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The Kernel-Density-Estimator Minimizing
Movement Scheme

Florentine Catharina Fleißner *

Abstract
1 The mathematical theory of a novel variational approximation

scheme for general partial differential equations

∂tu−∇ ·
(
u∇δϕ

δu
(u)

∣∣∣∇δϕ

δu
(u)

∣∣∣q−2)
= 0, u ≥ 0, (0.1)

q ∈ (1,+∞), is developed; the Kernel-Density-Estimator Minimiz-
ing Movement Scheme (KDE-MM-Scheme) preserves the structure of
(0.1) as a steepest descent with regard to an energy functional ϕ and
a Wasserstein distance in the space of probability measures, at the
same time imitating the corresponding motion of a finite number of
particles / data points on a discrete timescale. Roughly speaking, the
KDE-MM-Scheme constitutes a simplification of the classical Minimiz-
ing Movement scheme for (0.1) (often referred to as ‘JKO scheme’),
in which the corresponding minimum problems are relaxed and re-
stricted to the values of Kernel Density Estimators each associated
with a finite dataset. Rigorous mathematical proofs show that the
KDE-MM-Scheme yields solutions to (0.1) if we let the time step sizes
and the dataset sizes (particle numbers) simultaneously go to zero and
infinity respectively. Uniting abstract analysis in metric spaces with
application-orientated concepts from statistics and machine learning,
our examinations will form the mathematical foundation for a novel
computationally tractable algorithm approximating solutions to (0.1).

A particular ingredient for our analysis is a general and robust sta-
bility theory for discrete-time steepest descents under the occurrence
of Γ-perturbations of the energy functional in the Minimizing Move-
ment scheme and relaxations of the corresponding minimum problems.

*Technische Universität München, email: fleissne@ma.tum.de.
1This paper is a shortened form of the author’s arXiv preprint [27] from October 2023.
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1 Introduction

The partial differential equation

∂tu−∇ ·
(
u∇δϕ

δu
(u)

∣∣∣∇δϕ

δu
(u)

∣∣∣q−2)
= 0, u ≥ 0, (1.1)

q ∈ (1,+∞), represents a common model for describing the evolution in time
of the density u of some quantity in a physical, chemical, biological, ecological
or economic process, where total mass is conserved and diffusion is governed
by the variational derivative δϕ

δu
of an energy functional ϕ. Let p ∈ (1,+∞) be

the conjugate exponent of q and Pp(Rd) be the space of probability measures
with finite moments of order p endowed with the p-Wasserstein distance Wp.
In the 90’s, Felix Otto originated, together with Jordan and Kinderlehrer
[53, 35, 36, 51, 52, 54], the interpretation of dynamics governed by (1.1) as a
steepest descent with regard to ϕ : Pp(Rd) → (−∞,+∞] andWp, building on
a Riemannian formalism (‘Otto calculus’) and an approximation by discrete-
time steepest descents.

Definition 1.1 (Discrete-time steepest descent in (Pp(Rd),Wp)). When a
sequence (µm

τ )m∈N in Pp(Rd) solves the Minimizing Movement (MM) scheme
2

µm
τ is a minimizer for Φ(τ, µm−1

τ , ·) (m ∈ N) (1.2)

associated with

Φ(τ, µ, ν) := ϕ(ν) +
1

pτ p−1
Wp(ν, µ)

p (1.3)

(often referred to as ‘JKO scheme’) for given time step size τ > 0 and initial
datum µ0

τ ∈ {ϕ < +∞}, the corresponding piecewise constant interpolation
µτ : [0,+∞) → Pp(Rd) defined as

µτ (0) = µ0
τ , µτ (t) ≡ µm

τ if t ∈ ((m− 1)τ,mτ ], m ∈ N, (1.4)

is called discrete solution to (1.2), (1.3) or discrete-time steepest descent
w.r.t. ϕ : Pp(Rd) → (−∞,+∞].

2Introduced by Ennio De Giorgi [19] as “natural meeting point” of many evolution
problems from different research fields, the abstract concept of Minimizing Movements has
proved extremely useful with a wide range of applications in analysis, geometry, physics
and numerical analysis, see e.g. [19], the paper [2] by Almgren, Taylor and Wang from
which De Giorgi drew his inspiration, [3, 45, 4, 25, 26, 28], [12] and [47, 48].
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This paper focuses on a novel approach to transforming (1.2), (1.3) into
a computationally tractable MM scheme which does not only offer a simpli-
fication of every single step in the scheme but reproduces the dynamics of
the whole MM scheme. A general stability theory for the MM scheme (1.2),
(1.3) under the occurrence of Γ-perturbations of the energy functional and
relaxations of the corresponding minimum problems is established. Building
thereon, a rigorous mathematical theory of a novel application-orientated
variational approximation scheme for (1.1) is developed: the Kernel-Density-
Estimator Minimizing Movement Scheme or KDE-MM-Scheme for short uses a
particular class of Γ-perturbations whose effective domains {ϕn < +∞} are
concentrated in the ranges of Kernel Density Estimation.

1.1 A Robust Stability Theory

Let ϕn : Pp(Rd) → (−∞,+∞] be Γ-perturbations of ϕ in (Pp(Rd),Wp).
There exists an a priori correlation τ 7→ n(τ) ∈ N between time step sizes and
parameters such that discrete-time steepest descents w.r.t. ϕn approximate
solutions to the diffusion equation (1.1) governed by ϕ whenever the time step
sizes τ ↓ 0 and the corresponding parameters n = n(τ) ↑ +∞ simultaneously:

If (ϕn)n∈N satisfies mild coercivity conditions, the thorough analysis from
the author’s paper “Γ-Convergence and Relaxations for Gradient Flows in
Metric Spaces: a Minimizing Movement Approach” [25], which is recapitu-
lated in Section 2.2, yields an a priori choice n = n(τ) so that the metric
characterization of limit curves of discrete-time steepest descents as solutions
to the energy inequality (1.5) (standing below) is stable under the occurrence
of the Γ-perturbations ϕn in the Minimizing Movement scheme (1.2), (1.3).
A careful study of the connection between the metric and the differential
characterization of steepest descents in (Pp(Rd),Wp), which is carried out
in Section 2.2, then provides a general regularity hypothesis (“chain rule”)
under which solutions µ : [0,+∞) → Pp(Rd) to the energy inequality

ϕ(µ(0))− ϕ(µ(t)) ≥ 1

q

∫ t

0

(
|∂−ϕ|(µ(r))

)q
dr +

1

p

∫ t

0

(
|µ′|(r)

)p
dr (1.5)

are weak solutions to the partial differential equation (1.1) (with q being the
conjugate exponent of p).

Our stability theory still holds true for approximate discrete-time steepest
descents, i.e. under relaxations of the corresponding minimum problems; we
do not need the existence of exact solutions thereto.
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We refer the reader to Section 2.1 for the relevant definitions (slope |∂−ϕ|,
locally absolutely continuous curve, metric derivative |µ′|) and further infor-
mation on the energy inequality (1.5). Now, we sketch our theory:

If (ϕn)n satisfies mild coercivity conditions, then there exists a correlation
τ 7→ nτ between time step sizes τ > 0 and parameters nτ ∈ N, with nτ ↑ +∞
as τ ↓ 0, such that the following is true (Thms. 3.4 and 6.1 in [25]):

� Assign a sequence of parameters n(τk) to a given sequence of time step
sizes τk ↓ 0 in such a way that n(τk) ≥ nτk and set

Φ(τk, µ, ν) := ϕn(τk)(ν) +
1

pτ p−1
k

Wp(ν, µ)
p. (1.6)

Let µ̄τk be discrete solutions (1.4) to the relaxed MM scheme

Φ(τk, µ
m−1
τk

, µm
τk
) ≤ inf

ν∈Pp(Rd)
Φ(τk, µ

m−1
τk

, ν) + γτk (m ∈ N) (1.7)

associated with (1.6) and error terms γτk > 0 that are of order o(τk). If
the corresponding sequence of initial data µ0

τk
is a ‘recovery sequence’

for µ0 ∈ {ϕ < +∞}, then there exists a subsequence of time step sizes
τkl ↓ 0 and a locally absolutely continuous curve µ : [0,+∞) → Pp(Rd)
such that µ(0) = µ0,

lim
l→+∞

sup
t∈[0,T ]

Wp(µ̄τkl
(t), µ(t)) = 0 for all T ≥ 0

and µ satisfies the energy inequality (1.5) for all t ≥ 0.

(see Theorem 2.8(i) and Theorem 2.6)

We fix n = n(τk) ≥ nτk a priori. The crucial point is the sequence (nτ )τ>0 is
completely independent of initial data and of discrete solutions; it stems from
a link between the slope of ϕ and the (p, τ)-Moreau-Yosida difference quo-
tients of ϕn that can always be established if (ϕn)n satisfies mild coercivity

conditions and that solely depends on the velocity of Γ-convergence ϕn
Γ→ ϕ:

� The right a priori choices n = n(τ) can be precisely determined through
relation (2.9) from Theorem 2.6. (see also Remark 2.7, Section 3.2.2)

We refer the reader to Definition 2.4 for the definition of (p, τ)-Moreau-
Yosida difference quotients.
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The next step is to link the energy inequality (1.5) to the partial differential
equation (1.1). This linkage is well-examined for energy functionals that
satisfy a convexity criterion along constant speed geodesics in (Pp(Rd),Wp),
cf. Cor. 2.4.10 and Thm. 11.1.3 in [4]. The careful study of the associated
underlying structure enables us to introduce a suitable chain rule so that we
can establish the linkage between (1.5) and (1.1) for a wider class of energy
functionals including functionals that are completely lacking in convexity:

� Let µ : [0,+∞) → Pp(Rd) be a solution to the energy inequality (1.5)
and let v : [0,+∞) × Rd → Rd be its tangent vector field. If ϕ ◦ µ
belongs to W1,1

loc([0,+∞)) and satisfies the natural chain rule (2.12)
involving v and the limiting subdifferential {Dlϕ(·)} of ϕ, then µ is a
p-curve of maximal slope w.r.t. ϕ and |∂−ϕ| in (Pp(Rd),Wp) and solves
the differential equation

vt = −|Dlϕ(µ(t))|q−2Dlϕ(µ(t)) µt-a.e. (1.8)

for L1-a.e. t > 0, which is a weak reformulation of (1.1) in the space
of probability measures. (see Theorem 2.8(ii) and Remark 2.9)

The definitions of tangent vector field, limiting subdifferential and p-
curves of maximal slope are given in Section 2.1. In the author’s papers
[27, 23], the chain rule is validated for a broad class of energy functionals
associated with second order diffusion equations.

Remark 1.2 (A priori choice vs a posteriori choice). Applying the Funda-
mental Theorem of Γ-convergence and a diagonal argument, we immediately
obtain the following statement under suitable coercivity conditions. Suppose
that for every time step size τ > 0 and every parameter n ∈ N, a discrete-
time steepest descent µτ,n w.r.t. ϕn is given corresponding to discrete values
µm
τ,n, m ∈ N, and well-prepared initial data as per Definition 1.1. Then there

exist n = n(τ) ↑ +∞ and discrete-time steepest descents µτ w.r.t. ϕ such
that

lim
τ↓0

Wp(µτ,n(τ)(t), µτ (t)) = 0 for t ≥ 0

(Thm. 8.1 in the book [12] by Braides). Though encouraging, this statement
is not suited for applications because the proof only yields an a posteriori
choice n = n(τ) which heavily depends on the initial data and on the choice
of discrete solutions µm

τ,n for every m ∈ N, τ > 0 and n ∈ N.
As is explicated above, our theory yields an a priori choice n = n(τ) by

contrast, see also Section 2.2 and [25].
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Remarks 2.10, 4.1 and 2.11 provide information on extensions of our sta-
bility theory concerning a “partial Γ-convergence”, the topology and corre-
sponding coercivity conditions, perturbations of the distance term, the chain
rule, non-uniform time discretizations and a non-uniform distribution of the
error terms.

Please note that the correlation between time step sizes and parameters
is crucial because of the lack of control over the slopes of Γ-perturbations, cf.
e.g. Sect. 1 and Ex. 1.1 in [25]. In [59, 62, 50], special cases of functionals

ϕn
Γ→ ϕ are treated in which the corresponding slopes satisfy a Γ-liminf

inequality; in these cases every choice n = n(τ) with n(τ) ↑ +∞ as τ ↓ 0 is
appropriate, see Sect. 5 in [25] and the end of Section 4.

Our stability theory will form a rigorous mathematical basis for compu-
tationally tractable versions of the MM scheme (1.2), (1.3) in general and for
our KDE-MM-Scheme in particular.

1.2 Kernel Density Estimation

A function estimator is defined as a random variable with values in some
function space F, emerging from a mapping of independent and identically
distributed (i.i.d.) data points X1, ..., Xn that are drawn from the same but
generally unknown probability distribution (cf. e.g. Sect. 5.4 in [32]).

Supposing that X1, ..., Xn represent an i.i.d. sample from a Borel prob-
ability distribution on Rd having a Lebesgue density function ρ and setting
F := {u ∈ L1(Rd) | u ≥ 0,

∫
Rd u(x)dx = 1} (= set of probability density

functions), we can try to capture ρ by finding suitable estimators

ρ̂n := fn(X1, ..., Xn), fn :
(
Rd

)n

→ F, n ∈ N. (1.9)

Therein lies the purpose of general probability density estimation going back
to [58, 70, 55]. Rosenblatt [58] and Parzen [55] originated the particular
concept of Kernel Density Estimation.

Definition 1.3 (Kernel function). A kernel function is defined as a nonneg-
ative function K : Rd → [0,+∞) with

∫
Rd K(x)dx = 1.

Every kernel function K is associated with a family of functions

Kh : Rd → [0,+∞), Kh(x) :=
1

hd
K
(x
h

)
, h > 0. (1.10)
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The convolution between such scaled kernel function (1.10) and the em-
pirical measure 1

n

∑n
i=1 δXi

yields a Kernel Density Estimator for the corre-
sponding probability distribution (which itself is not necessarily absolutely
continuous w.r.t. the Lebesgue measure):

Definition 1.4 (Kernel Density Estimator). Assuming that X1, ..., Xn is an
i.i.d. sample from a probability distribution µ and K is a kernel function, the
function estimator

ρ̂n,h :=
1

n

n∑
i=1

Kh(· −Xi) (1.11)

is called Kernel Density Estimator (KDE) for µ associated with the sample
size n ∈ N and bandwidth h > 0.

Kernel Density Estimators are used for example in the wide areas of
clustering and topological data analysis with various applications in com-
puter vision, text analysis, biology, chemistry and astronomy including im-
age processing, anomaly detection, unsupervised and semi-supervised clas-
sification, genetic profiling and protein analysis, to name but a few (cf.
[58, 55, 1, 42, 57, 6, 69, 34, 22, 39] and the references therein).

The asymptotic behaviour of Kernel Density Estimators and their deriva-
tives as the sample sizes n ↑ +∞ and the bandwidths h ↓ 0 simultaneously
is well-documented, including strong consistency results and concentration
inequalities that are extremely useful for our purposes; we refer the reader to
Section 3.2, Proposition 3.6, Proposition 3.8 and Remarks 3.9 and 3.11 and
to [39, 29] and the references therein for further information thereon.

1.3 The KDE-MM-Scheme

The Kernel-Density-Estimator Minimizing Movement Scheme (KDE-MM-Scheme)
is developed and introduced as a novel application-orientated variational ap-
proximation scheme for (1.1). We fix a kernel function K according to Defi-
nition 1.3 with finite moment of order p (where p ∈ (1,+∞) is the conjugate
exponent of q), i.e.

MK,p :=

∫
Rd

|x|pK(x)dx < +∞, (1.12)

and we perform the relaxed Minimizing Movement scheme (1.7), (1.6) along a
Γ-KDE-Approximation of the energy functional.
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Definition 1.5 (Γ-KDE-Approximation). We say that a sequence of en-
ergy functionals ϕn : Pp(Rd) → (−∞,+∞] is a Γ-KDE-Approximation of
ϕ : Pp(Rd) → (−∞,+∞] associated with the kernel function K and the cor-
relation n 7→ h(n) between sample sizes n ∈ N and bandwidths h(n) > 0 if
h(n) ↓ 0 as n ↑ +∞,

(H1) the effective domains {ϕn < +∞} are concentrated in the KDE ranges
corresponding to K, n, h(n), i.e.

ϕn(µ) < +∞ ⇒ ∃y1, .., yn ∈ Rd : µ =
( 1
n

n∑
i=1

Kh(n)(· − yi)
)
Ld,

(H2) ϕn
Γ→ ϕ in (Pp(Rd),Wp), and

(H3) whenever µ ∈ {ϕ < +∞} and ρ̂n,h(n), n ∈ N, is a sequence of Ker-
nel Density Estimators (1.11) for µ, the corresponding sequence of
measure-valued random variables µ̂n,h(n) := ρ̂n,h(n)L

d, n ∈ N, almost
surely constitutes a recovery sequence for µ, i.e.

lim
n→+∞

Wp(µ̂n,h(n), µ) = 0 and lim
n→+∞

ϕn(µ̂n,h(n)) = ϕ(µ) (1.13)

with probability 1.

It is reasonable to assume that the exact form of the initial probability
distribution is generally unknown in practical applications of our theory so
that we need to capture it by an i.i.d. sample. This is our first motivation
for Definition 1.5 and Hypothesis (H3):

� The KDE-MM-Scheme is performed with Kernel Density Estimators
(1.11) as initial data corresponding to some initial probability distri-
bution.

Secondly, under (H1), the process of minimization (1.7), (1.6) is restricted
to a clearly structured subset of probability densities emerging from K through
basic function operations, which should prove advantageous with regard to
a practical implementation of the scheme. Furthermore, a special feature of
the KDE-MM-Scheme, which is due to (H1) and the relaxation (1.7) of the
minimum problems, is the comparatively easy computation of the distance
term:
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� The Wasserstein distance term in (1.6) can be replaced by a simple
‘particle distance’ corresponding to the optimal transport between dis-
crete measures 1

n(τ)

∑n(τ)
i=1 δyi .

We refer the reader to Definition 3.1 and the instructions from Theorem 3.3
for the resultant KDE-MM-Scheme and to Proposition 3.2 for a consideration
of how the differences in the distance terms affect (1.7). Correspondingly
adapting the right a priori choices of the parameters n = n(τ) and h = h(n(τ)),
we can directly apply the theory from [25] and Section 2.2, which is outlined
in Section 1.1; please recall (H3) with regard to the initial data. We obtain
the strong consistency of the KDE-MM-Scheme as an approximation scheme for
continuous-time steepest descents w.r.t. ϕ in (Pp(Rd),Wp) characterized by
the partial differential equation (1.1):

� If the Γ-KDE-Approximation satisfies mild coercivity properties, the
KDE-MM-Scheme approximates solutions to the energy inequality (1.5)
corresponding to any initial probability distribution µ0 ∈ {ϕ < +∞}
with probability 1. If the chain rule (2.12) holds true, the solutions to
(1.5) are p-curves of maximal slope w.r.t. ϕ and |∂−ϕ| in (Pp(Rd),Wp)
and solve the differential equation (1.8), which means that they are
weak solutions to (1.1).

As is stated in Section 1.1 and Remark 2.9, the chain rule linking the energy
inequality (1.5) to the partial differential equation (1.1) is true whenever ϕ
satisfies a convexity criterion along constant speed geodesics in (Pp(Rd),Wp)
and moreover, it can be validated for a wider class of energy functionals
including functionals that are completely lacking in convexity, cf. [27, 23].

We refer the reader to Theorem 3.3 and Remark 3.4 for the precise a
priori selection of the parameters for the KDE-MM-Scheme and the strong
consistency / convergence statement.

Please note that the KDE-MM-Scheme both preserves the steepest descent
character of the original MM scheme (1.2), (1.3) in the space of probability
measures and mimics the corresponding motion of particles / data points.

Variations (partial and weak Γ-KDE-Approximation) on Definition 1.5 and
corresponding extensions of the theory are introduced in Remark 3.5 and
Remark 4.1(i). Further extensions of the theory concern the chain rule and
non-uniform time discretizations and are discussed in Remark 4.1(ii)-(iv).

� The application of the KDE-MM-Scheme to general second order dif-
fusion equations of the form (1.1) is explicated in [27, 23] and sketched
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in Section 3.2.2. The KDE-MM-Scheme approximates weak solutions
to such an equation under natural and quite general hypotheses and
can model diverse processes from physics, biology, chemistry etc., see
Section 3.2.2, Example 3.7, Remark 3.9 and Remark 3.10.

� The concept of the KDE-MM-Scheme is well suited for approaching
fourth order examples of (1.1), too, see Section 3.2.3.

Emphasizing the novelty of both our KDE-MM-Scheme and our stability
theory as a general foundation for computationally tractable versions of the
MM scheme (1.2), (1.3), we refer the reader to [24] for an investigation of
the rich literature on computational approaches to (1.1).

Plan of the paper. Section 2.1 provides preliminary definitions and remarks
regarding the analysis of steepest descents. Section 2.2 yields a general and
robust stability theory for discrete-time steepest descents in (Pp(Rd),Wp)
under the occurrence of Γ-perturbations of the energy functional in the MM
scheme (1.2), (1.3) and relaxations of the corresponding minimum problems.
In Sections 3.1 and 3.3, the concept of the KDE-MM-Scheme is explicated
and its convergence to solutions of (1.1) is proved. Section 3.2 deals with
the practical application of the abstract theory of the KDE-MM-Scheme
to general second (Section 3.2.2) and fourth (Section 3.2.3) order diffusion
equations of the form (1.1); one ingredient of the examinations is the strong
consistency of KDEs in (Pp(Rd),Wp) (Section 3.2.1). In Section 4, some
aspects and extensions of the stability theory and the theory of the KDE-
MM-Scheme are discussed.

2 Stability of Steepest Descents in (Pp(Rd),Wp)

2.1 Preliminaries

Let p ∈ (1,+∞) and Pp(Rd) be the space of Borel probability measures
with finite moments of order p (i.e.

∫
Rd |x|pdµ < +∞), endowed with the

p-Wasserstein distance Wp,

Wp(µ1, µ2)
p := min

γ∈Γ(µ1,µ2)

∫
Rd×Rd

|x− y|pdγ, µi ∈ Pp(Rd),

with Γ(µ1, µ2) being the set of Borel probability measures on Rd ×Rd whose
first and second marginals coincide with µ1 and µ2 respectively (see e.g.
[66, 67]). Let q ∈ (1,+∞) be the conjugate exponent of p.
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The metric characterization of steepest descents in (Pp(Rd),Wp) w.r.t. a
general energy functional ϕ : Pp(Rd) → (−∞,+∞] involves an abstraction
of the modulus of the gradient to the metric and nonsmooth setting.

Definition 2.1 (Local and relaxed slope). The local slope |∂ϕ| of ϕ at a
probability measure µ ∈ {ϕ < +∞} is defined as

|∂ϕ|(µ) := lim sup
Wp(ν,µ)→0

(ϕ(µ)− ϕ(ν))+

Wp(µ, ν)
.

The relaxed slope |∂−ϕ| at µ ∈ {ϕ < +∞} is a slight modification of the
lower semicontinuous envelope of the local slope, i.e.

|∂−ϕ|(µ) := inf{lim inf
n→+∞

|∂ϕ|(µn) : lim
n→+∞

Wp(µn, µ) = 0, sup
n

ϕ(µn) < +∞}.

If ϕ satisfies suitable coercivity conditions and µτk : [0,+∞) → Pp(Rd)
is a sequence of discrete-time steepest descents w.r.t. ϕ, initial data µ0

τk
=

µ0 ∈ {ϕ < +∞} and time step sizes τk ↓ 0 as per Definition 1.1, then there
exists a locally uniformly converging subsequence µτkl

with locally absolutely

continuous limit curve µ : [0,+∞) → Pp(Rd) solving the energy inequality

ϕ(µ(0))− ϕ(µ(t)) ≥ 1

q

∫ t

0

(
|∂−ϕ|(µ(r))

)q
dr +

1

p

∫ t

0

(
|µ′|(r)

)p
dr (2.1)

for all t ≥ 0, see Sect. 2 in [3] and Chaps. 2 and 3 in [4].
Assuming a metric chain rule or a ‘continuity condition’, the inequality

(2.1) can be proved not only for s = 0 but for L1-a.e. s ∈ (0, t) (“energy
dissipation inequality”) so that µ is a p-curve of maximal slope w.r.t. ϕ and
|∂−ϕ| in (Pp(Rd),Wp), see Chaps. 1 and 2 in [4], Sects. 2 and 4 in [43] and
Sect. 2 in [3]; this abstract concept of a continuous-time steepest descent in
a metric space originates from De Giorgi, Marino and Tosques [20] and is
further developed in [21, 43, 4].

Definition 2.2 (Locally absolutely continuous curve). We say that a curve
µ : [0,+∞) → Pp(Rd) is locally absolutely continuous in (Pp(Rd),Wp) if
there exists m ∈ L1

loc(0,+∞) such that

Wp(µ(s), µ(t)) ≤
∫ t

s

m(r)dr for all 0 ≤ s ≤ t < +∞.
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If (µt)t≥0 is a locally absolutely continuous curve in (Pp(Rd),Wp), the
limit

|µ′|(t) := lim
s→t

Wp(µ(s), µ(t))

|s− t|
exists for L1-a.e. t ∈ (0,+∞), the metric derivative t 7→ |µ′|(t) belongs to
L1
loc(0,+∞) and is L1-a.e. the smallest admissible functionm in the definition

above (cf. Thm. 1.1.2 in [4]). Moreover, there exists an essentially unique
Borel vector field w : [0,+∞)× Rd → Rd satisfying both

wt ∈ Lp(µt;Rd), ∥wt∥Lp(µt;Rd) = |µ′|(t) for L1-a.e. t > 0, (2.2)

and the continuity equation

∂tµt +∇ · (wtµt) = 0, (2.3)

in the distributional sense, i.e.∫ +∞

0

∫
Rd

(∂tξ(t, x) + ⟨∇xξ(t, x), w(t, x)⟩)dµt(x)dt = 0

for all ξ ∈ C∞
c ((0,+∞) × Rd) (cf. Thm. 8.3.1 and Prop. 8.4.5 in [4]). We

refer to w satisfying (2.2) and (2.3) as “tangent” vector field associated with
the curve (µt)t≥0.

The differential characterization of limit curves of discrete-time steepest
descents as weak solutions to the partial differential equation (1.1) entails
a certain regularity of ϕ so that the first variation calculus from [36] can
be performed, cf. e.g. [53, 35, 36, 51, 52], [44, 31], Chaps. 10 and 11 in
[4], Chap. 8 in [60], Chap. 4 in [61]. In [4], the gradient flow approach to
(1.1) is formalized by means of a subdifferential calculus which translates the
concept of the Fréchet subdifferential and its weak⋆-closure from a Banach
space into a suitable concept in (Pp(Rd),Wp).

Definition 2.3 (Strong and limiting subdifferential). If ϕ satisfies

(ϕ1) ϕ(µ) < +∞ implies µ ≪ Ld,

the strong subdifferential ∂sϕ(µ) of ϕ at µ ∈ {ϕ < +∞} is defined as the set
of vector fields ζ ∈ Lq(µ;Rd) satisfying

ϕ(T#µ)− ϕ(µ) ≥
∫
Rd

⟨ζ(x), T (x)− x⟩dµ(x) + o(∥T − id∥Lp(µ;Rd)).
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The limiting subdifferential ∂lϕ(µ) of ϕ at µ ∈ {ϕ < +∞} is defined as

the set of vector fields ζ ∈ Lq(µ;Rd) for which there exist µn
Wp−→ µ and

ζn ∈ ∂sϕ(µn) (n ∈ N) such that supn

{
ϕ(µn),

∫
Rd |ζn(x)|qdµn(x)

}
< +∞ and

ζnµn converges to ζµ in the distributional sense.

Assuming ϕ(µ) :=
∫
F(x, u)dx or ϕ(µ) :=

∫
F(x, u,∇u)dx (for µ = uLd),

it is not difficult to see that Definition 2.3 of ∂sϕ(µ) and ∂lϕ(µ) generalizes the
expression ∇ δϕ

δu
(u) from standard variational calculus for integral functionals

to the nonsmooth setting in (Pp(Rd),Wp), cf. Lem. 10.4.1 in [4]. The
heuristic principle that

∂lϕ(µ) =
{
∇δϕ

δu
(u)

}
is further substantiated through the concrete computation of limiting subdif-
ferentials, see Example 11.1.9 in [4], which is an example of a general second
order diffusion equation, and Sect. 5.3 in [31] and Sect. 2.4 in [44] both
dealing with fourth order examples of (1.1).

We refer the reader to Remark 2.9 for further information on steepest
descents in (Pp(Rd),Wp) and end this preliminary section by introducing the
notion of a difference quotient of ϕ : Pp(Rd) → (−∞,+∞].

Let Y
(p)
τ ϕ denote the (p, τ)-Moreau-Yosida approximation of ϕ defined as

Y(p)
τ ϕ(µ) := inf

ν∈Pp(Rd)

{
ϕ(ν) +

1

pτ p−1
Wp(ν, µ)

p
}
.

Definition 2.4 ((p, τ)-Moreau-Yosida difference quotient). Let a probability
measure µ ∈ {ϕ < +∞} and a step size τ > 0 be given. We define

DY
p,τϕ(µ) :=

ϕ(µ)− Y
(p)
τ ϕ(µ)

τ
(2.4)

and call DY
p,τϕ(µ) the (p, τ)-Moreau-Yosida difference quotient of ϕ at µ.

Remark 2.5 (Equivalent definition of |∂ϕ|). By Lem. 3.1.5 and Rem. 3.1.7
in [4], the local slope of ϕ at µ ∈ {ϕ < +∞} satisfies

1

q

(
|∂ϕ|(µ)

)q
= lim sup

τ↓0
DY

p,τϕ(µ)

whenever there exist τ⋆ > 0 and µ⋆ ∈ Pp(Rd) such that Y
(p)
τ⋆ ϕ(µ⋆) > −∞.
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2.2 Γ-Convergence for Gradient Flows in (Pp(Rd),Wp):
A Minimizing Movement Approach

Let p, q ∈ (1,+∞) be conjugate exponents. Let ϕ, ϕn : Pp(Rd) → (−∞,+∞]

be energy functionals and suppose that ϕn
Γ→ ϕ in (Pp(Rd),Wp), i.e.

ϕ(µ) ≤ lim inf
n→+∞

ϕn(µn) whenever lim
n→+∞

Wp(µn, µ) = 0 (2.5)

and for all µ ∈ Pp(Rd) there exists a ‘recovery sequence’

∃ a sequence µ̄n, lim
n→+∞

Wp(µ̄n, µ) = 0 : ϕ(µ) = lim
n→+∞

ϕn(µ̄n). (2.6)

We precisely determine appropriate a priori correlations τ 7→ n(τ) so that
discrete-time steepest descents w.r.t. ϕn approximate continuous-time steep-
est descents (1.1) w.r.t. ϕ as the time step sizes τ ↓ 0 and the corresponding
parameters n = n(τ) ↑ +∞ simultaneously. The statement is even proved
for discrete solutions to the relaxed MM scheme

Φ(τ, µm−1
τ , µm

τ ) ≤ inf
ν∈Pp(Rd)

Φ(τ, µm−1
τ , ν) + γ(m)

τ (m ∈ N) (2.7)

associated with

Φ(τ, µ, ν) := ϕn(τ)(ν) +
1

pτ p−1
Wp(ν, µ)

p, γ(m)
τ > 0. (2.8)

‘A priori’ means that the choices n = n(τ) are completely independent of
initial data and of discrete solutions to the scheme; they solely depend on the

velocity of Γ-convergence ϕn
Γ→ ϕ. As is stated in Theorems 2.8 and 2.6, right

a priori choices n = n(τ) stem from a connection between the relaxed slope
|∂−ϕ| of ϕ and the (p, τ)-Moreau-Yosida difference quotients DY

p,τϕn of ϕn

that can always be established if (ϕn)n∈N satisfies mild coercivity conditions
(see Definitions 2.1 and 2.4 for |∂−ϕ| and DY

p,τϕn respectively):
We assume

(ϕn1) there exist A,B > 0, µ⋆ ∈ Pp(Rd) s.t. ϕn(·) ≥ −A− BWp(·, µ⋆)
p for

all n ∈ N,

(ϕn2) the combined compactness property

sup
n
{ϕn(µn),Wp(µn, µ⋆)} < +∞ ⇒ ∃nk ↑ +∞, µ : Wp(µnk

, µ) → 0.
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Theorem 2.6 (Existence of right choices n = n(τ)). Let the sequence of
functionals ϕn : Pp(Rd) → (−∞,+∞], n ∈ N, satisfy (ϕn1), (ϕn2) and
Γ-converge to ϕ : Pp(Rd) → (−∞,+∞] in (Pp(Rd),Wp).

Then there exists a sequence (nτ )τ>0 in N with nτ ↑ +∞ as τ ↓ 0 such
that the following holds good whenever the correlation τ 7→ n(τ) between step
sizes τ > 0 and parameters n(τ) ∈ N is selected in such a way that n(τ) ≥ nτ :

1

q

(
|∂−ϕ|(ν)

)q ≤
[
G− lim inf

τ↓0
DY

p,τϕn(τ)

]
(ν) for all ν ∈ {ϕ < +∞}, (2.9)

where
[
G− lim infτ↓0DY

p,τϕn(τ)

]
(ν) is defined as

inf
{
lim inf

τ↓0
DY

p,τϕn(τ)(ντ ) : lim
τ↓0

Wp(ντ , ν) = 0, sup
τ

ϕn(τ)(ντ ) < +∞
}
. (2.10)

Proof. As (Pp(Rd),Wp) is separable (see e.g. Prop. 7.1.5 in [4]), we get
Theorem 2.6 by applying Thm. 6.1 from [25], which can be easily extended
to the case p ∈ (1,+∞).

Remark 2.7 (Exact computation of right choices n = n(τ)). Whilst Theo-
rem 2.6 shows the existence of right choices n = n(τ) with regard to (2.9),
the detailed examinations in [27, 23] and [25] demonstrate the practical and
exact computation thereof.

The mild coercivity conditions (ϕn1) and (ϕn2) naturally arise from the
study of the relaxed MM scheme (2.7), (2.8); they guarantee the existence of

discrete solutions to (2.7), (2.8) for τ <
(

1
pB

)1/(p−1)
and of converging subse-

quences thereof (cf. Sects. 3.1 and 3.2 in [25]). Since we allow approximate
minimizers in (2.7), we do not need to impose any lower semicontinuity or
compactness condition on the single functionals ϕn.

Theorem 2.8 (Γ-convergence for discrete-time steepest descents). Let the
sequence of functionals ϕn : Pp(Rd) → (−∞,+∞], n ∈ N, satisfy (ϕn1),
(ϕn2) and Γ-converge to ϕ : Pp(Rd) → (−∞,+∞] in (Pp(Rd),Wp).

A given sequence (τk)k∈N of time step sizes τk ↓ 0 is assigned a sequence
of parameters n(τk) ↑ +∞ in accordance with (2.9).

Let µ̄τk be discrete solutions (1.4) to the relaxed MM scheme (2.7), (2.8),

associated with τk, n(τk) and error terms γ
(m)
τk = γτk > 0 such that

lim
k→+∞

γτk
τk

= 0. (2.11)
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If µ̄τk(0) is a recovery sequence (2.6) for (ϕn(τk))k, ϕ and some initial
datum µ0 ∈ {ϕ < +∞}, then the following is true:

(i) There exist a subsequence of time step sizes (τkl)l∈N, τkl ↓ 0, and a limit
curve µ : [0,+∞) → Pp(Rd) such that µ(0) = µ0 and

lim
l→+∞

sup
t∈[0,T ]

Wp(µ̄τkl
(t), µ(t)) = 0 for all T ≥ 0.

The curve µ is locally absolutely continuous in (Pp(Rd),Wp) and satis-
fies the energy inequality (2.1) for all t ≥ 0.

(ii) Let v denote the tangent vector field of µ. If ϕ satisfies (ϕ1) (from
Definition 2.3) and the function ϕ ◦ µ belongs to W1,1

loc([0,+∞)) with
∂lϕ(µ(t)) = {Dlϕ(µ(t))} and

(ϕ ◦ µ)′(t) =

∫
Rd

⟨Dlϕ(µ(t))(x), vt(x)⟩dµt(x) (2.12)

for L1-a.e. t > 0, then the curve µ solves both the differential equation

vt = −|Dlϕ(µ(t))|q−2Dlϕ(µ(t)) µt-a.e. (2.13)

and the energy dissipation equality

ϕ(µ(0))−ϕ(µ(t)) =
1

q

∫ t

0

(
|∂−ϕ|(µ(r))

)q
dr +

1

p

∫ t

0

(
|µ′|(r)

)p
dr (2.14)

for L1-a.e. t ≥ 0. In this case,

lim
l→+∞

ϕn(τkl )
(µ̄τkl

(t)) = ϕ(µ(t)) (2.15)

and
|∂−ϕ|(µ(t)) = ∥Dlϕ(µ(t))∥Lq(µt;Rd) (2.16)

for L1-a.e. t > 0.

Remark 2.9 (Chain rule). Theorem 2.8 unites three different approaches
to the concept of steepest descent in (Pp(Rd),Wp). First, the metric char-
acterization of limit curves of discrete-time steepest descents by the energy
inequality (2.1) proves stable under the occurrence of Γ-perturbations and re-
laxations in the corresponding JKO scheme / Minimizing Movement scheme.
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The energy dissipation equality (2.14) qualifies the curve µ as a p-curve of
maximal slope in (Pp(Rd),Wp). Finally, the limiting subdifferential can be
identified with ∇ δϕ

δu
(u) (as is outlined in Section 2.1) so that the gradient-

flow-type differential equation (2.13), together with the continuity equation
(2.3), represents a weak reformulation of the diffusion equation (1.1) in the
space of probability measures.

The hypothesis that ϕ ◦ µ belongs to W1,1
loc([0,+∞)) satisfying the chain

rule (2.12) allows the linkage between all three characterizations of steep-
est descents in (Pp(Rd),Wp). It arises quite naturally out of the theory of
gradient flows; bridging the gap between a metric and a differential charac-
terization of a gradient flow typically involves a chain rule, cf. [[21], Prop.
2.2] and [[43], Thm. 1.11] for the Hilbertian case and [[4], Prop. 1.4.1] for the
Banach case. In the case of (Pp(Rd),Wp), the linkage between the differential
equation (2.13) and p-curves of maximal slope w.r.t. a displacement convex
energy functional is well examined, see Thm. 11.1.3 in [4]; the underlying
structure fits into the hypothesis about ϕ ◦ µ in part (ii) of Theorem 2.8.

If ϕ is displacement convex (cf. [46], often referred to as convex along con-
stant speed geodesics [4]), then for every solution µ to the energy inequality
(2.1), the function ϕ◦µ belongs to C([0,+∞))∩W1,1

loc([0,+∞)) and the chain
rule (2.12) holds good for L1-a.e. t > 0, see Cor. 2.4.10, Lem. 10.1.3 and
“chain rule” in Sect. 10.1.2 in [4]. It is not difficult to see that the same is
true if ϕ satisfies a wider convexity criterion along constant speed geodesics
in (Pp(Rd),Wp) as in [[4], Def. 9.1.1] or [[17], Def. 2.4].

Our hypothesis about ϕ◦µ translates the associated underlying structure
into a general concept which also applies to energy functionals ϕ that are
lacking in convexity; Theorem 2.8(ii) thus offers a general approach to the
equivalence between the characterization (2.1) of limit curves of discrete-
time steepest descents, the abstract idea of p-curves of maximal slope and
the differential characterization (2.13) of a gradient flow in (Pp(Rd),Wp).

We refer the reader to [27, 23] for the validation of the chain rule (2.12) for
a wide class of energy functionals related to second order diffusion equations.

The application of Theorem 2.8(ii) to examples in which the energy func-
tional does not satisfy (ϕ1) or its limiting subdifferentials possibly contain
more than one element is discussed in Remark 4.1(ii) and (iii).

We prove Theorem 2.8:

Proof. We refer the reader to Thm. 3.4 in [25] for statement (i); the esti-
mates in the first and second part of the proof therein, which can be easily
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extended to the case p ∈ (1,+∞), show the locally uniform convergence of
a subsequence of discrete solutions to a locally absolutely continuous curve
satisfying the energy inequality (2.1). The roles of the relation (2.9) between
|∂−ϕ| and

(
DY

p,τϕn(τ)

)
τ>0

and of condition (2.11) on the error terms manifest
themselves in that proof.

Let us suppose that ϕ satisfies (ϕ1) and prove (ii). It follows from (ϕn1),
(ϕn2) and the Γ-convergence of ϕn to ϕ w.r.t. Wp that for small τ > 0 and
all ν ∈ Pp(Rd), there exists a solution to the minimum problem

min
ν̄∈Pp(Rd)

{
ϕ(ν̄) +

1

pτ p−1
Wp(ν̄, ν)

p
}
. (2.17)

A simple adaptation of the proof of Lem. 4.6 in [5], an application of Lem.
10.3.4 and Rem. 3.1.7 in [4] then show that

|∂−ϕ|(ν) < +∞ ⇒ ∂lϕ(ν) ̸= ∅ (2.18)

and
∥Dlϕ(ν)∥Lq(ν;Rd) ≤ |∂−ϕ|(ν) (2.19)

if Dlϕ(ν) is the only element of ∂lϕ(ν). By (2.1) and (2.18), the limiting
subdifferential ∂lϕ(µ(t)) is nonempty for L1-a.e. t > 0.

If ϕ ◦ µ belongs to W1,1
loc([0,+∞)) satisfying ∂lϕ(µ(t)) = {Dlϕ(µ(t))} and

(2.12) for L1-a.e. t > 0, then

ϕ(µ(t))− ϕ(µ(0)) ≥
∫ t

0

∫
Rd

⟨Dlϕ(µ(r))(x), vr(x)⟩dµr(x)dr (2.20)

for L1-a.e. t > 0 since ϕ ◦ µ is lower semicontinuous at s = 0; we infer
(2.13), (2.14) and (2.16) from (2.1), (2.20), (2.19), (2.2) and an application
of Cauchy-Schwarz inequality and Young’s inequality.

Finally, (2.15) follows from the facts that limk→+∞ ϕn(τk)(µ̄τk(0)) = ϕ(µ(0))
and

ϕ(µ(0))− ϕ(µ(t)) ≥ lim sup
l→+∞

[
ϕn(τkl )

(µ̄τkl
(0))− ϕn(τkl )

(µ̄τkl
(t))

]
≥ lim inf

l→+∞

[
ϕn(τkl )

(µ̄τkl
(0))− ϕn(τkl )

(µ̄τkl
(t))

]
≥ 1

q

∫ t

0

(
|∂−ϕ|(µ(r))

)q
dr +

1

p

∫ t

0

(
|µ′|(r))pdr

= ϕ(µ(0))− ϕ(µ(t))

by (2.14) and the proof of (2.1) in [25].
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We present variations on Theorem 2.8 regarding a “partial Γ-convergence”
of the energy functionals and condition (2.11) on the error terms γ

(m)
τ :

Remark 2.10 (Partial Γ-convergence). A partial Γ-convergence of ϕn to ϕ
is sufficient to obtain statement (i) from Theorem 2.8: we need the existence
of a recovery sequence (2.6) solely for the initial datum µ0, cf. Sect. 3.1,
Thm. 3.4 in [25]. Also Theorem 2.8(ii) holds true in this case assuming for
small τ > 0 and all ν ∈ {ϕ < +∞} there exists a solution to the minimum
problem (2.17) and the function ϕ ◦ µ is lower semicontinuous at s = 0 so
that (2.18), (2.19) and (2.20) are still applicable in its proof.

Remark 2.11 (The error terms). The error order o(τ) in (2.11) is optimal,
cf. Ex. 4.5 in [25]. Further, the proof of Thm. 3.4 in [25] shows that we can

extend our theory to a non-uniform distribution of the error terms γ
(m)
τk > 0.

Theorem 2.8 still holds true if (2.11) is replaced by the general condition

lim
k→+∞

Nτk∑
m=1

γ(m)
τk

= 0 for every Nτk ∈ N s.t. (Nτkτk)k∈N is bounded, (2.21)

cf. Sect. 3.3 in [25].

Further extensions of Theorem 2.8 regarding a relaxation of the com-
bined compactness condition (ϕn2), non-uniform time discretizations and
perturbations of the distance term in the relaxed MM scheme (2.7), (2.8)
are discussed in Remark 4.1. At the end of Section 4, the main assumptions
from the Serfaty-Sandier approach [59, 62] and Ortner’s examinations [50]
are considered; we can prove (2.9) for every choice n(τ) ↑ +∞ in these cases.

3 The KDE-MM-Scheme

Our approach to second and fourth order diffusion equations (1.1) governed
by an energy functional ϕ is to carry out the relaxed Minimizing Movement
scheme (2.7), (2.8) along a Γ-KDE-Approximation (ϕn)n∈N of ϕ. The simple
structure of {ϕn < +∞} as per (H1) in Definition 1.5 brings an advantage
for the implementation of the scheme in itself and moreover, it allows a sig-
nificant simplification of the distance term in (2.8). We call the resultant
scheme Kernel-Density-Estimator Minimizing Movement Scheme or KDE-MM-
Scheme for short. It constitutes an approximate discrete-time steepest de-
scent movement in (Pp(Rd),Wp) driven by the motion of a finite number of
particles / data points in Rd and converging to solutions of (1.1).
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3.1 Definition and Consistency of the KDE-MM-Scheme

Let p ∈ (1,+∞) be the conjugate exponent of q from (1.1). We fix a kernel
function K according to Definition 1.3 with finite moment (1.12) of order p.

Definition 3.1 (KDE-MM-Scheme). Let (ϕn)n∈N be a Γ-KDE-Approximation
of ϕ : Pp(Rd) → (−∞,+∞] associated with K and n 7→ h(n) according to
Definition 1.5. Every time step size τ > 0 is assigned a sample size n(τ) ∈ N
and the corresponding bandwidth h(τ) := h(n(τ)). We define

Ψ(τ, Y, Z) := ϕn(τ)

( 1

n(τ)

n(τ)∑
i=1

Kh(τ)(· − zi)L
d
)
+

1

pτ p−1

n(τ)∑
i=1

|zi − yi|p

n(τ)
(3.1)

for Y :=
(
y1, ..., yn(τ)

)
and Z :=

(
z1, ..., zn(τ)

)
with yi, zi ∈ Rd.

For τ > 0 and a given initial datum Y 0
τ :=

(
y01,τ , ..., y

0
n(τ),τ

)
, y0i,τ ∈ Rd,

our aim is to find a sequence

Y m
τ :=

(
ym1,τ , ..., y

m
n(τ),τ

)
, ymi,τ ∈ Rd, m ∈ N (3.2)

by the scheme

Ψ(τ, Y m−1
τ , Y m

τ ) ≤ inf
Z=(z1,...,zn(τ))

Ψ(τ, Y m−1
τ , Z) + γ(m)

τ (m ≥ 1) (3.3)

associated with (3.1) and error terms γ
(m)
τ > 0.

We assign probability measures µm
τ := um

τ L
d ∈ Pp(Rd), m ∈ N0,

um
τ :=

1

n(τ)

n(τ)∑
i=1

Kh(τ)(· − ymi,τ ), (3.4)

to the sequence (Y m
τ )m∈N0; the corresponding piecewise constant interpola-

tions µτ : [0,+∞) → Pp(Rd) defined as in (1.4) are called discrete solutions
to the KDE-MM-Scheme.

The probabilistic aspect of the KDE-MM-Scheme manifests itself through
Hypothesis (H3) in Definition 1.5 and the need for a concrete and feasible re-
covery sequence corresponding to some initial probability distribution whose
exact form is unknown in most cases, cf. Theorem 3.3 below.

If the Γ-KDE-Approximation satisfies the mild coercivity condition (ϕn1),
the relaxed minimum problems (3.3) are solvable and the KDE-MM-Scheme
fits into the theory from Section 2.2:
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Proposition 3.2 (Basic properties of KDE-MM-Scheme). Let the Γ-KDE-
Approximation (ϕn)n∈N satisfy the coercivity condition (ϕn1).

(i) Existence of discrete solutions. If τ ∈
(
0,
(

1
pB

)1/(p−1))
, then

inf
Z=(z1,...,zn(τ))

Ψ(τ, Y, Z) > −∞ for every Y = (y1, ..., yn(τ)).

(ii) Discrete solutions to the KDE-MM-Scheme are discrete solutions to
the relaxed MM scheme (2.7), (2.8). Let µτk be discrete solutions to the
KDE-MM-Scheme with time step sizes τk ↓ 0 and initial data

sup
k
{ϕn(τk)(µτk(0)),Wp(µτk(0), µ⋆)} < +∞. (3.5)

If the corresponding bandwidth parameters h(τk) and error terms γ
(m)
τk

satisfy

lim
k→+∞

h(τk)

τ pk
= 0 (3.6)

and (2.21) respectively, then µτk are discrete solutions to (2.7), (2.8)

associated with error terms γ̄
(m)
τk > 0 that satisfy (2.21).

The proof of Proposition 3.2 is postponed to Section 3.3.
An application of Definition 1.5 (H3), Proposition 3.2(ii) and the theory

from [25] and Section 2.2 establishes the strong consistency of the KDE-MM-
Scheme as an approximation scheme for p-curves of maximal slope w.r.t. ϕ
in (Pp(Rd),Wp) that are solutions to (2.13) (weak form of (1.1)):

Theorem 3.3 (Strong consistency of KDE-MM-Scheme). Let (ϕn)n∈N be a
Γ-KDE-Approximation of an energy functional ϕ : Pp(Rd) → (−∞,+∞]
according to Definition 1.5. We assume that the coercivity conditions (ϕn1),
(ϕn2) are satisfied.

A given sequence (τk)k∈N of time step sizes τk ↓ 0 is assigned a sequence
of sample size parameters n(τk) ↑ +∞ and a corresponding sequence of band-
width parameters h(τk) := h(n(τk)) ↓ 0 in accordance with (2.9) and (3.6).

Let the error terms γ
(m)
τk > 0 satisfy condition (2.21) from Remark 2.11.

If the associated KDE-MM-Scheme is carried out as per Definition 3.1
with initial data Y 0

τk
:=

(
X1, ..., Xn(τk)

)
that are formed of an i.i.d. sample

X1, ..., Xn(τk) from some measure µ0 ∈ {ϕ < +∞}, then with probability 1,
the statements from Theorem 2.8(i) and (ii) hold true for the corresponding
discrete solutions.
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Remark 3.4 (Existence of right parameters for KDE-MM-Scheme). Thanks
to Theorem 2.6 and the fact that h(n) ↓ 0 as n ↑ +∞ by Definition 1.5, we can
always select n = n(τ) and h = h(n(τ)) in accordance with (2.9) and (3.6).
To be precise, there exists a sequence (nτ )τ>0 in N with nτ ↑ +∞ as τ ↓ 0
such that the relaxed slope |∂−ϕ| of ϕ and the (p, τ)-Moreau-Yosida difference
quotients DY

p,τϕn(τ) of ϕn(τ) are connected by (2.9) and the corresponding
bandwidths h(τ) := h(n(τ)) satisfy (3.6) whenever the correlation τ 7→ n(τ)
between step sizes τ > 0 and sample size parameters n(τ) ∈ N is selected in
such a way that n(τ) ≥ nτ .

In Remark 3.5, an extension of Theorem 3.3 regarding a relaxation of
Hypotheses (H2) and (H3) in Definition 1.5 is considered:

Remark 3.5 (Partial Γ-KDE-Approximation). We say that (ϕn)n∈N is a
partial Γ-KDE-Approximation of ϕ associated withK, the correlation n 7→ h(n)
and a set I ⊊ {ϕ < +∞} if the bandwidths h(n) ↓ 0 as the sample sizes
n ↑ +∞, Hypothesis (H1) and the Γ-liminf-inequality (2.5) are satisfied and
for all µ ∈ I, Kernel Density Estimation almost surely yields a recovery
sequence (1.13).

Theorem 3.3 still holds true if the KDE-MM-Scheme is performed along
a partial Γ-KDE-Approximation with the initial measure µ0 belonging to the
associated set I; we refer the reader to Remark 2.10 for the corresponding
extension of Theorem 2.8.

3.2 Applications of the KDE-MM-Scheme

3.2.1 Strong consistency of KDEs in (Pp(Rd),Wp)

An essential ingredient for the application of the KDE-MM-Scheme is the
strong consistency of Kernel Density Estimators in (Pp(Rd),Wp), cf. Hy-
pothesis (H3) in Definition 1.5.

Proposition 3.6 (Strong consistency of KDEs in (Pp(Rd),Wp)). Let K be
a kernel function according to Definition 1.3 with finite moment (1.12) of
order p. If (ρ̂n,h(n))n∈N is a family of Kernel Density Estimators (1.11) for
a probability distribution µ ∈ Pp(Rd) associated with K, the sample sizes n
and the bandwidths h(n) ↓ 0 as n ↑ +∞, then µ̂n,h(n) := ρ̂n,h(n)L

d satisfies

lim
n→+∞

Wp(µ̂n,h(n), µ) = 0 almost surely.
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The statement follows from the obvious estimate

Wp

( 1
n

n∑
i=1

Kh(· −Xi),
1

n

n∑
i=1

δXi

)
≤ h ·M1/p

K,p

and the strong consistency of empirical measures in (Pp(Rd),Wp). The latter
is a consequence of the almost surely weak convergence of empirical measures
to the corresponding probability distribution as the sample sizes n ↑ +∞, see
[64], the strong law of large numbers and the equivalence (4.1) between ‘weak
convergence & convergence of moments of order p’ and ‘Wp-convergence’.

We refer the reader to [29] for estimates of the expected rate of conver-
gence and related concentration inequalities.

3.2.2 Second Order Diffusion Equations

The study of how to apply the theory of the preceding sections (definition of
Γ-KDE-Approximation, selection of parameters for KDE-MM-Scheme, vali-
dation of chain rule, etc.) to classic second order examples of (1.1) is carried
out in every detail in the author’s papers [27, 23]. The purpose of this sub-
section is to give the reader a rough idea thereof.

Example 3.7 (Second order diffusion equation with no-flux boundary con-
dition). Let Ω be an open and bounded subset of Rd, whose boundary ∂Ω
satisfies Ld(∂Ω) = 0. As in the preceding sections, q belongs to (1,+∞)
and p denotes its conjugate exponent. In [27, 23], it is proved that the KDE-
MM-Scheme, performed as per Definition 3.1 and Theorem 3.3, approximates
weak solutions to the partial differential equation

∂tu−∇ ·
(
ujq

(
∇F ′(u) +∇V +∇W ∗ u

))
= 0 in (0,+∞)× Ω (3.7)

with no-flux boundary condition

ujq

(
∇F ′(u) +∇V +∇W ∗ u

)
· n = 0 on (0,+∞)× ∂Ω, (3.8)

where jq(v) := |v|q−2v for v ∈ Rd (with jq(0) = 0). The associated energy
functional ϕ : Pp(Rd) → (−∞,+∞] is defined as

ϕ(µ) :=

{
E(µ) if µ = uLd and u ≡ 0 in Rd \ Ω,
+∞ else,
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where

E(µ) :=

∫
Rd

F (u(x))dx+

∫
Rd

V dµ+
1

2

∫
Rd×Rd

W (x− y)u(x)u(y)dxdy.

Our hypotheses on the functions F , V and W are of a quite general nature
being aimed at coercivity properties of the functional E, the characterization
of the limiting subdifferential ∂lϕ(µ) as {∇F ′(u)+∇V +∇W ∗u} and the val-
idation of the chain rule (2.12); they cover not only displacement convex and
semi-displacement-convex functionals but also functionals ϕ that do not sat-
isfy any convexity criterion along constant speed geodesics in (Pp(Rd),Wp),
cf. Remark 2.9.

The natural guess regarding a Γ-KDE-Approximation of ϕ is a sequence
of functionals ϕn : Pp(Rd) → (−∞,+∞] defined as

ϕn(µ) :=

{
E(µ) if ∃y1, ..., yn ∈ Ω : µ = 1

n

∑n
i=1Kh(n)(· − yi)L

d,

+∞ else,

with h(n) ↓ 0 as n ↑ +∞: in [27, 23], we exemplify the corresponding
practical selection of correlations n 7→ h(n) and τ 7→ n(τ) in accordance
with (H3) and (2.9) and give concrete examples of suitable choices n = n(τ)
and h = h(n(τ)) for an application of Theorem 3.3. We make use of variations
on the following statement on the asymptotic behaviour of Kernel Density
Estimators proved in [39] (cf. Cor. 15, Thm. 27, Lem. 14, Lem. 11 therein):

Proposition 3.8 (Uniform convergence rates for KDEs). Let K be a Lip-
schitz continuous kernel function according to Definition 1.3 with compact
support and (ρ̂n,h)n∈N,h>0 an associated family of Kernel Density Estimators
(1.11) for a probability distribution µ on Rd with expected value functions

E[ρ̂n,h] : Rd → [0,+∞), x 7→
∫
Rd

Kh(x− y)dµ(y).

If µ has compact support, there exists a constant CK,µ depending on K and µ
such that for every α ∈ (0, 1) and every n ∈ N and h ∈ (0, 9

10
) the following

is true with probability at least 1− α:

||ρ̂n,h − E[ρ̂n,h]||∞ ≤ CK,µ ·R(n, h, α) (3.9)

where

R(n, h, α) :=

√
log(1/h)

nh2d
+

√
log(1/α)

nh2d
+

log(1/h)

nhd
+

log(1/α)

nhd
. (3.10)
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An application of Proposition 3.8, Borel-Cantelli lemma, the fact that
KDEs for probability densities are almost everywhere asymptotically unbiased
and of the dominated convergence theorem yields suitable choices h = h(n)
such that (ϕn)n∈N is a Γ-KDE-Approximation of ϕ as per Definition 1.5.
Please recall Proposition 3.6 in this context.

The procedure for selecting n = n(τ) in accordance with the desired
relation (2.9) between |∂−ϕ| and

(
DY

p,τϕn(τ)

)
τ>0

is based on the fact that

1

q

(
|∂−ϕ|(ν)

)q ≤
[
G− lim inf

τ↓0
DY

p,τϕ
]
(ν) for all ν ∈ {ϕ < +∞},

where
[
G− lim infτ↓0DY

p,τϕ
]
(ν) is defined as

inf
{
lim inf

τ↓0
DY

p,τϕ(ντ ) : lim
τ↓0

Wp(ντ , ν) = 0, sup
τ

ϕ(ντ ) < +∞
}
,

(cf. Prop. 4.1 in [25] and Theorem 2.6) and on a precise examination and
quantification of the differences between the (p, τ)-Moreau-Yosida difference
quotients DY

p,τϕ and DY
p,τϕn corresponding to a fixed time step size τ and

a sample size n. For that, we refine the uniform convergence rate (3.9),
(3.10) for KDEs taking advantage of the proofs from [39] and the underlying
information on the constant CK,µ.

Furthermore, if realistic initial probability densities and solutions corre-
sponding to an application of (3.7), (3.8) in physics, biology, etc. are es-
sentially bounded from above, the concept of partial Γ-KDE-Approximation
from Remark 3.5 enables us to take account of this extra condition a priori.

We refer the reader to [27, 23] for all details.

Remark 3.9 (Second order diffusion equation: unbounded domain). It is
noteworthy that in [39] (cf. Sect. 4 therein) uniform convergence rates such
as (3.9) are also established for probability distributions with unbounded
support and a wider class of kernel functions (involving more parameters
than in Proposition 3.8).

Whilst for Example 3.7 and corresponding Γ-KDE-Approximations the
combined compactness property (ϕn2) easily follows from Prokhorov’s theo-
rem because the PDE domain is bounded, it is typically an obstacle if Ω = Rd

(the case that the function V , by which the external potential term of ϕ is

defined, satisfies V (x)
|x|p ↑ +∞ for |x| ↑ +∞ is an exception); we tackle this

obstacle by weak and partial weak Γ-KDE-Approximations, for which the
parameter selection is similar to the above procedure, see Remark 4.1(i).
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We end this subsection with a brief account of physical, biological, chem-
ical, etc. processes that can be simulated by the second order diffusion equa-
tion from Example 3.7 and the corresponding KDE-MM-Scheme:

Remark 3.10 (Applications of (3.7), (3.8)). The general second order dif-
fusion equation (3.7) with no-flux boundary condition (3.8) has a wide range
of applications. We name but a few:

� models for studying the motion of a gas in a porous medium, the
motion of particles under chemical bonding forces, the motion of a
population or the evolution in time of a region occupied by water
where groundwater infiltration through a porous stratum occurs (cf.
[65, 18, 41, 49, 15, 40, 30, 33, 11])

� the theory of shallow-water flows, e.g. atmospheric flows, tidal flows,
storm surges, river flows, tsunamis (cf. [68, 16] and the references
therein),

� the theory of heat conduction and heat radiation in plasmas, (cf. [71,
65, 72, 9]),

� the theory of granules affected by their environment, friction and in-
elastic collisions between granules with different velocities (cf. [8, 7, 63,
13, 14]).

3.2.3 Fourth Order Diffusion Equations

The abstract theory from Section 3.1, Proposition 3.6 and uniform con-
vergence rates for KDE derivatives provide good reasons for studying the
KDE-MM-Scheme as a variational approximation technique for fourth order
examples of (1.1) from a theoretical and an experimental point of view.

Remark 3.11 (Uniform convergence rates for KDE derivatives). If the kernel
function K belongs to C1,1

c (Rd), convergence rates similar to (3.9), (3.10) can

be proved for
∥∥∥∇ρ̂n,h −∇E[ρ̂n,h]

∥∥∥
∞
, see Sect. 6 in [39]. Please note that

∇E[ρ̂n,h](x) =
∫
Rd

∇Kh(x− y)dµ(y)

and ∇E[ρ̂n,h] = Kh ∗ ∇ρ if µ has a Lebesgue density function ρ with locally
integrable weak gradient ∇ρ.
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Presumably the best-known fourth order examples of (1.1) (for q = 2)
are the thin film equation

∂tu+∇ ·
(
u∇∆u

)
= 0

(
ϕ(u) :=

1

2

∫
|∇u|2dx

)
,

applied to lubrication theory for describing the motion of a moving contact
line (cf. e.g. [10]), and the quantum drift diffusion equation

∂tu+ 4∇ ·
(
u∇∆

√
u√
u

)
= 0

(
ϕ(u) :=

∫
|∇u|2

u
dx

)
,

in which u stands e.g. for the electron density in a quantum model for
semiconductors (cf. [56, 37, 38]).

3.3 Proof of Proposition 3.2

We prove Proposition 3.2.

Proof. An application of Young’s inequality and condition (ϕn1) show that
for all ϵ ∈

(
0, 1

p

)
there exists a constant C̃ϵ > 0 such that

ϕn(·) ≥ −A−BWp(·, µ⋆)
p ≥ −A− B

1− pϵ
Wp(·, µ̃)p−C̃ϵ ·Wp(µ̃, µ⋆)

p (3.11)

for all µ̃ ∈ Pp(Rd) and n ∈ N. Statement (i) follows from (3.11) and the fact
that

Wp

( 1
n

n∑
i=1

Kh(n)(· − yi)L
d,
1

n

n∑
i=1

Kh(n)(· − zi)L
d
)p

≤ 1

n

n∑
i=1

|yi − zi|p

(3.12)
for every yi, zi ∈ Rd, which can be easily seen by testing the minimum prob-
lem in the definition ofWp on the measure 1

n

∑n
i=1 (id× Ti)#(Kh(n)(· − yi)L

d),
Ti(x) := zi + x− yi.

Now, we prove statement (ii). The differences in the distance terms of the
relaxed Minimizing Movement scheme (2.7), (2.8) and the KDE-MM-Scheme
can be estimated in the following way.

Let Y m
τk

:=
(
ym1,τk , ..., y

m
n(τk),τk

)
, ymi,τk ∈ Rd, be a solution (3.2) of one step

(3.3) of the KDE-MM-Scheme and µm
τk

= um
τk
Ld be the associated measure

(3.4); um
τk

equals the convolution between the scaled kernel function Kh(τk)
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and the measure 1
n(τk)

∑n(τk)
i=1 δymi,τk

(where δy denotes the Dirac measure with

centre y ∈ Rd) so that

Wp(µ
m
τk
, µm−1

τk
)p ≤ 1

n(τk)

n(τk)∑
i=1

|ymi,τk − ym−1
i,τk

|p (3.13)

according to (3.12). Estimate (3.13) is the first step towards the inequality

Φ(τk, µ
m−1
τk

, µm
τk
) ≤ inf

ν∈Pp(Rd)
Φ(τk, µ

m−1
τk

, ν) + γ̄(m)
τk

(3.14)

for Φ defined as in (2.8) and a suitable error term γ̄
(m)
τk > 0.

Moreover, we apply the change of variables formula and Jensen’s inequal-

ity to Wp(µτk(0), δ0) =
( ∫

Rd |x|pdµτk(0)
)1/p

so that we have

Wp(µτk(0), δ0) ≥
∫
Rd

( 1

n(τk)

n(τk)∑
i=1

|h(τk)z + y0i,τk |
p
)1/p

K(z)dz

and using Minkowski’s inequality for sequences, we obtain

Wp(µτk(0), δ0) ≥
( 1

n(τk)

n(τk)∑
i=1

|y0i,τk |
p
)1/p

− h(τk) · C, (3.15)

where C :=
∫
Rd |z|K(z)dz ≤ M

1/p
K,p < +∞ (cf. (1.12)). We may assume

w.l.o.g. that τk ∈
(
0,
(

1
pB

)1/(p−1))
. For all k,m ∈ N there exists a constant

Rk,m > 0 only depending on the initial data and the error terms and not on
the discrete solutions themselves such that

( 1

n(τk)

n(τk)∑
i=1

|ymi,τk |
p
)1/p

≤ Rk,m (3.16)

and

sup{Rk,m : k,m s.t. mτk ≤ T} < +∞ for every T > 0; (3.17)

in actual fact, it is not difficult to deduce (3.16), (3.17) from the first part
of the proof of Thm. 3.4 in [25], (2.21), (3.15), (3.5) and an application of
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(3.11) with µ̃ := Kh(τk)(·)Ld and fixed ϵ in combination with (3.12) and the

fact that Wp(Kh(τk)(·)Ld, µ⋆) ≤ h(τk)M
1/p
K,p +Wp(δ0, µ⋆).

Further, we have

Wp(µ
m−1
τk

, δ0) ≤
( 1

n(τk)

n(τk)∑
i=1

|ym−1
i,τk

|p
)1/p

+Wp(Kh(τk)(·)L
d, δ0)︸ ︷︷ ︸

≤h(τk)·M
1/p
K,p

by (3.12), (1.12) and

ϕn(τk)(µ
m−1
τk

) ≤ ϕn(τk)(µτk(0)) +
m−1∑
j=1

γ(j)
τk

by (3.3). Consequently, the first part of the proof of Thm. 3.4 in [25], (3.16),
(3.17), (3.5), (2.21), (ϕn1) and an estimate analogous to (3.15) show that for
all k,m ∈ N there exists a constant R̄k,m > 0 such that (3.17) holds true for
R̄k,m and ( 1

n(τk)

n(τk)∑
i=1

|yi|p
)1/p

≤ R̄k,m (3.18)

whenever ν :=
(

1
n(τk)

∑n(τk)
i=1 Kh(τk)(· − yi)

)
Ld satisfies

ϕn(τk)(ν) +
1

pτ p−1
k

Wp(ν, µ
m−1
τk

)p ≤ inf
ν̄∈Pp(Rd)

Φ(τk, µ
m−1
τk

, ν̄) + 1

for Φ defined as in (2.8). Obviously (see e.g. Lem. 7.1.10 in [4]), we have

Wp

(
ν,

1

n(τk)

n(τk)∑
i=1

δyi

)p

≤ h(τk)
p ·MK,p. (3.19)

As the measure ν is independent of the numbering order of y1, ..., yn(τk), we
may assume w.l.o.g. that

Wp

( 1

n(τk)

n(τk)∑
i=1

δyi ,
1

n(τk)

n(τk)∑
i=1

δym−1
i,τk

)p

=
1

n(τk)

n(τk)∑
i=1

|yi − ym−1
i,τk

|p

(cf. pp. 5-6 in [66]). We obtain

1

n(τk)

n(τk)∑
i=1

|yi − ym−1
i,τk

|p ≤ Wp(ν, µ
m−1
τk

)p + 2p · h(τk) ·M1/p
K,p · R̃

p−1
k,m , (3.20)
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with R̃k,m := R̄k,m + Rk,m−1, by applying the estimate (3.19) to both ν
and µm−1

τk
, (3.16), (3.18), the triangle inequality, Young’s inequality and

Minkowski’s inequality for sequences.
All in all, we infer from (3.13), (3.3), (3.20), the fact that the constants

R̃k,m satisfy (3.17) and from (3.6) that the measures µm
τk

= um
τk
Ld, m ∈ N,

solve the successive relaxed minimum problems (3.14) and the corresponding
error terms

γ̄(m)
τk

:= γ(m)
τk

+ 2M
1/p
K,p · R̃

p−1
k,m · h(τk)

τ p−1
k

satisfy condition (2.21).
The proof of Proposition 3.2 is complete.

4 Remarks and Extensions of the Theory

In Sections 1.3 and 3, advantages of the KDE-MM-Scheme regarding a com-
putational implementation are explicated. Please note that such a process
always involves a second stage besides the mathematical theory, in which
part of the mathematical accuracy is carefully sacrificed for computational
feasibility and cost economy. Corresponding further simplifications of the
KDE-MM-Scheme are beyond the scope of this introductory paper.

We present variations on Theorem 2.8 and Theorem 3.3 with respect to
the hypotheses on the energy functionals, the topology and the time dis-
cretizations:

Remark 4.1 (Some extensions of Theorem 2.8 and Theorem 3.3). We dis-
cuss extensions of our theory to the case that (ϕn)n∈N does not satisfy the
combined compactness property (ϕn2), the case that ϕ does not satisfy (ϕ1)
or the hypotheses on its limiting subdifferential from Theorem 2.8(ii) and to
the cases of non-uniform time discretizations and perturbations of the dis-
tance term in the general relaxed Minimizing Movement scheme (2.7), (2.8)
and the KDE-MM-Scheme (3.3), (3.1):

(i) Using the topology induced by weak convergence νn ⇀ ν defined as

lim
n→+∞

∫
Rd

f(x)dνn(x) =

∫
Rd

f(x)dν(x) for all f ∈ Cb(Rd)

as an auxiliary topology besides the metric topology (Pp(Rd),Wp),
we can omit the combined compactness condition (ϕn2) because by
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Prokhorov’s Theorem, Wp-bounded sets are relatively compact w.r.t.
weak convergence; Theorem 2.8 still holds true (with pointwise weak
instead of locally uniform Wp-convergence of the discrete solutions) if
the functionals ϕn satisfy (ϕn1) and Wp(µn, µ) → 0 is replaced with
supn Wp(µn, µ) < +∞, µn ⇀ µ in the Γ-liminf inequality (2.5) (‘weak
Γ-liminf inequality’) and in the definitions of |∂−ϕ|(µ) and ∂lϕ(µ) (cf.
Definitions 2.1 and 2.3) and if we adapt the parameter selection (2.9)
by correspondingly changing the definition (2.10) of the slight modifica-

tion
[
G− lim infτ↓0DY

p,τϕn(τ)

]
of the Γ-lower limit of the (p, τ)-Moreau-

Yosida difference quotients of ϕn(τ), see Sects. 2, 3.1, 3.2 and 4.1 in
[25].

We say that (ϕn)n∈N is a weak Γ-KDE-Approximation of ϕ associated
with K and n 7→ h(n) if h(n) ↓ 0 as n ↑ +∞, Hypothesis (H1),
the weak Γ-liminf inequality and Hypothesis (H3) are satisfied; please
recall Proposition 3.6 in this context.

Theorem 3.3 still holds true according to the above extension of The-
orem 2.8 if the KDE-MM-Scheme is performed along a weak Γ-KDE-
Approximation and we only assume the coercivity condition (ϕn1). The
same is true of a partial weak Γ-KDE-Approximation, whose definition is
obvious, cf. Remark 3.5.

Please note that

νn
Wp−→ ν ⇔ νn ⇀ ν, lim

n→+∞

∫
Rd

|x|pdνn(x) =
∫
Rd

|x|pdν(x) (4.1)

(see e.g. Thm. 7.12 in [66]).

(ii) We assume (ϕ1) only for the sake of a clear presentation with a straight-
forward notation. Theorem 2.8(ii) can be generalized to the case that
ϕ(µ) < +∞ does not necessarily imply µ ≪ Ld. The subdifferen-
tial calculus from Definition 2.3 has to be adapted for this case, see
Sect. 10.3 and Def. 10.3.1 in [4], and the chain rule (2.12) has to be
reformulated correspondingly.

(iii) The hypothesis in part (ii) of Theorem 2.8 that the limiting subdifferen-
tial ∂lϕ(µ(t)) contains at most one element seems none too restrictive,
cf. Section 2.1; however, we may assume instead that for L1-a.e. t > 0,

31



the limiting subdifferential ∂lϕ(µ(t)) contains an elementDlϕ(µ(t)) sat-
isfying (2.19). For that, it suffices to assume one of the following two
properties: the “minimal selection” criterion

∥Dlϕ(µ(t))∥Lq(µt;Rd) = min{∥ζ∥Lq(µt;Rd) : ζ ∈ ∂lϕ(µ(t))}

or the condition that relaxed and local slope coincide, i.e. |∂−ϕ| ≡ |∂ϕ|,
cf. Lem. 10.3.4 and Rem. 3.1.7 in [4] and the proofs of Lem. 4.6 in [5]
and Lem. 10.1.5 in [4].

(iv) The theory from Sections 2.2 and 3 can be easily extended to time dis-
cretizations with non-equi-sized time steps. Every time discretization
T = {0 = t0, t1, ..} with tj ↑ +∞ and τ(T) := infj∈N(tj − tj−1) > 0 is
assigned a parameter / sample size n(T) following the selection pro-
cedure corresponding to the smallest time step size τ(T) of T, cf.
Theorem 2.6, Remark 3.4 and Section 3.3. Letting n(T) ↑ +∞ and
τ(T) := supj∈N(tj − tj−1) ↓ 0 simultaneously in the associated schemes,
we obtain the same statements as in Theorems 2.8 and 3.3.

(v) It is possible to allow for perturbations not only of the energy functional
but also of the distance term in (2.8) and to extend the theory from
Theorem 2.8 to this case, cf. Sect. 9 in [25].

Finally, we note that the key to our stability theory for steepest descents
under Γ-convergence from [25] and Section 2.2 is to focus on the discrete-time
steepest descents w.r.t. the Γ-perturbations ϕn, on the (p, τ)-Moreau-Yosida
difference quotients of ϕn and the interplay between parameters and time
step sizes as n ↑ +∞ and τ ↓ 0 simultaneously, thus compensating for the
lack of control over the slopes of ϕn.

As is explicated in Sect. 1 in [25], the limit of a sequence of continuous-
time steepest descents w.r.t. ϕn, n ∈ N, is in general not related to the
continuous-time gradient flow of the Γ-limit functional ϕ because the slopes
of ϕn are not related to the slope of ϕ; in terms of the Minimizing Move-
ment scheme, considerations regarding the limit behaviour of continuous-
time steepest descents correspond to first letting the time step sizes τ ↓ 0 for
a fixed parameter n ∈ N and only then letting the parameters n ↑ +∞.

The well-known Serfaty-Sandier approach [59, 62] offers the underlying

structure of special cases ϕn
Γ→ ϕ in which continuous-time gradient flow

solutions w.r.t. ϕn do converge to the continuous-time gradient flow w.r.t. ϕ;
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the Serfaty-Sandier theory relies on the assumption that the corresponding
relaxed slopes satisfy a Γ-liminf inequality

µn → µ ⇒ |∂−ϕ|(µ) ≤ lim inf
n→+∞

|∂−ϕn|(µn).

Ortner’s examination [50] of a joint Minimizing Movement scheme along

ϕn
Γ→ ϕ is based on the assumption that

µn → µ ⇒ |∂ϕ|(µ) ≤ lim inf
n→+∞

|∂ϕn|(µn).

In both cases, the relation (2.9) between the relaxed slope |∂−ϕ| of ϕ and
the (p, τ)-Moreau-Yosida difference quotients DY

p,τϕn(τ) of ϕn(τ) holds true for
every choice n = n(τ) ↑ +∞, cf. Sect. 5, Prop. 5.1, Prop. 5.2 and Sect. 9 in
[25]. The same is true if the topology induced by weak convergence is used
as an auxiliary topology as in Remark 4.1(i).
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