk,ζmε,ε((z1 +
j
k )π

ζ(ζ̄), z2) dz

≤ 1

k

∑
j∈Pk,ζ

ˆ
R

(ˆ
R
hk,ζmε,ε(z1π

ζ(ζ̄), z2) dz1

)
dz2 =

H0(Pk,ζ)

k

ˆ
R

(ˆ
R
hk,ζmε,ε(z1π

ζ(ζ̄), z2) dz1

)
dz2.

Since H0(Pk,ζ) ≤ kM ζ |πζ(ζ̄)|−1, this inequality, together with (6.53), implies thatˆ
Aζ

(1
k

∑
j∈Z

hk,ζmε,ε(y
k,ζ
j , z2)

)
dz ≤ ε2

4c2
(6.55)

for every k ∈ Hζ
ε .

We now set

V k,ζ
ε :=

{
z ∈ Aζ :

1

k

∑
j∈Z

hk,ζmε,ε(y
k,ζ
j , z2) > ε

}
∪ F k,ζ , (6.56)

where
F k,ζ :=

{
z ∈ Aζ : yk,ζj ∈ Nζ for some j ∈ Pk,ζ

}
.
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Since H1(Nζ) = 0 by (6.54) we obtain that L2(F k,ζ) = 0. In light of Cebyšëv’s inequality
and (6.55), we infer that

L2(V k,ζ
ε ) ≤ ε

4c2
.

We also introduce the set

W k,ζ
ε := V k,ζ

ε ∪
{
z ∈ Aζ : z2 ∈ Iζ \ Iζε

}
(6.57)

and observe that, since L2(
{
z ∈ Aζ : z2 ∈ Iζ \ Iζε

}
) ≤ c1L1(Iζ \ Iζε ) ≤ ε/(4c2) by (6.48),

we have
L2(W k,ζ

ε ) ≤ ε

2c2
. (6.58)

It follows immediately from (6.49), (6.56), and (6.57) that

1

k

∑
j∈Z

|Duζ
yk,ζj

|(Ěk,ζmε
(yk,ζj ) ∩ U ζ

yk,ζj

\ Jζ
yk,ζj

) =
1

k

∑
j∈Z

hk,ζmε,ε(y
k,ζ
j , z2) ≤ ε (6.59)

for every k ∈ Hζ
ε and for every z ∈ Aζ \W k,ζ

ε .
For every k,m ∈ N, y ∈ Πζ , and z2 ∈ R we set

gk,ζm (y, z2) :=

{
|Duζy|(Êk,ζm (y) ∩ U ζy \ Jζy ) if y ∈ Πζ \Nζ and z2 ∈ Iζ ,

0 if Nζ or z2 /∈ Iζ .
(6.60)

By Lemma A.4 the function gk,ζm is Borel measurable on Πζ ×R. We also observe that by

Lemma 6.5 for every z2 ∈ R and for H1-a.e. y ∈ πζ(U) the sequence gk,ζm (y, z2) converges

to 0 as k → +∞. Arguing as before, we obtain that gk,ζm (y, z2) ≤ gζ(y) for every y ∈ Πζ

and z2 ∈ R, where gζ is the function defined by (6.50).
We set

fk,ζε (z1, z2) := gk,ζmε
(z1π

ζ(ζ̄), z2) (6.61)

for every (z1, z2) ∈ R2 and observe that fk,ζε = 0 out of a suitable bounded set. Using

Lemma 3.2 and Remark 3.3 with N replaced by Hζ
ε , we obtain an infinite set Kζ

ε ⊂ Hζ
ε

and a Borel set Bζ
ε ⊂ Aζ , with L2(Bζ

ε ) ≤ ε/(2c2), such that for every m ∈ N

lim
k→+∞
k∈Kε

1

k

∑
j∈Z

fk,ζε (z1 +
j
k , z2) = 0 uniformly for (z1, z2) ∈ Aζ \Bζ

ε . (6.62)

We set Cζε := {ω ∈ U : ω = z1ζ̄ + z2ζ with (z1, z2) ∈ Bζ
ε} and observe that from (6.47) it

follows that
L2(Cζε ) ≤

ε

2
. (6.63)

Moreover, from (6.60), (6.61), and (6.62) we deduce that

lim
k→+∞
k∈Kε

1

k

∑
j∈Z

|Duζ
yk,ζj

|(Êk,ζmε
(yk,ζj ) ∩ U ζ

yk,ζj

\ Jζ
yk,ζj

) = 0 uniformly for ω ∈ U \ Cζε . (6.64)

We set Dk,ζ
ε = {ω ∈ U : ω = z1ζ̄ + z2ζ with (z1, z2) ∈ W k,ζ

ε } and observe that by (6.47),
(6.58), and (6.59) we have

L2(Dk,ζ
ε ) ≤ ε

2
for every k ∈ Kζ

ε , (6.65)

1

k

∑
j∈Z

|Duζ
yk,ζj

|(Ěk,ζmε
(yk,ζj ) ∩ U ζ

yk,ζj

\ Jζ
yk,ζj

) ≤ ε for every k ∈ Kζ
ε and ω ∈ U \Dk,ζ

ε . (6.66)

Let Uk,ζε := U\(Cζε∪Dk,ζ
ε ). Combining (6.63) and (6.65) we obtain that L2(U\Uk,ζε ) ≤ ε.

Finally, from (6.64) and (6.66) it follows that (6.45) and (6.46) hold for every sequence

(ωk)k∈Kζ
ε
such that ωk ∈ Uk,ζε for every k ∈ Kζ

ε . This concludes the proof. □
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We are finally ready to prove Theorem 6.1.

Proof of Theorem 6.1. Recalling (6.1) and (6.17) for every k ∈ N we have

Bk =
{
(i, j) ∈ J k

2 : (xki,j +
1
kS) ∩ J ̸= Ø}. (6.67)

Since by (6.15) we have

zk,ζ(xki,j) = xki,j (6.68)

(see also the comments after (6.16)), from (6.18) and (6.67) we deduce that for every
ζ ∈ {ξ, η, ξ + η, ξ − η} we have

Bk = {(i, j) ∈ J k
2 : xki,j ∈ Ek,ζ}.

For every k,m ∈ N and ζ ∈ {ξ, η, ξ + η, ξ − η} we set

B̂k,ζm := {(i, j) ∈ J k
2 : xki,j ∈ Êk,ζm },

B̌k,ζm := {(i, j) ∈ J k
2 : xki,j ∈ Ěk,ζm },

(6.69)

and observe that Bk = B̂k,ζm ∪ B̌k,ζm .
Let us fix 0 < ε < L2(U)/2. For every n ∈ N we apply Lemma 5.3 with ε replaced by

ε/2n and obtain an infinite set Hn and a Borel set Un, with L2(U \Un) ≤ ε/2n, such that
all conditions of Lemma 5.3 hold with Uε and Kε replaced by Un and Hn. In the step n+1
we can replace N in Lemma 5.3 by Hn, obtaining Hn+1 ⊂ Hn for every n ∈ N. Then, we
apply Lemma 6.8, with ε replaced by ε/2n and N replaced by Hn, and we obtain mn ∈ N,
with mn+1 ≥ mn, an infinite set Kn ⊂ Hn, and for every k ∈ Kn a Borel set Ukn ⊂ U ,
with L2(U \ Ukn) ≤ ε/2n, with the following property: for every sequence (ωk)k∈Kn such
that ωk ∈ Ukn for every k ∈ Kn and for every ζ ∈ {ξ, η, ξ + η, ξ − η} we have

1

k

∑
j∈Z

|Duζ
yk,ζj

|(Ěk,ζmn
(yk,ζj ) ∩ U ζ

yk,ζj

\ Jζ
yk,ζj

) ≤ ε

2n
for every k ∈ Kn, (6.70)

lim
k→+∞
k∈Kn

1

k

∑
j∈Z

|Duζ
yk,ζj

|(Êk,ζmn
(yk,ζj ) ∩ U ζ

yk,ζj

\ Jζ
yk,ζj

) = 0. (6.71)

Replacing Ukn by Ukn ∩ Un we obtain that Ukn ⊂ Un and L2(Un \ Ukn) ≤ ε/2n. Moreover,
repeating the same argument used when we pass from n to n + 1, it is not restrictive to
assume that Kn+1 ⊂ Kn for every n ∈ N.

By a diagonal argument, we can find an infinite set K ⊂ N and a strictly increasing
sequence (kn)n ⊂ N such that K ∩ [kn,+∞) ⊂ Kn for every n ∈ N. For every k ∈ K we
also define nk ∈ N as the largest integer such that kn ≤ k and observe that nk → +∞
as k → +∞. For k ∈ K consider the set Uk :=

⋂nk
n=1 U

k
n and observe that L2(Uk) ≥

L2(U) − 2ε for every k ∈ K, hence Uk ̸= Ø. We fix (ωk)k∈K ⊂ U such that ωk ∈ Uk for
every k ∈ K. By (6.71) we have

lim
k→+∞
k∈K

1

k

∑
j∈Z

|Duζ
yk,ζj

|(Êk,ζmn
(yk,ζj ) ∩ U ζ

yk,ζj

\ Jζ
yk,ζj

) = 0 for every n ∈ N. (6.72)

We now prove (6.5) for ζ = ξ. Let us fix (i, j) ∈ Bk and t ∈ Ik,ξi,j . By (6.67) we have

(xki,j +
1
kS) ∩ J ̸= Ø. (6.73)

Recalling (5.16), we also have tk,ξi,j ≤ t < tk,ξi,j + 1
k , where t

k,ξ
i,j is defined in (5.6). Since

xki,j ∈ {ωk + i
kξ + sη : s ∈ R}, by (5.6) and (6.9) we have tk,ξi (yk,ξj ) = tk,ξi,j , so that

tk,ξi (yk,ξj ) ≤ t < tk,ξi (yk,ξj ) + 1
k . From (6.16) and (6.68) we deduce that

zk,ξ(yk,ξj + tξ) = zk,ξ(yk,ξj + tk,ξi (yk,ξj )ξ) = zk,ξ(yk,ξj + tk,ξi,j ξ) = zk,ξ(xki,j) = xki,j .

In light of (6.73), this implies that

(zk,ξ(yk,ξj + tξ) + 1
kS) ∩ J ̸= Ø,
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which, by (6.18), implies that yk,ξj + tξ ∈ Ek,ξ. Recalling (6.20), this is equivalent to

t ∈ Ek,ξ(yk,ξj ). Since (i, j) ∈ J k
2 , this shows that

Ik,ξi,j ⊂ Ek,ξ(yk,ξj ) ∩ U ξ
yk,ξj

. (6.74)

If (i, j) ∈ B̂k,ξm for some m ∈ N, it follows from (6.24) and (6.69) that N k,ξ(xki,j) ≤ m,

where N k,ξ is defined by (6.19). By (6.21) we have N k,ξ(xki,j) = N k,ξ(ykj + tξ) for every

t ∈ R, so that from (6.74) we also deduce that

Ik,ξi,j ⊂ Êk,ξm (yk,ξj ) ∩ U ξ
yk,ξj

. (6.75)

In a similar way we prove that if (i, j) ∈ B̌k,ξm for some m ∈ N then

Ik,ξi,j ⊂ Ěk,ξm (yk,ξj ) ∩ U ξ
yk,ξj

. (6.76)

For every k,m ∈ N and j ∈ Z we set Bk(j) := {i ∈ Z : (i, j) ∈ Bk}, B̂k,ξm (j) := {i ∈ Z :

(i, j) ∈ B̂k,ξm }, and B̌k,ξm (j) := {i ∈ Z : (i, j) ∈ B̌k,ξm }. From (6.75) and (6.76) we deduce
that for every k,m ∈ N and j ∈ Z we have⋃

i∈B̂k,ξ
m (j)

Ik,ξi,j ⊂ Êk,ξm (yk,ξj ) ∩ U ξ
yk,ξj

and
⋃

i∈B̌k,ξ
m (j)

Ik,ζi,j ⊂ Ěk,ξm (yk,ξj ) ∩ U ξ
yk,ξj

.

Therefore, for every k,m ∈ N we have∑
i∈B̂k,ξ

m (j)

|Duξ
yk,ξj

|(Ik,ξi,j \ Jξ
yk,ξj

) ≤ |Duξ
yk,ξj

|(Êk,ξm (yk,ξj ) ∩ U ξ
yk,ξj

\ Jξ
yk,ξj

), (6.77)

∑
i∈B̌k,ξ

m (j)

|Duξ
yk,ξj

|(Ik,ξi,j \ Jξ
yk,ξj

) ≤ |Duξ
yk,ξj

|(Ěk,ξm (yk,ξj ) ∩ U ξ
yk,ξj

\ Jξ
yk,ξj

). (6.78)

From (6.70) and (6.77) for every n ∈ N we obtain that

1

k

∑
j∈Z

∑
i∈B̌k,ξ

mn(j)

|Duξ
yk,ξi,j

|(Ik,ξi,j \ Jξ
yk,ξi,j

) ≤ ε

2n
for every k ∈ K with k ≥ kn, (6.79)

while (6.72) and (6.78) give

lim
k→+∞
k∈K

1

k

∑
j∈Z

∑
i∈B̂k,ξ

mn(j)

|Duξ
yk,ξi,j

|(Ik,ξi,j \ Jξ
yk,ξi,j

) = 0 for every n ∈ N. (6.80)

Combining (6.79) and (6.80), we deduce that

lim sup
k→+∞
k∈K

1

k

∑
(i,j)∈Bk

|Duξ
yk,ξi,j

|(Ik,ξi,j \ Jξ
yk,ξi,j

) ≤ ε

2n
for every n ∈ N,

which concludes the proof of (6.5) for ζ = ξ. The proof of (6.5) for ζ ∈ {η, ξ − η, ξ + η},
as well as the proof of (6.6) and (6.7), is analogous.

Equalities (6.2)-(6.4) can then be obtained by difference from (5.20). This concludes
the proof of Theorem 6.1. □

7. The case of dimension d > 2

We now show that Theorem 5.1 can be extended to the general case d > 2. This is done
by means of a Fubini-type argument. To this aim, we present and prove a short lemma
that shows that the measure λu introduced in (2.20) does not charge Borel sets that are
σ-finite with respect to Hd−1 and do not intersect the jump set.

Lemma 7.1. Let d ≥ 1, let u ∈ GBD(Ω), and let B ⊂ Ω be a Borel set that is σ-finite
with respect to Hd−1. Then λu(B \ Ju) = 0.
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Proof. It is not restrictive to assume that Hd−1(B) < +∞. By (2.20) to prove the claim

it is enough to show that for every ξ ∈ Sd−1 the measure λξu defined by (2.19) satisfies

λξu(B \ Ju) = 0. Let us fix ξ ∈ Sd−1. Since J
uξy

⊂ (Ju)
ξ
y for Hd−1-a.e. y ∈ Πξ by Theorem

2.12, it follows from (2.19) that

λξu(B \ Ju) ≤
ˆ
Πξ

|Duξy|(Bξ
y \ Juξy) dH

d−1(y). (7.1)

Recalling that by assumption Hd−1(B) < +∞, Lemma 2.4 implies that for Hd−1-a.e.

y ∈ Πξ the slice Bξ
y is a finite set. By well-known properties of BV functions of one variable

(see [7, Corollary 3.33]), this implies that forHd−1-a.e. y ∈ Πξ we have |Duξy|(Bξ
y\Juξy) = 0.

By (7.1) this equality gives λξu(B \ Ju) = 0, concluding the proof. □

Theorem 7.2. Let d > 2, let u ∈ GBD(Ω), and let B ⊂ Ω be a Borel set. Then the

function ξ 7→ σξu(B) is quadratic.

Proof. By Proposition 2.2 it is enough to show that ξ 7→ σξu(B) is 2-homogeneous, satisfies
the parallelogram identity, and is lower bounded in the sense of (c) of Proposition 2.2.

Since by Proposition 4.4 the function ξ 7→ σξu(B) is 2-homogeneous and by Remark 4.2 it
satisfies the correct lower bound, we only need to prove the parallelogram identity.

We decompose σξu(B) as

σξu(B) = σξu(B \ Ju) + σξu(B ∩ Ju)

and observe that by Propositions 4.5 the function ξ 7→ σξu(B ∩ Ju) is quadratic. Thus, to
conclude we only need to prove that ξ 7→ σξu(B \ Ju) satisfies the parallelogram identity.

Let ξ, η ∈ Rd be two linearly independent vectors and consider the 2-dimensional vector
space V generated by ξ and η. Let πV : Rd → V be the orthogonal projection onto V . For
z ∈ Rd and E ⊂ Rd let EVz := {y ∈ V : z+ y ∈ E} = V ∩ (E − z) and let uVz : ΩVz → V be
the function defined for every y ∈ ΩVz by uVz (y) := πV (u(z + y)). By (a) of Theorem 2.14
for Hd−2-a.e. z ∈ V ⊥ we have uVz ∈ GBD(ΩVz ).

We observe that for every ζ ∈ {ξ, η, ξ + η, ξ − η} ⊂ V and for every E ⊂ Rd we have

(EVz )
ζ
y = Eζz+y for every z ∈ V ⊥ and y ∈ V ∩Πζ . (7.2)

Moreover, for every z ∈ V ⊥, y ∈ V ∩Πζ , and t ∈ (ΩVz )
ζ
y = Ωζz+y we have

(uVz )
ζ
y(t) = uζz+y(t). (7.3)

This implies that for Hd−2-a.e. z ∈ V ⊥ and for H1-a.e. y ∈ V ∩Πζ we have

D(uVz )
ζ
y = Duζz+y (7.4)

as Borel measures on (ΩVz )
ζ
y = Ωζy+z.

We then apply Theorem 2.14 to deduce that for Hd−2-a.e. z ∈ V ⊥ there exists a Borel
set Nz ⊂ V such that

H1(Nz) = 0 and JuVz ⊂ (Ju)
V
z ∪Nz. (7.5)

By Remark 2.10 the set Ju is σ-finite with respect to Hd−1. Therefore, by [28, Theorem
2.10.25] we have that H1((Ju)

V
z ) is σ-finite with respect to H1 for Hd−2-a.e. z ∈ V ⊥.

We can then apply Lemma 7.1, with d = 2, Ω replaced by ΩVz , u replaced by uVz , and
B = (Ju)

V
z , and we obtain that λuVz ((Ju)

V
z \JuVz ) = 0 for Hd−2-a.e. z ∈ V ⊥. By Definition

2.5, applied to uVz ∈ GBD(ΩVz ), and from this equality it follows thatˆ
V ∩Πζ

|D(uVz )
ζ
y|((Ju)Vz \ JuVz )

ζ
y) dH1(y) ≤ λuVz ((Ju)

V
z \ JuVz ) = 0 (7.6)

for Hd−2-a.e. z ∈ V ⊥.
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Since for every triple of sets A1, A2, A3 we have (A1 \ A2) \ (A1 \ A3) ⊂ A3 \ A2, we
obtain that

(BV
z \ JuVz ) \ (B

V
z \ (Ju)Vz ) ⊂ (Ju)

V
z \ JuVz ,

hence by (7.6)

|D(uVz )
ζ
y|((BV

z \ JuVz )
ζ
y \ (BV

z \ (Ju)Vz )ζy) = 0 (7.7)

for Hd−2-a.e. z ∈ V ⊥ and for H1-a.e. y ∈ V ∩Πζ .
The inclusion in (7.5) implies that forHd−2-a.e. z ∈ V ⊥ and for every y ∈ V ∩Πζ\πζ(Nz)

we have (JuVz )
ζ
y ⊂ ((Ju)

V
z )

ζ
y, and hence (BV

z \ (Ju)
V
z )

ζ
y ⊂ (BV

z \ JuVz )
ζ
y. Observing that

H1(πζ(Nz)) = 0 by the equality in (7.5), we deduce from this inclusion and from (7.7)
that

D(uVz )
ζ
y((B

V
z \ JuVz )

ζ
y) = D(uVz )

ζ
y((B

V
z \ (Ju)Vz )ζy)

for Hd−2-a.e. z ∈ V ⊥ and for H1-a.e. y ∈ V ∩Πζ .
Integrating this equality with respect to y we obtain thatˆ

V ∩Πζ

D(uVz )
ζ
y((B \ Ju)Vz )ζy) dH1(y) =

ˆ
V ∩Πζ

D(uVz )
ζ
y((B

V
z \ JuVz )

ζ
y) dH1(y)

for Hd−2- a.e. z ∈ V ⊥, so that, setting y′ = z + y, by (7.2)-(7.4) and the Fubini Theorem
we have ˆ

Πζ

Duζy′((B \ Ju)ζy′) dH
d−1(y′)

=

ˆ
V ⊥

( ˆ
V ∩Πζ

D(uVz )
ζ
y((B

V
z \ JuVz )

ζ
y) dH1(y)

)
dHd−2(z).

Taking into account the definition of σζu (see (4.1)), this last equality can be written as

σζu(B \ Ju) =
ˆ
V ⊥

σζ
uVz

(BV
z \ JuVz ) dH

d−2(z). (7.8)

We may now apply Theorem 5.1 to the function uVz ∈ GBD(ΩVz ) to obtain

σξ+η
uVz

(BV
z \ JuVz ) + σξ−η

uVz
(BV

z \ JuVz ) = 2σξ
uVz

(BV
z \ JuVz ) + 2ση

uVz
(BV

z \ JuVz )

for Hd−2-a.e. z ∈ V ⊥. Integrating this equality with respect to z and exploiting (7.8) we
deduce that

σξ+ηu (B \ Ju) + σξ−ηu (B \ Ju) = 2σξu(B \ Ju) + 2σηu(B \ Ju).

This shows that the function ξ 7→ σξu(B\Ju) satisfies the parallelogram identity, concluding
the proof. □

8. A matrix-valued measure associated to a GBD function

In this section, for every u ∈ GBD(Ω) we introduce a matrix-valued measure µu that
generalises the distributional symmetric gradient Eu of BD(Ω) functions. We then analyse
some of its properties and deduce some useful consequences.

Theorem 8.1. Let d ≥ 1 and u ∈ GBD(Ω). Then there exists a measure µu ∈ Mb(Ω;Rd×dsym)

such that for every ξ ∈ Sd−1 we have

µu(B)ξ · ξ = σξu(B) = lim
R→+∞

Dξ(τR(u · ξ))(B \ J1
u) for every Borel set B ⊂ Ω, (8.1)

where σξu is the measure defined in (4.1) and τR are the truncation functions defined in
(4.3). Moreover, the variation |µu| with respect to the operator norm in Rd×dsym satisfies

|µu|(J1
u) = 0, (8.2)

|µu| = λu (Ω \ J1
u) as Borel measures on Ω, (8.3)

where λu is the positive measure defined by (2.20).
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Proof. If d = 1 these results follow from Remarks 4.1, 4.2, and Proposition 4.4. We may

thus assume that d ≥ 2. From Theorems 5.1 and 7.2 it follows that the function ξ 7→ σξu(B)
is quadratic for every Borel set B ⊂ Ω. Thus, there exists a set function µu defined on the
σ-algebra of all Borel subsets of Ω and with values in Rd×dsym such that

σξu(B) = µu(B)ξ · ξ (8.4)

for every Borel set B ⊂ Ω and ξ ∈ Rd \ {0}. Observing that σξu(B ∩ J1
u) = 0 by (4.1), we

may apply Proposition 4.3 to B \ J1
u and we obtain

σξu(B) = lim
R→+∞

Dξ(τR(u · ξ))(B \ J1
u)

for every Borel set B ⊂ Ω and ξ ∈ Sd−1. As (8.2) is an obvious consequence of (8.3), we
are left with proving that µu ∈ Mb(Ω;Rd×dsym) and that equality (8.3) holds.

Since B 7→ σξu(B) is a bounded scalar-valued Radon measure for every ξ ∈ Rd \ {0},
it follows from (8.4) that the same property holds for B 7→ µu(B)ξ · ξ. The polarisation
identity then implies that B 7→ µu(B)ξ · η belongs to Mb(Ω) for every ξ, η ∈ Rd, hence
µu ∈ Mb(Ω;Rd×dsym).

To prove (8.3) let us first show that

|µu| ≤ λu (Ω \ J1
u) as Borel measures on Ω. (8.5)

To this aim, we observe that, since µu takes values in Rd×dsym , for every Borel set B ⊂ Ω the
operator norm |µu(B)| satsfies

|µu(B)| = sup
ξ∈Sd−1

|(µu(B)ξ · ξ)| = sup
ξ∈Sd−1

|σξu(B)|,

so that by (2.20) and (4.2) we have

|µu|(B) = sup
∑

|σξiu (Bi)| ≤ sup
∑

λξiu (Bi \ J1
u) = λu(B \ J1

u),

where the supremum is taken over all finite Borel partitions (Bi)i of B and all finite
collections of vectors (ξi)i ⊂ Sd−1. This shows (8.5).

To prove the inequality

|µu| ≥ λu (Ω \ J1
u) as Borel measures on Ω, (8.6)

we argue as follows. Consider the measure λ ∈ M+
b (Ω) defined for Borel set B ⊂ Ω by

λ(B) := |µu|(B) +Hd−1(B ∩ J1
u).

Thanks to (8.5), Lemma 2.4, Remark 2.10, and Theorem 2.12 it follows that λ satisfies
(2.10). Since λu is the minimal measure that satisfies (2.10) it follows that λu(B) ≤ λ(B)
for every Borel set B ⊂ Ω, which implies (8.6). □

Remark 8.2. By Remark 4.1 it follows immediately from (8.4) that if u ∈ BD(Ω), then
µu = (Eu) (Ω \ J1

u) as Borel measures on Ω.

Given u ∈ GBD(Ω), the Lebesgue Decomposition Theorem allows us to decompose the
measure µu as the sum of a measure µau, which is absolutely continuous with respect to Ld,
and a measure µsu, which is singular with respect to Ld. In the following definition, we in-
troduce a further decomposition of µu, which closely resembles the classical decomposition
(1.2) of Eu for a function u ∈ BD(Ω).

Definition 8.3. For u ∈ GBD(Ω) we introduce the measures µcu, µ
j
u ∈ Mb(Ω;Rd×dsym),

called the Cantor part and the jump part of µu, defined for every Borel set B ⊂ Ω by

µcu(B) := µsu(B \ Ju),
µju(B) := µsu(B ∩ Ju) = µu(B ∩ Ju).

Since µu = µau + µsu, we have µu = µau + µcu + µju as Borel measures on Ω.
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Remark 8.4. It follows from Remark 8.2 that if u ∈ BD(Ω) then the measure µcu of Def-
inition 8.3 coincides with the Cantor part Ecu (see [6, Definition 4.1]) of the symmetrised
gradient Eu.

We recall that for every ξ ∈ Rd \ {0} and every y ∈ Πξ such that uξy ∈ BVloc(Ω
ξ
y) and

Duξy ∈ Mb(Ω
ξ
y) we can consider the measures Dauξy ∈ Mb(Ω

ξ
y) and Dsuξy ∈ Mb(Ω

ξ
y),

defined as the absolutely continuous and the singular part of Duξy with respect to the one-

dimensional Lebesgue measure, and the measures Dcuξy ∈ Mb(Ω
ξ
y) and Djuξy ∈ Mb(Ω

ξ
y),

defined for every Borel set B ⊂ Ωξy by

Dcuξy(B) := Dsuξy(B \ J
uξy
),

Djuξy(B) := Dsuξy(B ∩ J
uξy
) = Duξy(B ∩ J

uξy
).

Since Duξy = Dauξy + Dsuξy, we have Duξy = Dauξy + Dcuξy + Djuξy as Borel measures on

Ωξy.

We now show that the measures µau and µ
j
u can be expressed as suitable integrals depend-

ing on the approximate symmetric gradient Eu (see Theorem 2.12) and [u], respectively,

and that µcu an be expressed by means of Dcuξy.

Proposition 8.5. Let u ∈ GBD(Ω). Then

µau(B) =

ˆ
B
Eudx, (8.7)

µju(B) =

ˆ
(Ju\J1

u)∩B
[u]⊙ νu dHd−1, (8.8)

for every Borel set B ⊂ Ω. Moreover, for every ξ ∈ Rd \ {0} and every Borel set B ⊂ Ω
we have

µcu(B)ξ · ξ = |ξ|
ˆ
Πξ

Dcuξy(B
ξ
y) dHd−1(y). (8.9)

Proof. Let us fix a Borel set B ⊂ Ω. By definition of µau and of µju, it follows from the
polarisation identity and from (8.4) that

µau(B)ξ · η =
1

4
((σξ+ηu )a(B)− (σξ−ηu )a(B)), (8.10)

µju(B)ξ · η =
1

4
(σξ+ηu (B ∩ Ju)− σξ−ηu (B ∩ Ju)), (8.11)

for every ξ, η ∈ Rd\{0}, where for a vector ζ ∈ Rd\{0} the measure (σζu)a is the absolutely

continuous part of σζu with respect to Ld. By Lemma A.2 for every ζ ∈ Rd \ {0} we have

(σζu)
a(B) = |ζ|

ˆ
Πζ

Dauζy(B
ζ
y) dHd−1(y), (8.12)

(σζu)
s(B) = |ζ|

ˆ
Πζ

Dsuζy((B \ J1
u)
ζ
y) dHd−1(y), (8.13)

where (σζu)s is the singular part of σζu with respect to Ld. In light of Theorem 2.12, using
(8.12) and the Fubini Theorem, we deduce that

(σζu)
a(B) =

ˆ
Ω
Eu ζ · ζ dx

for every ζ ∈ Rd \ {0}. Combining this equality with (8.10), we obtain that

µau(B)ξ · η =

ˆ
B
Eu ξ · η dx =

( ˆ
B
Eudx

)
ξ · η

for every ξ, η ∈ Rd \ {0}, which proves (8.7).
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To prove (8.8), we observe that by Proposition 4.5 for every ζ ∈ Rd \ {0} we have

σζu(B ∩ Ju)z =
ˆ
(Ju\J1

u)∩B
([u]⊙ νu)ζ · ζ dHd−1.

Together with (8.11), this equality shows that

µju(B)ξ · η =

ˆ
(Ju\J1

u)∩B
([u]⊙ νu)ξ · η dHd−1 =

( ˆ
(Ju\J1

u)∩B
([u]⊙ νu) dHd−1

)
ξ · η

for every ξ, η ∈ Rd \ {0}. This proves (8.8).
To conclude, we fix ξ ∈ Rd \ {0} and a Borel set B ⊂ Ω and show that (8.9) holds. We

observe that for every y ∈ Πξ such that (2.21) holds we have |Djuξy|((B \ Ju)ξy) = 0, hence

Dsuξy((B \ Ju)ξy) = Dcuξy((B \ Ju)ξy).

Since (2.21) holds for Hd−1-a.e. y ∈ Πξ, from this equality, (8.4), (8.13), and Definition
8.3 it follows that

µcu(B)ξ · ξ = (σξu)
s(B \ Ju) = |ξ|

ˆ
Πξ

Dcuξy((B \ Ju)ξy) dHd−1(y). (8.14)

Recalling Lemma 2.4, by Remark 2.10 for Hd−1-a.e. y ∈ Πξ the set (Ju)
ξ
y is finite or

countable. Recalling the properties of the derivatives of BV functions in dimension one,

this implies that Dcuξy((Ju)
ξ
y) = 0 for Hd−1-a.e. y ∈ Πξ. Therefore (8.14) implies (8.9). □

The following corollary shows that in the previous results we can replace J1
u by Jru (see

(2.4)) for an arbitrary r > 0 and that the absolutely continuous and the Cantor part of
the corresponding measure µu,r do not depend on r.

Corollary 8.6. Let d ≥ 1, u ∈ GBD(Ω), and r > 0. Then there exists a measure
µu,r ∈ Mb(Ω;Rd×dsym) such that for every ξ ∈ Sd−1 we have

µu,r(B)ξ · ξ = lim
R→+∞

Dξ(τR(u · ξ))(B \ Jru) for every Borel set B ⊂ Ω, (8.15)

where τR are the truncation functions defined in (4.3). Moreover, setting µju,r := µu,r Ju,
we have

µju,r(B) =

ˆ
(Ju\Jr

u)∩B
[u]⊙ νu dHd−1 for every Borel set B ⊂ Ω. (8.16)

Finally, we have µu,r = µau + µcu + µju,r as Borel measures on Ω.

Proof. Let v := u/r and µu,r := rµv. Using the equalities

τR(v · ξ) =
1

r
τ(rR)(u · ξ) and J1

v = Jru, (8.17)

from (8.1) we obtain (8.15). Using the equalities J1
v = Jru and Jv = Ju, from (8.8) we

deduce (8.16).
Let µau,r and µ

s
u,r be the absolutely continuous and the singular part of µu,r with respect

to Ld. By (8.1) and (8.15), with B replaced by B\Ju, we obtain µu,r(B\Ju) = µu(B\Ju).
This implies that µau,r(B) = µau(B) and µsu,r(B \Ju) = µsu(B \Ju) = µcu(B) for every Borel

setB ⊂ Ω. Hence, µu,r(B) = µau,r(B)+µsu,r(B\Ju)+µsu,r(B∩Ju) = µau(B)+µcu(B)+µju,r(B)
for every Borel set B ⊂ Ω. □

Remark 8.7. Using the function v := u/r, it follows from Remark 8.2 that, if u ∈ BD(Ω),
then µu,r = (Eu) (Ω \ Jru) as Borel measures on Ω.

The following result shows that, in analogy with Ecu, the measure µcu does not charge
Borel sets which are σ-finite with respect to Hd−1.

Proposition 8.8. Let u ∈ GBD(Ω) and let B be a Borel set that is σ-finite with respect
to Hd−1. Then |µcu|(B) = 0.
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Proof. It is not restrictive to assume that Hd−1(B) < +∞. Let us fix ξ ∈ Sd−1. Thanks

to Lemma 2.4, we have H0(Bξ
y) < +∞ for Hd−1-a.e. y ∈ Πξ. By the properites of one-

dimensional BV functions this implies that Dcuξy(B
ξ
y) = 0 for Hd−1-a.e. y ∈ Πξ. Hence,

by (8.9) we have µcu(B)ξ ·ξ = 0. Since this is true for every ξ ∈ Sd−1, we obtain µcu(B) = 0.
As this property holds also for every Borel subset of B, we deduce that |µcu|(B) = 0. □

The definition and properties of µu allow us to give a new characterisation of the space
GSBD(Ω), originally defined by slicing. We recall that GSBD(Ω) (see [20, Definition
4.2]) is the space of all u ∈ GBD(Ω) such that for every ξ ∈ Sd−1 and for Hd−1-a.e. y ∈ Πξ

we have
uξy ∈ SBVloc(Ω

ξ
y). (8.18)

Theorem 8.9. Let u ∈ GBD(Ω). Then u ∈ GSBD(Ω) if and only if µcu = 0.

Proof. Assume that µcu = 0 as a Borel measure on Ω. Recalling the uniqueness of the
disintegration of measures (see [7, Theorem 2.28]), it follows from (8.9) that for every

ξ ∈ Sd−1 and for Hd−1-a.e. y ∈ Πζ we have Dcuξy = 0 as a Borel measure on Ωξy, i.e., (8.18)
holds. By definition this implies that u ∈ GSBD(Ω).

Conversely, if u ∈ GSBD(Ω) it follows from (8.9) that µcu(B)ξ · ξ = 0 for every ξ ∈ Sd−1

and every Borel set B ⊂ Ω. This implies that µcu = 0. □

Combining this result with recent results of [13], where new characterisations of the
spaces GBD(Ω) and GSBDp(Ω), for p > 1, are obtained, we can give an analogous
characterisation for GSBD(Ω). More precisely, we show that an Ld-measurable function
u : Ω → Rd belongs to GSBD(Ω) if and only if (2.10) and (8.18) hold for a suitable finite
number of directions ξ ∈ Sd−1.

Theorem 8.10. Let u : Ω → Rd be an Ld-measurable function. Assume that there exists
an orthonormal basis {ξi : i = 1, ..., d} such that for every ξ ∈ Ξ := {ξi : i = 1, ..., d} ∪
{ξi + ξj : 1 ≤ i ≤ j ≤ d} the two following conditions hold:

uξy ∈ SBVloc(Ω
ξ
y) for Hd−1-a.e. y ∈ Πξ, (8.19)

Λξu :=

ˆ
Πξ

|Duξy|(Ωξy \ J1
uξy
) +H0(J1

uξy
) dHd−1(y) < +∞.

Then u ∈ GSBD(Ω) and, setting Λ :=
∑

ξ∈Ξ Λξu, there exists a constant Cd > 0, depending
only on d, such that

λu(Ω) ≤ CdΛ, (8.20)

where λu is the measure defined by (2.20).

Proof. Since the inclusion u ∈ GBD(Ω) and inequality (8.20) follow directly from [13,
Theorem 1, Corollary 1], to conclude we only need to show that u ∈ GSBD(Ω).

To prove this, we observe that from (8.9) it follows that given a Borel set B ⊂ Ω we
have that

µcu(B)ξ · ξ = |ξ|
ˆ
Πξ

Dcuξy(B
ξ
y) dHd−1(y) = 0

for every ξ ∈ Ξ. By (8.19) this equality implies that µcu(B)ξ · ξ = 0 for every ξ ∈ Ξ. From
the polarisation identity we obtain µcu(B)ξi · ξj = 0 for every i, j = 1, ..., d . Recalling that

{ξi}i is a basis of Rd, we deduce that µcu(B) = 0. Since this property holds for every Borel
set B ⊂ Ω, from Theorem 8.9 we obtain that u ∈ GSBD(Ω), concluding the proof. □
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A. Auxiliary results

The purpose of this section is to show that the functions gk,ζm and hk,ζm,ε defined in (6.60)
and (6.49) are Borel measurable, and prove some general properties of measures defined
by integration. Results similar to those we present here are already well-established in the
existing literature. However, given the specific form of the functions we study, it is not
easy to apply them directly to our case. For this reason, we give here a precise statement
and a complete proof of the results we need.

A.1. Lebesgue decomposition of measures defined by integration. In this subsec-
tion we consider measures defined on the slices of a set, depending on a parameter ω ∈ Rk,
and the measures that can be obtained by integrating with respect to the parameters cor-
responding to the slices. We are interested in a formula for the Lebesgue decomposition
of these measures.

We begin by a lemma concerning measurability conditions with respect to these param-
eters. Given h, k ∈ N, a Borel set B ⊂ Rh × Rk, and ω ∈ Rk we set

B(ω) := {x ∈ Rh : (x, ω) ∈ B}. (A.1)

Lemma A.1. Let k ∈ N and let ζ ∈ Rd \ {0}. For every y ∈ Πζ and ω ∈ Rk let µωy ∈
Mb(R) be a signed measure. The following three measurability conditions are equivalent:

(a) for every ψ ∈ C0
c (R× Rk)

the function (y, ω) 7→
ˆ +∞

−∞
ψ(t, ω) dµωy (t) is Borel measurable on Πζ × Rk;

(b) for every φ ∈ C0
c (Rd × Rk)

the function (y, ω) 7→
ˆ +∞

−∞
φ(y + tζ, ω) dµωy (t) is Borel measurable on Πζ × Rk;

(c) for every Borel set B ⊂ Rd × Rk the function (y, ω) 7→ µωy (B(ω)ζy) is Borel mea-

surable on Πζ × Rk.
Moreover, if the previous conditions are satisfied, then for every Borel set B ⊂ Rd × Rk
the function (y, ω) 7→ |µωy |(B(ω)ζy) is Borel measurable on Πζ × Rk.

Proof. For simplicity of notation we consider only the case ζ = ed, the d-th vector of
the canonical basis, the proof in the other cases being analogous. For x ∈ Rd we set
x = (x′, xd), where x

′ := (x1, ..., xd−1), and we identify Πed = Rd−1 × {0} with Rd−1.
Therefore the measure µω(x′,0) is denoted simply by µωx′ and for the slicing of sets we use

the notation Bx′ instead of Bed
(x′,0).

Assume (a). For every pair of functions w ∈ C0
c (Rd−1 × Rk) and ψ ∈ C0

c (R × Rk) it
follows from (a) that the function

(x′, ω) 7→
ˆ +∞

−∞
w(x′, ω)ψ(xd, ω) dµ

ω
x′(xd)

is Borel measurable on Rd−1 × Rk.
By an argument based on partition of unities corresponding to coverings by open sets

with small diameter we can prove that the class of linear combinations of functions φ ∈
C0
c (Rd ×Rk) of the form φ(x, ω) = w(x′, ω)ψ(xd, ω) is dense in C0

c (Rd ×Rk) with respect
to the uniform convergence. This implies that the function

(x′, ω) 7→
ˆ +∞

−∞
φ((x′, xd), ω) dµ

ω
x′(xd)

is Borel measurable on Rd−1 × Rk for every φ ∈ C0
c (Rd × Rk), which is condition (b) in

the case ζ = ed.
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Assume (b) and consider the class F of bounded Borel functions f : Rd ×Rk → R such
that

(x′, ω) 7→
ˆ +∞

−∞
f((x′, xd), ω) dµ

ω
x′(xd) is Borel measurable on Rd−1 × Rk.

It is easy to check that F is a monotone class, that is,

(i) if (fn)n ⊂ F , with fn ≤ g, for some g ∈ F , and fn ↗ f , then f ∈ F ;
(ii) if (fn)n ⊂ F , with fn ≥ g, for some g ∈ F , and fn ↘ f , then f ∈ F .

Moreover, thanks to (b), we have that C0
c (Rd × Rk) ⊂ F . Hence, from the Monotone

Class Theorem (see [42, Section 3.14]) we deduce that for every bounded Borel function
f : Rd × Rk → R the function

(x′, ω) 7→
ˆ +∞

−∞
f((x′, xd), ω) dµ

ω
x′(xd)

is Borel measurable on Rd−1 × Rk. By taking as f the characteristic function of a Borel
set B ⊂ Rd × Rk we obtain that the function

(x′, ω) 7→ µωx′(B(ω)x′)

is Borel measurable on Rd−1 × Rk, which is condition (c) in the case ζ = ed.
Assume now (c). Let E ⊂ R × Rk be a Borel set and let B := Rd−1 × E ⊂ Rd × Rk.

Clearly, B(ω)x′ = E(ω) for every x′ ∈ Rd−1, so that by (c) the function (x′, ω) 7→ µωx′(E(ω))

is Rd−1 × Rk measurable. Hence,

(x′, ω) 7→
ˆ +∞

−∞
χE(xd, ω) dµ

ω
x′(xd)

is Borel measurable on Rd−1 × Rk. By linearity we obtain that

(x′, ω) 7→
ˆ +∞

−∞
g(xd, ω) dµ

ω
x′(xd)

is Borel measurable on Rd−1 × Rk for every simple function g : R× Rk → R. Since every
function ψ ∈ C0

c (R×Rk) can be approximated by a uniformly bounded sequence of simple
functions, an application of the Dominated Convergence Theorem yields (a).

We now show that, if (a)-(c) hold, then the last part of the statement holds. By the
equivalence of (a)-(c) for |µωx′ |, to conclude the proof it is enough to show that for every

function ψ ∈ C0
c (R× Rk) the function

(x′, ω) 7→
ˆ +∞

−∞
ψ(xd, ω) d|µωx′ |(xd) (A.2)

is Borel measurable on Rd−1 × Rk. Assume for a moment that ψ ≥ 0. By definition of
total variation of a measure we haveˆ +∞

−∞
ψ(xd, ω) d|µωx′ |(xd) = sup

φ∈C0
c (R×Rk)

|φ|≤ψ

ˆ +∞

−∞
φ(xd, ω) dµ

ω
x′(xd).

Since the supremum above can be reduced to a countable dense subset of C0
c (R×Rk), this

equality, together with (a) for µωx′ , implies that the function in (A.2) is Borel measurable

on Rd−1 × Rk when ψ ≥ 0. In the general case, one can split ψ into its positive and
negative part. □

Let ζ ∈ Rd \ {0} and for every y ∈ Πζ let µy ∈ Mb(Ω
ζ
y). For every y ∈ Πζ let µay

and µsy be the absolutely continuous part and the singular part of µy with respect to
the one dimensional Lebesgue measure. In the following lemma we consider some general
conditions on (µy)y∈Πζ which allow us to define a measure µ on Ω by integrating µy with
respect to y. We then show that the absolutely continuous part µa and its singular part
µs of µ with respect to Ld can be obtained by integrating µay and µsy with respect to y.



46 GIANNI DAL MASO AND DAVIDE DONATI

Lemma A.2. Let ζ ∈ Rd \ {0} and for every y ∈ Πζ let µy ∈ Mb(Ω
ζ
y). Assume that for

every Borel set B ⊂ Ω

the function y 7→ µy(B
ζ
y) is Borel measurable on Πζ (A.3)

and that there exists g ∈ L1(Πζ ,Hd−1) such that

|µy|(Ωζy) ≤ g(y) for Hd−1-a.e. y ∈ Πζ . (A.4)

Consider the measure defined for every Borel set B ⊂ Ω by

µ(B) :=

ˆ
Πζ

µy(B
ζ
y) dHd−1(y). (A.5)

Le µa and µs be the absolutely continuous part and the singular part of µ with respect to
the Lebesgue measure Ld. Then for every Borel set B ⊂ Ω the functions

y 7→ µay(B
ζ
y) and y 7→ µsy(B

ζ
y) are Borel measurable and Hd−1-integrable on Πζ (A.6)

and we have

µa(B) =

ˆ
Πζ

µay(B
ζ
y) dHd−1(y) and µs(B) =

ˆ
Πζ

µsy(B
ζ
y) dHd−1(y) (A.7)

for every Borel set B ⊂ Ω.

Proof. As in the previous lemma we consider only the case ζ = ed and use the notation
of the proof of the previous lemma. We also drop the hypothesis that Ω is bounded and
assume that Ω = Rd, as the result for a general Ω then easily follows.

We now prove (A.6). To this aim let

S :=
{
x ∈ Rd : x = (x′, xd) and lim sup

ρ→0+

|µx′ |((xd − ρ, xd + ρ))

2ρ
= +∞

}
(A.8)

and, for every x′ ∈ Rd−1, let Sx′ be the corresponding slice. By the Besicovitch Derivation
Theorem (see [7, Theorem 2.22]) for every x′ ∈ Rd−1 we have

µsx′(Bx′) = µx′(Bx′ ∩ Sx′) and µax′(Bx′) = µx′(Bx′ \ Sx′) (A.9)

for every Borel set B ⊂ Rd.
Therefore, by (A.3) to prove (A.6) it is enough to show that the set S is Borel measur-

able. To this end, we note that, as the function ρ 7→ |µx′ |((xd−ρ, xd+ρ)) is left-continuous,
in the lim sup in (A.8) we can reduce to considering ρ varying in a countable dense set.
Hence, to conclude that S is Borel measurable we only need to prove that for every ρ > 0
the function

(x′, xd) 7→ |µx′ |((xd − ρ, xd + ρ)) =

ˆ
R
χ(−ρ,ρ)(xd − t) d|µx′ |(t) (A.10)

is Borel measurable on Rd−1 × R, where χ(−ρ,ρ) denotes the characteristic function of

(−ρ, ρ). Let (ψn)n ⊂ C0
c (R) be a sequence of functions with ψn ≤ ψn+1 for every n ∈ N

and converging pointwise to χ(−ρ,ρ) as n→ +∞. By the Monotone Convergence Theorem

for every x′ ∈ Rd−1 we haveˆ
R
χ(−ρ,ρ)(xd − t) d|µx′ |(t) = lim

n→+∞

ˆ
R
ψn(xd − t) d|µx′ |(t). (A.11)

For every n ∈ N the function

(x′, xd) 7→
ˆ
R
ψn(xd − t) d|µx′ |(t)

is Borel measurable in x′ for xd fixed, thanks to (A.3) and Lemma A.1, and continuous in
xd for x′ fixed. Thus, it is Borel measurable in the product space Rd−1 × R. Thanks to
(A.11), this implies that the function (A.10) is Borel measurable, which proves that the
set S is Borel measurable and concludes the proof of the measurability property in (A.6).
The integrability follows from (A.4).
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Thanks to (A.6) we can define two bounded Radon measures on Rd by setting

ν1(B) :=

ˆ
Rd−1

µax′(Bx′) dHd−1(x′) and ν2(B) :=

ˆ
Rd−1

µsx′(Bx′) dHd−1(x′)

for every Borel set B ⊂ Rd. It follows from the Fubini Theorem that ν1 is absolutely
continuous with respect to Ld and that Ld(S) = 0. By (A.9) we also deduce that
µsx′(Bx′) = µsx′(Bx′ ∩ Sx′), hence ν2(B) = ν2(B ∩ S) for every Borel set B ⊂ Ω. This
shows that ν2 is singular with respect to the Lebesgue measure. Since µ = ν1 + ν2, the
equalities in (A.7) follow from the uniqueness of the Lebesgue decomposition. □

A.2. Measurability of the auxiliary functions used in Section 6. In this subsection

we prove the the measurability of the functions gk,ζm and hk,ζm,ε defined in (6.60) and (6.49).
As in the proof of Theorem 5.1, Ω is a bounded open set of R2, u is a function in

GBD(Ω) with J1
u = Ju, ξ and η are two linearly independent vectors in R2 and U is the

parallelogram defined by (5.2). We keep u, ξ, η, and U fixed throughout the rest of the
subsection.

We also recall that J ⊂ U is the set defined in (5.9), and that the sets Ek,ζ , Êk,ζm ,

and Ěk,ζm are defined in (6.18) and (6.23). Since it will be important to keep track of the
dependence of such sets on ω, in the following we underline their dependence on ω by

writing Ek,ζ,ω, Êk,ζ,ωm , and Ěk,ζ,ωm .
We introduce some sets which will play a crucial role in our arguments. For every k ∈ N,

m ∈ N, and ζ ∈ {ξ, η, ξ + η, ξ − η} we set

Ek,ζ := {(x, ω) ∈ R2 × R2 : x ∈ Ek,ζ,ω} ⊂ R4,

Êk,ζm := {(x, ω) ∈ R2 × R2 : x ∈ Êk,ζ,ωm } ⊂ R4,

Ěk,ζm := {(x, ω) ∈ R2 × R2 : x ∈ Ěk,ζ,ωm } ⊂ R4,

J := {(x, ω) ∈ R2 × R2 : x ∈ J} ⊂ R4.

(A.12)

The following lemma addresses the Borel measurability of these sets. The proof is very
similar to that of Lemma 6.2, but for the sake of completeness we give here all details.

Lemma A.3. The sets Ek,ζ , Êk,ζm , Ěk,ζm , and J are Borel measurable subsets of R4.

Proof. The property for J is trivial. To prove the result for the other sets we consider the
map zk,ζ : R2 × R2 → R2 defined by (6.14) (see Figure 3), where the dependence on the
variable ω is made clear by (5.3). By elementary geometrical arguments, it follows that
(x, ω) 7→ zk,ζ(x, ω) is Borel measurable.

For every set B ⊂ R2 we define

Ek,ζB := {(x, ω) ∈ R2 × R2 : (zk,ζ(x, ω) + 1
kS) ∩B ̸= Ø},

FB := {z ∈ R2 : (z + 1
kS) ∩B ̸= Ø},

where S is defined by (6.17). For a compact set K ⊂ R2 the set FK is closed, so that,

observing that Ek,ζK = {(x, ω) ∈ R2 ×R2 : zk,ζ(x, ω) ∈ FK} and recalling that zk,ζ is Borel

measurable, we conclude that Ek,ζK is Borel measurable. By definition, Ek,ζ = Ek,ζJ . Since

J =
⋃
n∈NKn with Kn compact, this gives that Ek,ζ =

⋃
n∈N Ek,ζKn

. Since the sets Ek,ζKn
are

Borel measurable, so is Ek,ζ .

To prove that Êk,ζm is Borel measurable, we observe that by (6.22) a pair (x, ω) belongs

to Êk,ζm if and only if the number of indices i ∈ Z such that x ∈ Ek,ζ,ω − i
kζ is less than or

equal to m. Hence, setting Ek,ζi := {(x, ω) ∈ R2 × R2 : x ∈ Ek,ζ,ω − i
kζ}, we have that

Êk,ζm =
{
(x, ω) ∈ R2 × R2 :

∑
i χEk,ζ

i
(x, ω) ≤ m

}
,
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where χ
Ek,ζ
i

is the characteristic function of Ek,ζi . Since the sets Ek,ζi are Borel measurable,

we deduce that Êk,ζm is a Borel set as well. From the equality Ěk,ζm = Ek,ζ \ Êk,ζm , we deduce

that Ěk,ζm is Borel measurable too, concluding the proof. □

We are now ready to state and prove the final result of this subsection.

Lemma A.4. Let k,m ∈ N, let ζ ∈ {ξ, η, ξ + η, ξ − η}, and let Nζ ⊂ Πζ be a Borel set

such that Hd−1(Nζ) = 0 and uζy ∈ BV (U ζy ) for every y ∈ Πζ \ Nζ . Then the functions

gk,ζm : Πζ × R2 → [0,+∞) and hk,ζm : Πζ × R2 → [0,+∞) defined by

gk,ζm (y, ω) :=

{
|Duζy|(Êk,ζ,ωm (y) ∩ U ζy \ Jζy ) if y ∈ Πζ \Nζ ,

0 if y ∈ Nζ ,
(A.13)

hk,ζm (y, ω) :=

{
|Duζy|(Ěk,ζ,ωm (y) ∩ U ζy \ Jζy ) if y ∈ Πζ \Nζ ,

0 if y ∈ Nζ ,
(A.14)

are Borel measurable on Πζ × R2.

Proof. We begin by observing that by (A.1) and (A.12) for every y ∈ Πζ and ω ∈ R2 we
have

Êk,ζ,ωm (y) ∩ U ζy \ Jζy = Ê(ω)ζy ∩ U ζy \ J(ω)ζy, (A.15)

Ěk,ζ,ωm (y) ∩ U ζy \ Jζy = Ě(ω)ζy ∩ U ζy \ J(ω)ζy. (A.16)

By Lemma A.3, the sets Êk,ζm , Ěk,ζm , and J are Borel measurable subsets of R2×R2, so that

the same property holds for Êk,ζm \ J and Ěk,ζm \ J.
We want to apply Lemma A.1 with the measure µωy ∈ Mb(R) defined for every Borel

set B ⊂ R by

µωy (B) :=

{
Duζy(B ∩ U ζy ) if y ∈ Πζ \Nζ ,

0 y ∈ Nζ .
(A.17)

To show that condition (b) of Lemma A.1 holds we fix a function φ ∈ C∞
c (R2 × R2) and

observe that ˆ +∞

−∞
φ(y + tζ, ω) dµωy (t) =

ˆ
Uζ
y

φ(y + tζ, ω) dDuζy(t)

for every y ∈ Πζ \Nζ . Let us consider a bounded sequence (ρn) ⊂ C∞
c (U) converging to

1 on Ω as n → +∞ and set φn := ρnφ ∈ C∞
c (U × R2). For every y ∈ Πζ \ Nζ by the

Dominated Convergence Theorem we haveˆ +∞

−∞
φ(y + tζ, ω) dµωy (t) = lim

n→+∞

ˆ
Uζ
y

φn(y + tζ, ω) dDuζy(t). (A.18)

Moreover, integrating by parts, we haveˆ
Uζ
y

φn(y + tζ, ω) dDuζy(t) = −
ˆ
Uζ
y

uζy(t)∇xφn(y + tζ, ω) · ζ dt, (A.19)

where for a given ω ∈ R2, we denote by ∇xφn(y + tζ, ω) ∈ R2 the vector whose two
components are the partial derivatives of φn with respect to x at the point (y+ tζ, ω). By
the Fubini Theorem, it follows from (A.19) that

(y, ω) 7→
ˆ
Uζ
y

φn(y + tζ, ω) dDuζy(t)

is Borel measurable on (Πζ \ Nζ) × R2. It follows from (A.18) that the same property
holds for

(y, ω) 7→
ˆ +∞

−∞
φ(y + tζ, ω) dµωy (t). (A.20)
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Since by definition µωy (B) = 0 for y ∈ Nζ , it follows that the function (A.20) is Borel

measurable on Πζ ×R2. As every function in C0
c (R2×R2) can be approximated uniformly

by a sequence of functions in C∞
c (R2 × R2), the function (A.20) is Borel measurable on

Πζ × R2 for every φ ∈ C0
c (R2 × R2). Hence, µωy satisfies condition (b) of Lemma A.1.

By Lemma A.1 applied to the measure µωy defined by (A.17) and with B = Êk,ζm \ J

and B = Ěk,ζm \ J we obtain that the functions (y, ω) 7→ |Duζy|(Ê(ω)ζy ∩ U ζy \ J(ω)ζy) and

(y, ω) 7→ |Duζy|(Ě(ω)ζy ∩ U ζy \ J(ω)ζy) are Borel measurable on (Πζ \Nζ)× R2. By (A.13)-

(A.16) this implies that the functions gk,ζm and hk,ζm are Borel measurable on Πζ ×R2. □
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[34] H. Hahn, Über Annäherung an Lebesgue’sche Integrale durch Riemann’sche Summen, Sitzungsber.
Math. Phys. Kl. K. Akad. Wiss. Wien, 123 (1914), pp. 713–743.

[35] P. Haj lasz, On approximate differentiability of functions with bounded deformation, Manuscripta
Math., 91 (1996), pp. 61–72.

[36] L. Simon, Lectures on geometric measure theory, vol. 3 of Proceedings of the Centre for Mathematical
Analysis, Australian National University, Australian National University, Centre for Mathematical
Analysis, Canberra, 1983.

[37] P.-M. Suquet, Existence et régularité des solutions des équations de la plasticité, C. R. Acad. Sci.
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